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Abstract

Genetic tools have greatly aided in tracing the sources and colonization history of introduced species. However, recurrent
introductions and repeated shuffling of populations may have blurred some of the genetic signals left by ancient
introductions. Styela plicata is a solitary ascidian distributed worldwide. Although its origin remains unclear, this species is
believed to have spread worldwide by travelling on ship’s hulls. The goals of this study were to infer the genetic structure
and global phylogeography of S. plicata and to look for present-day and historical genetic patterns. Two genetic markers
were used: a fragment of the mitochondrial gene Cytochrome Oxidase subunit I (COI) and a fragment of the nuclear gene
Adenine Nucleotide Transporter/ADP-ATP Translocase (ANT). A total of 368 individuals for COI and 315 for ANT were
sequenced from 17 locations worldwide. The levels of gene diversity were moderate for COI to high for ANT. The
Mediterranean populations showed the least diversity and allelic richness for both markers, while the Indian, Atlantic and
Pacific Oceans had the highest gene and nucleotide diversities. Network and phylogenetic analyses with COI and ANT
revealed two groups of alleles separated by 15 and 4 mutational steps, respectively. The existence of different lineages
suggested an ancient population split. However, the geographic distributions of these groups did not show any consistent
pattern, indicating different phylogeographic histories for each gene. Genetic divergence was significant for many
population-pairs irrespective of the geographic distance among them. Stochastic introduction events are reflected in the
uneven distribution of COI and ANT allele frequencies and groups among many populations. Our results confirmed that S.
plicata has been present in all studied oceans for a long time, and that recurrent colonization events and occasional
shuffling among populations have determined the actual genetic structure of this species.
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Introduction

Biological introductions have notably increased during the last

century, posing a major threat to global biodiversity and altering

the structure and function of many communities [1–7]. Despite

some relatively recent attempts to buffer the ecological impact of

these introductions [e.g. 8–10], oceans remain one of the most

affected ecosystems [7,11–17]. Among other transport vectors,

non-native species arrive to new locations through ships’ hulls and

sea chests, in ballast water or with spats for mariculture. Thus, the

increasing activity in maritime traffic and aquaculture has

favoured the introduction of marine species all over the world

[13,18–19]. The establishment of new genetic variants and spread

of exotic species has also been facilitated by a proliferation of

harbours and other artificial structures along the coast [20–25].

Genetic diversity plays a crucial role on the successful

establishment of an introduced species or variant in a new area

[26–30]. The development of genetic tools and markers has widely

contributed to enhance our knowledge on these species. A

throughout assessment of the genetic structure of an introduced

species, including its history of subdivision and gene flow, allows

the identification of range expansions, colonization events, and an

understanding of the invasive potential and the relative contribu-

tions of artificial and natural dispersal [e.g. 31–34].

The increasing pace of introductions has also fostered increased

awareness. Monitoring and control programs have been estab-

lished, and recent introductions are more easily detected and

inventoried than in the past [e.g. 17]. However, historical

invasions may still remain hidden. Some species could have

arrived to a new location long before the distribution ranges of

autochthonous species were assessed, and be now regarded as

native [35,36]. Cosmopolitan or broadly distributed species,

particularly those thriving in harbours and artificial substrata,

are likely to be ‘‘pseudoindigenous’’ species [36]. Lack of historical

records in many regions, taxonomic flaws and cryptic speciation

further complicate the issue [e.g., 37,38]. In addition, and despite

the new methods available [e.g., 33], our ability to extract

information may be limited by our knowledge and access to native

populations, recurrent introduction events, and shuffling of

populations during a long period of time (i.e. centuries).

The paramount importance of ascidians for the study of marine

introductions is well recognized, as they represent one of the most

common invaders [39,40]. Ascidians have short-lived larvae, thus

anthropogenic transport can greatly increase their dispersal
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abilities. The rate of introduction of non-indigenous ascidians has

been increasing in the last decades [40], mostly linked to ship

traffic or aquaculture activities [e.g., 39, 41–45]. However, some

species may have been translocated centuries ago and have now

become ancient introductions whose origins are poorly known

[46]. These ancient colonizers are often species commonly found

in harbours and man-made substrates, have broad distribution

ranges and, while naturalized in many areas, continue to be

introduced in new regions of the globe [e.g. 47–50].

Styela plicata (Lesueur, 1823) (Tunicata, Ascidiacea) is a solitary

ascidian commonly found inhabiting marinas and harbours of

warm and temperate oceans, usually at high-densities. In spite of

its broad geographical distribution, the native range of this species

is not yet elucidated [46]. Evidence to date suggests that S. plicata is

native to the NW Pacific Ocean [36,51–54]. In fact, the

description of this species was based on an individual found on a

ship’s hull in Philadelphia (NE USA), and no other individual was

observed in the surrounding natural substrata [55]. All records of

S. plicata are based on observations of man-made structures, except

in Japan, where this species has been observed to grow in natural

habitats [Nishikawa pers. comm., 54]. A series of unique

characteristics has allowed S. plicata to thrive in these diverse

environments and outcompete other benthic invertebrates. S.

plicata can physiologically adapt to widely fluctuating environ-

ments, particularly to changes in temperature and salinity [56,57].

This species can also tolerate highly polluted waters [58], grows

rapidly until reaching sexual maturity [59–61], and is capable of

self-fertilization (authors’ current research).

To gain insight into the invasive potential of this species, we

analyzed the genetic structure of seventeen populations covering

most of S. plicata’s distribution range. Using a mitochondrial (COI)

and a nuclear (ANT) marker, we attempted to infer the global

phylogeography of S. plicata, understand its dispersion patterns,

and assess the diversity and connectivity of introduced popula-

tions.

Methods

Sampling
Samples of Styela plicata were collected in 2009 and 2010 from

seventeen localities (Table 1): two from the Mediterranean Sea

(Iberian Peninsula), three from the north-eastern Atlantic Ocean

(Iberian Peninsula, Canary Islands), two from the north-western

Atlantic Ocean (US east coast), one from the south-western

Atlantic ocean (Brazil), five from the north-western Pacific Ocean

(Japan and China), one from the south-western Pacific Ocean

(Australia), one from the north-eastern Pacific Ocean (US west

coast), and two from the south-western Indian Ocean (South

Africa). These locations were chosen to cover as much of the

distribution range of this widespread species as possible. All

specimens were collected from artificial substrata (harbours,

marinas or decks), except for one population collected from

natural substratum in Sakushima Island (Japan). The shortest

distance by sea between location pairs was calculated using the

‘‘measure line’’ tool of Google Earth (version 3.0, Google Inc.,

Amphitheatre Parkway, CA, USA). S. Plicata samples were

obtained according to current Spanish regulations. Samples from

outside Spain were collected by national researchers following

their country regulations. This species is not protected by any law

and all sampling was conducted outside protected areas.

All specimens were collected from depths that ranged between 0 and

2 m by pulling up harbour ropes, removing specimens from submersed

docks and pilings, or pulling individuals from rocky assemblages

(natural population). Samples were dissected in situ and a piece of

muscular tissue from the mantle or the siphon was immediately

preserved in absolute ethanol. Ethanol was changed after a few hours,

and samples were then stored at 220uC until DNA extraction.

DNA extraction and sequencing
Total DNA was extracted using the REDExtract-N-Amp Tissue

PCR Kit (Sigma-Aldrich). The universal primers LCO1490 and

HCO2198 described in Folmer et al. [62] were used to amplify a

fragment of the mitochondrial gene Cytochrome Oxidase subunit

I (COI) from 368 individuals. The primer set designed by Jarman

et al. [63] was used to amplify a fragment of the single-copy

nuclear Adenine Nucleotide Transporter (ANT) gene. Based on the

resulting sequences, we also designed the specific primers

ANTf_Splic (59-TTG GCA GCT GAT ATT GGA AAA GG-

39) and ANTr_Splic (59-CCA GAC TGC ATC ATC ATK CG-

39), using the software Primer 3 v.0.4.0. [64]. Amplifications were

carried out for 315 individuals using Jarman et al. [63] primers or

the newly designed ones.

For both genes, amplifications were performed in a final volume

of 20 mL using 10 mL of REDExtract-N-amp PCR reaction mix

(Sigma-Aldrich), 1 mL of each primer (10 mM) for ANT or 0.8 mL

for COI, and 2 mL of template DNA. The PCR program for ANT

consisted of an initial denaturing step at 94uC for 2 min, 30

amplification cycles (denaturing at 94uC for 1 min, annealing at

58uC for 30 seconds and extension at 72uC for 30 seconds), and a

final extension at 72uC for 6 min, on a PCR System 9700 (Applied

Biosystems). The PCR program for COI was as described above,

except for the amplification cycles, which were done at 94uC for

45 seconds, 50uC for 45 seconds and 72uC for 50 seconds. PCR

products were purified using MultiScreenH filter plates (Millipore),

labelled using BigDyeH Terminator v.3.1 (Applied Biosystems) and

sequenced on an ABI 3730 Genetic Analyzer (Applied Biosystems)

at the Scientific and Technical Services of the University of

Barcelona (Spain). Other samples were directly sent for purification

and sequencing to Macrogen Inc. (Seoul, Korea Korea). From the

resulting sequences, we discarded low quality reads for ANT, hence

the lower number of specimens sequenced for this marker.

Sequences were edited and aligned using BioEditH v.7.0.5.3

[65]. Some ANT sequences showed a deletion of 22 amino acids,

thus heterozygotes had unequal lengths and had to be manually

reconstructed by carefully analyzing both forward and reverse

chromatograms. The allelic phase for ANT genotypic data was

analyzed using fastPHASE 1.1 [66] implemented in the software

DnaSP v.5 [67]. We also used the Recombination Detection

Program (RDP3) [68] to test for recombination in our nuclear

sequences. Sequences obtained in this study have been deposited

in GenBank (accession numbers HQ916425 to HQ916446 for

COI, and HQ916363 to HQ916423 for ANT).

Population genetics
Number of alleles (Nh), gene diversity (Hd), and nucleotide

diversity (p) were computed with DnaSP v.5 [67]. Allelic richness

was calculated using the program Contrib v.1.02, which

implements a rarefaction method to obtain estimates indepen-

dently of sample size [106]. Genetix v.4.05.2 [69] was used to

calculate inbreeding coefficients for the ANT data obtained with

fastPHASE. The nearly unbiased estimation of allelic differenti-

ation between populations was based on the adjusted Dest measure

described by Jost [70], and calculated for each marker with

SPADE [71]. The mean and SE values obtained with SPADE

from 1,000 bootstrap replicates were used to calculate the

confidence intervals and the degree of significance of the

differentiation values (using a normal approximation). To correct

for multiple comparisons, we set the p-value at 0.009, following the

Global Phylogeography of Styela plicata
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Benjamini and Yekutieli False Discovery Rate correction [72]. A

value of D was deemed significant when the confidence interval

around its mean did not contain 0. An analysis of molecular

variance (AMOVA) was performed to examine population

structure, and its significance was tested running 10,000

permutations in Arlequin v.3.1 [73]. The correlation of genetic

and geographical distances was tested for all pairs of populations

with a Mantel test [74] and 10,000 permutations using Arlequin.

Visual assessment of between-population differentiation was

achieved by performing a discriminant analysis of principal

components (DAPC) [75] on a dataset comprising information

obtained from both genes. This recently developed technique

extracts information from genetic datasets (multivariate in nature)

by first performing a principal component analysis (PCA) on

groups or populations, and then using the PCA factors as variables

for a discriminant analysis (DA). The previous PCA step ensures

that the variables input to DA meet the requirements of having less

variables (alleles) than number of observations (individuals) and

not having any correlation between variables [75]. DA seeks to

maximize the inter-group component of variation. We performed

DAPC analyses on both genes combined by using the adegenet

package for R [76]. DAPC was performed (function dapc) using

pre-defined groups corresponding to populations or groups of

populations (see Results). Variables were centred but not scaled. In

all analyses, 50 principal components of PCA were retained and

input to DA. DA also provided estimates of the probability with

which the analysis recovers the true membership of the

individuals. Finally, in order to detect population growth and

infer population demographic events, we computed Tajima’s D

[77], Fu’s Fs [78], R2 [79], and the raggedness index (based on the

mismatch distribution) [80], using DnaSP.

Phylogenetic and phylogeographical analyses
The complete dataset was used to construct a median-joining

network for each marker using Network v.4.5.1.6 [81]. Resulting

loops for the ANT network were solved using criteria derived from

the coalescent theory [82,83]. For the COI network, only one loop

was observed but it could not be resolved.

Phylogenetic analyses were conducted using Styela gibbsii as an

outgroup (acc. number HQ916447 for COI and HQ916424 for

ANT). The best-fit model of nucleotide substitution for each

marker was selected using jModeltest v.0.1.1 [84,85], with the

Akaike Information Criterion (AIC) for COI, and the corrected

version for small samples (AICc) for ANT. The positions

corresponding to the indel detected for ANT were not included

in the analysis (see Results). For Bayesian inference (BI), MrBayes

v.3.1.2 software [86] was used to infer tree topologies, imple-

menting the corresponding likelihood model for each gene

fragment. For each gene, the program was run with 1 million

generations with a sample frequency of 100 (10,000 final trees).

After verifying that stationarity had been reached (i.e. the average

standard deviation of split frequencies between two independent

chains reached less than 0.01), the first 1,000 trees were discarded

in both cases as burnin. Majority-rule consensus trees were

generated from the remaining 9,000 trees. Bayesian posterior

probabilities were used as a measure of support for the branch

nodes obtained. The obtained trees were drawn with FigTree

v.1.2.2. DnaSP was used to perform the McDonald & Kreitman

test [87], and check whether patterns of variation among groups of

sequences were consistent with predictions for a neutral model.

Results

Mitochondrial gene
For the mitochondrial COI gene, 368 sequences with a final

alignment length of 624 bp were obtained. In total, we found 22

haplotypes with 38 polymorphic sites (6%), 6 of which corre-

sponded to non-synonymous substitutions. The majority of

haplotypes obtained (68%) corresponded to private haplotypes,

most of which were found in the north-western Atlantic Ocean

(Fig. 1). Remarkably, the six haplotypes found for the North

Table 1. Population code, name, geographical region (including country), and GPS position for the populations of Styela plicata
analyzed in this study.

Code Population Geographical Region/Country Latitude/Longitude

AR Arenys de Mar NW Mediterranean Sea/Spain 41u349360N/2u339320E

JA Javea NW Mediterranean Sea/Spain 38u479520N/0u119060E

SP San Fernando NE Atlantic Ocean/Spain 36u279360N/6u129130W

FE Ferrol NE Atlantic Ocean/Spain 43u299000N/8u149000W

TEN Tenerife NE Atlantic Ocean/Spain 28u009240N/16u399380W

KNY Knysna SW Indian Ocean/South Africa 34u29280S/23u29380E

PE Port Elizabeth SW Indian Ocean/South Africa 33u579490S/25u389160E

NC North Carolina NW Atlantic Ocean/USA 34u89240N/77u519440W

SC South Carolina NW Atlantic Ocean/USA 32u129570N/80u469490W

CAL California NE Pacific Ocean/USA 32u479000N/117u099000W

BRA Santa Catarina SW Atlantic Ocean/Brasil 26u469300S/48u369340W

AM Manly SW Pacific Ocean/Australia 33u479430S/151u179380E

WAK Wakayama NW Pacific Ocean/Japan 34u119170N/135u 89480E

OKI Okinawajima NW Pacific Ocean/Japan 26u199290N/127u509150E

MIS Misaki NW Pacific Ocean/Japan 36u99210N/133u189520E

SKS Sakushima Island NW Pacific Ocean/Japan 34u439000N/137u029000E

HK Hong Kong NW Pacific Ocean/China 22u249000N/114u219009E

doi:10.1371/journal.pone.0025495.t001
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Carolina population (NC) were private. The number of haplotypes

per location ranged between one in Tenerife and six in Ferrol and

North Carolina (Table 2, Table S1). Regarding the oceanic basins,

the Atlantic and Pacific Ocean had higher haplotype diversity (17

and 8 haplotypes, respectively) than the Mediterranean Sea and

the Indian Ocean (4 and 5 haplotypes, respectively; Table 2).

Mean and total haplotype diversity (Hd) were 0.497 (60.266 SD)

and 0.810 (60.010 SD), respectively. Mean nucleotide diversity

was 0.0055 (60.005 SD), while total nucleotide diversity (p) was

0.0135 (60.0006 SD). Variation in haplotype and nucleotide

diversity between populations within basins was considerable. For

instance, the populations of Knysna (KNY) and Port Elizabeth

(PE) located in the Indian Ocean, had a haplotype diversity of

0.668 and 0.205 respectively. The California population (CAL)

presented the highest haplotype and nucleotide diversity values

(0.800 and 0.01684, respectively; Table 2). The higher allelic

richness values (obtained after rarefaction to a common sample

size of 11 and 40 genes per populations and basins) were found for

the San Fernando (SP, 3.747) and Ferrol populations (FE, 3.793),

while the lower values corresponded to the populations of Manly

(AM, 0.458) and Arenys de Mar (AR, 0.555). When comparing

between basins, the Atlantic Ocean showed the highest allelic

richness, whereas the Mediterranean Sea had the lowest value

(Table 2).

Jost’s adjusted estimator (Dest) was used to assess the allelic

differentiation between populations for each marker, showing high

values of differentiation (mean Dest = 0.660). The COI data

revealed high differentiation between many population-pairs, as

88 comparisons out of 136 resulted in significant differences after

correction for multiple comparisons (Table 3). For instance, the

North Carolina population had no alleles in common with any

other population (Fig. 2), and many other populations (e.g. Port

Elizabeth, Manly, Misaki, Okinawajima) also differed considerably

in their allele composition. No particular pattern was found for the

only population collected from natural substratum (Sakushima

Island, SKS), which was significantly different from half of the

remaining populations.

The results of the hierarchical AMOVA showed higher within

population variability (58.41%) than the one between populations

(41.59%, P,0.001, Table 4). AMOVA analyses performed by

grouping populations according to their oceanic basin revealed

that most of the genetic diversity was due to variability within

populations (56.97%, P,0.001), and among populations within

basins (34.36%, P,0.001). However, no significant differences in

genetic structure were detected between basins (8.67%, P = 0.055

for COI; Table 4). Accordingly, the Mantel test showed no

correlation between genetic differentiation and geographical

distance between populations (r = 0.00009, P = 0.434).

Overall, neutrality tests were not significant (Table 5), and

hence did not support any lack of equilibrium due to selection or

population size changes at any level (either partitioned by

populations or oceanic basins). The only exceptions encountered

were for the Australian population of Manly (AM), with

significantly negative Tajima’s D values, and for Sakushima and

the Group 1 of haplotypes (see below), with a significant

raggedness index (Table 5).

The network obtained for the COI gene (Fig. 2a) revealed two

divergent lineages (hereafter called Group 1 and Group 2)

Figure 1. Map showing the sampling sites of Styela plicata. Pie charts represent haplotype frequencies for the COI gene in each population
analyzed. Private haplotypes are shown in white.
doi:10.1371/journal.pone.0025495.g001
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separated by 15 mutational steps and without any intermediate

haplotype in between. McDonald-Kreitman (MK) test of neutral-

ity showed that there were no differences between proportions of

silent and replacement sites within and between these two groups

(P = 0.64). Sequences from both Group 1 and 2 are found in all

basins and coexist in most populations; except for the absence of

Group 2 in the Mediterranean. Judging by their high frequency,

wide geographical distribution, and central position in the

network, H_2 may be the ancestral haplotype of Group I. No

clear result was obtained for group 2, as the most abundant

haplotype (H_5) occupied a distal position within the group.

(Fig. 2a). The BI tree reconstructed with COI haplotypes showed

two moderately supported clades exhibiting 3.27% sequence

divergence among them (Fig. 2b). These two clades matched

exactly with Group 1 and 2 described for the COI network (Fig. 2a).

Haplotype H_2 (inferred as ancestral) held a basal position within

Group 1, while no evidence for a basal haplotype or group of

haplotypes was found for Group 2.

Nuclear gene
For the ANT gene, we obtained 315 sequences of 220 bp. The

ANT fragment targeted here includes an intron in many

metazoans [63]. However, in our case, all sequences could be

translated to amino acids and final sequence length was in

accordance with what has been found for species without an intron

in this position [63]. Our resulting dataset contained 80

homozygotes, which allowed a reliable reconstruction of the

gametic phase of the heterozygotes (.95% confidence). No

evidence was detected for recombination within our sequences.

In total we obtained 61 alleles (Tables S2 and S3), 34 in the

Atlantic (20 of which were exclusive to this basin) and 27 in the

Pacific (Table 2). A deletion of 22 amino acids was found in 5

alleles (Table S2). Once more, the Mediterranean showed the

lowest number of alleles (7, of which only one was private). Mean

and total haplotype diversity (Hd) were 0.761 (60.011 SD) and

0.820 (60.012 SD), respectively. Mean nucleotide diversity was

0.0295 (60.008 SD), while total nucleotide diversity (p) was

0.0321 (60.0006 SD). Gene and nucleotide diversity did not differ

between basins, except for the Mediterranean (Table 2). The

South African populations of Knysna (KNY) and Port Elizabeth

(PE) showed the highest values for genetic diversity, followed by

most Pacific populations and some Atlantic ones (Table 2). Port

Elizabeth (PE) was also the population showing the highest allelic

richness (14.830) followed by Hong Kong (HK, 9.614), North

Carolina (NC, 8.927) and Knysna (KNY, 8.145). As found for the

mitochondrial gene, the lowest value of allelic richness corre-

sponded to Manly (AM, 3.140). Low values were also retrieved for

the Mediterranean populations of Javea (JA, 3.307) and Arenys de

Mar (AR, 3.733). Comparisons between basins indicated that the

Indian Ocean had the highest allelic richness, while the

Mediterranean had the lowest (Table 2). Eight populations had

less heterozygotes than expected, five of which (Arenys de Mar,

Javea, San Fernando, Ferrol and North Carolina) deviated

significantly from Hardy-Weinberg equilibrium (significant Fis

values). Interestingly, 9 populations had an excess of heterozygotes

(and negative Fis), and in 4 of them (Tenerife, Brasil, Misaki,

Sakushima) these inbreeding coefficients were significant. Per

basins, there was a heterozygote deficit in all populations except

for the Pacific, and this deficit was most marked for the

Mediterranean group of populations (0.282 Hobs vs. 0.554 Hexp).

Jost’s adjusted estimator showed lower values of differentiation

for the nuclear intron ANT (mean Dest = 0.324) than for the

mitochondrial COI. Dest values obtained for the ANT gene

revealed fewer significant differences in pair-wise comparisons

(45 out of 136). As before, the North Carolina population was

significantly different from all the others (Table 3). Interestingly,

the Sakushima population (on natural substratum) only differed

from the North Carolina and Hong Kong populations.

Table 3. Jost’s Dest population differentiation statistic between populations of Styela plicata for the COI (upper diagonal) and ANT
(lower diagonal) markers.

AR JA SP FE TEN KNY PE NC SC CAL BRA AM WAK OKI MIS SKS HK

0.067 0.753 0.483 0.948 0.366 0.938 1 0.973 0.521 0.951 1 0.844 0.832 0.997 0.162 0.442

0 0.76 0.452 1 0.299 0.944 1 1 0.481 1 1 0.888 0.841 1 0.132 0.439

0.036 0.082 0.114 0.381 0.219 0.504 1 0.52 0.086 0.129 0.575 0.269 0.841 0.502 0.458 0.177

0.032 0.129 0.015 0.45 0.05 0.767 1 0.241 0.184 0.246 0.835 0.311 0.804 0.793 0.185 0.032

0.49 0.49 0.346 0.486 0.351 0.942 1 0.506 0.702 0.091 1 0.135 0.842 0.952 0.666 0.303

0.281 0.289 0.116 0.258 0.058 0.923 1 0.557 0.325 0.29 0.997 0.238 0.774 0.965 0.101 20.03

0.522 0.567 0.342 0.391 0.318 0.138 1 0.969 0.312 0.656 0.003 0.941 0.981 0.015 0.93 0.925

0.978 0.99 0.992 0.945 0.897 0.832 0.715 1 1 1 1 1 1 1 1 1

0.098 0.157 0 0.042 0.213 0.086 0.231 0.978 0.771 0.333 1 0.409 0.771 0.946 0.732 0.493

0.35 0.358 0.176 0.314 0 0 0.134 0.923 0.07 0.44 0.386 0.6 0.857 0.316 0.338 0.338

0.269 0.267 0.125 0.273 0.018 0 0.274 0.97 0.074 0 0.716 0.105 0.842 0.662 0.639 0.229

0.134 0.113 0.099 0.189 0.461 0.319 0.509 1 0.09 0.297 0.284 1 1 0.027 1 0.994

0.538 0.543 0.353 0.51 0 0.06 0.3 0.966 0.212 0 0.02 0.482 0.432 0.876 0.425 0.128

0.261 0.273 0.161 0.274 0.084 0.015 0.117 0.875 0.106 0 0.025 0.321 0.142 0.798 0.503 0.637

0.479 0.499 0.315 0.457 0 0.066 0.281 0.95 0.157 0 0.025 0.427 0 0.107 0.925 0.935

0.22 0.21 0.128 0.259 0.051 0.001 0.273 0.937 0.082 0 0 0.248 0.093 0 0.071 0.101

0.525 0.636 0.585 0.388 0.826 0.754 0.789 0.94 0.604 0.759 0.758 0.718 0.822 0.774 0.777 0.761

Values in bold represent significant comparisons after FDR correction (see text).
doi:10.1371/journal.pone.0025495.t003
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The hierarchical AMOVA analyses showed that most of the

observed variability was found within populations (90.6%), and

only a small but significant 9.4% (p,0.001) of variability was

found among these populations (Table 4). When grouping

populations according to their oceanic basins, AMOVA analyses’

results were similar to those found for the mitochondrial marker.

Figure 2. Network and phylogeny for COI. a) Median-joining haplotype network for Styela plicata using COI results. Area of circles is proportional
to the number of individuals found for each haplotype. Partitions inside the circles represent the proportion of each population within each
haplotype. Small circles represent missing haplotypes. Lines between circles represent one mutational step and non-synonymous substitutions are
indicated with an asterisk; b) Phylogeny of partial COI gene sequences using Bayesian inference. The congeneric species Styela gibbsii was used as an
outgroup. Posterior probabilities are indicated when .0.5.
doi:10.1371/journal.pone.0025495.g002
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Most of the genetic diversity was due to variability within

populations (90.19%, P,0.001), and among populations within

basins (8.20%, P,0.001). No significant differences in genetic

structure were detected between basins (1.61%, P = 0.127 ;

Table 4). As found for COI, the Mantel test showed no correlation

between genetic differentiation and geographical distance between

populations (r = 0.000001, P = 0.243). Regarding the neutrality

test, the same trend of COI was observed for ANT, with most tests

being non-significant. However, Fu’s Fs were significant for the

Atlantic Ocean and the Port Elizabeth population (Table 5).

Network analyses showed a considerable amount of loops that

were unambiguously resolved following coalescent rules (Fig. 3a).

None of these loops affected the main structures shown in the

network. However, the relationship among alleles should be

considered with caution and no clear ancestral allele could be

reliably designated. Although less divergent than with the COI

data, the ANT network also showed a distinction in two groups of

sequences separated by 4 mutational steps (Fig. 3a). None of these

four mutations corresponded to non-synonymous changes. Finally,

the 22 amino acids deletion found in 5 alleles (H_4, H_14, H_39,

H_43, H_50) was also retrieved (represented by a dot line in

Fig. 3a). McDonald-Kreitman neutrality tests could not be

performed between these groups, as there was no fixed difference

between them. BI analysis showed that one of the groups (hereafter

called Group A) occupied a basal position within the resulting tree,

while a second group (Group B) formed a monophyletic, derived

clade supported by a posterior probability of 1 (Fig. 3b). Within

group B, the five alleles with a 22 amino acid deletion also formed

a monophyletic clade (posterior probability = 1; Fig. 3b). When the

sequence fragment corresponding to the deletion was removed

from the analyses, these 5 alleles still grouped together, indicating

that their phylogenetic relationship was independent from the

indel presence. The alleles containing the deletion were found in

all studied basins, not showing any apparent geographic pattern

(Table S2, Figure 3a).

The private allele H_41 from North Carolina appeared

genetically distinct from all the others in both the network and

the BI analyses (Fig. 3a). This sample was re-extracted and

sequenced de novo, but the same resulting sequence was obtained.

The Mediterranean populations only presented alleles from Group

A of ANT, while the remaining populations presented alleles from

both groups (especially, those populations from the Pacific Ocean).

This pattern explains the lower genetic diversity found in the

Mediterranean basin compared with that of the other oceans.

Group B seems to be a highly successful derived clade that has

spread in most populations. Interestingly, in all localities in which

there was an excess of heterozygotes (negative Fis), there was also a

higher than expected proportion of individuals having one allele of

each group (A or B; 0.75 observed vs. 0.49 expected frequency).

This is especially noteworthy in the Pacific populations, where we

found twice the number of ‘‘mixed’’ genotypes than expected. The

only exception was for North Carolina, which had a significant

deficit of heterozygotes and less than expected genotypes with an

allele from each group.

Finally, DAPC analyses were performed combining results

obtained for COI and ANT. In order to avoid cluttering of

populations, a first DAPC was performed with 3 groups: the North

Carolina population (significantly different from the rest in

previous analyses), the Sakushima population (the only natural

substratum population) and the remaining populations. The PCA

Table 4. Analysis of the molecular variance (AMOVA) for the COI and ANT genetic markers.

Source of variation df Sum of squares Variance components Variation (%) P value
Fixation
indices

a) COI

AMOVA without groups

Among populations without groups 16 63.536 0.17255 Va 41.59* 0.000 FST: 0.41589

Within populations 351 85.064 0.24235 Vb 58.41

Total 367 148.601 0.4149

AMOVA between basins

Among groups 3 19.279 0.03690 Va 8.67 0.055 FCT : 0.08673

Among populations within groups 13 44.257 0.14618 Vb 34.36* 0.000 FSC : 0.37624

Within populations 351 85.064 0.24235 Vc 56.97* 0.000 FST : 0.43034

Total 367 148.601 0.42543

b) ANT

AMOVA without groups

Among populations without groups 16 28.988 0.03892 Va 9.40* 0.000 FST: 0.09397

Within populations 613 230.022 0.37524 Vb 90.6

Total 629 259.01 0.41416

AMOVA between basins

Among groups 3 7.806 0.00670 Va 1.61 0.127 FCT : 0.01610

Among populations within groups 13 21.182 0.03412 Vb 8.20* 0.000 FSC : 0.08336

Within populations 613 230.022 0.37524 Vc 90.19* 0.000 FST : 0.09812

Total 629 259.01 0.41606

Analyses are presented for the total of populations without grouping, and pooling populations from the same oceanic basin together (Mediterranean, Atlantic, Pacific
and Indian). Va, Vb and Vc are the associated covariance components. FSC, FST and FCT are the F-statistics.
doi:10.1371/journal.pone.0025495.t004
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components retained explained 98.6% of the total variance

observed. The scatterplot of the first two components of the DA

(Fig. 4) showed that the first axis separates North Carolina from

the rest, which form a tight cluster, while the second axis slightly

sets apart the Sakushima population, although with a clear overlap

of the inertia ellipses. We then repeated the analysis removing the

North Carolina population and considering all populations as

separate groups. 99.2% of the total variance was explained by the

retained components of the PCA. The populations appeared

mixed in the space of the first two axes of the discriminant analysis

(Fig. 4), although the first axis separated slightly Misaki, Port

Elizabeth and Manly on one extreme, and the two Mediterranean

populations at the other end. The rest of the populations clustered

tightly together, with the natural substratum population (Sakush-

ima) appearing in a central position.

Discussion

Several remarkable features emerged from the recovered

distribution of the genetic variability. First, there is a divergence

in lineages for both markers, each featuring two groups of

sequences. Second, the genetic pool is well mixed at the basin

level, with little or no phylogeographic signal remaining. Third,

many population pairs are genetically different, regardless of the

geographic distance among them. Finally, there seems to be an

effect of selection on the genetic makeup of this species, as

illustrated by the highly divergent population of North Carolina

and the intra-individual distribution of both groups of ANT

sequences.

The most parsimonious explanation for the presence of two

groups of sequences for COI (group 1 and 2) and ANT (group A

and B) is that they have arisen concomitantly in a past

fragmentation event within the native area of the species. We

cannot, however, exclude an independent origin of these genetic

splits. At present, the distribution of the groups obtained with the

two markers is totally unrelated. Sequences of the Group A for

ANT were found in ascidians having mitochondrial sequences of

both lineages (Groups 1 and 2), and in direct proportion to their

relative abundances. The same trend was observed for individuals

having sequences of Group B for ANT (Table S3). If the

differentiation of ANT and COI in different lineages occurred

simultaneously in allopatric regions, the link between these

markers was lost long ago. Mitochondrial genes are inherited

maternally, while nuclear genes can be shuffled repeatedly through

sexual reproduction. Thus, the lack of congruence found in the

distribution of both markers could be due to frequent contact

between individuals from different lineages coupled with genetic

drift. A greater sensitivity of mitochondrial genes to genetic drift

Table 5. Demographic parameters of S. plicata populations for each genetic marker (COI and ANT), calculated for each population
and samples grouped by basin and by group (1 and 2 for COI, and A and B for ANT).

COI ANT

D Fs R2 r D Fs R2 r

AR 21.16439 20.879 0.218 0.650 1.29064 2.347 0.169 0.243

JA 0.74648 3.941 0.173 0.462 0.25898 2.715 0.126 0.345

SP 2.15635 6.162 0.229 0.103 0.59380 0.232 0.143 0.077

FE 20.83585 3.033 0.104 0.112 1.04251 20.535 0.170 0.032

TEN 0.00000 0.000 0.000 0.000 2.32335 5.011 0.187 0.190

KNY 20.27356 2.391 0.123 0.149 2.15146 1.718 0.196 0.068

PE 21.29958 5.371 0.090 0.658 1.83362 24.076* 0.197 0.021

NC 20.14467 0.419 0.124 0.127 20.15150 20.920 0.112 0.044

SC 0.52180 2.497 0.153 0.348 0.63874 20.198 0.141 0.140

CAL 1.81929 6.420 0.239 0.155 2.46514 5.670 0.229 0.119

BRA 0.55113 9.699 0.164 0.483 0.94915 0.814 0.152 0.101

AM 22.53406** 5.308 0.200 0.854 0.83652 2.602 0.149 0.366

WAK 1.64264 2.196 0.220 0.384 2.48268 0.904 0.201 0.066

OKI 0.64968 1.430 0.169 0.360 3.02590 6.494 0.235 0.215

MIS 0.82576 10.821 0.163 0.578 1.06354 1.146 0.152 0.150

SKS 0.05885 0.400 0.136 0.043* 3.17433 7.094 0.226 0.244

HK 0.13328 0.478 0.137 0.069 0.50405 20.338 0.141 0.046

MED 20.71549 1.657 0.087 0.482 1.01299 2.380 0.139 0.286

ATL 1.10126 3.816 0.125 0.109 1.02151 27.404* 0.114 0.046

PAC 2.66373 15.635 0.172 0.103 1.72095 22.885 0.136 0.081

IND 2.31343 20.246 0.108 0.033 2.44640 21.956 0.190 0.029

Group 1(A) 20.84647 22.032 0.054 0.024* 20.04229 211.460** 0.083 0.066

Group 2(B) 20.53974 20.488 0.075 0.360 20.29695 26.598 0.067 0.140

Asterisks represent significant results:
*P,0.05;
**P,0.002.
Tajima’s D, Fu’s Fs statistic, Ramos-Onsins & Rozas’s statistic (R2), and the raggedness index (r).
doi:10.1371/journal.pone.0025495.t005
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has been previously reported [88], and may explain the differences

observed between mitochondrial and nuclear markers [e.g., 88–

90]. In addition, no geographic pattern was observed in the

distributions of the lineages observed for both markers. Even in the

putative native area of S. plicata (NW Pacific), we found sequences

of the two groups of COI and ANT in the same populations and,

for ANT, even in the same individual.

Barros et al. [54] found nine COI haplotypes for Styela plicata, 8

belonging to our Group 1 and one to our Group 2. Based on this

divergent haplotype, these authors suggested that there could be a

cryptic species within what is known as Styela plicata. Our results

did not lend support to this hypothesis, as the nuclear marker

showed a distribution unrelated to these two groups of

mitochondrial sequences. Furthermore, when comparing our

mitochondrial sequences with other species of the genus, the

resulting genetic divergence was much higher than that found

between our two COI groups (3.27% between our groups, 21.12%

between S. plicata and S. gibbsii; 22.7% with S. clava, and 20% with

S. montereyensis). The divergent sequences of S. plicata reported from

Australia (Lake Conjola) by Pérez-Portela et al. [107] (GenBank

accession numbers FJ528633-34 for COI and FH897323 for 18S

rRNA) were likely the result of sample mislabelling (Pérez-Portela,

pers. comm.). We sequenced 4 further specimens from the same

locality and verified that they all had typical S. plicata COI

sequences (i.e., Haplotype 5).

Although the native range of Styela plicata is not known with

certainty, the prevailing hypothesis is that it comes from the NW

Pacific area [36,54]. S. plicata would have then dispersed to other

tropical and warm-water regions by ship fouling, likely since the

early transoceanic navigation times [36]. Our results indicated that

at present the genetic pool of S. plicata is well mixed among basins,

with most genetic variability found within populations. Moreover,

high genetic variability and the putatively most ancient alleles have

not only been found in the NW Pacific populations (e.g.

Sakushima, Hong Kong) but also in other oceanic basins (e.g.

North East Pacific, Atlantic and Indian Ocean; see also David et

al. [91]). Thus, we could not find any clear genetic signal in favour

(or against) the hypothesis on the NW Pacific origin of this species.

Figure 3. Network and phylogeny for ANT. a) Median-joining allele network for Styela plicata using ANT results. Area of circles is proportional to
the number of individuals found for each allele. Partitions inside the circles represent the proportion of each population within each allele. Small
circles represent missing alleles. Lines between circles represent one mutational step and non-synonymous substitutions are indicated with an
asterisk; b) Phylogeny of partial ANT gene sequences using Bayesian inference. The congeneric species Styela gibbsii was used as an outgroup.
Posterior probabilities are indicated when .0.5. The dot line mark the clade corresponding to sequences with a 22 amino acid deletion.
doi:10.1371/journal.pone.0025495.g003
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The only potential trend observed in our data was for the

Mediterranean basin. The Mediterranean populations presented

the lowest values for all diversity indexes, and only displayed group

1 for COI and group B for ANT. However, these findings should be

interpreted with caution, as only two Mediterranean localities

were included in this study. Lack of resolution for assessing native

areas was also found in studies with other ascidian species that are

believed to be ancient colonizers (e.g. Ciona intestinalis [38]). On the

other hand, species that have spread more recently still have a

genetic signature of their introduction history (e.g. Botryllus schlossei

[41,42], Microcosmus squamiger [92], Styela clava [45]).

Long-distance dispersal of introduced marine species across

oceans probably occurs via major shipping routes while further

spread at a local scale may take place through local traffic and

recreational boating [13,34,42,91,93]. Our results indicate that

many populations of S. plicata are well differentiated from others in

terms of allele frequencies. This observation is in agreement with

results obtained for other ascidians inhabiting harbours and

marinas [37,41,44, but see 38 for an exception]. As expected when

anthropogenic transport is the vector of dispersal, genetic

differentiation among S. plicata populations was unrelated to

geographic distance. Some distant populations (e.g. Hong Kong

and Ferrol) were genetically similar, while closer populations such

as Knysna and Port Elizabeth (South Africa) were significantly

divergent. The stochasticity of main transport events through

international ship traffic could determine the observed patterns

among basins. However, our sampling design was inappropriate to

assess the degree of connectivity among closely located populations

(i.e. post-border dispersion, [34]). Thus, it still remains necessary to

evaluate the role of small-scale processes in colonization dynamics,

and to assess the importance of recreational boating in spreading

introduced species.

Low genetic diversity caused by a founder effect or a bottleneck

is not always the benchmark for introductory events [28,94,95]. In

fact, recurrent introductions typically lead to highly diverse

populations, especially if they receive migrants from native

populations that are genetically structured [26,30,44,96,97]. Here,

we found that genetic diversity indexes varied according to the

studied population, with overall values ranging from moderate to

high for both markers. Some exceptions were these populations

where only one or two mitochondrial haplotypes were present (i.e.

Arenys de Mar, Tenerife, Manly).

Besides recurrent introductions through ship transport,

population differentiation could also be due to selection. Here,

we found uneven abundances for each major group obtained for

COI (Group 1 and 2) and ANT (Group A and B). For COI,

haplotypes from Group 1 were considerably more frequent and

diverse than haplotypes from Group 2. It is possible that these

groups stand for differential adaptive capabilities of the

individuals to stressful environments. This adaptive capability

does not need to be directly linked to our studied gene (non-

significant McDonald-Kreitman test), but to other mitochon-

drial genes. Differential adaptation to environmental factors

(e.g., temperature, salinity) of mitochondrial sequences within

one species is not a rare phenomenon, and has been described

in many species [98–104].

For the ANT gene, selection may be favouring heterozygotes

that have an allele of each group (A and B). In fact, the excess of

heterozygotes found in most populations is due to the number of

individuals with an allele each of A and B. Accordingly, the

number of individuals with both alleles from the same group (A

or B) was lower than expected. Homozygotes for the basal

Group A occurred ca. 5 times less than expected based on allele

frequencies. Thus, it is possible that populations that originally

Figure 4. Discriminant analysis of principal components (DAPC). Left: plot of the first two principal components obtained in the DAPC
analysis considering three groups: the North Carolina population (NC), the Sakushima Island population (SKS) and other populations (OP). Right: plot
of the DAPC results analyzing all populations as individual groups, except North Carolina, which was not analyzed (see text). Population codes as in
Table 1. Labels are placed at the centre of dispersion for each group, further delineated by inertia ellipses. Dots represent individuals.
doi:10.1371/journal.pone.0025495.g004
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had only one group of ANT sequences were seeded with arriving

individuals featuring the other group. The mingling of both

groups may have favoured the heterozygotes with an allele from

each group, and if this combination had an adaptive value,

enhanced the fitness of those individuals. As for the COI

lineages, this new adaptive capability to the environment is not

necessarily linked to the ANT gene itself. Admixture between

lineages can foster the emergence of novel genetic combinations

with different physiological attributes and invasive characteris-

tics [30]. In contrast to our results, solitary ascidians inhabiting

artificial structures usually have a general deficit of heterozy-

gotes [38,44,105].

Early invasions should not be considered ‘‘naturalized,’’ rather,

their impacts, potential for further spread, and degree of

integration in local processes and interactions should be assessed.

A throughout knowledge of introduced species is required to

understand and interpret the present-day structure, function, and

conservation of marine communities [7,35,36]. Our genetic study

of an ancient wanderer has uncovered signatures of deep

divergences and recent mixing, with a phylogeographic signal

mostly blurred. Current evolutionary processes may include

adaptive changes and low and stochastic connectivity among

established populations. More studies on S. plicata’s biological

cycle, interactions with other marine species, and local-scale

genetic structure are necessary to understand the biology, ecology

and post-border dispersal of this species and prevent ecosystem

alterations.

Supporting Information

Table S1 Haplotype frequencies observed for the COI gene.

Numbers in bold are private haplotypes.

(DOC)

Table S2 Allele frequencies observed for the ANT gene.

Sequences with a 22 amino acid deletion are indicated with an

asterisk.

(DOC)

Table S3 ANT allelic phase and COI haplotypes for each

individual analyzed.

(DOC)

Acknowledgments
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