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Abstract

We study nematic equilibria on three-dimensional square wells, with emphasis on Well Order Reconstruction Solu-

tions (WORS) as a function of the well size, characterized by λ, and the well height denoted by ǫ. The WORS are

distinctive equilibria reported in [10] for square domains, without taking the third dimension into account, which have

two mutually perpendicular defect lines running along the square diagonals, intersecting at the square centre. We

prove the existence of WORS on three-dimensional wells for arbitrary well heights, with (i) natural boundary con-

ditions and (ii) realistic surface energies on the top and bottom well surfaces, along with Dirichlet conditions on the

lateral surfaces. Moreover, the WORS is globally stable for λ small enough in both cases and unstable as λ increases.

We numerically compute novel mixed 3D solutions for large λ and ǫ followed by a numerical investigation of the

effects of surface anchoring on the WORS, exemplifying the relevance of the WORS solution in a 3D context.

Keywords:

1. Introduction

Nematic liquid crystals (NLCs) are classical examples of mesophases or intermediate phases of matter between

the solid and liquid phases, with a degree of long-range orientational order [7]. Nematics are directional materials with

locally preferred directions of molecular alignment, described as nematic “directors” in the literature. The directional

nature of nematics makes them highly susceptible to external light and electric fields, making them the working

material of choice for the multi-billion dollar liquid crystal display industry [1]. Recently, there has been substantial

interest in new applications for NLCs in nano-technology, microfluidics, photonics and even security applications

[13]. We build on a batch of papers on NLCs in square wells, originally reported in [24] and followed up in recent

years in [16], [10], [12], [15], [25], [3], [26] etc. In [24], the authors experimentally and numerically study NLC

equilibria inside square wells with tangent boundary conditions on lateral surfaces, which means that the nematic

molecules on these surfaces preferentially lie in the plane of the surfaces. They study shallow wells and argue that

it is sufficient to study the nematic profile on the square cross-section and hence, model NLC equilibria on a square
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with tangent boundary conditions, which require the nematic directors to be tangent to the square edges creating

a necessary mismatch at the square corners. They report two experimentally observed NLC equilibria on micron-

sized wells, labelled as the diagonal solution for which the nematic director is along a square diagonal and a rotated

solution for which the nematic director rotated by π radians between a pair of parallel edges. They further model this

system within a reduced two-dimensional continuum Landau-de Gennes (LdG) approach and recover the diagonal

and rotated solutions numerically. The reduction from a 3D well to a 2D square domain can be rigorously justified

using Γ-convergence [26].

In [10], the authors study the effects of square size on NLC equilibria for this model problem with tangent boundary

conditions. They measure square size in units of a material-dependent length scale - the biaxial correlation length,

which is typically in the nanometer regime. For micron-sized squares, the authors recover the diagonal and rotated

solutions within a continuum LdG approach as before. As they reduce the square size, particularly from the micron

to the nano-scale, they find a unique Well Order Reconstruction Solution (WORS) for squares smaller than a certain

critical size, which in turn depends on the material constants and temperature. The WORS is an interesting NLC

equilibria for two reasons - (i) it partitions the square into four quadrants and the nematic director is approximately

constant in each quadrant according to the tangent condition on the corresponding edge and (ii) the WORS has a

defect line along each square diagonal and the two mutually perpendicular defect lines intersect at the square centre,

yielding the quadrant structure. Indeed, we speculate that this distinctive defect line could be a special optical feature

of the WORS, if experimentally realised. The WORS has been analysed in [3] and [26], in terms of solutions of the

Allen-Cahn equation and it is rigorously proven that the WORS is globally stable for sufficiently small squares i.e. for

nano-scale geometries. Recent work shows that the WORS is also observable in molecular simulations and is hence,

not a continuum artefact.

A potential criticism is that the WORS is an artefact of the 2D square domain and is hence, not relevant for 3D

scenarios. In this paper, we address the important question - does the WORS survive in a three-dimensional square

box? As proven in [26], the WORS does survive in the thin film limit but can we observe the WORS for square wells

with a finite height? The answer is affirmative and we identify two physically relevant 3D scenarios for which the

WORS exists, for all values of the well height and for all temperatures below the nematic supercooling temperature

i.e. for temperatures that favour a bulk ordered nematic phase. The paper is organised as follows. In Section 2.1,

we review the LdG theory for NLCs and introduce the domain and the boundary conditions in Section 2.2. Our

analytical results are restricted to Dirichlet tangent conditions for the nematic directors on the lateral surfaces of the

well, phrased in the LdG framework. In Section 3.1, we work with 3D wells that have natural boundary conditions on

the top and bottom surfaces and study the existence, stability and qualitative properties of the WORS as a special case

of a more general family of LdG equilibria; we believe these results to be of general interest. In Section 3.2, we work

with 3D wells that have realistic surface energies that favour planar boundary conditions on the top and bottom and

again prove the existence of the WORS for arbitrary well heights and low temperatures, accompanied by interesting

companion results for surface energy. In Section 4, we perform a detailed numerical study of the 3D LdG model on

3D square wells. We discover novel mixed 3D solutions, that interpolate between different diagonal solutions, when

the WORS is unstable. Further, we numerically study the effect of surface anchoring on the lateral surfaces on the

stability of the WORS, in contrast to the analysis which is restricted to Dirichlet conditions on the lateral surfaces. The

WORS ceases to exist as we weaken the tangential boundary conditions on the lateral surfaces; this is expected from

[10] since the tangent conditions naturally induce the symmetry of the WORS in severe confinement. Our numerical

results yield quantitative estimates for the existence of the WORS as a function of the anchoring strength on the lateral

surfaces and these estimates can be of value in further work. We summarise our conclusions in Section 5.

2. Preliminaries

2.1. The Landau-de Gennes model

We work with the Landau-de Gennes (LdG) theory for nematic liquid crystals. The LdG theory is a powerful

continuum theory for nematic liquid crystals and describes the nematic state by a macroscopic order parameter — the

LdG Q-tensor, which is a symmetric traceless 3 × 3 matrix i.e.

Q ∈ S 0 :=
{

Q ∈M3×3 : Qi j = Q ji, Qii = 0
}

.
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A Q-tensor is said to be (i) isotropic if Q = 0, (ii) uniaxial if Q has a pair of degenerate non-zero eigenvalues and can

be written in the form

Q = s

(

n ⊗ n − I

3

)

where n is the eigenvector with the non-degenerate eigenvalue and (iii) biaxial if Q has three distinct eigenvalues.

We assume that the domain is a three-dimensional well, filled with nematic liquid crystals,

V := Ω × (0, h),

where Ω ⊆ R
2 is the two-dimensional cross-section of the well (more precisely, a truncated square, as described in

Section 2.2) and h is the well height [24, 10]. Let Γ be the union of the top and bottom plates, that is,

Γ := Ω × {0, h}.

In the absence of surface anchoring energy, we work with a simple form of the LdG energy given by [7]

Fλ[Q] :=

∫

V

(
L

2
|∇Q|2 + fb(Q)

)

dV (2.1)

The term |∇Q|2 := ∂kQi j∂kQi j, for i, j, k = 1, 2, 3, is an elastic energy density which penalises spatial inhomogeneities

and L > 0 is a material-dependent elastic constant. The thermotropic bulk potential, fb, is given by

fb(Q) :=
A

2
trQ2 − B

3
trQ3 +

C

4

(

trQ2
)2
. (2.2)

The variable A = α(T − T ∗) is the re-scaled temperature, α, B, C > 0 are material-dependent constants and T ∗ is the

characteristic supercooling temperature [7, 19]. It is well-known that all stationary points of fb are either uniaxial or

isotropic [7, 19, 17]. The re-scaled temperature A has three characteristic values: (i) A = 0, below which the isotropic

phase Q = 0 loses stability, (ii) the nematic-isotropic transition temperature, A = B2/27C, at which fb is minimized

by the isotropic phase and a continuum of uniaxial states with s = s+ = B/3C and n arbitrary, and (iii) the nematic

superheating temperature, A = B2/24C, above which the isotropic state is the unique critical point of fb. For a given

A < 0, let N := {Q ∈ S 0 : Q = s+ (n ⊗ n − I/3)} denote the set of minimizers of the bulk potential, fb, with

s+ :=
B +

√

B2 + 24|A|C
4C

(2.3)

and n ∈ S 2 arbitrary.

We non-dimensionalize the system using a change of variables, r̄ = r/λ, where λ is a characteristic length scale

of the cross-section Ω. The rescaled domain and the rescaled top and bottom surfaces become

V := Ω × (0, ǫ), Γ := Ω × {0, ǫ} (2.4)

where Ω is the rescaled two-dimensional domain and ǫ := h/λ. The re-scaled LdG energy functional is

Fλ[Q] :=
Fλ[Q]

Lλ
=

∫

V

(

1

2

∣
∣
∣
∣∇Q

∣
∣
∣
∣

2

+
λ2

L
fb(Q)

)

dV . (2.5)

In (2.5), ∇ is the gradient with respect to the re-scaled spatial coordinates, dV is the re-scaled volume element and dS

is the re-scaled area element. In what follows, we drop the bars and all statements are to be understood in terms of

the re-scaled variables.

Critical points of (2.5) satisfy the Euler-Lagrange system of partial differential equations

∆Q =
λ2

L

{

AQ − B

(

QQ − I

3
|Q|2

)

+C|Q|2Q

}

. (2.6)
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Figure 2.1: The ‘truncated square’ Ω.

2.2. The 2D domain, Ω, and the boundary conditions on the lateral surfaces

Let Ω be our two-dimensional (2D) cross-section which is a truncated square with diagonals along the coordinate

axes:

Ω :=
{

(x, y) ∈ R2 : |x| < 1 − η, |y| < 1 − η, |x + y| < 1, |x − y| < 1
}

(2.7)

(see Figure 2.1). Here η ∈ (0, 1) is a small, but fixed parameter. The boundary, ∂Ω, consists of four “long”

edges C1,. . . , C4, parallel to the lines y = x and y = −x, and four “short” edges S 1, . . . , S 4, of length 2η, paral-

lel to the x and y-axes respectively. The four long edges Ci are labeled counterclockwise and C1 is the edge contained

in the first quadrant, i.e.

C1 :=
{

(x, y) ∈ R2 : x + y = 1, η ≤ x ≤ 1 − η
}

.

The short edges S i are introduced to remove the sharp square vertices. They are also labeled counterclockwise and

S 1 := {(1 − η, y) ∈ R2 : |y| ≤ η}.
We impose Dirichlet conditions on the lateral surfaces of the well, ∂Ω × (0, ǫ):

Q = Qb on ∂V \ Γ = ∂Ω × (0, ǫ), (2.8)

where the boundary datum Qb is independent of the z-variable, ∂zQb ≡ 0. Following the literature on planar multi-

stable nematic systems [24, 16, 10], we impose tangent uniaxial Dirichlet conditions on the long edges, C1, . . . , C4:

Qb(x, y, z) :=






s+ (n1 ⊗ n1 − I/3) if (x, y) ∈ C1 ∪C3

s+ (n2 ⊗ n2 − I/3) if (x, y) ∈ C2 ∪C4;
(2.9)

where s+ is defined in (2.3) and

n1 :=
1
√

2
(−1, 1, 0) , n2 :=

1
√

2
(1, 1, 0) . (2.10)

We prescribe Dirichlet conditions on the short edges too, in terms of a function, g0 : [−η, η]→ [−s+/2, s+/2], chosen

to eliminate discontinuities of the tangent Dirichlet boundary condition e.g.

g0(s) :=
s+

2η
s, for − η ≤ s ≤ η,

but the choice of g0 does not affect qualitative predictions or numerical results. We define

Qb(x, y, z) :=






g0(y) (n1 ⊗ n1 − n2 ⊗ n2) − s+

6
(2ẑ ⊗ ẑ − n1 ⊗ n1 − n2 ⊗ n2) if (x, y) ∈ S 1 ∪ S 3,

g0(x) (n1 ⊗ n1 − n2 ⊗ n2) − s+

6
(2ẑ ⊗ ẑ − n1 ⊗ n1 − n2 ⊗ n2) if (x, y) ∈ S 2 ∪ S 4.

(2.11)

Given the Dirichlet conditions (2.8), our admissible class of Q-tensors is

B :=
{

Q ∈ W1,2(V, S 0) : Q = Qb on ∂Ω × (0, ǫ)
}

. (2.12)
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3. The Well Order Reconstruction Solution (WORS) in a three-dimensional (3D) context and related results

In [10], the authors numerically report the Well Order Reconstruction solution (WORS) on the 2D domain, Ω,

with the Dirichlet conditions (2.9); which is further analysed in [3]. At a fixed temperature A = − B2

3C
, the WORS

corresponds to a classical solution of the Euler-Lagrange equations (2.6) of the form

QWORS = q (n1 ⊗ n1 − n2 ⊗ n2) − B

6C
(2ẑ ⊗ ẑ − n1 ⊗ n1 − n2 ⊗ n2) (3.1)

with a single degree of freedom, q : Ω→ R which satisfies the Allen-Cahn equation and has the following symmetry

properties

q (x, 0) = q (0, y) = 0, xy q(x, y) ≥ 0.

The WORS has a constant set of eigenvectors, unit-vectors n1,n2 defined by (2.10) and the coordinate unit-vector

ẑ, and very importantly, has two mutually perpendicular defect lines, along the square diagonals, intersecting at the

square centre, described by the nodal lines of q above. These are defect lines in the sense that QWORS is uniaxial

along these diagonal lines with negative order parameter, which physically implies that the nematic molecules lie in

the plane of the square without a preferred in-plane direction along the defect lines i.e. they are locally disordered in

the square plane along the defect lines. In [3], the authors prove that the WORS is globally stable for λ small enough

and unstable for λ large enough. The analysis in [3] is restricted to a special temperature but numerics show that

the WORS exists for all A < 0 with the diagonal defect lines, and the eigenvalue associated with ẑ is negative for

all A < 0. The negative eigenvalue (associated with ẑ) implies that nematic molecules lie in the (x, y)-plane and for

non-zero q, there is a locally defined nematic director in the (x, y)-plane. In the next sections, we study the relevance

of the WORS in 3D contexts i.e. does the WORS survive in 3D scenarios and what can be said about its qualitative

properties?

3.1. Natural boundary conditions on the top and bottom plates

In this section, we study a special class of LdG critical points, including the WORS, with natural boundary

conditions on the top and bottom plates. Minimizers of Fλ (see (2.5)), in the admissible class B in (2.12) satisfy

the Euler-Lagrange system (2.6), subject to the Dirichlet boundary conditions (2.8) along with natural or Neumann

boundary conditions on the top and bottom plates i.e.

∂zQ = 0 on Γ = Ω × {0, ǫ}. (3.2)

Throughout this section, we will treat L > 0, B, C > 0 as fixed parameters, while λ and A may vary.

Proposition 3.1. For any λ > 0 and A < 0, there exist minimizers Q of Fλ, in (2.5), in the admissible class B,

(see (2.12)). Moreover, minimizers are independent of the z-variable, that is ∂zQ = 0 on V, and they minimize the 2D

functional

I[Q] :=

∫

Ω

(

1

2
|∇Q|2 + λ

2

L
fb(Q)

)

dS (3.3)

in the class

B′ :=
{

Q ∈ W1,2(Ω, S 0) : Q = Qb on ∂Ω
}

. (3.4)

This result can be proved, e.g., as in [2, Theorem 0].

Any (z-independent) critical point of the functional I in the admissible class B′ is also a solution of the three-

dimensional system (2.6), subject to the boundary conditions (2.8) and (3.2). This necessarily implies that the WORS

is a LdG critical point on 3D wells V, of arbitrary height ǫ, with natural boundary conditions on Γ. Therefore, in the

rest of this section, we restrict ourselves to a 2D problem — the analysis of critical points of I in B′.
Our first result concerns the existence of a Well Order Reconstruction Solution (WORS)-like solution for all A < 0

as proven below.
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Proposition 3.2. For any λ > 0 and A < 0, there exists a solution (qWORS
1

, qWORS
3

) of the system






∆q1 =
λ2

L
q1

{

A + 2Bq3 + 2C
(

q2
1 + 3q2

3

)}

∆q3 =
λ2

L
q3

{

A − Bq3 + 2C
(

q2
1 + 3q2

3

)}

+
λ2B

3L
q2

1

(3.5)

subject to the boundary conditions

q1(x, y) = q1b(x, y) :=






−s+/2 if (x, y) ∈ C1 ∪C3

s+/2 if (x, y) ∈ C2 ∪C4

g0(y) if (x, y) ∈ S 1 ∪ S 3

g0(x) if (x, y) ∈ S 2 ∪ S 4.

(3.6)

and q3 = −s+/6 on ∂Ω, that satisfies

xy q1(x, y) ≥ 0, q3(x, y) < 0 for any (x, y) ∈ Ω. (3.7)

Then

Q(x, y) = qWORS
1 (x, y) (n1 ⊗ n1 − n2 ⊗ n2) + qWORS

3 (x, y) (2ẑ ⊗ ẑ − n1 ⊗ n1 − n2 ⊗ n2), (3.8)

is a WORS solution of the Euler-Lagrange system (2.6) on V, subject to the Dirichlet conditions (2.8) and natural

boundary conditions on Γ.

Proof. We follow the approach in [3]. Let

Ω+ := {(x, y) ∈ Ω : x > 0, y > 0}

be the portion of Ω that is contained in the first quadrant. For solutions of the form (3.8), the LdG energy reduces to

G[q1, q3] :=

∫

Ω+

{

|∇q1|2 + 3 |∇q3|2 +
λ2

L

(

A(q2
1 + 3q2

3) + 2Bq3q2
1 − 2Bq3

3 +C(q2
1 + 3q2

3)2
)
}

dS . (3.9)

We minimize G in the admissible class

G :=
{

(q1, q3) ∈ H1(Ω+)2 : q3 ≤ 0 in Ω+, q1 = q1b on ∂Ω ∩Ω+, q3 = −s+/6 on ∂Ω ∩Ω+, q1 = 0 on ∂Ω+ \ ∂Ω
}

.

We impose no boundary conditions for q3 on ∂Ω+ \ ∂Ω. The function q1b is compatible with the Dirichlet condi-

tions (2.8). The class G is closed and convex. Therefore, a routine application of the direct method of the calculus

of variations shows that a minimizer (qWORS
1

, qWORS
3

) exists. Moreover, we can assume without loss of generality that

qWORS
1

≥ 0 on Ω+ — otherwise, we replace qWORS
1

with |qWORS
1

| and note that G[qWORS
1

, qWORS
3

] = G[|qWORS
1

|, qWORS
3

].

We now claim that qWORS
3

< 0 in Ω+. To prove this, let us consider a function ϕ ∈ H1(Ω+) such that ϕ ≥ 0 in Ω+

and ϕ = 0 on ∂Ω ∩ Ω+. For sufficiently small t ≥ 0, the function qt
3

:= qWORS
3

− tϕ is an admissible perturbation

of qWORS
3

, and hence, we have
d

dt |t=0
G[qWORS

1 , qt
3] ≥ 0

because (qWORS
1

, qWORS
3

) is a minimizer. The derivative on the left-hand side can be computed explicitly and we obtain

∫

Ω+

{

−6∇qWORS
3 · ∇ϕ − λ

2

L
f (qWORS

1 , qWORS
3 )ϕ

}

dS ≥ 0 (3.10)

where

f (q1, q3) := 6q3

(

A − Bq3 + 6Cq2
3

)

+ 2(B + 6Cq3)q2
1 (3.11)
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For |q3| sufficiently small, we have A− Bq3 + 6Cq2
3
< 0 and B+ 6Cq3 > 0, because A < 0 and B > 0. Therefore, there

exists δ > 0 (depending only on A, B, C) such that

f (q1, q3) > 0 for any q1 ∈ R and q3 ∈ [−δ, 0]. (3.12)

Now, we define

ϕ :=






qWORS
3

+ δ where qWORS
3

> −δ
0 where qWORS

3
≤ −δ.

(3.13)

By taking δ < s+/6, we can make sure that ϕ = 0 on ∂Ω ∩Ω+. Then, we can substitute ϕ into (3.10) and obtain

∫

{qWORS
3

>−δ}

{

6
∣
∣
∣∇qWORS

3

∣
∣
∣
2
+
λ2

L
f (qWORS

1 , qWORS
3 ) (qWORS

3 + δ)

}

dS ≤ 0.

Due to (3.12), we conclude that qWORS
3

≤ −δ < 0 in Ω+. In particular, (qWORS
1

, qWORS
3

) lies in the interior of the

admissible set G and hence, it solves the Euler-Lagrange system (3.5) for the functional G, together with the natural

boundary condition ∂νq3 = 0 on ∂Ω+ \ ∂Ω.

We extend (qWORS
1

, qWORS
3

) to the whole of Ω by reflections about the planes {x = 0} and {y = 0}:

qWORS
1 (x, y) := sign(xy) qWORS

1 (|x| , |y|), qWORS
3 (x, y) := qWORS

3 (|x| , |y|)

for any (x, y) ∈ Ω \Ω+. An argument based on elliptic regularity, as in [5, Theorem 3], shows that (qWORS
1

, qWORS
3

) is

a solution of (3.5) on Ω, satisfies the boundary conditions and (3.7), by construction.

The WORS is a special case of critical points of (3.3), that have ẑ as a constant eigenvector and can be completely

described by three degrees of freedom, i.e. they can be written as

Q(x, y) = q1(x, y) (n1 ⊗ n1 − n2 ⊗ n2) + q2(x, y) (n1 ⊗ n2 + n2 ⊗ n1)

+ q3(x, y) (2ẑ ⊗ ẑ − n1 ⊗ n1 − n2 ⊗ n2),
(3.14)

where q1, q2, q3 are scalar functions and n1, n2 are given by (2.10). For solutions of the form (3.14), the LdG

Euler-Lagrange system (2.5) reduces to






∆q1 =
λ2

L
q1

{

A + 2Bq3 + 2C
(

q2
1 + q2

2 + 3q2
3

)}

∆q2 =
λ2

L
q2

{

A + 2Bq3 + 2C
(

q2
1 + q2

2 + 3q2
3

)}

∆q3 =
λ2

L
q3

{

A − Bq3 + 2C
(

q2
1 + q2

2 + 3q2
3

)}

+
λ2B

3L

(

q2
1 + q2

2

)

,

(3.15)

This is precisely the Euler-Lagrange system associated with the functional

J[q1, q2, q3] :=

∫

Ω

(

|∇q1|2 + |∇q2|2 + 3 |∇q3|2 +
λ2

L
F(q1, q2, q3)

)

dS , (3.16)

where F is the polynomial potential given by

F(q1, q2, q3) := A
(

q2
1 + q2

2 + 3q2
3

)

+ 2Bq3

(

q2
1 + q2

2

)

− 2Bq3
3 +C

(

q2
1 + q2

2 + 3q2
3

)2
. (3.17)

The Dirichlet boundary condition (2.8) for Q translates into boundary conditions for q1, q2 and q3:

q1 = q1b, q2 = 0, q3 = −s+/6 on ∂Ω, (3.18)
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where the function q1b is defined by

q1b(x, y) :=






−s+/2 if (x, y) ∈ C1 ∪C3

s+/2 if (x, y) ∈ C2 ∪C4

g0(y) if (x, y) ∈ S 1 ∪ S 3

g0(x) if (x, y) ∈ S 2 ∪ S 4.

(3.19)

By adapting the methods in [9], we can construct solutions (q1, q2, q3) to the system (3.15), subject to the boundary

conditions (3.18), that satisfy q3 < 0 in Ω and are locally stable. The WORS is a specific example of such a solution

with a constant eigenframe and two degrees of freedom. In fact, the results in [26] show that the WORS loses stability

with respect to solutions of the form (3.14), with q2 , 0, as λ increases.

We say that a solution (q1, q2, q3) of (3.15) is locally stable if, for any perturbations ϕ1, ϕ2, ϕ3 ∈ C1
c (Ω), there

holds

δ2J(q1, q2, q3)[ϕ1, ϕ2, ϕ3] :=
d2

dt2 |t=0
J[q1 + tϕ1, q2 + tϕ2, q3 + tϕ3] ≥ 0. (3.20)

Given a locally stable solution (q1, q2, q3) of (3.15), the corresponding Q-tensor, defined by (3.14), is a solution

of (2.6) and is locally stable in the restricted class of Q-tensors that have ẑ as a constant eigenvector.

Proposition 3.3. For any A < 0, there exists a solution (q1,∗, q2,∗, q3,∗) of the system (3.15), subject to the boundary

conditions (3.18), that is locally stable and has q3,∗ < 0 everywhere in Ω.

Proof. Let A be the set of triplets (q1, q2, q3) ∈ H1(Ω)3 that satisfy the boundary conditions (3.18). The boundary

data are piecewise of class C1, so the classA is non-empty. Moreover,A is convex and closed in H1(Ω)3.

To construct solutions with negative q3, we first introduce the class

A− := {(q1, q2, q3) ∈ A : q3 ≤ 0 a.e. on Ω}. (3.21)

The class A− is a non-empty, convex and closed subset of H1(Ω)3. A routine application of the direct method in the

calculus of variations shows that the functional J, defined by (3.16), has a minimizer (q1,∗, q2,∗, q3,∗) in the classA−.

To complete the proof, it suffices to show that q3,∗ ≤ −δ inΩ, for some strictly positive constant δ. Once this inequality

is proved, it will follow that (q1,∗, q2,∗, q3,∗) lies in the interior of A− and hence, it is a locally stable solution of the

Euler-Lagrange system (3.15).

To prove that q3,∗ ≤ −δ in Ω, we follow the same method as in Proposition 3.2. Let ϕ ∈ H1(Ω+) be such that ϕ ≥ 0

in Ω and ϕ = 0 on ∂Ω, then
d

dt |t=0
J[q1,∗, q2,∗, q3,∗ − tϕ] ≥ 0,

and hence,
∫

Ω+

{

−6∇q3,∗ · ∇ϕ −
λ2

L
f∗(q1,∗, q2,∗, q3,∗)ϕ

}

dS ≥ 0, (3.22)

where

f∗(q1, q2, q3) := 6q3

(

A − Bq3 + 6Cq2
3

)

+ 2(B + 6Cq3)
(

q2
1 + q2

2

)

.

As before, there exists a number δ > 0 (depending only on A, B, C) such that

f∗(q1, q2, q3) > 0 for any q1 ∈ R, q2 ∈ R and q3 ∈ [−δ, 0].

We can now show that q3,∗ ≤ −δ in Ω by repeating the same arguments of Proposition 3.2.

We now consider solutions of (3.15), (3.18) that satisfy q3 < 0 in Ω, and prove bounds on q3 as a function of the

re-scaled temperature A.

Lemma 3.4. Any solution (q1, q2, q3) of the system (3.15), subject to (3.18), satisfies

q2
1 + q2

2 + 3q2
3 ≤

s2
+

3
in Ω,

where s+ is the constant defined by (2.3).
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This lemma be deduced from the corresponding maximum principle for the full LdG system (2.6); see for in-

stance [18, Proposition 3].

Lemma 3.5. Let (q1, q2, q3) be a solution of the system (3.15), subject to (3.18), such that q3 < 0 everywhere in Ω.

Then q2
1
+ q2

2
< 9q2

3
everywhere in Ω.

Proof. Define the functions ξ1 := −q1/q3 and ξ2 := −q2/q3. Then, for k ∈ {1, 2}, we have

∇ξk = −
1

q3

∇qk +
qk

q2
3

∇q3

∆ξk = −
1

q3

∆qk +
qk

q2
3

∆q3 +
2

q2
3

∇q3 · ∇qk −
2qk

q3
3

|∇q3|2 = −
1

q3

∆qk +
qk

q2
3

∆q3 −
2

q3

∇q3 · ∇ξk

Using the system (3.15), for k ∈ {1, 2} we obtain

∆ξk +
2

q3

∇q3 · ∇ξk =
λ2

L

{

− qk

q3

(

A + 2Bq3 + 2C(q2
1 + q2

2 + 3q2
3)
)

+
qk

q3

(

A − Bq3 + 2C(q2
1 + q2

2 + 3q2
3)
) }

+
λ2B

3L

qk

q2
3

(

q2
1 + q2

2

)

=
λ2B

3L
qk

(

−9 + ξ21 + ξ
2
2

)

.

(3.23)

Now, we define a non-negative function ξ by ξ2 := ξ2
1
+ ξ2

2
. We have

∆(ξ2/2) = ξ1∆ξ1 + ξ2∆ξ2 + |∇ξ1|2 + |∇ξ2|2

and hence, thanks to (3.23),

∆(ξ2/2) +
2

q3

∇q3 · (ξ1∇ξ1 + ξ2∇ξ2) =
λ2B

3L
(q1ξ1 + q2ξ2)

(

ξ2 − 9
)

+ |∇ξ1|2 + |∇ξ2|2 .

Finally, we obtain

∆(ξ2/2) +
2

q3

∇q3 · ∇(ξ2/2) ≥ −λ
2B

3L

q2
1
+ q2

2

q3
︸           ︷︷           ︸

≥0

(

ξ2 − 9
)

. (3.24)

From the boundary conditions (3.18), we know that ξ = ξ1 ≤ 3 on ∂Ω. Then, the (strong) maximum principle applied

to the differential inequality (3.24) implies that ξ2 < 9 everywhere inside Ω. Thus, the lemma follows.

We define

s− :=
B −

√

B2 + 24|A|C
4C

< 0.

In the following propositions, we prove bounds on q3, in terms of s+ (see (2.3)) and s−.

Proposition 3.6. Let − B2

3C
≤ A < 0 so that

s−
3
≥ − s+

6
≥ − B

6C
. (3.25)

Let (q1, q2, q3) be any solution of the PDE system (3.15), satisfying the boundary conditions (3.18), with q3 < 0 in Ω.

Then

− s+

6
≤ q3 ≤

s−
3

in Ω. (3.26)
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Proof. Firstly, we shall prove the upper bound q3 ≤ s−/3 in Ω. Assume for a contradiction, that the maximum of q3

is attained at some point (x0, y0) ∈ Ω such that q3(x0, y0) > s−/3. Then, using (3.25), the following inequalities hold:

Aq3(x0, y0) − Bq2
3(x0, y0) + 6Cq3

3(x0, y0) > A

(

− B

6C

)

+ B

(

− B2

36C2

)

+ 6C

(

−B3

216C3

)

>

(

− B2

3C

) (

− B

6C

)

− B3

18C2
= 0,

and

2Cq3(x0, y0) +
B

3
> 2C

(

− B

6C

)

+
B

3
= 0.

We evaluate both sides of the equation for q3 ∈ C2(Ω) in (3.15) at the point (x0, y0):

∆q3(x0, y0)
︸       ︷︷       ︸

≤0

=
λ2

L

{

Aq3(x0, y0) − Bq2
3(x0, y0) + 6Cq3

3(x0, y0)
}

︸                                                     ︷︷                                                     ︸

>0

+
λ2

L

{

2Cq3(x0, y0) +
B

3

} (

q2
1(x0, y0) + q2

2(x0, y0)
)

︸                                                        ︷︷                                                        ︸

≥0

,

which leads to a contradiction. Since q3 = −s+/6 ≤ s−/3 on ∂Ω, we conclude that q3 ≤ s−/3 on Ω.

Now let’s prove the weaker lower bound q3 ≥ − B
6C

in Ω. Assume for contradiction that the minimum of q3 is

attained at some point (x1, y1) ∈ Ω such that q3(x1, y1) < − B
6C

. Then the following inequalities hold:

Aq3(x1, y1) − Bq2
3(x1, y1) + 6Cq3

3(x1, y1) < A

(

− B

6C

)

+ B

(

− B2

36C2

)

+ 6C

(

−B3

216C3

)

<

(

B2

3C

) (
B

6C

)

− B3

18C2
= 0,

and

2Cq3(x1, y1) +
B

3
< 2C

(

− B

6C

)

+
B

3
= 0.

Recalling the equation for q3 ∈ C2(Ω) in (3.15) and the boundary conditions (3.18), we get an immediate contradiction

and obtain the lower bound q3 ≥ − B
6C

.

We are now ready to prove the optimal lower bound q3 ≥ − s+
6

in Ω. Recalling Lemma 3.5 and q3 ≥ − B
6C

, we have

that:

∆q3 =
λ2

L

{

Aq3 − Bq2
3 + 6Cq3

3

}

+
λ2

L

{

2Cq3 +
B

3

}

(q2
1 + q2

2)

≤ λ
2

L

{

Aq3 − Bq2
3 + 6Cq3

3

}

+
λ2

L

{

2Cq3 +
B

3

}

9q2
3

≤ λ
2

L

{

Aq3 + 2Bq2
3 + 24Cq3

3

}

in Ω.

(3.27)

Assume for a contradiction, that the minimum of q3 is attained at some point (x2, y2) ∈ Ω such that q3(x2, y2) < − s+
6

.

Then, using (3.25), the following inequality holds:

Aq3(x2, y2) + 2Bq2
3(x2, y2) + 24Cq3

3(x2, y2) < A

(

− s+

6

)

− 2B

(

− s2
+

36

)

+ 24C

(

−s3
+

216

)

<

(

B2

3C

) (
s+

6

)

+ 2B

(

B2

36C2

)

+ 24C

(

− s3
+

216

)

<
B3

9C2
− B

9

(

B2

C

)

= 0,
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which when combined with the equation (3.27), yields ∆q3(x2, y2) < 0. This is a contradiction, and the desired result

follows.

Corollary 3.1. Assume that A = − B2

3C
and let (q1, q2, q3) be a solution of (3.15) subject to boundary conditions (3.18)

with q3 < 0 in Ω. Then q3 = − s+
6

in Ω.

Finally, we have the following inequalities for A < − B2

3C
:

s−
3
< − s+

6
< − B

6C
. (3.28)

Proposition 3.7. Assume that A < − B2

3C
. Let (q1, q2, q3) be any solution of the PDE system (3.15) satisfying (3.18)

with q3 < 0 in Ω. Then
s−
3
≤ q3 ≤ −

s+

6
in Ω. (3.29)

Remark: The proof of Proposition 3.7 is completely analogous to that of Proposition 3.6. We first prove the lower

bound q3 ≥ s−/3, then the weaker upper bound q3 ≤ − B
6C

, and finally the sharp upper bound q3 ≤ −s+/6. Each step

is obtained by repeating almost word by word the arguments of Proposition 3.6. We omit the details for brevity. �

3.1.1. Stability/Instability of the WORS with natural boundary conditions.

We first recall a result from [3] that ensures that the WORS is globally stable with natural boundary conditions on

Γ, for arbitrary well heights or all values of ǫ.

Lemma 3.8. For any A < 0, there exists λ0 > 0 (depending only on A, B, C, L) such that, for λ < λ0, the func-

tional (3.3) has a unique critical point in the class (3.4).

This result follows from a general uniqueness criterion for critical points of functionals of the form (2.5); see, e.g.,

[14, Lemma 8.2], [3, Lemma 3.2]. The WORS exists for all λ and A < 0 and an immediate consequence is that the

WORS is the unique LdG energy minimizer for sufficiently small λ.

We now study the instability of the WORS with respect to in-plane perturbations of the eigenframe and these

perturbations necessarily have a non-zero q2 component, when λ is large and A is low enough. To this end, we take a

function ϕ ∈ C1
c (Ω) and consider the perturbation

Qt(x, y) := Q(x, y) + tϕ(x, y) (n1 ⊗ n2 + n2 ⊗ n1),

where n1, n2 are defined by (2.10) and t ∈ R is a small parameter. We compute the second variation of the LdG energy

(3.3), about the WORS solution as discussed in Proposition 3.2:

Hλ[ϕ] :=
1

2

d2

dt2
I[Qt]|t=0 =

∫

Ω

(

|∇ϕ|2 + λ
2

L
ϕ2

(

A + 2Bq3 + 2C(q2
1 + 3q2

3)
)
)

dS (3.30)

(see [26, Section 5.3]).

Proposition 3.9. Let A ≤ − B2

3C
. Let (q1, q2, q3) be a solution of (3.15), subject to the boundary conditions (3.18),

such that q2 = 0 and q3 < 0 everywhere in Ω, such as the WORS-solution constructed in Proposition 3.2. For any

function ϕ ∈ C1
c (Ω) that is not identically equal to zero, there exists a number λ0 > 0 (depending on A, B, C, L and ϕ)

such that Hλ[ϕ] < 0 when λ ≥ λ0.

Proof. Due to Lemma 3.4 and Proposition 3.7, we have

A + 2Bq3 + 2C(q2
1 + 3q2

3) ≤ A − Bs+

3
+

2Cs2
+

3

= A − B

3





B +
√

B2 + 24|A|C
4C



 +
2C

3





2B2 + 2B
√

B2 + 24|A|C + 24|A|C
16C2





= A + |A| = 0.
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The equality holds if and only if q3 = −s+/6 and q2
1
+ 3q2

3
= s2
+/3, that is, if and only if |q1| = s+/2 and q3 = −s+/6.

However, from Lemma 3.5 we know that 3q3 < q1 < −3q3 inside Ω, so we must have

A + 2Bq3 + 2C(q2
1 + 3q2

3) < 0 everywhere inside Ω.

Then, for any fixed ϕ ∈ C∞c (Ω) that is not identically equal to zero, the quantity Hλ[ϕ] defined by (3.30) becomes

strictly negative for λ large enough.

3.2. Surface anchoring on the top and bottom plates

In this section, we consider more experimentally relevant boundary conditions on the top and bottom plates,

Γ := Ω× {0, ǫ}. Instead of natural boundary conditions, we impose surface energies on Γ. The free energy functional,

in dimensionless units, becomes

Fλ[Q] :=

∫

V

(

1

2
|∇Q|2 + λ

2

L
fb(Q)

)

dV +
λ

L

∫

Γ

fs(Q) dS , (3.31)

and fs is the surface anchoring energy density defined by [20, 4, 23, 8]

fs(Q) := αz

(

Qẑ · ẑ + s+

3

)2

+ γz |(I − ẑ ⊗ ẑ)Qẑ|2 , (3.32)

where αz and γz are positive coefficients. We remark that the second term in (3.32), γz|(I − ẑ ⊗ ẑ)Qẑ|2, is equal to

zero if and only if Qẑ is parallel to ẑ. Therefore, the surface energy density fs favours Q-tensors that have ẑ as an

eigenvector, with constant eigenvalue −s+/3, on the top and bottom plates. We have Dirichlet boundary conditions

(2.8) on the lateral surface; and the admissible class is B, defined by (2.12).

Lemma 3.10. Critical points of the functional (3.31), in the admissible class B defined by (2.12), satisfy the Euler-

Lagrenge system (2.6), subject to Dirichlet boundary conditions (2.8) on the lateral surfaces and

∂νQ +
λ

L
H(Q) = 0 on Γ. (3.33)

Here, ν is the outward-pointing unit normal to V and H is defined by

H(Q) :=





−2

3
αz

(

Q33 +
s+

3

)

0 γzQ13

0 −2

3
αz

(

Q33 +
s+

3

)

γzQ23

γzQ13 γzQ23

4

3
αz

(

Q33 +
s+

3

)





.

Remark 1. The matrix H(Q) is symmetric and traceless. Therefore, the Lagrange multipliers associated with the

symmetry and tracelessness constraints have already been embedded in the definition of H.

Remark 2. Because of the boundary condition (3.33), z-independent solutions (∂zQ = 0) may not, in general, be

solutions of the 3D problem with surface energy anchoring on the top and bottom plates. However, when A =

−B2/(3C) we know that there exist z-independent solutions with Q33 = −s+/3; they correspond to triplets (q1, q2, q3)

with constant q3 = −s+/6 (see Corollary 3.1). These z-independent solutions with constant Q33 are also solutions of

the 3D problem with surface energies on the top and bottom plates.

Proof of Lemma 3.10. Let Q ∈ B be a critical point for Fλ, and let P ∈ H1(V, S 0) be any perturbation such that P = 0

on ∂V \ Γ. We compute the first variation of Fλ with respect to P:

0 =
d

dt |t=0
Fλ[Q + tP] =

∫

V

(

∇Q : ∇P +
λ2

L

(

AQ · P − BQ2 · P +C |Q|2 Q · P
)
)

dV

+
λ

L

∫

Γ

(

2αz(Pẑ · ẑ)

(

Qẑ · ẑ + s+

3

)

+ 2γz(I − ẑ ⊗ ẑ)Qẑ · (I − ẑ ⊗ ẑ)Pẑ

)

dS ,
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where Q · P := tr(QP) = Qi jPi j. By integrating by parts, and noting that trP = 0, we obtain:

∫

V

(

−∆Q +
λ2

L

(

AQ − BQ2 +
B

3
|Q|2 I +C |Q|2 Q

))

· P dV +

∫

Γ

∂νQ · P dS

+
λ

L

∫

Γ

(

2αz(Pẑ · ẑ)

(

Qẑ · ẑ + s+

3

)

+ 2γz(I − ẑ ⊗ ẑ)Qẑ · (I − ẑ ⊗ ẑ)Pẑ

)

dS = 0.

(3.34)

We now deal with the integral on Γ. We first remark that

(Pẑ · ẑ)

(

Qẑ · ẑ + s+

3

)

=

(

Q33 +
s+

3

)

P33

=





−1

3

(

Q33 +
s+

3

)

0 0

0 −1

3

(

Q33 +
s+

3

)

0

0 0
2

3

(

Q33 +
s+

3

)





· P
(3.35)

because trP = 0. We also have

(I − ẑ ⊗ ẑ)Qẑ · (I − ẑ ⊗ ẑ)Pẑ =

2∑

i=1

Qi3Pi3 =
1

2





0 0 Q13

0 0 Q23

Q13 Q23 0




· P (3.36)

Using (3.34), (3.35) and (3.36) we obtain

∫

V

(

−∆Q +
λ2

L

(

AQ − BQ2 +
B

3
|Q|2 I +C |Q|2 Q

))

· P dV +

∫

Γ

(

∂νQ +
λ

L
H(Q)

)

· P dS = 0

for any P ∈ H1(V, S 0) such that P = 0 on ∂V \ Γ, and the lemma follows.

Lemma 3.11. There exists a constant M (depending only on A, B, C but not on λ, L, ǫ) such that any solution Q of

the system (2.6), subject to the boundary conditions (2.8) and (3.33), satisfies

|Q| ≤ M in V.

Proof. Let P := Q + s+(ẑ ⊗ ẑ)/2. We have ∂ν(|P|2 /2) = ∂νP · P = ∂νQ · P and hence, by (3.33), we deduce that

−L

λ
∂ν(|P|2 /2) = H(Q) · P = γz

2∑

i=1

Q2
i3 +

2

3
αz

(

Q33 +
s+

3

)

(−Q11 − Q22 + 2Q33 + s+)

= γz

2∑

i=1

Q2
i3 + 2αz

(

Q33 +
s+

3

)2

≥ 0 on Γ.

(3.37)

Similarly, we manipulate the Euler-Lagrange system to obtain

L

λ2
∆(|P|2 /2) =

L

λ2
∆Q ·

(

Q +
s+

2
ẑ ⊗ ẑ

)

+
L

λ2
|∇Q|2

≥ A |Q|2 − Btr(Q3) +C |Q|4 + s+

2

((

A +C |Q|2
)

Q33 − BQ3kQ3k +
B

3
|Q|2

) (3.38)

The right-hand side of (3.38) is a quartic polynomial in Q, with leading order term C |Q|4 and C > 0. Therefore,

there exists a positive number M1 (depending on A, B and C only) such that the right-hand side of (3.38) is positive

when |Q| ≥ M1. By the triangular inequality, we have

|P| ≥ M2 := M1 +
s+

2
=⇒ |Q| =

∣
∣
∣
∣
∣
P − s+

2
ẑ ⊗ ẑ

∣
∣
∣
∣
∣
≥ M1
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and hence the right-hand side of (3.38) is positive when |P| ≥ M2. Finally, the boundary datum Qb on the lateral

surfaces, defined by (2.8), satisfies |Qb| ≤ (2/3)1/2s+ on ∂Ω × (0, ǫ). By applying the maximum principle to (3.37)

and (3.38), we obtain that

|P| ≤ max





M2,





√

2

3
+

1

2



 s+





in V

Then, by the triangular inequality, Q is also bounded in terms of A, B and C only.

Adapting the methods in [3], for any values of λ and ǫ, it is possible to construct a WORS-like solution for this

3D problem with surface anchoring on the top and bottom plates. The WORS has a constant eigenframe and, hence it

can be completely described in terms of two degrees of freedom as before:

Q(x, y, z) = q1(x, y, z) (n1 ⊗ n1 − n2 ⊗ n2) + q3(x, y, z) (2ẑ ⊗ ẑ − n1 ⊗ n1 − n2 ⊗ n2), (3.39)

where q1, q3 are scalar functions, n1, n2 are given by (2.10) and q1 is constrained to vanish on the diagonals with

symmetry

xy q1(x, y, z) ≥ 0 for any (x, y, z) ∈ V. (3.40)

Proposition 3.12. For any λ, ǫ and A, there exists a solution of the form (3.39), of the system (2.6), subject to the

boundary conditions (2.8) and (3.33), satisfies (3.40) with q1 = 0 along the square diagonals and has q3 < 0 on V.

Proof. Let

V+ := {(x, y, z) ∈ V : x > 0, y > 0}.

Following the approach in [3], we consider the functional

G[q1, q3] :=

∫

V+

{

|∇q1|2 + 3 |∇q3|2 +
λ2

L

(

A(q2
1 + 3q2

3) + 2Bq3q2
1 − 2Bq3

3 +C(q2
1 + 3q2

3)2
)
}

dS

+
2λαz

L

∫

Γ∩V+

(

q3 +
s+

6

)2

dS ,

(3.41)

obtained by substituting the ansatz (3.39) into (3.31). We minimize G among the finite-energy pairs (q1, q3) ∈
H1(V+)2, subject to the constraint q3 ≤ 0 on V and to the boundary conditions

q1 = q1b and q3 = −s+/6 on (∂Ω × (0, ǫ)) ∩ V+, q1 = 0 on ∂V+ \ ∂V, (3.42)

where the function q1b is defined by (3.19). A routine application of the direct method of the calculus of variations

shows that a minimizer (qWORS
1

, qWORS
3

) exists. Without loss of generality, we can assume that qWORS
1

≥ 0 on V+;

otherwise, we replace qWORS
1

with |qWORS
1

| and note that G[qWORS
1

, qWORS
3

] = G[|qWORS
1

|, qWORS
3

].

We claim that qWORS
3

≤ −δ for some strictly positive constant δ, depending only on A, B and C. The proof of this

claim follows the argument in Proposition 3.2. We take a perturbation ϕ ∈ H1(V+) such that ϕ ≥ 0 in V+ and ϕ = 0

on ∂V ∩ V+. Then, qt
3

:= qWORS
3

− tϕ, for t ≥ 0, is an admissible perturbation for qWORS
3

and from the optimality

condition
d

dt |t=0
G[qWORS

1 , qt
3] ≥ 0

we deduce

∫

V+

{

−6∇qWORS
3 · ∇ϕ − λ

2

L
f (qWORS

1 , qWORS
3 )ϕ

}

dV − 4λαz

L

∫

Γ∩V+

(

q3 +
s+

6

)

ϕ dS ≥ 0. (3.43)

The function f (qWORS
1

, qWORS
3

) is defined by (3.11), and by (3.12) we know that there exists a constant δ ∈ (0, s+/6)

such that f (q1, q3) > 0 for any q1 ∈ R and any q3 ∈ [−δ, 0]. We choose ϕ as in (3.13) and, due to (3.43), we deduce

that qWORS
3

≤ −δ in V+.
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Since qWORS
3

is strictly negative, we can consider perturbations of the form qt
3

:= qWORS
3

+ tϕ, irrespective of the

sign of ϕ, provided that |t| is sufficiently small. As a consequence, (qWORS
1

, qWORS
3

) solves the Euler-Lagrange system






∆q1 =
λ2

L
q1

{

A + 2Bq3 + 2C
(

q2
1 + 3q2

3

)}

∆q3 =
λ2

L
q3

{

A − Bq3 + 2C
(

q2
1 + 3q2

3

)}

+
λ2B

3L
q2

1

(3.44)

on V+, as well as the boundary conditions

∂νq1 = 0, ∂νq3 +
4λαz

3L

(

q3 +
s+

6

)

= 0 on Γ ∩ V+ (3.45)

and ∂νq3 = 0 on ∂V+ \ ∂V . We extend (qWORS
1

, qWORS
3

) to the whole of V by reflections about the planes {x = 0}
and {y = 0}:

qWORS
1 (x, y, z) := sign(xy) qWORS

1 (|x| , |y| , z), qWORS
3 (x, y, z) := qWORS

3 (|x| , |y| , z)

for any (x, y, z) ∈ V \ V+. The functions qWORS
1

, qWORS
3

, defined above, solve the Euler-Lagrange system (3.44) on

Ω \ ({x = 0} ∪ {y = 0}). In fact, an argument based on elliptic regularity, along the lines of [5, Theorem 3], shows that

(qWORS
1

, qWORS
3

) is a solution of (3.44) on the whole of Ω. Finally, using (3.44), (3.42) and (3.45), we can check that

the Q-tensor associated with (qWORS
1

, qWORS
3

), as defined by (3.39), has all the required properties.

Adapting a general criterion for uniqueness of critical points (see, e.g., [14, Lemma 8.2]), we can show that the

functional (3.31) has a unique critical point in the admissible class (2.12) when λ is small enough, irrespective of ǫ,

which implies that the WORS is globally stable for λ sufficiently small with surface energies too.

Proposition 3.13. There exists a positive number λ0 (depending only on A, B, C) such that, when λ < λ0, the

system (2.6) has a unique solution that satisfies the boundary conditions (2.8), (3.33).

The main step of the proof is the following

Lemma 3.14. For any M > 0, there exists a λ0 = λ0(M, A, B, C, L, Ω) such that, for λ < λ0, the functional Fλ given

by (3.31) is strictly convex in the class

X =
{

Q ∈ H1(V, S 0) : |Q| ≤ M on V, Q = Qb on ∂Ω × (0, ǫ)
}

. (3.46)

Once Lemma 3.14 is proved, Proposition 3.13 follows. Indeed, let us consider the constant M given by Lemma 3.11.

Then, any solution of the system (2.6), subject to the boundary conditions (2.8), (3.33), must belong to the class X, by

Lemma 3.11. However, if Fλ is strictly convex in X, then it cannot have more than one critical point in X.

Proof of Lemma 3.14. For any Q1,Q2 ∈ X, we have

Fλ
(

Q1 +Q2

2

)

=

∫

V

1

8
|∇(Q1 +Q2)|2 + λ

2

L
fb

(

Q1 +Q2

2

)

dV +
λ

L

∫

Γ

fs

(

Q1 +Q2

2

)

dS

=

∫

V

1

4

(

|∇Q1|2 + |∇Q2|2 −
1

2
|∇(Q1 −Q2)|2

)

+
λ2

L
fb

(

Q1 +Q2

2

)

dV

+
λ

L

∫

Γ

fs

(

Q1 +Q2

2

)

dS .

(3.47)

Since fs(Q) is a convex function of Q, we have

∫

Γ

fs

(

Q1 +Q2

2

)

dS ≤ 1

2

∫

Γ

( fs(Q1) + fs(Q2)) dS . (3.48)
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We now deal with the bulk term, fb. Both Q1 and Q2 are equal to Qb on ∂Ω × (0, ǫ) and hence, Q2 − Q1 = 0

on ∂Ω × (0, ǫ). For a.e. fixed z0 ∈ (0, ǫ), by the Poincaré inequality on Ω, we have

‖Q1(·, ·, z0) −Q2(·, ·, z0)‖2
L2(Ω)

≤ C1(Ω)
∥
∥
∥∇x,y(Q1(·, ·, z0) −Q2(·, ·, z0))

∥
∥
∥

2

L2(Ω)
, (3.49)

where C1(Ω) is a positive constant that only depends on the geometry of Ω. By integrating the previous inequality

with respect to z0 ∈ (0, ǫ), we deduce that

∫

V

|Q1 −Q2|2 dV ≤ C1(Ω)

∫

V

|∇(Q1 −Q2)|2 dV. (3.50)

Since |Q1| ≤ M and |Q2| ≤ M everywhere in V , we have

∫

V

∣
∣
∣
∣
∣
∣
fb

(

Q1 +Q2

2

)

− 1

2
fb(Q1) − 1

2
fb(Q2)

∣
∣
∣
∣
∣
∣
dV ≤ ‖ fb‖W2,∞(BM)

∫

V

|Q1 −Q2|2 dV, (3.51)

where BM = {Q ∈ S 0 : |Q| ≤ M} and ‖ fb‖W2,∞(BM ) is a positive constant that bounds the second derivatives of fb in BM

(in particular, ‖ fb‖W2,∞(BM ) only depends on M, A, B and C). Combining (3.50) and (3.51), we find a positive con-

stant C2 = C2( fb, Ω, M) := C1(Ω) ‖ fb‖W2,∞(BM) such that

∫

V

fb

(

Q1 +Q2

2

)

dV ≤ 1

2

∫

V

( fb(Q1) + fb(Q2)) dV +C2

∫

V

|∇(Q1 −Q2)|2 dV. (3.52)

Now, we use (3.48) and (3.52) to bound the right-hand side of (3.47). We obtain

Fλ
(

Q1 +Q2

2

)

≤ 1

2
(Fλ(Q1) + Fλ(Q2)) +

(

C2λ
2

L
− 1

8

) ∫

V

|∇(Q1 −Q2)|2 dV (3.53)

If we take λ < λ0 := ( L
8C2

)1/2, then we have

Fλ
(

Q1 +Q2

2

)

≤ 1

2
(Fλ(Q1) + Fλ(Q2)) (3.54)

and the equality holds if and only if Q1 = Q2. This proves that Fλ is strictly convex in X.

We deduce that the WORS-solution survives in 3D wells, independently of the well height, with both natural

boundary conditions and realistic surface energies on the top and bottom surfaces. Moreover, the WORS is globally

stable for λ small enough, independent of well height and in the next section, we complement our analysis with

numerical examples.

4. Numerics

4.1. Numerical Methods

For computational convenience, in this section we take the cross-section of the well, Ω, to be a (non-truncated)

square with sides parallel to the coordinate axes, i.e.Ω = (−1, 1)2. We consider the general Q-tensor with five degrees

of freedom
Q(x, y) = q1(x, y, z)(x̂ ⊗ x̂ − ŷ ⊗ ŷ) + q2(x, y, z)(x̂ ⊗ ŷ + ŷ ⊗ x̂)

+ q3(x, y, z)(2ẑ ⊗ ẑ − x̂ ⊗ x̂ − ŷ ⊗ ŷ)

+ q4(x, y, z)(x̂ ⊗ ẑ + ẑ ⊗ x̂) + q5(x, y, z)(ŷ ⊗ ẑ + ẑ ⊗ ŷ),

(4.1)

where x̂, ŷ and ẑ are unit-vectors in the x-, y- and z-directions respectively.

Moreover, instead of considering Dirichlet conditions (infinite strong anchoring) on the lateral surfaces, we con-

sider finite anchoring on the lateral surfaces, which allows us to study nematic equilibria without excluding the corners

of the well [25]. More precisely, we impose surface energies on the lateral sides given by [10]
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fs(Q) = ω1

(

Q − g(x)

(

x̂ ⊗ x̂ − 1

3
I

))2

, y = 0, 1;

fs(Q) = ω2

(

Q − g(y)

(

ŷ ⊗ ŷ − 1

3
I

))2

, x = 0, 1;

(4.2)

where ωi =
Wiλ

L
is the non-dimensionalized anchoring strength, Wi is the surface anchoring, the function g ∈

C∞([−1, 1]) eliminates the discontinuity at the corners e.g

g(x) = s+, ∀x ∈ [−1 + δ, 1 − δ], g(−1) = g(1) = 0, (4.3)

for a small constant δ. The choice of g does not affect numerical results qualitatively. We take W1 = W2 = 10−2Jm−2

to account for the strong anchoring on the lateral sides of well [21].

On Γ - the top and bottom surfaces, the surface energy for finite tangential anchoring (3.32) can be written as

fs(Q) = wz

∫

Γ



αz

(

Qẑ · ẑ + 1

3
s+

)2

+ γz

∣
∣
∣ (I − ẑ ⊗ ẑ) Qẑ

∣
∣
∣
2



 dS (4.4)

where wz =
Wzλ

L
is the non-dimensionalized anchoring strength. The surface energy (4.4) favors planar boundary

conditions on the top and bottom surface, such that ẑ is an eigenvector of Q with associated eigenvalue − 1
3

s+.

Instead of solving the Euler-Lagrange equations for the LdG free energy, we use the energy-minimization based

numerical method [6, 27] to find the minimizer of current system. The physical domain can be rescaled to Ωc =

{(x̄, ȳ, z̄) | x̄ ∈ [0, 2π], ȳ ∈ [0, 2π], z̄ ∈ [−1, 1]}. Since Q is a symmetric and traceless matrix, Q can be written as

Q =





p1 p2 p3

p2 p4 p5

p3 p5 −p1 − p4




. (4.5)

We can expand pi in terms of special functions: Fourier series on x̄ and ȳ, and Chebyshev polynomials on z̄, i.e.

pi(x̄, ȳ, z̄) =

L−1∑

l=1−L

M−1∑

m=1−M

N−1∑

n=0

plmn
i Xl(x̄)Ym(ȳ)Zn(z̄). (4.6)

where L, M, N specify the truncation limits of the expanded series, Xl and Ym are defined as

Xl(x̄) =






cos lx̄ l ≥ 0,

sin |l|x̄ l < 0.
Ym(ȳ) =






cos mȳ m ≥ 0,

sin |m|ȳ m < 0.
(4.7)

Inserting (4.6) into the LdG free energy (2.5) with surface energy term (4.2) and (4.4), we get a function of

p = (pi
lmn

) ∈ RD, where D = (2L−1)× (2M−1)×N. The minimizers of function F(p) can be found by some standard

optimization methods. In the following simulation, we mainly use L-BFGS, which is a type of quasi-Newton methods

and is efficient for our problem[28].

The energy-minimization based numerical approach with L-BFGS usually converges to a local minimizer with

a proper initial guess, but that is not necessarily guaranteed. Similar to Ref. [22], we can justify the stability of an

obtained solution p by computing the smallest eigenvalue λ1 of Hessian matrix G(p) corresponding to p:

λ1 = min
v,0,v∈RD

〈G(p)v, v〉
〈v, v〉 , (4.8)

where 〈·, ·〉 is the standard inner product in R
D. A solution is locally stable (metastable) if λ1 > 0. Practically, λ1 can

be computed by solving the gradient flow equation of v

∂v

∂t
= − 2γ

〈v, v〉

(

Gv − 〈Gv, v〉
〈v, v〉 v

)

, (4.9)
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where γ(t) is a relaxation parameter, and Gv = G(p)v is approximated by

G(p)v = −∇DF(p + lv) − ∇DF(p − lv)

2l
, (4.10)

for some small constant l. We can choose γ(t) properly to accelerate the convergence of the dynamic system (4.9).

In what follows, we frequently refer to the biaxiality parameter[18]

β2 = 1 − 6

(

trQ3
)2

|Q|6

such that 0 ≤ β2 ≤ 1 and β2 = 0 if and only if Q is uniaxial or isotropic (for which we set β2 = 0 by default).

4.2. Numerical Results

In the following, we take A = − B2

3C
if not stated differently, so all material constants in Landau-de Gennes free-

energy are fixed. The two key dimensionless variables are

λ̄2 =
2Cλ2

L
, ǫ =

h

λ
, (4.11)

which describe the cross-sectional size and height of the square well respectively. Other dimensionless variables are

related to the surface energy on all six surfaces.

4.2.1. Strong anchoring on the lateral surfaces

Firstly, we consider strong anchoring on the lateral surfaces, by taking W1 = W2 = 10−2Jm−2 in (4.2). For the

surface energy on the top and bottom plates (see (4.4)), we take Wz = 10−2Jm−2 if not stated differently. For relatively

large λ̄2, we find the well-known diagonal and rotated solutions as stable configurations for arbitrary ǫ [24]. These are

essentially described by Q-tensors of the form

Q = q

(

n ⊗ n − I2

2

)

+ q3

(

ẑ ⊗ ẑ − I3

3

)

where n = (cos θ, sin θ, 0), q > 0, q3 < 0, I2 is the identity matrix in two dimensions and I3 is the identity matrix

in three dimensions respectively. Moreover, θ is a solution of ∆θ = 0 on a square subject to appropriately defined

Dirichlet conditions [15]. In the case of the diagonal solution, n roughly aligns along one of the square diagonals

whereas for the rotated solution, θ rotates by approximately π radians between a pair of opposite square edges. In

Fig. 4.2(a)-(b). we plot a diagonal and a rotated solution for λ̄2 = 100 and ǫ = 4 with A = − B2

3C
. These solutions are

z-invariant, as |∂zQ|2 ≈ 10−12 in our numerical solutions.

For sufficiently small λ̄2, we always get the WORS for arbitrary ǫ, in accordance with the uniqueness results for

small λ in previous sections. In Fig. 4.2(c), we plot the WORS for λ̄2 = 5 and ǫ = 4 with A = − B2

3C
.

Interestingly, for ǫ large enough, we can have additional mixed locally stable solutions for relatively large λ̄2. In

Fig. 4.3(a)-(b), we plot a mixed 3D solution for λ̄2 = 100 and 10, with ǫ = 4. These mixed solutions can be obtained

by taking a mixed initial condition as Q = s+
(

n ⊗ n − 1
3
I3

)

with

n(x, y, z) =






1√
2
(1, 1, 0), z ≥ ǫ

2

1√
2
(1,−1, 0), z < ǫ

2
.

(4.12)

The initial condition has two separate diagonal profiles on the top and bottom surfaces with a mismatch at the centre

of the well, at z = ǫ
2
. In this case, the L-BFGS procedure converges to a locally stable solution that has different

diagonal configurations on the top and bottom plates. On the middle slice, we have a BD-like profile (referring to the

terminology in [3]), where the corresponding Q tensor is of the form

QBD = q1(x̂ ⊗ x̂ − ŷ ⊗ ŷ) + q3 (2ẑ ⊗ ẑ − x̂ ⊗ x̂ − ŷ ⊗ ŷ)
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(a) (b)

(c)

Figure 4.2: (a) A diagonal solution for λ̄2 = 100 and ǫ = 4. (b) A rotated solution for λ̄2 = 100 and ǫ = 4. (c) The WORS for λ̄2 = 5 and ǫ = 4.

The colors show the biaxiality parameter β2, which are arranged such that the high to low values (one to zero) correspond to variations from red to

blue. The white lines indicate the director direction n.

with two degrees of freedom, q3 < 0 on the middle slide and q1 = 0 near a pair of parallel edges of the square cross-

section (q1 = 0 describes a transition layer between two distinct values of q1). We compute the smallest eigenvalue

of the Hessian matrix corresponding to this solution, which is positive and hence, this mixed solution is numerically

stable. Indeed, these mixed solutions have lower free energy than rotated solutions for λ̄2 = 100 and ǫ = 4. Numerical

simulations show that mixed solutions cease to exist when ǫ or λ̄2 is small enough. For λ̄2 = 100, we cannot find

such solutions for ǫ ≤ 0.8. We can generate more 3D configurations by mixing diagonal and rotated configurations

on the top and bottom surfaces or two different rotated solutions but these are unstable according to our numerical

simulations.

4.2.2. Weak anchoring on the lateral surfaces

In this section, we relax surface anchoring on the lateral surfaces and fix Wz = 10−2Jm−2 on the top and bottom

plates with ǫ = 0.2.

In Fig. 4.4, we plot numerical solutions for W1 = W2 = 10−2Jm−2, 2 × 10−3Jm−2, 10−3Jm−2 and 10−4Jm−2,

respectively, with λ̄2 = 5 and ǫ = 0.1. All three solutions are obtained by using a diagonal-like initial condition.

In the strong anchoring case (W1 = W2 = 10−2Jm−2), we get the WORS as expected, as the WORS is the unique

critical point when λ̄2 is small enough. However, for W1 = W2 = 10−3Jm−2, we get a diagonal-like solution in which

maximum biaxiality is achieved around the corner. By further decreasing the anchoring strength, the nematic director

is almost uniformly aligned along the diagonal direction. Similar results were reported in [10].

For W1 = W2 = 10−3Jm−2, we can get the WORS by further decreasing λ̄2. However, the WORS ceases to

exist for W1 = W2 = 10−4Jm−2. Quantitatively, we can compute bifurcation points λ̄2
∗, such that the WORS is the

unique solution for λ̄2 < λ̄2
∗, as a function of anchoring strength W1 = W2 = W, shown in Fig. 4.5. We can find

λ̄2
∗ by decreasing λ̄2 till diagonal-like intial conditions converge to WORS, since diagonal solutions cease to exist for
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(a)

(b)

Figure 4.3: (a) The locally stable mixed 3D solution for λ̄2 = 100 and ǫ = 4, shown by 3D view and cross sections at z = 0, z = 2, and z = 4

respectively. (b) The locally stable mixed 3D solution for λ̄2 = 10 and ǫ = 4, shown by 3D view and cross sections at z = 0, z = 2, and z = 4

respectively. The colors show the biaxiality parameter β2, which are arranged such that the high to low values (one to zero) correspond to variations

from red to blue. The white lines indicate the director direction n.

(a) (b) (c) (d)

Figure 4.4: Transition from a diagonal solution to the WORS by increasing the anchoring strength on the lateral surfaces for λ̄2 = 5 and ǫ = 0.1,

shown by the cross-section at ǫ = 0.1. (a) Wi = 10−2Jm−2; (c) Wi = 10−3Jm−2; (d) Wi = 10−4Jm−2. The colors show the biaxiality parameter β2,

which are arranged such that the high to low values (one to zero) correspond to variations from red to blue. The white lines indicate the director

direction n.

λ̄2 < λ̄2
∗. The result in Fig. 4.5 is computed with ǫ = 0.1. However, this result is independent of ǫ as both diagonal

and the WORS are z-invariant solutions for A = − B2

3C
.
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Figure 4.5: Bifurcation points λ̄∗, such that the WORS is the unique solution for λ̄2 < λ̄2
∗ , as a function of anchoring strength. The blue dashed line

indicates the bifuration point of the WORS for Dirichlet boundary condition in a 2D square domain.

Another way to relax the surface anchoring is to consider the surface energy

on y = 0, 1 :

fs(Q) = ω1



α

(

Qx̂ · x̂ − 2

3
s+

)2

+ γ
∣
∣
∣ (I − x̂ ⊗ x̂) Qx̂

∣
∣
∣
2



 ;

on x = 0, 1 :

fs(Q) = ω2



α

(

Qŷ · ŷ − 2

3
s+

)2

+ γ
∣
∣
∣ (I − ŷ ⊗ ŷ) Qŷ

∣
∣
∣
2



 ,

(4.13)

where ωi =
Wiλ

L
is the non-dimensionalized anchoring strength, α > 0 and γ > 0 are constants. The second term

in the surface energy (4.13) forces x̂ (ŷ) to be an eigenvector of Q on the plane y = 0, 1 (x = 0, 1), while the first

term forces the eigenvalue associated with x̂ (ŷ) to be 2
3

s+. Since the second term in (4.13) can be zero if we take

Q = s+
(

ẑ ⊗ ẑ − 1
3
I
)

, which also makes the surface energy on the top and bottom plates (Γ) zero, we keep α non-zero

to get interesting defect patterns.

We fix Wi = 10−2Jm−2 and vary α and γ to relax the anchoring on the lateral surfaces. Fig. 4.6 shows the

numerical result for ǫ = 0.1 and λ̄2 = 5 with various α and γ, by using diagonal-like initial conditions. For α = γ = 1

and Wi = 10−2Jm−2, we can get a WORS-like solution, which has a strong biaxial region near the boundary. The

biaxial regions near the boundary become larger as α gets smaller. We then fix α = 1 and vary γ. If γ is small enough,

the nematic director (the leading eigenvector of the Q-tensor) is not tangent to the square edges and the WORS ceases

to exist.

The above examples show that the WORS ceases to exist if the anchoring on the lateral surfaces is weak enough,

and we always get a diagonal-like solution when the WORS ceases to exist. It should be remarked that the diagonal-

like solutions tend to be defect-free around the corners with weak anchoring, as the nematic directors aren’t forced to

be tangential to the square edges and there is no biaxial-uniaxial or biaxial-isotropic interface near the corners.

4.2.3. Escaped Solutions

In Ref. [26], the authors show that there exists two escaped solutions with non-zero q4 and q5, and q3 > 0, in the

reduced 2D square domain for relatively large λ̄2. Our simulations show that these two escaped solutions can exist
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(a) (b) (c) (d)

Figure 4.6: Numerical solutions for surface energy (4.13) with a diagonal-like initial condition for λ̄2 = 5 and ǫ = 0.2, shown by the cross-section

at z = 0.1: (a) α = γ = 1; (b) α = 0.1 and γ = 1; (c) α = 1 and γ = 0.2; (d) α = 1 and γ = 0.1. The colors show the biaxiality parameter β2, which

are arranged such that the high to low values (one to zero) correspond to variations from red to blue. The white lines indicate the director direction

n.

in 3D wells for similar values of λ̄2 if the anchoring strength on the top and bottom plates are weak enough and the

escaped solutions are numerically locally stable. Fig. 4.7 (a)-(b) show the nematic director and biaxiality parameter

in the middle slices of these two types of escaped configurations for λ̄2 = 100, ǫ = 4 and Wz = 10−5Jm−2, which

are quite similar to the escaped configurations in a cylindrical cavity [11]. The value of q3 in configuration 4.7(a) is

plotted in Fig. 4.7 (d) and q3 > 0 in the center of well.

(a) (b)
(c) (d)

Figure 4.7: (a) Middle slice in the escaped configuration with −1-disclination line in the center for λ̄2 = 100 and ǫ = 4. (b) Middle slice in the

escaped configuration with +1-disclination line in the center for λ̄2 = 100 and ǫ = 4. The colors show the biaxiality parameter β2, which are

arranged such that the high to low values (one to zero) correspond to variations from red to blue. The white rods indicate the director direction n.

(c)-(d) 3D view and q3 in the escaped configuration with −1-disclination line in the center for λ̄2 = 100 and ǫ = 4.

Strictly speaking, the two configurations in Fig. 4.7 are not z-invariant if Wz , 0. The escaped solutions cease to

exist if either ǫ is small enough or if the anchoring Wz is large enough. We can compute the critical achoring strength

Wz on the top and bottom plates, for which the escaped configurations cease to exist, as a function of ǫ for λ̄2 = 100,

shown in Fig. 4.8.

5. Summary

In a batch of papers [10], [3] and [26], the authors study WORS-type solutions or critical points of the LdG free

energy on square domains, and WORS-type solutions have a constant eigenframe with a distinct diagonal defect line

connecting the four square vertices. It is natural to ask if WORS-type solutions are relevant for 3D domains or if

they are a 2D-artefact. Our essential finding in this paper is to show that the WORS is a LdG critical point for 3D

wells with a square cross-section and experimentally relevant tangent boundary conditions on the lateral surfaces,

for arbitrary well height, with both natural boundary conditions and realistic surface energies on the top and bottom

surfaces. In fact, for sufficiently small λ - the size of the square cross-section, the WORS is the global LdG minimizer
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Figure 4.8: Critical achoring strength on the top and bottom plates, for which the escaped configurations lose their stabilities as a function of ǫ.

for these 3D problems, exemplifying the 3D relevance of WORS-type solutions for all temperatures below the nematic

supercooling temperature.

We also numerically demonstrate the existence of stable mixed 3D solutions with two different diagonal profiles

on the top and bottom well surfaces, for wells with sufficiently large ǫ and λ. These are again interesting from an

applications point of view and are 3D solutions that are not covered by a purely 2D study. It is interesting to see

that whilst the BD solution is an unstable LdG critical point on a 2D square domain, it interpolates between the two

distinct diagonal profiles for a stable mixed 3D solution. Further work will be based on a study of truly 3D solutions

that are not z-invariant and if they can related to the 2D solutions on squares reported in previous work i.e. can we use

the zoo of 2D LdG critical points on a square domain reported in [22, 26] to construct exotic 3D solutions on a 3D

square well? This will be of substantial mathematical and applications-oriented interest.
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[11] Samo Kralj and Slobodan Žumer. The stability diagram of a nematic liquid crystal confined to a cylindrical cavity. Liquid Crystals, 15(4):521–

527, 1993.

[12] Halim Kusumaatmaja and Apala Majumdar. Free energy pathways of a multistable liquid crystal device. Soft matter, 11(24):4809–4817,

2015.

[13] Jan PF Lagerwall and Giusy Scalia. A new era for liquid crystal research: applications of liquid crystals in soft matter nano-, bio-and

microtechnology. Current Applied Physics, 12(6):1387–1412, 2012.

[14] X. Lamy. Bifurcation analysis in a frustrated nematic cell. J. Nonlinear Sci., 24(6):1197–1230, 2014.
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