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Abstract 

 

Coprolites are a highly informative but still underutilized proxy for understanding past 

environments, palaeodiets, and ancient human health. Here we provide a critical review of the 

history and current state of research in human coprolite analysis encompassing, macroscopic, 

microscopic, and biomolecular approaches. We present new data from a number of key sites 

which demonstrates how new multiscalar, multiproxy approaches can provide unique 

archaeological insights. Coprolites should be routinely collected and examined during 

excavations and integrated with other archaeological and palaeoecological evidence. Future 

research needs to focus on better understanding coprolite formation as well as pre and post 

depositional taphonomy. This can be achieved through interdisciplinary collaboration between 

geoarchaeology and organic geochemistry.  
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1. Introduction 

 

 

The term coprolite, commonly used to describe archaeological faeces, originates in geology, 

where it is used to refer to faeces which have undergone true fossilization (Buckland 1829 p.143). 

In geology, the study of coprolites falls under the remit of ichnology, the study of geological 

traces of biological activity (Hunt et al. 2012). Archaeological samples are not true fossils, being 

preserved either through desiccation or partial mineralization (Reinhard and Bryant 2008) 

although the exact mechanisms of preservation are not well understood. In general, sites such as 

caves and rockshelters, which are less exposed, exhibit better preservation that more open sites 

(Reinhard et al. 2019).The term palaeofaeces is perhaps more accurate, though not widely used, 

appearing more frequently in earlier literature, such as the extensive studies of ‘paleofeces’ from 

Salts Cave (Watson and Yarnell 1967).  

 

Coprolites have been found in direct proximity to habitation areas, for example in caves, mixed 

with other waste and discarded in midden areas, or in dedicated cesspit/latrines in settlements. 

Ancient human faeces can provide direct evidence of health and diet, and also insights into 

sanitation practices, changing perceptions of cleanliness, and social organization in the past, as 

well as information on the local ecology and environment (Reinhard and Bryant 2008). Whilst 

some of these can be addressed through other types of archaeological evidence, the information 

that can be obtained from faecal material is unique. Coprolites provide information on dietary 

patterns at a very high temporal resolution and can be used to determine specific periods of 

seasonal site occupancy (Bryant 1974, Vermeeren 1998, Riley 2008). Whilst Reinhard and 
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Bryant (1992) identify the seasonal signal as a source of dietary bias, the ability to look at 

resource exploitation on a seasonal basis is a huge strength of coprolites compared to other 

methods of dietary reconstruction. The diversity of diets at timescales reflecting human 

experience is an important counterpart to broad, generalized models.  

 

 

Given their utility, it is unfortunate that coprolites are not routinely considered in many 

archaeological studies. In later periods, it could be that an abundance of other types of evidence 

has contributed to the seeming lack of interest in human coprolites. In some regions, such as early 

prehistoric North American contexts, the general absence of human skeletal remains has led to a 

greater focus on coprolites as evidence for human presence (Jenkins et al. 2012), the study of 

early diets, and as a vessel for ancient DNA (Gilbert et al. 2008), though even here it is still 

considered largely a niche topic (Green and Speller 2017). Coprolites are not regularly collected 

in the field, perhaps because they are not easily recognized. However, coprolites are no more 

unusual than other types of archaeological material, once an excavator is trained to recognize 

them, and in some contexts they can be distinctive (Figure 1). This may be an example of not 

seeing materials we are not expecting to see, or perhaps even materials that we do not want to 

see; Van der Geest (2007) suggests that the lack of study of defecation practices within 

anthropology is a result of our own cultural aversion to the topic, suggesting “(researchers) seem 

to be restrained by relatively trivial codes of decency, which stop them from openly speaking or 

writing about such dirty and childish matters as human defecation”. This situation echoes that of 

William Buckland, originator of the term ‘coprolite’, whose colleague William Wollaston, 

confessed “though such matters may be instructive and therefore to a certain degree interesting, it 

may be as well for you and me not to have the reputation of too frequently and too minutely 

examining faecal products” (Wollaston, quoted in Shortland 1992 p.127). 

 

Here we present the history and current state of research in human coprolite analysis in 

archaeology, encompassing macroscopic, microscopic and biomolecular approaches, with a 

consideration of the major research areas and questions to which coprolite analysis can 

contribute, and areas where further study needs to be focused. We argue that these ecofacts are a 

key source of information on human diet and health that cannot be obtained by other means, and 

should be included both where they are the only remains, and on those sites with an abundance of 

other proxies. 

 

 

2. The history of coprolite analysis in archaeology 

 

The history of coprolite analysis as an archaeological ‘discipline’ in the Americas has been traced 

back to the 1950s and 60s with a heavy focus on diet through analysis of plant macrobotanical 

remains (Callen and Cameron 1955, 1960; Callen and Martin 1969, Watson and Yarnell 1966), 

though Jones emphasized the need for comparative studies with botanical and faunal material as 

early as 1936. Callen (1967) for example analyzed plant and animal macro and microfossils from 

116 human coprolites representing seven phases of human occupation at the Mesoamerican site 

of Tehuacan, Mexico. Callen’s study included observations on the presence of undigested starch 

grains preserved in pochote (Ceiba parvifolia) root and cassava (Manihot sp.) root cells, as well 

as calcium oxalate druse crystals from Opuntia and Agave sp. epidermal material and other 

materials. Definitive methods for species identification remained elusive during this early period, 

with methods such as the colour and even smell of rehydrated specimens being proposed and 

dismissed, as it became apparent that physical methods were never 100% reliable for determining 

coprolite species (Bryant 1994). A series of studies by Bryant (1969, 1974a, 1974b, 1975), Bryant 
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and Williams-Dean (1975), and Dean (1978) established standards for processing, analyzing and 

interpreting pollen assemblages extracted from coprolite material which are still followed today. 

 

Coprolite research in the US has typically focused in the arid southwest or Great Basin regions, 

where there is a prevalence of protected sites and cave/rockshelters which provide favourable 

conditions for faecal preservation via desiccation (Reinhard and Bryant 2008). Throughout the 

1960s and 1970s there were several universities in the US with active research programmes in the 

southwest, all of which had various interdisciplinary connections between anthropology and 

geosciences. Much of the research during this period was undertaken in collaboration with 

parasitologists, and the sub-discipline of archaeoparasitology (the study of parasites in past 

populations), emerged during this time. Reinhard (pers comm??) notes 1969 as a landmark year, 

when three high profile papers were published in Science on the topic of coprolite analysis 

(Moore et al. 1969, Fry and Moore 1969, Hezier and Napton 1969), which consolidated this 

interdisciplinary approach.  In the Great Basin, Robert Heizer (Hester 1982) and Jesse Jennings 

(Aikens 1999) were prolific field researchers.  Jennings directed excavations at sites including 

Danger Cave andHogup Cave all of which uncovered coprolites, which researchers analysed for 

dietary and parasite evidence in collaboration with parasitologists (Fry 1970, 1976, 1978; Kelso 

1971).  Heizer excavated in the Great Basin of Nevada and directed the California Archaeological 

Survey at the University of California at Berkeley where he promoted the interdisciplinary 

analysis of coprolites, especially those from Hidden Cave and Lovelock Cave (Heizer 1967). 

Excavations at Dirty Shame Rockshelter in Oregon directed by Melvin Aikens produced 

coprolites analyzed for dietary information (Hall 1977).  

 

The late 1960s and throughout the 1970s saw a shift of focus from the Great Basin to the 

Ancestral Pueblo region of the Colorado Plateau.  Archaeologists Art Rohn and Don Morris, 

working for the National Park Service, recovered coprolites from Mug House, Mesa Verde and 

Antelope House, Canyon de Chelly, respectively.  Cynthia Irwin-Williams (Wormington and 

Agogino 1994) also excavated coprolites from Salmon Ruin, and J. Richard Ambler, a protégé of 

Jennings, excavated coprolites from the region of Navajo Mountain and Glen Canyon.  Beyond 

the Ancestral Pueblo region, Texas archaeologists including Harry Shafer, Vaughn Bryant, and 

Donny Hamilton recovered hundreds of coprolites from Hinds Cave, Baker Cave, and other 

rockshelters in the region (Bryant 1974b).  These researchers also collaborated with 

parasitologists and directed research into prehistoric parasitism among Texas hunter-gatherers 

(Reinhard 1990). 

 

Reinhard and Bryant (2008) note a seeming decline in the 1990s and 2000s in the US, though 

coprolite analysis continued in other parts of the world via archaeoparasitology, albeit on an 

irregular basis, such as the studies on Maori coprolites in New Zealand (Horrocks et al. 2002). In 

2012 Bryant and Reinhard suggest that the emergence of post-processual archaeology treated 

science with cynicism and was the reason for this decline in North American university-based 

research. Post-processualism is an umbrella term for changes in archaeological thought, largely 

seen as a backlash against processualism. Processualism is somewhat similar to the quantitative 

revolution that occurred in geography during the same period, whereby scholars sought to create 

a more ‘scientific’ and rigorous discipline. Like quantitative geography, processualism itself 

came to be criticized by various scholars for an overly analytical focus that did not consider 

human agency, and for supposing that archaeological evidence could be interpreted in an entirely 

objective fashion. Bryant and Reinhard suggested that post-processualism emphasized 

subjectivity, whereas coprolite analysis is the ‘penultimate quantification in terms of 

archaeological science’ (2012 p 381). We would argue that neither of these statements is entirely 

correct, and in fact, the emphasis of post-processual theory on self-reflexivity during 

interpretation, is essential when considering coprolite data. Likewise, the quantification of 
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coprolite contents is not an exact science and is an area that still requires further research. 

Nevertheless, interpretations must be grounded in sound empirical data, and the shifts that 

happened in the late 1970s and 80s in the US led to a move away from the interdisciplinary 

science based approach to environmental archaeology at many institutions that had previously 

undertaken such work. A handful continued this type of work, notably Texas A&M University 

and University of Nebraska, whom still trains coprolite researchers today. 

 

The earliest studies of coprolites in Britain and Europe focused more on the contexts than 

coprolites themselves, perhaps because the different nature of the archaeological sites produced 

these deposits, rather than the discrete coprolites that are more common in the cave sites of the 

Americas. Research dates to the late 1970s and 1980s, with occasional references to earlier 

studies. For example Warren 1911, who discusses briefly “a pint if not more” of blackberry, rose 

and Atriplex seeds, recovered from the pelvic region of a skeleton. Overall the volume of 

research never reached that seen in the US during this period. Latrines and cesspits have long 

been targeted by environmental archaeologists, due to the preservation of botanical and other 

remains (Greig 1981, Smith 2013). The waterlogged latrine deposits of the city of York, UK for 

example have preserved a wide range of materials including insects and archaeobotanical remains 

attributed to faecal deposition (Carrott et al. 1998, Osbourne 1983, McCobb et al 2003), and the 

Environmental Archaeology Unit of the University of York produced much of the early research 

on this topic (Hall and Kenward 2002). Most reports make no direct mention of ‘coprolites’, aside 

from a report on the ‘Lloyds Bank Turd’ (Jones 1983), a large intact specimen associated with the 

Viking occupation, now on permanent display at the Jorvik Museum. It is noted that whilst latrine 

and cesspit analyses are looking at forms of human faecal deposits, the formation processes and 

taphonomy of these pits can be quite different to ‘discrete’ coprolite deposits in non-urban 

contexts (Van Oosten 2013). Such deposits contain the faeces of multiple individuals, preventing 

an assessment of individual diet or health status. Greig (1981) noted that the potential of cesspits 

‘can only be fully realized when sufficiently large samples are studied by groups of 

environmental archaeologists in collaboration’. 

 

In Europe during the early 2000s we begin to see a greater focus on human and animal waste 

(rather than the earlier more general cesspit/latrine studies), particularly within geoarchaeology. 

The potential of coprolite deposits as a means of exploring prehistoric diet was recognized for 

example by Matthews (1995), who frequently observed likely human and animal dung deposits in 

sediment thin sections from early urban settlements in the Middle East (Matthews et al. 1997, 

Matthews et al. 2014). Since then this approach has been applied to a range of sites in different 

geographic settings to examine health and diet (Shillito et al. 2011, Pichler et al. 2014). It is also 

during this period that lipid biomarker analysis began to emerge in archaeology (Evershed 1999, 

Evershed 2008a, 2008b), including applications of faecal biomarkers (Bull et al. 1998, Bull et al. 

1999a, 1999b, Bull et al. 2000), though this technique has remained heavily focused on lipids 

from pottery until recently. 

 

Bryant and Dean describe coprolite research as having a “discipline identity” crisis (2006, 62), 

and the lack of recognition for disciplines which bridge different fields, as coprolite investigations 

do. They argue that there is a difficulty in training, as coprolites contain such a variety of 

materials that an analyst needs expertise in several fields. We would argue that whilst individual 

broad ranging expertise is an advantage, coprolite analysis should be approached as a 

collaborative effort, as Greig (1981) proposed for cesspits. This is particularly true when 

combining biomolecular and physical methods, which require very different training and skillsets. 

In some ways coprolite analysis is a microcosm of ‘multiproxy’ archaeology, which has become a 

goal for many archaeological projects (Shillito 2017), following the recognition that multiple 

lines of evidence provide a more robust picture of the past, and reduce equifinality. Such a goal 
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can be difficult to implement, however a series of publications by Zhang and colleagues in China, 

where coprolite analysis has a more recent history, indicate that coprolite analysis is becoming 

incorporated into studies of ancient subsistence in this region from the outset. The traditional 

model in this region divides agriculture into the north, emphasising dry crops such as millet and 

the South focusing on water intensive rice, with the earliest sites in both regions around 10,000 

BP (Yang et al. 2012; Zhao 1998). At the site of Tianluoshan, where the earliest rice fields have 

been identified (7000-6000 BP), Zhang et al.’s analysis of lipids in coprolites indicate diets 

dominated by plant sterols (Zhang et al. 2020a). By combining palynology, Zhang et al. have 

been able to identify species previously undetected in the archaeological record, including 

Poaceae and Typha sp., characterizing wetland cultivation (Zhang et al. 2020b). This both 

supports the model of rice cultivation, but also provides nuance, suggesting that wild resources 

were also very important during this period. In contrast coprolites from the sites of Yuhuicun and 

Houtieying, located in the transitional zone of rice and millet, are dominated by animal sterols. 

The combination of microscopic and biomolecular methods, incorporated with wider 

archaeological data, demonstrates how powerful this approach can be. 

 

There are several methods available for coprolite identification, each with its own advantages and 

limitations. Once the species has been identified, the information contained within the coprolite 

can then be extracted and interpreted in light of the species, and context in which the deposit was 

found. In the following section we provide a comprehensive overview of the methods used for 

coprolite analysis, from macro- to micro- and molecular, focusing on morphology, contents and 

residues respectively (Figure 2). It should be emphasized at this point the importance of curation 

and retaining samples for future study in appropriate storage conditions. There are numerous 

anecdotal and published instances where precious samples have been poorly stored or curated, 

leading to loss of crucial contextual information, or even the lost of the samples (Reinhard 2017, 

Callaway 2019). Recently the need for standardized global access practices for ancient human 

remains was noted (Austin et al. 2019). Whilst coprolites have never reached the same level of 

popularity as skeletal human remains, it is likely that this will happen as their value becomes 

recognized, particularly for genetic studies, and should be subject to the same strict protocols. 

 

 

3. Analysing coprolites: macromorphology and micromorphology 

 

 

3.1 Morphology 

 

In modern and palaeocecological studies of mammal faeces the size and shape can be used as an 

indicator of likely species (Taglioretti et al 2014, Chame 2003). Chame (2003) discusses that 

diagnosis on the basis of morphometric analysis can be accurate in narrowing down the 

identification of taxonomic group, which can then inform subsequent analyses. Morphological 

criteria have been used also in palaeobiological studies to differentiate between different types of 

carnivores (Montserrat Sanz et al. 2016). In archaeology the species that are usually of most 

interest are humans and associated domesticates. Linseele et al (2013) discuss the use of 

morphometric methods to identify animal dung, and conclude that even in modern specimens, the 

variation is usually too large to be able to confidently distinguish between species. In 

archaeological contexts the problem is exaggerated through taphonomic processes which can alter 

the appearance of dung considerably from its fresh state. Reinhard and Bryant (2008) note that 

most coprolites they have encountered do not have a characteristic morphology, due to 

compression and fragmentation. The compression of coprolites under the weight of successive 

dumping of sediments leads to distinct faecal ‘lenses’ in midden deposits at Çatalhöyük (Figure 

1) and other tell sites (Shillito et al. 2013b). However, this is not always the case. Coprolites from 
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the Neolithic site of Durrington Walls, UK for example, preserved in calcareous sediments in 

pits, retain a typical ‘faecal’ sub rounded morphology, and were clearly identifiable as coprolites 

in the field (Figure 3), likewise the large assemblage of coprolites that have been analysed from 

Paisley Caves, Oregon USA, for example (Shillito et al. in press, Blong et al. in press). 

 

Whilst dung such as bovid and ovicaprids is usually distinct enough to be identified as ‘non-

human’, species that are likely to co-occur with humans in the archaeological record can be easily 

confused on the basis of gross morphology e.g. pigs and dogs. Both species can have very 

variable omnivorous diets and produce coprolites that are morphologically similar to humans.  

In Pleistocene records, and other contexts where humans and carnivores are present together, 

there has been a lot of research on hyenid coprolites in particular. These are distinctly shaped and 

generally preserve well due the carnivorous diet of the hyena. The consumption of bone results in 

elevated levels of phosphorous and calcium in excrement which advances the mineralisation 

process (Chin 2002). Sanz et al. (2016) present descriptive criteria for distinguishing between 

coprolites from different carnivores, though it is noted that the size ranges considerably, and the 

‘morphotype 1’ assigned to hyena is visually very similar to samples identified as human 

elsewhere. Even humans themselves have a potentially wide range of morphologies; the Bristol 

Stool Form Scale (Figure 4) a 7-point scale with schematic representations of the range of 

morphology that can be expected in human stool in clinical contexts (Lewis and Heaton 1997, 

Blake et al 2016). The morphologies are a result of the speed at which digested food moves 

through the digestive tract, as well as the type of food consumed, and the health and age of the 

individual. Given that human diets can be hugely variable, it is not surprising that the form of 

coprolites can also be varied.  

 

Colour, translucency, and smell of reconstituted coprolite in sodium phosphate solution have been 

used as an estimation of species of origin: human coprolites will typically turn the solution 

opaque and dark brown or black in colour and will have an intense smell (Bryant 1974b; Holden 

1990); carnivore coprolites typically turn the solution white, pale brown, or yellow, while 

herbivore coprolites turn the solution pale yellow to light brown; in both cases the solution 

remains translucent and there is a musty smell (Bryant 1974b, Callen and Cameron 1960; Fry 

1970). Again, it is noted that this method is not conclusive; freshly excreted human faecal matter 

can range in colour from light to dark brown with a mixed plant/meat diet to brownish-black with 

a meat-centric diet, and it is assumed that this will affect rehydrated colour (Fry 1970). In 

addition, studies have shown that non-human coprolites can also have a black rehydrated colour 

(see discussion in Reinhard and Bryant 1992 and Reinhard 2017)  though, studies comparing 

rehydration colour to other methods of determining human origin have for the most part 

supported the rehydrated colour guidelines established above (Reinhard 2017). Despite the 

limitations of morphological analysis as a species indicator, a description should always be made 

prior to any further analysis, given that the major of analytical methods are destructive. Jouy-

Avantin et al. (2003) published a widely used standardised method for describing coprolite 

morphological characteristics including photographs, metric measurements, and descriptive 

characterisations of morphology, inclusions, hardness, colour, and taphonomic modifications. 

 

 

3.2 Micromorphology 

 

As discussed in section 3.1, the macromorphology of coprolites can be highly variable within and 

between species, which translates to a high variability at the microscale. It is often possible to 

observe inclusions embedded within coprolites, which can give useful information on the dietary 

habits and precise depositional context of the faeces (Figure 5).  
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The visual characteristics of coprolites under the microscope, in thin section, can be used to 

assess likely species and give some indications of diet. Omnivores may contain both plant and 

bone inclusions, with the plant remains being shorter,courser and less abundant than those found 

in herbivores such as cattle (Bronniman et al. 2017). Coprolites in thin section range in colour 

from yellow to orange and brown, and even greyish. The reasons for the variation in coprolite 

colour, has not been thoroughly investigated, though it does not seem to be directly linked to 

species. In modern faeces, the typical brownish colour is due to the presence of bilirubin, excreted 

in bile, though as discussed in section 3.1, the exact reason for colour varaiblity within and 

between species is unclear. There are some indications that colour could be related to 

preservation conditions – a comparison of coprolites in deeply buried versus more shallow 

deposits at Çatalhöyük has shown that the latter have a pale brown appearance, and the former 

being bright orange (Shillito and Matthews 2013). Both types have been confirmed as human on 

the basis of sterol and bile acid profiles (Shillito et al. 2011).  

 

Micromorphology is especially useful for ‘in situ’ analysis where coprolites are observed in their 

depositional context. For example at the early pre-pottery Neolithic site of Sheik e Abad in Iran, 

lenses of orange deposits were analyzed using micromorphology with high resolution sub-

sampling for lipid analysis. The layers were identified as alternating animal and human dung, 

which has been crucial in understanding the changing use of space in the settlement over time, as 

well as early waste management and animal penning strategies (Matthews et al. 2013, Shillito et 

al. 2013a).  

 

The use of microCT on ‘thick’ sections has shown potential for visualizing the contents of 

coprolites in three dimensions, and has potential as a non-destructive imaging technique, and to 

locate specific inclusions within a coprolite (Huisman et al. 2014). In Figure 3 two coprolites 

from Durrington Walls, UK, were scanned using microCT and found to contain very different 

levels of digested bone fragments. There is much potential for exploring this technique further 

with the view to inform sampling strategies for destructive analyses. 

 

A high-profile example of the problems with species identification using morphology is Paisley 

Caves, Oregon. This rockshelter is well known as it has yielded some of the earliest evidence for 

human occupation in the Americas, in the form of coprolites identified as human on the basis of 

ancient DNA (Gilbert et al. 2008) (as discussed further in section 6.2). The identification of a 

particular coprolite (dated between 14,170 to 14,340 cal BP) as human received specific criticism 

(Goldberg et al. 2009), as it was argued that morphologically the coprolite resembled animal 

faeces rather than that of a human, with comparisons drawn between the Paisley sample, and 

modern camel. Goldberg et al. (2009) included an example of a typical ‘human’ coprolite from a 

Viking context, with a yellowish appearance and high phosphatic content. Micromorphological 

analysis identified that the Paisley sample has fibrous internal vegetation with phytoliths, 

morphology/staining consistent with a herbivore origin, which Goldberg et al. suggest is similar 

to herbivore reference samples. FTIR analysis indicated that the coprolite is high in silicates and 

organic matter, and low in minerogenic phosphates, characteristics suggested as common for 

herbivore coprolites rather than human or carnivore.  

 

Rasmussen et al. (2009) argue that micromorphology and mineralogical content cannot be used to 

distinguish between herbivorous mammal faeces and faeces from a human with a primarily 

vegetative diet. They provide analysis of three coprolites recovered from the pelvic area of 

Nubian burials in Africa (leaving little doubt they are human) to support this claim. These 

coprolites had an abundance of phytoliths and do not have the FTIR signature of carbonate 

hydroxyl apatite suggested by Goldberg et al. 2009 to be diagnostic of a human/carnivore 

coprolite. They also review many coprolite studies, including several from the Great Basin, that 
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show the high phytolith and vegetative content possible for humans with a largely plant-based 

diet. The problem here is dietary differences. There is no established reference data 

demonstrating the morphological variability of human coprolites as a result of dietary differences. 

Given that these items are the remains of undigested food, it is no surprise that there may be 

differences between populations or even individuals with very different diets, and it is not 

surprising that the Paisley sample appeared different to a Viking sample 

 

This is a problem that occurs commonly, perhaps as a result of our own biases and assumptions. 

Analysis of coprolites from Neolithic Turkey for example, assumed during excavation to be dog 

on the basis of morphology and the fact they contained relatively large fragments of bone, were 

determined to be human on the basis of their sterol and bile acid profiles (Shillito et al. 2011). 

Contents which may appear unusual or unlikely to be consumed by humans from a modern 

western perspective, should not be dismissed.  Items such as rattlesnake fangs, fibres 

(McDonough 2019; Sondermann et al. 2019) and elements of rodent skeletons (e.g., vertebra, 

phalanges, and corpus unguis) suggesting consumption of whole rodents (Blong et al. in press) 

have all been found in coprolites subsequently identified as human. 

 

4. Analysing coprolites: macrofossils and microfossils 

 

 

The contents of coprolites can be classified broadly as plant, animal, fungal or mineral, and can 

range in size from the macroscopic i.e. particles that can be readily seen with the naked eye, to 

the microscopic, needing various levels of magnification for identification. Whilst standard light 

and stereo microscopy is the typical tool for analysing coprolite contents, high resolution tools 

including SEM have also been used (Faulkner 1991, Bryant and Williams-Dean 1975, Reinhard 

et al 2019). Macrofossil and microfossil analysis typically begins by subsampling half of a 

coprolite divided along the long axis to capture material from all food consumed while the faeces 

were produced in the digestive system while preserving material for future analysis (Bryant 1969, 

Fry 1970). Following this step, samples are rehydrated in a 0.5% solution of sodium phosphate 

for a minimum of 48 hours to soften and disaggregate coprolite material and allow for separation 

of macrofossil from microfossil material (Callen and Cameron 1960). Researchers in the past 

have also attempted dry processing coprolite material for macrofossils by crushing the coprolite 

then picking out macrofossils under a microscope (see Roust 1967), but this is more time 

consuming and can damage delicate macrofossils.  

 

 

4.1 Plant and Faunal Macrofossils  

 

Macrofossils are the most commonly recovered and studied component of coprolites, and many 

early coprolite studies focused solely on macrofossil remains (see reviews in Bryant and Reinhard 

2012, Hunt et al. 2012). Plant remains in coprolites typically consist of partially digested tissues, 

seeds and fibrous remains. Faunal remains range from tiny bone fragments, visible only when 

coprolites are viewed in thin section under the microscope, to hairs, feathers, scales and larger 

intact bones and insect fragments visible to the naked eye. Macrofossils are recovered by sieving 

rehydrated specimens through a standard mesh sieve or graded set of sieves (Bryant 1974a; 

Pearsall 2015). Macrofossils remaining on the sieve are typically gently dried for identification, 

although some researchers pick through macrofossils while they are wet to avoid repeated wetting 

and drying of material that might damage cellular material (Gorham and Bryant 2001). 

Macrofossils such as seeds and bone fragments (Figure 6) are often relatively straightforward to 

identify with some knowledge of plant and animal anatomy, identification manuals, and a good 

reference collection (Pearsall 2015; Reinhard and Bryant 1992). Recovery of bone from human 



 9 

coprolites is very common, offering an important source of data on hunting and food preparation 

(Reinhard et al. 2007; Sobolik 1993). Hair, feathers, and scales recovered from coprolites can be 

identified to the family or genus level, and occasionally species (Day 1966, Reinhard 2000, Dove 

and Koch 2010). Insects remains recovered from coprolites are often highly fragmented but can 

retain diagnostic components enabling identification to the family, genus, or species level (Elias 

2010:115).  

 

Macrofossils are one of the most useful components of coprolites. Unlike microfossils, there are 

relatively few ingestion pathways and we can typically be confident they represent direct, 

intentional consumption (Sutton et al. 2010:52). Macrofossils typically have a higher taxonomic 

resolution, though are biased towards smaller bones, and less digestible materials. Macrofossils, 

therefore, can provide a direct link to diet and even foods consumed together in “meals” (Pearsall 

2015; Riley 2012; Sutton et al. 2010:51). However, while most consumed foods leave 

macrofossils in coprolites, these remains are often not identifiable after breaking down in the 

digestive system (see section 7.2 digestive taphonomy). Bone, chitin, hair, shell, feather, tendon, 

and cartilage typically pass through the digestive system in recognizable form, while muscle 

tissue and plant material preservation can be quite variable (Wilke and Hall 1975; Holden 1994). 

Most ingested plant material is broken down in the digestive system, and the excreted material is 

a partial sample biased towards materials less affected by food processing and digestion 

(O’Meara 2014). Intact seeds and/or seed coats are often preserved in coprolites, but if the 

exterior seed coat has been compromised during food processing or digestion, then these remains 

may also not preserve in identifiable form (Reinhard and Bryant 1992). Plant fiber is typically not 

affected by the human digestive system, so this will often disproportionally dominate the plant 

component of a coprolite (Fry 1976). Larger bones must be processed or chewed before they can 

enter the digestive system, and these fragments often show signs of partial digestion such as 

pitting of the surface (see section *** for further discussion on the impacts of these taphonomic 

processes on bone). 

 

4.2 Plant Microfossils - pollen 

 

It was recognized in the 1930s that pollen grains could be well preserved in coprolite material, 

but it wasn’t until the 1960s that this was used to provide insight into human food consumption 

(see review in Bryant 1974a). Pollen grains extracted from coprolites have provided important 

information on consumption of plant material for food and medicine, as well as information on 

past environments (Bryant 1974a, 9174b; Chaves and Reinhard 2003; Martin and Sharrock 1964; 

van Geelet al. 2008). Identifying intentional consumption of food from pollen recovered from 

coprolites requires knowledge of plant pollination biology (e.g., insect, wind, or self-pollinated), 

the expected ambient (natural) pollen rain in the environment, an understanding of how pollen 

moves through the human digestive system, and knowledge of past food preparation practices 

(Bryant 1974a; Dean 1978, 1993; Reinhard et al. 1991; Reinhard et al. 2007). Without 

considering these characteristics, interpretive errors can be made that lead to erroneous 

reconstructions of human behavior (Reinhard et al. 2007).  

 

A primary means of determining intentional consumption is by comparing concentration and 

relative proportion of grains. Pollen concentration values are determined by adding a known 

amount of a marker, typically an exotic spore like Lycopodium (Benninghoff 1962; Pearsall 

2015:223; Maher 1981). More recently, non-organic markers such as ceramic spheres have been 

used for the same purpose (Kitaba and Nakagawa 2017). High frequencies of pollen from a 

specific taxon in a coprolite is typically linked to intentional consumption of flowers or seeds 

with pollen grains still attached, or in some cases foliage of that taxa (Bryant 1974a, 1974b; 

Sobolik 1988; Reinhard et al. 1991; Zhang et al. 2020b). Zhang et al. (2020b) for example 
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identify extremely high percentages of Typha (cattail) pollen (> 93%) in 21 coprolites samples 

from the Neolithic site of Tianluoshan, in the Lower Yangtze Region of China. In comparison, 

concentrations in natural deposits 50m west of the settlement area are less than 10% (Ma et al. 

2018). In this case the coprolite pollen can more confidently be interpreted as intentional 

consumption. 

 

Pollen from anemophilous (wind-pollinated) taxa are produced in relatively high frequencies and 

are commonly incorporated into ambient pollen rain, so linking frequencies of pollen from 

anemophilous taxa to intentional consumption is more problematic (Bryant and Holloway 1983; 

Martin and Sharrock 1964; Reinhard et al. 1991). It is assumed that ambient pollen will be 

represented in relatively equal amounts across a series of samples from the same site (Reinhard et 

al. 1991; see also discussion of cautions with this assumption in Dean 1993). Research using a 

large pollen data set has demonstrated that ambient pollen is less frequently represented in 

coprolite pollen when large amounts of pollen-rich foods are consumed (Reinhard et al. 2006). 

High relative frequencies (>40%) and concentrations (<100,000 grains per gram of coprolite) of 

pollen from anemophilous taxa are considered to represent intentional consumption of flowers, 

buds, foliage, or seeds of that taxa because frequencies and concentrations higher than this are not 

often observed in anemophilous taxa in naturally-derived samples (Bryant 1974a; Reinhard et al. 

1991). When concentrations of pollen from an anemophilous taxa reach more than 1,000,000 

grains per gram then it is more assured that this represents intentional consumption of flowers, 

buds, foliage, or seeds of that taxa (Reinhard et al. 1991). Pollen from entomophilous (insect-

pollinated) taxa present in amounts of 2 to 4% suggests intentional consumption of that taxa 

(Bryant 1975; Reinhard et al. 1991).  

 

It is important to consider both relative frequency and pollen concentration for individual taxa. 

Pollen concentration values highlight the amount of pollen per unit of sample, highlighting 

variations in pollen accumulation and total pollen abundance above the mean for a specific taxon 

that may be masked by simply comparing relative frequencies with an arbitrary relative percent 

cutoff (Dean 1993; Reinhard 1993; Reinhard et al. 2006). Pollen concentration values are 

strongly influenced by the consumption of pollen-rich food and therefore are valuable for 

assessing the magnitude of pollen ingested in the diet (Reinhard et al. 2006). The most robust 

inferences for diet using coprolite pollen data are made through comparative statistical studies of 

pollen concentration values in tandem with presence of aggregate grains, particularly when 

assessing anemophilous taxa consumption (Chaves and Reinhard 2006; Reinhard et al. 2006). 

Studies have demonstrated that there can be a lot of variance in coprolite pollen concentrations 

(Bryant 1974a, 1974b, Sobolik 1988; Reinhard 1993); this information can be used to solidify 

interpretations of intentional consumption (Reinhard et al. 2006). The link between high 

frequencies of pollen and/or aggregates of pollen from a specific taxa and consumption of seeds 

or other non-flower vegetative matter of that same taxa has been demonstrated in previous studies 

(Reinhard 1993). Consumption of flowers is often recognized by the presence of large pollen 

aggregates representing pollen on the anther of a flower (Bryant 1974b). Non-floral parts of 

insect-pollinated taxa are not expected to have high amounts of residual pollen, so consumption 

of these components is not expected to be represented in the pollen record (Martin and Sharrock 

1964, Bryant 1974). Pollen aggregates for both anemophilous and entomophilous taxa are also 

taken as evidence for intentional consumption of flowers of that taxa. The use of aggregate pollen 

alone to determine intentional consumption is not reliable given that pollen can be disaggregated 

by food processing and digestion (Reinhard 1993). 

 

There are several caveats to the use of pollen from coprolites to reconstruct intentional plant 

consumption. Several studies have demonstrated that pollen distributions in human coprolites are 

not random, so that where you collect a sample can affect the resulting pollen data set (Beck et al. 
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2019; Martin and Sharrock 1964). Coprolites collected a few cm from one another in the 

intestinal tract of a mummy had variations between 9,000 grains/gram to 3,400 grains/gram; this 

variability appears to be linked to the amount of fiber consumed in the meals represented by each 

coprolite (Reinhard 1993). Experimental studies demonstrate that the rate that pollen exits the 

human digestive system can vary greatly between individuals or day to day in the same 

individual. Most pollen exits the digestive system 2-4 days after consumption, but lesser amounts 

can sometimes take up to 32 days to be fully passed from the intestine (possibly linked to pollen 

morphology e.g., small pollen with significant exine surface sculpturing is more likely to be 

caught in the intestinal folds during digestion) (Dean 1993; Kelso 1976; Sobolik 1988; Reinhard 

1993; Williams-Dean 1978). However, some researchers have questioned whether modern 

actualistic studies are appropriate analogues for the past because high-fiber, seasonally-variable 

hunter-gatherer diets in the past may have caused pollen to pass through the digestive system at 

different rates than that observed in modern individuals (Reinhard 1993). More carefully 

designed experiments are needed to fully understand these processes, for example Reinhard et al. 

(2006) suggest harvesting commonly consumed wild plant parts to determining the number of 

pollen grains per gram of material to better interpret coprolite pollen concentration values.  

 

 

4.3 Plant microfossils - Starch and phytoliths 

 

 

Phytoliths and starch are commonly analyzed together. Phytoliths are mineral deposits, usually 

silica, that form within and between plant cells, forming three dimensional casts of the cell 

morphology. Phytoliths have been observed in large quantities in animal dung (Goyleve 2012, 

Qiu et al. 2014, Portillo et al. 2020). Phytoltihs in human coprolites have been identified by 

Horrocks et al. 2002 identify spherical spinulose phytoliths tentiaviely intrpeted as nikau palm, in 

Maori coprolites, and Haas et al. identified miaze phytoliths in coprolites. The ability to identify 

phytoliths to a meaningful taxonomic level is highly variable. Some species can be identified if 

large enough tissue fragments are preserved, but often these preserve only as single cells, which 

have a poor taxonomic resolution (Shillito 2011). The presence of these in coprolites is highly 

dependent on the types of plant being consumed, the part of the plant that us consumed, and 

whether the plant produces abundant quantities of phytoliths – this in itself is an area that is not 

well understood (see Shillito 2013). Monocotyledonous plants that grow under conditions of high 

water availability, and with a silica-rich substrate, produce large quantities of phytoliths. Whilst 

cereals such as wheat can be identified through the distinctive morphology of the husk phytoliths, 

it is not clear whether these would be present in coprolites due to crop processing methods which 

would remove the husks prior to consumption. Calcium oxalate crystals (sometimes known as 

calcium oxalate phytoliths) are especially common for example in Archaic coprolites in the lower 

Pecos region of west Texas, due to the consumption of prickly pear and agave, which were the 

dietary staples in west Texas for 6,000 years (Danielson and Reinhard 1998).  

 

Starch on the other hand is a carbohydrate molecule, composed of amylose and amylopectin 

molecules, which form granules whose morphology is linked to specific species. There have been 

limited studies of starches from coprolites. It is unclear whether these would survive the digestion 

system in large numbers, though they have been observed within animal faeces (Figure 5), within 

partially digested plant tissues. Starch grains are consumed within starch-rich plant tissues such as 

seeds and underground storage organs, and for humans to gain the nutritional benefits of starch 

the grains must be broken down during food processing and digestion (Torrence and Barton 

2006). As a result of these mechanical and chemical processes many starch grains are destroyed 

by the time a meal is passed through the intestine and deposited as a coprolite (Samuel 2006 in 

Torrence and Barton 2006 book). There are situations where starch grains can be preserved in 
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coprolite material, typically because they are protected by plant material (e.g., plant tissue, seed 

coat); however, the starch assemblage recovered from coprolites likely represents a biased sample 

consisting of the most robust (e.g., thicker cell walls) starches (Pearsall 2015:350). 

 

As noted above, Callen (1967) observed starch grains preserved in undigested cassava and 

pochote root tissue. This provides an example of starch grain preservation through the protection 

afforded by undigested plant tissue. Horrocks et al. (2004) identified sweet potato (Ipomoea 

batatas) starch grains in human and/or dog coprolites excavated from two prehistoric Polynesian 

settlements in northern New Zealand. Starch grains recovered from some of the coprolites 

exhibited better preservation than pollen and spores recovered from the same sample, suggesting 

that starch grains may preferentially preserve over other microfossils in some deposits. Starch 

grains have been recovered in varying amounts in Archaic-period human coprolites from the 

Lower Pecos canyonlands, Texas (Riley 2012), Inka-period human coprolites from the Atacama 

Desert in northern Chile (Vinton et al., 2009), late Archaic-period human and dog coprolites from 

the western coast of Peru (Haas et al. 2013), and middle to late-Holocene human coprolites from 

Antelope Cave in northwest Arizona (Reinhard et al. 2012). Well-preserved starch grains can be 

diagnostic to the species level and can provide important information on consumption of starch-

bearing parts of a specific. This is particularly important in the case of underground storage 

organs, whose fleshy remains are typically not distinguishable to this taxonomic level (Pearsall 

2015:133). However there are uncertainties over the morphological consistency of starch granules 

– in modern samples a range of environmental factors influence the granule morphology 

(Lindeboom et al. 2004, Zhao et al. 2018), and there are also concerns related to taphonomic 

processes (Collins and Copeland 2011). 

 

 

4.3 Microfossils – fungal 

 

Whilst fungal spores in animal dung have been studied extensively (e.g. Perrotti and Van Asperen 

2018, van Asperen et al. 2020), fungal spores in human coprolites are understudied. Besides 

edible mushrooms, many fungi are used medicinally. Other fungi may have been ingested 

accidentally together with foodstuffs, including plant pathogens. Whilst most edible mushrooms 

are not encountered as macrofossils in coprolites, their spores could potentially survive passage 

through the digestive tract. Many of these spores are very small (<10μm in diameter), and many 

are not identifiable to species level. However, some of these spores could provide significant 

information about diet and health. For example, Battillo (2018; see also Reinhard 2006) found 

spores from the corn smut Ustilago maydis in human coprolites from Turkey Pen Ruin 

rockshelter, Utah. The consumption of this fungus was deliberate, and perhaps encouraged as a 

dietary supplement which counteracts some of the nutritional deficiencies that are associated with 

a maize-dominated diet. The cultivation of the fungus, to the detriment of the corn, and its 

consumption for medicinal reasons and as a delicacy is still prevalent among Pueblo groups and 

does not lead to any adverse effects (Dahl 2009). 

 

 

 

5. Non-dietary inclusions: parasites and inorganic material 

 

The majority of categories discussed so far are items consumed as food, and some which may 

have been ingested for medicinal purposes. Other items occur as a result of gastro-intestinal 

infection, and injection of inedible items. Non-food pathways to consumption is something that 

needs to be considered in future studies. Several items identified in coprolites from Paisley Caves 

for example have ethnographic analogues that suggest consumption for medicinal purposes, such 



 13 

as sagebrush leaves (Blong et al. in press), and other items may be ingested through craft 

activities, for example preparation of cordage. Inclusions of minerals and pigments entrapped in 

dental calculus, have been linked to craft activities in medieval populations (Radini et al. 2016, 

2019), and Radini et al. (2017) discuss the range of potential depositional pathways through 

which microdebris can enter the mouth. This in turn could translate to these items entering the 

digestive system. Other items that have been observed in coprolites include diatoms, which may 

enter the digestive tract for example through drinking water where these organisms live (Figures 

5 and 7). 

 

Intestinal parasites in coprolites have been identified dating from early prehistory to Medieval 

periods (e.g. Bouchet 1995, Florenzano et al. 2012, Ledger et al. 2019a, 2019b, Jones 1983), with 

extensive work on Roman cesspits and latrines (e.g. Greig 1981; Mitchell 2017; Williams et al. 

2017). Parasites are organisms that spend at least part of their lifecycle within the bodies of 

individuals of a different species, which is called a host, and in general negatively affect the 

fitness and sometimes even the survival of the hosts. They are found in coprolites in the form of 

eggs or larvae (Dittmar 2009). Intestinal parasites are common in humans where sanitary 

conditions are poor and include helminths and intestinal protozoa. Compared to microfossil 

studies from coprolites, the approach to quantifying parasites was initially more standardized 

across research groups, based largely on knowledge of parasite life-cycles along with 

archaeological data. Furthermore, infection with protozoa can now be shown using specific 

enzyme-linked immunosorbent assays and molecular biology techniques (Araújo et al. 2015). 

There were standardized procedures producing reliable and comparable data sets across regions.  

However this changed by 2003 as new, non-quantitative approaches emerged (Bain 2001, Araujo 

2012, Reinhard 2017). 

 

A detailed history of ‘archaeoparasitology’ in the Americas is given in Reinhard and Araújo 

(2012), who identify three phases: an exploratory phase (1910 to 1974), a population phase 

(1976–1987), and synthesis of archaeology and parasitology from 1987 onwards. Archaeological 

parasitology, in its early phase , initially sought to identify the origin and movement of parasites 

through time and space using presence/absence studies (Jones 1982, 1985, Camacho et al. 2018, 

Camacho and Reinhard 2020). Certain parasites are specific to particular host species, and 

presence of human-specific helminths, such as Enterobius vermicularis (Reinhard et al. 2016), or 

egg size can enable the identification of human coprolites. Some of the earliest studies focus on 

simply the identification of various parasites within human faeces, for example early evidence of 

pinworm infection (e.g. Fry and Moore 1969; Moore et al. 1969), which not only indicates a 

definitive human origin for the coprolite, but also suggests high population density (Reinhard et 

al. 2016). Such studies can also account for the origins of parasitic infections. For example, the 

nematode Ascaris lumbricoides parasitizes humans, whilst its close relative A. suum parasitizes 

pigs. An early date for A. lumbricoides eggs (Giuffra et al. 2000) suggests that the parasite 

jumped from humans to pigs after domestication. In contrast, Taenia spp. are present in human 

coprolites from areas where beef and pork are consumed, but absent from pre-Columbian New 

World sites, suggesting consumption of these foodstuffs caused the first infections with this 

parasite (Gonçalves et al. 2003).  

 

Findings of parasites that have several hosts can indicate consumption of food sources with a 

parasite load, or contact with intermediate hosts such as livestock or fish (Gonçalves et al. 2003). 

Such parasites need not have infected the human in whose faeces they are found; they may simply 

have been ingested with the food and passed (false parasites; Reinhard 2017). For example, the 

presence of Diphyllobothrium latum and D. pacificum in human coprolites reflect consumption of 

their intermediate hosts, fresh water and marine fish respectively (Gonçalves et al. 2003). 
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The approaches summarized above are known as pathoecology: the study of how parasites were 

transmitted within and between populations (Martinson et al. 2003; Reinhard and Bryant 2008; 

Reinhard and Araújo 2014). Pathoecology encompasses human factors such as archaeological 

reconstructions of living conditions, sanitation and hygiene, along with biological factors 

including the presence of particular pathogens, their reservoirs and hosts. Physical factors can 

also be involved. The conceptual basis of pathoecology has been attributed to Russian zoologist 

Yevgeny Pavlovsky, who has also been credited with coining the term palaeoparasitology’ 

(Slepchenko and Reinhard 2018). Slepchenko and Reinhard’s review of Pavlovsky’s work and 

other palaeoparasitology research from Russia illustrates the significant contribution that this 

work has made to the broader field.  

 

A ‘palaeoepidemiological’ approach, focuses on the statistical analysis of parasite data and the 

quantification of ‘eggs per gram’ (Camacho et al. 2018). This has enabled the assessment of 

overdispersion, the well-documented phenomenon that in a population, a small number of hosts 

carry large numbers of parasites, whilst the rest of the population carry no or few parasites 

(Camacho et al. 2018). This phenomenon influences both individual fitness as well as population 

stability. Larger sample sizes from as wide a range of contexts are needed for prevalence and 

palaeoepidemiological studies to avoid sampling the same individual multiple times (Reinhard 

2017). This is a problem especially among hunter-gatherers, where prevalence tends to be lower 

than among agricultural populations, and sites are more ephemeral (Reinhard 1988; Araújo et al. 

2015; Reinhard et al. 2016; Camacho et al. 2018). 

 

 

6.  Biomolecular approaches 

 

  

There are several early instances of biochemical analyses of coprolites, but Wilke and Hall (1975) 

note that at the time this was not a well progressed area, although they suggested it would 

“receive further attention in future studies” (p.3), a forecast now shown to be correct. Fry (1970, 

1976) conducted a study of 146 coprolites from early through late Holocene occupations at 

Danger Cave, Hogup Cave, and Glen Canyon in Utah. Fry’s study looked at plant and faunal 

content, but also micronutrients and an early application of “lipid class gas chromatographic 

analysis”, along with various other analyses typically carried out on modern faecal material in 

medical laboratories (e.g., guaiac test for blood, ICTO test for bilirubin). Fry’s seminal study 

provided evidence of seasonal occupation of some sites and a broad-based subsistence strategy 

focused largely on consumption of local plant resources that remained remarkably homogenous 

over 10,000 years of occupation. Fry’s study served as a benchmark for future multiproxy 

coprolite studies in the region.  

 

Since the earlier phases of coprolite research, archaeological science as a whole has seen 

fundamental shifts in the types methodologies and technologies that are available. The field of 

biomolecular archaeology, encompassing DNA, lipids and proteins, has grown at a fast pace. 

Ancient ‘lipidomics’ and genomics are now at the forefront of the field and ancient proteomics is 

a rapidly emerging technique. The term biomarker as used in archaeology and geoscience refers 

to any biological molecule, the presence of which indicates a specific living organism. In 

archaeological applications it has been used to refer to aDNA, proteins and lipids, all of which are 

organic molecules, but with very different chemistries. Lipid molecules have poor solubility in 

water, and are unlikely to be moved from the site of deposition. Proteins on the other hand are 

composed of amino acids which vary greatly in their solubility. DNA is a polar molecule, and 

modern DNA is highly soluble in water. Additionally, DNA degradation is complex and results in 

characteristic post-mortem damage (Lindahl 1993), similarly damage patterns can be observed in 
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ancient proteins (Hendy et al. 2018). Whilst these changes in primary structure can hinder 

downstream analysis, they are useful features for authenticating truly ancient biomolecules.  

 

 

6.2 DNA 

  

For a field only a few decades old, ancient genomics has seen remarkable advances. This progress 

can be largely attributed to technological revolutions (i.e. next-generation sequencing and high-

performance computing) which have significantly reduced costs associated with DNA sequencing 

and provided a suite of new bioinformatic tools for data analysis (Hofreiter et al. 2015). Although 

hard biological tissues are the most common archaeological substrates selected for ancient DNA 

analysis, aDNA workflows have been optimised for a wide range of archaeological material 

(Green and Speller 2017). Coprolites are an abundant source of ancient DNA deriving from 

varied sources; DNA molecules from the depositing individual, their diet and associated 

microorganisms are potentially preserved within a coprolite matrix. Previously, DNA from 

coprolites has been accessed using targeted approaches (e.g. PCR, 16S rRNA and 

metabarcoding). However, when analysing a substrate which contains DNA from a range of 

sources, such as a coprolite, a non-targeted metagenomic approach, coupled with strict 

contamination control and authentication, may be most suitable to fully characterise the genetic 

make-up of these unique biological archives. We suspect metagenomics approaches will be most 

commonly implemented in future coprolite aDNA investigations. The recovery of aDNA, not just 

from the depositing individual, but from that individual's living environment, means coprolites 

can provide a truly rare glimpse of everyday life in the past. 

 

 

6.2.1 Depositing species 

 

As discussed in section 3, identifying the depositing species is the first question for coprolite 

investigations. As subsequent morphological inspections should have been completed, targeted 

aDNA analysis (i.e. using primers to target the DNA of candidate species) is recommended if this 

is the only question of interest. For a more comprehensive investigation, metagenomic 

approaches can also be used to determine the depositing species (Hagan et al. 2020) and to 

ascertain the biological sex of the depositing individual (Skoglund et al. 2013). Using 

metagenomic data, Hagan et al. demonstrate that the microbial community also distinguishes 

between a human or a dog host (2020). 

 

The host origin of fourteen coprolites from the lower levels of Paisley Caves, Oregon became the 

subject of controversy in 2008. When targeted mitochondrial DNA (mtDNA) analysis identified 

the samples as human (six with Native American haplogroups A2 or B2), three of these coprolites 

became the earliest evidence of the peopling of North America (Gilbert et al. 2008). However, 

Poinar et al. (2009) deemed the mtDNA identifications inconclusive, in part, due to the presence 

of putative contaminating sequences (e.g. canid DNA) and insufficient evidence that the human 

DNA had not moved through the sediment from higher levels (DNA leaching). In response, 

Gilbert et al. (2009) concede that it was impossible to unequivocally demonstrate that DNA 

leaching derived from concurrent prehistoric human and canid occupants of the cave had not 

contaminated the coprolites from the lower levels, but the group felt it was unlikely that this was 

the case. To investigate the potential of leaching, Jenkins et al. (2012) included the analysis of 

associated sedimentary samples alongside 65 coprolites. The identification of 25 coprolites as 

human supports the original conclusions of Gilbert et al. (2008) (although a small number of 

samples have a mix of canid and human DNA which remains unexplained). 
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The movement of DNA from excretions such as urine and feces through cave sediments in New 

Zealand has been documented. Despite there being around 350 years between Moa (extinct large, 

flightless birds) and Ovis sp. (sheep) occupying New Zealand (Holdaway and Jacomb 2000), 

DNA from both species was recovered from the same cave strata (Haile et al. 2007). Furthermore, 

the quantity of Ovis DNA decreased with sediment depth, suggesting the non-native sheep DNA 

had leached through to the older levels, in this case via urine percolation (Haile et al. 2007). Haile 

et al. (2007) suggested that sediment must be flushed with excretion for that organism’s DNA to 

be detected. DNA leaching appears to occur to different degrees depending on the sediment 

conditions (Hebsgaard et al. 2009). A contemporary study in zoo enclosures confirmed that soil 

structure impacts the extent of DNA leaching alongside population density (Andersen et al. 

2012). These studies demonstrate we still know relatively little about the mechanism of DNA 

leaching and —as open systems— it is likely that coprolites will be similarly affected if leaching 

occurs.  

 

Discrepancies between host identifications are yet another reminder of the importance of adhering 

to field standards when working with ancient DNA (Poinar 2003). It is imperative to use stringent 

authenticity criteria when assessing findings, both bioinformatically (e.g. tools to assess 

characteristic features of damaged DNA (Jónsson et al. 2013; Malaspinas et al. 2014; Weiß et al. 

2015)) as well as by applying critical logic to assess identifications (Gilbert et al. 2005). Whilst 

authentication is important in all aDNA investigations, the authenticity of metagenomic data 

generated from coprolites is paramount, firstly as this is a relatively new sub-discipline and 

secondly, as a wide range of species DNA are retrieved from these substrates. Currently, 

identification of species from DNA sequences relies on comparisons to publicly available 

databases (e.g. NCBI (Federhen 2012)). Whilst these records are extensive, they do have 

limitations, including contamination of reference genomes (Merchant et al. 2014; Lu and 

Salzberg 2018), omissions of uncharacterised species (especially microbial taxa), and a lack of 

contemporary reference genomes for archaeological investigations (see Breitwieser et al. 2017 for 

a comprehensive review). These limitations make the criteria for good practice laid out in the 

early days of aDNA work pertinent for coprolite investigations and any species identified by a 

small number of sequences must be interpreted with caution. 

 

6.2.2 Diet 

 

Ancient DNA analysis has been applied to coprolites to investigate dietary resources, initially 

through the PCR amplification of single markers and more recently through high-throughput 

sequencing techniques. The majority of dietary investigations have been undertaken on animal 

coprolites and demonstrate the potential to retrieve high-resolution dietary data which can be 

linked to subsistence and/or provisioning (Poinar et al. 1998; Hofreiter et al. 2000; Wood et al. 

2008; Wood et al. 2012; Wood et al. 2016). Surprisingly, very few studies have attempted similar 

reconstructions using human material. Poinar et al. (2001) demonstrated the potential for specific 

dietary reconstruction by identifying 12 different plant and animal species in a targeted PCR 

investigation of Native American coprolites from Hinds Cave. More recently, attempts have been 

made to reconstruct dietary resources available to medieval European (Appelt et al. 2014a) and 

pre-Columbian (Rivera-Perez et al. 2015) cultures using Eukaryotic viral genetic material 

recovered via a non-targeted, high throughput approach. There are limitations to ancient viromics, 

particularly relating to the survival of genetic material and species identification, and considering 

zoonotic potential, the presence of a Eukaryotic virus does not necessarily mean the viral host 

was consumed. A more fruitful method to access dietary DNA from coprolites is via confident 

species assignment from deep sequencing metagenomic data.  
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6.2.3 Ancestral gut microbiomes 

 

In modern medicine, investigations into the microorganisms that occupy the digestive tract - 

collectively known as the gut microbiota - have excelled, due to the recognition that the profile of 

microbes living in us have immense implications for human health, mood (Schmidt 2015) and 

behaviour (Johnson and Foster 2018). There are two substrates in the archaeological record which 

preserve evidence of ancestral microbiomes: dental calculus and coprolites (Warinner et al. 

2015). Clinically, the microbes present in faeces are taken to represent the gut microbiota 

(Peterson et al. 2009); archaeologically, coprolites are taken to represent faeces and therefore at 

least some of the surviving bacteria are thought to be derived from the guts of past people. It is 

surmised that the move towards modern lifestyles (urban, modern healthcare, homogenised 

annual diet, processed foods etc.) have significantly altered the microorganisms in the gut (Segata 

2015). Furthermore, declines in microbial diversity correspond with a lifestyle gradient: hunter-

gatherer groups exhibit the most diverse microbiomes, followed by traditional agricultural 

communities, and least diverse are highly-urbanised, post-industrial microbiomes (Jha et al. 

2018).  

 

The microbial profiles of traditional communities differ to those leading modern lifestyles in 

three main ways: 1) increased species diversity; 2) the presence of characteristic species; 3) 

differences in the relative abundance of phyla (Davenport et al. 2017). It is hypothesised that 

these characteristics reflect gut signatures of the past (Sonnenburg and Sonnenburg 2019), and 

thus coprolites provide an opportunity to test these hypotheses. To date, over 30 microbial genetic 

investigations of archaeological faecal samples have been published (Luciani et al. 2006; Tito et 

al. 2008; Tito et al. 2012; Santiago-Rodriguez et al. 2013; Appelt et al. 2014b; Cano et al. 2014; 

Tett et al. 2019; Hagan et al. 2020), which support the hypothesis that gut flora of traditional 

communities reflect its ancestral state. These studies have primarily focused on prehistoric 

American contexts (Americas: 30, Europe: 1). Notably, coprolite samples recovered from the Rio 

Zape Valley (Durango, Mexico) appear to have preserved optimally for aDNA investigation as 

four papers —including the landmark ancient gut microbiome paper by Tito et al (2008)— have 

successfully characterised gut microbiomes this site (Tito et al. 2008; Tito et al. 2012; Tett et al. 

2019; Hagan et al. 2020). Nevertheless, ancient gut microbiomes do not preserve equally well in 

all archaeological contexts. This issue is discussed in greater depth below (see ‘6.2.3.2 

Community Signature’). 

 

Pucu et al. 2019. Compare the results of micro and macrofossil content analysis with previously 

published microbiome data on the same coprolites, and demonstrate that the former can provide 

useful information that helps interpret the results from microbiome analysis. Hagan et al. (2019) 

suggest that microbes can also be used as a species indictor and distinguished between human and 

dog on the basis of bacterial sequences. A recent paper by Borry et al (2020). uses a combination 

of host and microbial DNA to infer the host source of fecal material. The use of DNA for 

confirming species has been problematic for various reasons discussed above, not least because 

amplification methods can enhance trace levels of dog DNA in humans that have consumed dogs, 

or in dogs that have consumed human faeces. By using shotgun metagenomics Borry et al. looked 

at the gut microbiome, which differs between mammal species, in addition to the host DNA, and 

used a bioinformatics approach to predict faecal source based on the taxonomic composition of 

the microbiome. Interestingly, a comparison between the samples Borry et al. analyse, and a 

previously published dataset on the parasites from the same samples, indicates that the parasites 

are good predictors of whether a sample has a dog or human origin (Jiminez et al. 2012).   

 

 

6.2.3.1 Treponema and Prevotella as indicators of pre-industrial microbiomes 
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Whilst a community assessment of microbial flora can provide insight into the relative abundance 

and presence/absence of taxa, there are problems identifying and authenticating ancient microbial 

species (Warinner et al. 2017). Thus, taking a more streamlined approach can be beneficial whilst 

species identification and their roles in gut ecologies are being investigated. One group of 

microbes of interest are Treponemes; bacterial species found in the human intestines (Smibert 

1981).  Treponema sp. are not typically observed in the guts of industrialised communities 

(Angelakis et al. 2019), but are detected in modern hunter-gatherer communities (Schnorr et al. 

2014), traditional horticulturalists (Gomez et al. 2016) and non-human primates (Nishida and 

Ochman 2019). In these aforementioned groups, the identification of Treponema sp. improve 

nutrient extraction from fibrous foods (De Filippo et al. 2010) broadening dietary choices. 

Treponema have also been identified in coprolites (Tito et al. 2012), suggesting that the loss of 

this species is linked to modern lifestyles. 

 

Tett et al. 2019 have focused on the investigation of one gut microbe, Prevotella copri, identifying 

four distinct clades. Additionally P. copri was significantly more prevalent and diverse in “non-

Westernised” (defined in Tett et al. (2019)) compared to Westernised populations. The analysis of 

pre-colonial South American coprolites from Rio Zape reflect the non-Westernised prevalence 

and diversity of P. copri (Tett et al. 2019). The Prevotellaceae family have been previously 

identified in coprolites from the same site (Tito et al. 2012; Hagen et al. 2020) and from a single 

Medieval coprolite from Namur, Belgium (Appelt et al. 2014b). Investigations into Treponema 

and Prevotella sp. suggest that these genera are diminished in the industrialised world.  

 

6.2.3.2 The recovery of coprolite metagenomic signatures 

 

The microbial content of coprolites is not only made up of authentic gut microbes, but 

microorganisms that infiltrate the matrix from the depositional environment. Microbial signatures 

from coprolites have been shown to be more similar to one another than to a modern microbiome 

(Tito et al. 2008). These microbial similarities and differences could reflect diachronic and 

dietary factors, but likely also indicate that the degradation process influences the microbial 

profile. It is important to note that coprolites are open systems, and that microbiota can infiltrate 

the coprolites from the surrounding depositional environment. Whilst the microbial signatures of 

some well-preserved coprolites clustered with the faecal rather than sedimentary group (Tito et al. 

2008), it is likely that environmental contamination will have some effect, even in ideal 

environments such as cool, arid cave contexts. Furthermore, a subsequent study by the same 

research group demonstrated that the extent to which coprolites are affected by soil microbes 

varies hugely between samples (Tito et al. 2012). Thus, coprolite microbiomes may cluster more 

closely together due to the common presence of environmental microbes, which will of course be 

absent from modern faecal signatures.  

 

Environmental contamination of coprolites can be mitigated to an extent by a careful sampling 

strategy. As the outer surface of a coprolite is in direct contact with the surrounding sediment, 

more of the exogenous, environmental species are identified here compared to the coprolite core 

(Cano et al. 2014). As such, coprolite subsamples should be taken from the core and homogenised 

in sterile conditions (Wood and Wilmshurst 2016). Other methodological research has 

demonstrated that the use of the Human Microbiome Project protocol (utilising the MoBio 

PowerSoil DNA extraction kit) yields less DNA than methods optimised for aDNA extractions 

(Hagan et al. 2020). Whilst these findings are unsurprising, Hagan et al. helpfully note that the 

clogging of silica columns during DNA purification steps is common when working with 

coprolites. To alleviate clogging, they recommend splitting the lysates equally between two silica 

columns (Hagan et al. 2020). Importantly, Hagan et al. recommends guidance for the 
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standardisation of coprolite DNA analysis and demonstrates the suitability of comparing modern 

microbial profiles to ancient ones. Nevertheless, until optimised bioinformatic tools are 

developed to more effectively differentiate between the endogenous host microbiome and 

exogenous environmental microbes, studies attempting to characterise the microbial diversity or 

relative abundance of phyla within ancient guts, must proceed with extreme caution.  

 

As demonstrated, coprolites offer huge potential for the future study of the evolution of the 

human gut microbiome in the future. The ability to pinpoint specific timepoints will enable 

researchers to link particular lifestyles, or subsistence strategies with compositional changes in 

the gut microbiome. At this time, we are yet to see the true implications of newly emerged 

techniques and deep metagenomic Illumina sequencing. The generation of a high number of reads 

using a non-targeted approach will not only improve representative species diversity in the 

sample but importantly improve our ability to authenticate dietary and gut derived DNA due to 

higher coverage of these species. We are convinced the future aDNA investigations of coprolites 

will add interesting and complementary results to traditional archaeological findings (regarding 

diet) and other bioarchaeological techniques applicable to coprolite analysis (as discussed 

throughout this review). 

 

6.3 Lipids 

 

Lipids are part of all living organisms and are a highly complex and diverse group of molecules. 

An advantage of lipids compared to other biomolecules is that they are relatively stable, and can 

persist with minimal alteration, or break down to a stable byproduct. All lipids are composed of a 

combination of glycerol and fatty acids and can be subdivided into various groups according to 

their structure.  

 

 

6.3.1 Faecal lipid biomarkers 

 

Faecal sterols form in the gut through bacterial conversion of dietary sterols and give an 

indication of whether the subject had an omnivorous, carnivorous or herbivorous diet, depending 

on the proportion of animal and plant derived sterols in the faeces. Bile acid profiles are unique to 

particular genera and species, with humans having a dominance of deoxycholic acid and 

lithocholic acid, whereas goat for example has been distinguished by chenodeoxycholic acid, and 

pig by hyodeoxycholic (Prost et al. 2017, Harrault et al. 2019). Together sterol and bile acid 

molecules have been used to identify sources of faecal pollution in water from modern-day 

sewage pollution and agricultural runoff (Grimault et al. 1990, Shah et al. 2007). This method 

was modified by Bull (1999a) to account for the diagenetic transformation of coprostanol in 

archaeological contexts. There has been an increasing use of faecal biomarkers in archaeological 

investigations whereby a combined characterisation and quantification of both sterols and bile 

acids has, enabled for example the identification of an ancient sewage culvert and insights in the 

agricultural practices of the Minoans (Bull et al., 1999b; Bull et al., 2002), identifying use of 

space in early settlement sites (Baeten et al., 2012, Shillito et al., 2011a). Lipid biomarkers can be 

analyzed from bulk sediments where faecal deposition is suspected, and from discrete coprolites. 

A notable example of the former is the investigation of anthropogenic dark earths or terra preta, 

the product of anthropogenic additions of organic matter, including faecal waste, to natural 

ferrosols (Glaser and Birk 2012). 

 

 

One of the debated Paisley samples discussed in section 3.2 and 6.2 has also been subject to lipid 

analysis (Sistiaga et al. 2014), which indicated a sterol profile consistent with what is presented as 



 20 

an animal origin. However the sterols by themselves only give an indication of the major dietary 

profile (i.e. meat or plant dominant), and must be used in conjunction with bile acids separating 

humans from other omnivores and herbivores (Bull et al. 2002). Given the likely diets of the 

Great Basin population, the fact that meat may only have been a minor dietary component of 

these early populations (Reinard et al., 2012), there is no reason why a sample that has abundant 

plant residues could not be human (Shillito et al. 2018), particularly given the corroborated aDNA 

results (Jenkins et al. 2012).  

 

Hormone analysis has not yet been used to any extent, aside from a few early studies. Sobolik et 

al. (1996) undertook an analysis of diet and steroid composition of 12 coprolites, using a 

combination of chromotagphic and radioimmunoassay techniques to measure testeosterone and 

estradiol levels. This analysis indicated that ratios were better than absolute concentrations for 

distinguishing sex, due to steroid degradation. In experimental samples the ratio was higher in 

males, as might be expected, ranging from 3 – 118, whereas female values ranged from 0.2 – 7. 

Menstrual cycle impacted values in females, with the follicular phase having overlap with lower 

male values. Rhode (2003) applied liquid chromatographic analysis of faecal steroids (estrogen, 

testosterone, and progesterone) extracted from a series of 13 coprolite recovered in middle to late 

Holocene occupations at Hidden Cave, Nevada. Rhode’s research utilized relative abundance of 

estrogen and testosterone to identify probable sex of individuals defecating in the cave, finding 

that all of the samples had ratios in the typical range of females, although some samples were at 

the higher end that overlapped with the low end of male ratios. 

 

Hormones offer a lot of potential for identifying links between dietary patterns and biological sex, 

which could used to explore questions of child care practices and sexual division of labor in past 

societies. However, the relationship between biological sex and the levels of hormones in faeces 

is complex even in modern studies, and much further work is needed to understand for example 

the relationship between diet and oestrogen levels in faeces (Lewis et al. 1997), also taking into 

account post-depositional changes.  

 

 

6.3.2 Lipids as dietary indicators 

 

Lipids have been used primarily as a species indicator but there is potential to assess a wider 

range of faecal lipids and other organic molecules as dietary indicators. Lipid analysis of 

Neanderthal faecal matter indicated high coprostanol with lower levels of plant derived sterols, 

suggesting that Neanderthal diet consisted primarily of meat (Sistiaga et al. 2014). This study 

provided that oldest known case of faecal matter preserved at an archaeological site and 

highlights the usefulness of biomarkers for reconstructing dietary patterns into the Pleistocene. A 

study of faecal deposits from an early Neolithic site in Iran identified C28 long chain fatty acids 

alongside the faecal sterols (Shillito et al. 2013a). The same samples were also analyzed for 

phytoliths and were found to contain large jigsaw multicell phytoliths which have been associated 

with leaves. Together this offers tantalizing evidence of the consumption of waxy leaves and 

warrants further investigation (Shillito and Elliott 2013).  

 

There is a range of literature looking at the impacts of diet on sterol profiles in modern subjects. 

Westrate et al. (1999) for example conducted experiments on adult human males and females, 

showing that a high intake of vegetable oil phytosterol esters increased the amount of neutral 

sterols that were excreted. Cuevos Terra et al (2017) analyzed the faecal sterols of clinical trial 

subjects on normal and plant enriched diets and found that the plant enriched diets led to greater 

phytosterols in faeces, but also higher levels of cholesterol excretion, suggesting that plant sterol 

intake blocks the biotransformation of cholesterol. Individuals with a normal diet had a higher 
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conversion of cholesterol, whilst those on the plant enriched diets showed less conversion of 

cholesterol to coprostanol – thought to be due to the plant sterol interaction with gut microbes. 

The conversion of plant sterols varied significantly between subjects. 

 

These molecules have an advantage in that they are less mobile than DNA, but it is unclear if the 

reference profiles currently used are applicable to all archaeological populations. Given the link 

between gut microbes and the formation of faecal sterols, further work is also needed on how a 

changing gut microbiome impacts the faecal sterol profile. For example one study 

One study reported that a quarter of North Americans studied exhibited little to no 

conversion of cholesterol to coprostanol (Wilkins et al. 1974). This may potentially result 

in false negatives when differentiating human coprolites from carnivores, and may 

explain the lack of agreement between mtDNA and faecal biomarker results when these 

two methodologies are compared (Shillito et al. in press). 
 

 

6.4  Protein analysis 

 

Ancient proteomics is emerging as an essential new tool in bioarchaeology (Cappellini et al. 

2014; Hendy, Welker, et al. 2018), but has yet to be applied extensively to coprolites. Proteins 

have been shown to survive within a coprolite matrix using cytochemical staining (Santiago-

Rodriguez et al. 2013) however the coprolite proteome (i.e., the full suite of proteins preserved 

within the substrate) has yet to be characterised. Whilst proteins lack the taxonomic precision of 

DNA, they are frequently tissue specific, offering a range of applications complementary to 

aDNA. It is expected that proteins relating to the depositing individual’s biological system 

(particularly digestive proteins), their diet and their gut microbiome may all be recovered from 

coprolites. Host proteins could be used to identify disease states (e.g. Jersie-Christensen et al. 

2018) while protein characterisation may provide higher resolution insights into dietary 

components and tissues (e.g. Hendy et al. 2018). For example, while genetic analysis of a 

coprolite may identify fragments of cattle DNA, only proteomic analysis can distinguish the 

source of those DNA sequences - were people eating beef or drinking cow’s milk? The 

investigation of the functional gut microbiome through protein analysis is becoming more 

common in clinical studies (e.g. Lee et al. 2017; Lai et al. 2019). Thus, investigations into the 

proteins expressed by gut microbiota will identify not just which species are present (dead, alive 

or dormant) but what they are doing. 

 

7. Coprolites for the future - Beyond material categories to broader questions  

 

 

The greatest advance in the archaeological study of ancient subsistence and past lifeways has 

been the shift to multiproxy approaches, whereby different types of archaeological evidence are 

considered alongside each other rather than in isolation (Twiss et al. 2009, Shillito 2017). The 

coprolite is a self-contained multi-proxy ‘package’ of information that can provide information on 

health and diet, from the information contained within them, and through the archaeological 

context in which they are found. There is still much potential to go beyond simply the 

identification of material within coprolites, and consider how coprolites, and their patterns of 

deposition, fit into the bigger picture of social organization. An excellent example of these 

potentials can be seen in recent work in China, where researchers are beginning to incorporate 

multiproxy analysis of coprolites into broader research on the origins of agriculture in the 

Neolithic, as discussed in section 2. This type of study should serve as a benchmark for how this 

type of research can be carried out, and integrated with other lines of dietary evidence such as 
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pottery residue analysis (Shoda et al. 2018). The high resolution of coprolites and the individual 

snapshot they provide is also unique, and provides a means of looking at seasonal variability of 

diet. Most other methods of palaeodietary reconstruction look at broad patterns and shifts, or 

lifetime information. 

 

In modern contexts, there is an abundance of anthropological and geographic research on faecal 

pollution and its socio-cultural implications, and there is much potential to engage with this 

research in understanding how past societies viewed faecal and other types of waste. In modern 

contexts, faeces typically attract responses of disgust in many societies, and are immediately 

removed from sight (Van Der Geest 2007, Mariwah and Drangert 2011, Jewitt 2011), though this 

varies. The concept of dirt and boundaries between ‘good’ and ‘bad’ are culturally constructed 

(Douglas 1966), and attitudes to faeces vary between cultures, with some finding both human and 

animal faeces to be taboo or unclean. This is clearly not the case in many archaeological contexts 

where they can be found directly adjacent to habitation and activity areas, and in unusual 

contexts, for example at Çatalhöyük there is evidence that animal scats were spread on the chest 

of individuals in burials (Jenkins 2012).  

 

A difficulty lies in how best to approach these materials, which methods to use, and how to apply 

them. There is currently no consensus on which analytical methods should be used, or how to 

present data, making comparative studies extremely difficult. With all of the recent advances in 

types of analyses that can be conducted on coprolites, the ideal scenario would be that researchers 

approach coprolite sampling with a clear methodology that will not inhibit any particular type of 

analysis from being conducted. Wood and Wilmshurst (2016) provide a detailed description of 

coprolite sampling methods with a particular focus on avoiding contamination for sensitive 

multiproxy analyses like DNA and palynology. In the following section we will discuss some 

possibilities for advancing a standardized methodology, and also more basic experimental and 

taphonomic research that needs to be conducted so that coprolite analysis can be better integrated 

into archaeological research. 

 

 

7.1 Methodological considerations 

 

There are a number of methodological issues related to quantifying the amount of material 

recovered from coprolites. There are debates over pollen quantification, and variable opinions on 

the number of exotic marker spores that should be added to achieve the most precise ratio of 

exotic to fossil pollen and therefore most precise concentration values. Maher (1981) suggests 

that for a 0.95 percent confidence limit the ratio of fossil pollen to exotic marker to fossil pollen 

should be 1:1, but that analysts can use a 2:1 ratio to maintain a good level of precision for 

concentration estimated while reducing counting effort. If the ratio of fossil to marker exceeds 2:1 

then there is increasing change that the concentration values will not be accurate (Maher 1981). 

Clearly it is important to get the ratio of fossil right but accomplishing this requires some 

information about the expected number of fossil pollen grains in a sample in order to achieve this 

ratio. For sediment core samples this is typically done by experimenting with a few samples, 

however, coprolites represent discrete and limited samples, so it is often not possible to 

experiment in this way to get the best fossil to marker ratio. Concentrations reported in the 

literature ranging from those devoid of pollen (e.g. Bryant 1975 on coprolites from Coahuila, 

Mexico) to 100,000 to several million grains per gram of coprolite (e.g. Dean 1993; Kelso and 

Solomon 2006; Reinhard et al. 2006; Reinhard et al. 1991). Variability can also be significant 

within a single site, for example Sobolik (1988) reported concentration values of 6,438,455 to < 

1,000 grains per gram of coprolite material from coprolites recovered from the same latrine 

feature at Baker Cave, Texas. For coprolites with fossil pollen concentrations in the millions it 
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might be necessary to add 500,000 or 3,500,000 Lycopodium tablets per gram of coprolite to 

achieve the desired 2:1 ratio. Lycopodium marker spores come in tablets with anywhere from 

8,000 to 20,000 marker spores per tablet, so it could take up to 175 tablets tablets per gram of 

sample to achieve the desired ratio. At the current rate of $0.80 per tablet this is not a cost-

effective approach.  

 

There is a similar long-standing debate over the best way to assess dietary input through analysis 

of macrofossils. Previous studies have attempted to quantify coprolite macroremains using count, 

weight, or volume (Pearsall 2015:398), for example comparing volume of a class of food item 

(e.g., plant fiber) across coprolites to determine relative input, or noting presence/absence of food 

items to assess how commonly they were included in the diet (Pearsall 2015:398). A problem 

with this is that human produce feces with variable weight/volume depending on many factors 

including diet, age, stature of individual. These variable samples of human diet are then impacted 

by taphonomic processes over time before they are recovered from an archaeological site, 

resulting in a set of samples without uniform weight/volume. It is common for there to be a 

significant range of weight/volume for a series of coprolites recovered from a site (Blong et al. in 

press Battillo 2019). This makes it difficult to compare absolute quantities of materials from one 

coprolite to the next.  

 

This can be worked around to an extent by presenting quantitative data as a percentage of the 

total to make it more comparable (Faulkner 1991; Fry 1976). Faulkner’s (1991) study highlights 

issues with quantitative data. Faulkner’s study assesses relative input of wild versus cultivated 

foods based on percent weight of all macrofossils obtained from eight coprolites. However, 39% 

of the dietary weigh attributed to wild foods comes from a single coprolite with a large quantity 

of hickory shell.  Quantitative weight data is affected by differences in the densities of materials 

recovered from the coprolites, for example stone, and to a lesser extent bone, are denser, while 

plant fiber is less dense. Weight percent stone for a coprolite containing one small pebble would 

outweigh the weight percent plant fiber in that coprolite, even if the majority of the coprolite 

volume consisted of plant fiber. Often remains such as seeds and insects have very little mass and 

are noted as trace amounts. Quantitative count data is similarly skewed; counts of masticated 

bone fragments from a single bone would appear higher than a few seeds suggesting this made up 

a greater proportion of the coprolite material, but what does this tell us about the proportion of 

animal versus plant inputs into the diet?  

 

Other methods have included presence/absence aka ubiquity method (Popper 1988) and the 

percent subjective method (Colyer and Osborne 1965, Sobolik 1991). The latter uses a visual 

estimation of the percent total volume of each constituent, which are then placed into pre 

determined categories with a range of error. It has been suggested this introduces the least amount 

of biases (Popper 1988). Some studies have used a visual assessment of macro contents presented 

using ordinal scale percent of total volume (Bryant 1974b; Cowan 1978; Yarnell 1969). This 

approach has been criticized because it can potentially “overestimate highly visible dietary items 

and underestimate some of the less-visible items like small seed fragments” (Faulkner 1991).  

 

Another issue is that it is often not possible to cleanly separate some materials and as a result the 

quantitative data is not reliable. An example of this is hair and plant fiber. These common 

coprolite constituents are typically closely intertwined (Figure 6) and it is not possible to cleanly 

separate them from one another (Blong et al. in press, Sonderman et al. 2019). The purpose of 

food processing and digestion is to break food down as much as possible so that it can be digested 

more easily to recover as much nutritional content as possible. As a result the material that is 

passed through in a coprolite has often been severely impacted by mechanical and chemical 

processes that have reduced it to tiny fragments. This results in a very fine fraction of material 
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that is too large to pass through the commonly used 180 or 250 micron screen mesh, but too fine 

to accurately separate into constituents. This material is often classified as residual (e.g., Faulkner 

1991). Faulkner (1991) attempted to present qualitative macrofossil data but was only able to 

separate out and weigh 70% of the total weight of macrofossils from a series of eight coprolites, 

leaving 30% of the total weight of the eight coprolites as unsorted “residual” material. There is 

potential here to further analyse this ‘unidentifiable’ material using biomolecular methods.  

 

We recommend moving forward that when feasible analysts present qualitative data, for example 

in the case of bones and seeds where it is often possible to present an estimated minimum number 

of individual specimens represented. Otherwise we propose that a qualitative assessment of 

percent total volume assessed by viewing the >250 micron portion of the coprolites under a 

dissecting microscope is an acceptable means of communicating relative presence with no loss in 

accuracy. A qualitative abundance scale might be preferred, because it is very difficult to get 

accurate counts and weights because the material in the coprolites is typically highly fragmented 

as a result of chewing/digestion, which leads on to the next part of this discussion. 

 

 

7.2 Taphonomy – what does a human diet look like? 

 

Digestive taphonomy is the “effects of any of the physical or chemical processes of the animal 

digestive system and accessory organs on plant or animal matter”; what is seen by the analyst is 

only a partial representation of what was consumed (O’Meara 2014). Unlike animal dung, which 

has been studied extensively by archaeologists investigating crop domestication and animal 

management (Charles 1998, Shahack-Gross 2011, Linseele et al 2013, Marinova et al. 2013, 

Elliott et al. 2015, Portillo et al. 2017, Égüez et al. 2018, Portillo et al. 2020), there has been 

comparatively limited analysis of human faeces in terms of understanding taphonomic processes 

and integration with other lines of archaeological evidence.   

 

Some of the earliest studies of macrofossils in coprolites comprised ‘experimental’ studies to try 

and understand the impact of digestion on materials recovered. Calder (1977) carried out 

experiments to assess the survival of various foods expected in traditional Maori diets in New 

Zealand, and found that qualitatively some items left identifiable markers in faecal materials (e.g. 

keratinous, siliceous and cellulose material), but others such as fish scales left no trace at all. The 

most significant body of work seeking to understand the effects of human digestion on consumed 

food items has been focused on bone taphonomy (O’Meara 2014). Several actualistic studies have 

been conducted seeking to better understand the impacts of human digestion on fish bones (Butler 

and Schroeder 1998; Jones 1986, 1990; Nicholson 1993). These studies report that fish bones are 

typically heavily impacted by mastication, fragmentation, and chemical digestive processes to the 

point that most bones were either completely gone or were not taxonomically identifiable. Bones 

that did survive were distinctly altered (e.g., crushing, surface erosion and edge rounding from 

acids). Examples of digestive traces include “pitting, rounding, deformation, staining, or leaving 

an organic residue” (Butler and Schroeder 1998). Some bones were passed without any noticeable 

alteration, presumed by Jones (1986, 1990) to represent bones protected by flesh that was not 

disaggregated during digestion. There were notable trends in the skeletal elements that survived 

(e.g. vertebra more likely to survive). Nicholson (1993) reports that smaller fish bones were 

completely digested but bones from larger fish were also more digested than bones from medium 

sized fish (possibly due to mastication), and scales survived digestion (contra Calder 1977). 

 

Nicholson (1993) reports that only 1 – 6 % of fish skeletal material from species in Clupeid 

family survived digestion, while Butler and Schroeder (1998) report that 26% of tui chub 

(Cyprinidae: Gila bicolor) bones survived digestion, including many bones with no traces of 
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digestion. This suggests differential digestive impacts depending on the species of fish. 

Cyprinidae bones have been documented in several coprolites recovered from the Great Basin 

(Blong et al. in press); this may be linked to more robust skeletal elements in Cyprinidae when 

compared to Clupeid species (Butler and Schroeder 1998). Nicholson notes that the results of this 

experiment could change depending on how fish was prepared (boiling, roasting, drying), number 

and condition of teeth in an individual, amount of time spent chewing, and health of the 

individual. Experiments on other items are rare. Crandall and Stahl (1995) conducted an 

experiment involving the consumption of a skinned, eviscerated, and segmented insectivore by an 

adult human male.The bones recovered from faeces were examined for skeletal element 

representation, breakage and digestive damage. The analysis found severe skeletal attrition 

comparable to and sometimes in excess of, the damage exhibited in microvertebrate 

accumulations from the scats of small mammalian carnivores. 

 

It is clear that we don’t have a good understanding of how materials in coprolites relate 

quantitatively to what was originally consumed, and the same is true of biomolecular methods. 

Repeated experiments where as many variables as possible are controlled for, would go some 

way towards this, and enable researchers to assess whether strict quantitative interpretation is 

worth pursuing. An interdisciplinary approach in collaboration with clinical research for example, 

offers potential as protocols and infrastructure are already established for the types of controlled 

dietary experiments that are needed.  

 

 

7.3 Taphonomy– preservation and post-depositional processes 

 

Archaeological samples have the added complication of post-depositonal processes to consider, 

and these also need to be better understood. The signals that we see on archaeological coprolites 

are not just a product of consumption and digestion, but processes that occur after the coprolite is 

deposited. It is difficult to establish the extent to which original signals are altered, without having 

extensive, reliable experimental material to consider. Taphonomy study has been a key aspect of 

most other archaeological specialisms. Zooarchaeology, palynology and archaeobotany have long 

histories of experimental taphonomic work. Organic residue analysis in pottery has also been built 

on a robust programme of experimental work, whereby food products have been prepared in 

pottery, and subjected to burial experiments (Evershed 2008). Research on faecal lipids as species 

indicators has also been underpinned by robust experimental work, focusing on the diagenesis and 

mobility of these molecules within soils (Bull et al. 1998, Bull et al. 2000).  Ideally the same 

samples from the modern ‘feeding’ experiments discussed in 7.2, would then undergo burial 

experiments to investigate the impacts of taphonomic processes.  

 

As with many types of archaeological materials, the conditions of the site have a impact on 

coprolite preservation. Recently, Reihard et al. (2019) provide an overview of the taphonomic 

conditions that impact the preservation potential of coprolites, dividing these into biological and 

sedimentological. In desert environments, the filtration of sand into coprolites can occur and 

become compressed into the coprolites from the surrounding sedimentary matrix. In open air 

sites, including near the entrance of caves, water containing minerals such as calcium can 

percolate into samples, resulting in the mineralization of the coprolites. Percolating water 

disperses biological components and undergo mineral replacement. 

 

Biological taphonomic agents include flies, beetles mites and fungi, and are abundant especillay 

in ancient latrine deposits, which tend to be quite dense. In these types of latrine deposits, the 

faeces can remain moist for extended periods of time and communities of decomposing 

organisms become established. Flies, nematodes and mites are associated with poor preservation 
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potential for microfossils, and visual evidence of these types of organisms typically suggests poor 

preservation potential. Reinhard et al. (2019) suggest this can occur to the detriment of the 

original intestinal material, and only highly resistant biological material (ligin, silica, calcium 

oxalate, starch and thick cellulose structures) preserves in these types of latrines. Conversely, in 

mixed midden deposits containing isolated individual specimens, these tend to preserve 

incredibly well. Isolated coprolites dispersed within mixed midden deposits do not attract large 

quantities of decomposers, and if they are dessicated or otherwise buried rapidly, preservation 

conditions are optimal. Similar conditions to those described by Reinhard et al. (2019) for Turkey 

Pen Ruins in the American southwest, are also observed for example in deeply stratified midden 

deposits at Catalhoyuk in Turkey (Shillito et al. 2011). 

 

At the Zape site discussed in section 6.2, researchers note an unusually isolated archaeological 

context within a deep cave environment, that likely contributed to the exceptional preservation of 

coprolites, bones and botanical remains. The ‘trash’ deposits where coprolites were buried were 

located 35 feet away from the cave entrance and separated by a rock fall. The sub-humid climate 

and altitude of 1800m above seal level is also a contributing factor (Tett et al. 2019). This echoes 

observations from other sites such as Catalhoyuk, where coprolites and other organic remains are 

exceptionally well preserved in deeply stratified midden deposits that were raidly buried 

following deposition (Shillito and Matthews 2013).  

 

A key consideration needs to be the mechanism of the coprolite formation as it is still not clear 

exactly how faeces transform into a coprolite. The two identified pathways are desiccation and 

partial mineralisation (Reinhard and Bryant 2008). It is easier to understand how biomolecules 

survive within desiccated coprolites (often recovered from dry rock shelters), since the sample 

undergoes limited chemical changes. The mineralisation process, however, appears to be more 

complex. Mineralisation can be facilitated by: an excess of phosphate and calcium derived from 

the diet or the environment (Hollocher and Hollocher 2012), and / or bacterial mineralisation 

(Briggs 2003). Mineralisation is progressive: a fully mineralised sample should yield no authentic 

organic molecules; thus, the extent of the mineralisation is crucial for biomolecular investigations. 

Mineralised coprolites tend to be recovered from anaerobic, waterlogged conditions, and 

experimental approaches have provided some limited insights into the preservation process.  For 

example, an experimental study which submerged hyena droppings in water for three weeks found 

that these conditions had little morphological impact, though, notably, the droppings became so 

hard that they could not be imprinted (Larkin et al. 2000). The potential of biomolecular 

investigations into partially mineralised samples from waterlogged conditions is yet to be explored. 

It is clear that the mechanisms of coprolite formation should be more deeply investigated as the 

preservation pathway of a specimen is inevitably going to affect the biomolecules that preserve 

within the matrix. 

 

 

8. Conclusions 

 

Inevitably given the wide range of methods now available, there will not always be enough material 

to carry out all different types of analysis, or to archive material for the future. In these cases the 

methods most suitable for the specific research questions must be selected. We argue that in 

archaeology species identification is the most important first step. Whether or not this is through 

aDNA or lipid biomarkers depends on a range of factors. Both methods are time consuming and 

can be expensive. Whilst DNA is more sensitive due to amplification of the signal, limited number 

of investigations at present means that there is still a lot of unknowns regarding taphonomy. Given 

the lower mobility of lipids and their higher stability, this offers an alternative method for 

determining species, though requires a minimum quantity of lipid to be preserved. 
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Coprolites inherently represent a biased data set for interpreting human diet. Food items such as 

flesh and vegetables will not leave any recognizable macroscopic traces in faeces, while plant 

fiber, seeds, bones often leave identifiable macrofossils (Hall et al. 1983; Pearsall 2015:398). The 

macroscopic dietary record from coprolites is generally biased towards smaller items such as 

hairs, seeds, and small animal bones, whereas the bones of larger mammals are typically not 

represented. Because of this, it is important to integrate the macroscopic coprolite record with 

additional lines of evidence to produce a more complete picture of human diet. Yet the 

information that we can get from coprolites is at a much higher resolution, and more detailed than 

other forms of dietary evidence in archaeology, even if it is more qualitative. 

 

O’Meara (2014) makes the important point that whilst coprolite analysis will likely never provide 

a ‘complete’ picture of past consumption, the archaeological record as a whole is inherently 

incomplete, and coprolite analysis is no different in this respect from any other aspect of 

archaeology. Nevertheless, research would benefit from a more systematic approach to 

experimental work, exploring a range of dietary profiles and the factors affecting differential 

survival of residues and physical contents. Given human diets have varied hugely from early 

prehistory to present, as well as geographically, there is still a lot of work to be done on assessing 

the variability and range of dietary signals, both inclusions and chemical residues, and likely 

needs to be tailored to the region and time period under investigation. 
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Figure captions: 

 

Figure 1: Midden deposit at Çatalhöyük showing distinctive orange coprolite lens 

Figure 2: Components of coprolite analysis. Plants may include macrofossils such as seed and 

cellulose, microfossils such as pollen and phytoliths. Animals may include bones and other non-

digestible parts of vertebrates and invertebrates. Parasites and fungi can include spores and eggs, 

as well as the parasite itself. The residue component may comprise lipids, proteins, DNA and 

other biomolecules that are both exogenous and endogenous, originating from the animal, plant 

and parasite components. 

Figure 3: LEFT microCT scan of coprolite from Durrington Walls, UK showing digested bone 

fragments and probable plant voids: RIGHT microCT scan of coprolite from Durrington Walls, 

UK. Amorphous fabric with limited bone inclusions. MicroCT images taken by Zerina Johanson 

(British Museum). 

 

Figure 4: Bristol stool chart showing variability of human faeces morphology in modern clinical 

contexts 

 

Figure 5: micromorphology of A an ovicaprid pellet from Paisley Caves, showing large plant 

tissue inclusions in PPL (left) and XPL (right). Under XPL starch granules are visible within the 

plant tissue. C omnivore coprolite from Paisley caves 1 (thin section 3.4). D omnivore/human 

coprolite from Çatalhöyük, Turkey with digested bone inclusion. E. Omnivore coprolite from 

Bonucklu, Turkey, showing phytolith inclusion F. Omnivore coprolite from Boncuklu, Turkey, 

showing diatom inclusion 

 

Figure 6: examples of macroscopic materials recovered from Paisley Caves coprolites. A. teeth B. 

rodentia bones C. fragmented digested bone D. grit/stones E. insect fragments F. Rosa cf. woodsii 

seeds 

Figure 7: examples of microscopic materials recovered from coprolites A and B. Paisley Caves, 

monocotyledon epidermis phytoliths C. Paisley Caves, Apicaice and Poaceae pollen D. Paisley 

Caves, cf. Taenia eggs E. Durrington Walls, UK Plantago sp. pollen F. Paisley Caves, diatom 
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