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ABSTRACT

The geometrical theory of diffraction is applied to calculate

the wide angle side lobes of a parabolic reflector antenna. Integral
representations are used to correct the field in the forward and rear

axial directions. The complete patterns thus obtained are in excellent

agreement with experimental patter-is when the aperture blockage is not
significant. The solution has the uaual advantages of a solution based

on the geometrical theory of diffraction. namely, it is obtained in ,the

form of simple functions, its computation cost is low, it is directly
related to the radiation mechanism of the antenna, and it can be easily
modified and extended as the need arises.
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I. INTRODUCTION

This chapter contains a statement of the problem under study and

the motivation for undertaking this study, a synopsis of the method of

analysis used here, and a brief survey of the previous work on this

problem.

A. The Problem

In this report the geometrical theory of diffraction is applied

to calculate the wide angle side lobes of reflector antennas. Although

there are many types of reflector antennas this discussion will be

restricted to rotationally symmetric reflectors. The essential compo-

nents are shown in Fig. 1; they are the feed antenna and the reflector

which serves to form a beam of specified shape. Depending upon the

function of the antenna, the reflector aurface may be a portion of a

paraboloidal, sphe.ical, ellipsoidal or hyperboloidal surface of revo-

lution. However, it is commonly a paraboloid of revolution, and the

examples treated here involve a reflector of this type with the feed

positioned at the focus.

The calculation of wide angle side lobes including the region

behind the reflector has received slight attention, and these side

lobes are of practical importance in cases where it is desired to a)

reduce the interference between antennas, b) design low noise reflec-

tor antennas,l c) reduce the radiation hazard to personnel and equip-

ment exposed to high power transmitting antennas.

B. The Approach

The pattern of the reflector antenna is composed of the primary

radiation of the feed and the field of the feed diffracted by the

reflector. If we consider that the field of the feed is shadowed by

the reflector in the geometrical optics sense, the region around the

antenna may be divided into an illuminated region and a shadow region

where the field is zero. At the shadow boundary the geometrical optics

field is discontinuous. In the case of the ellipsoidal and hyperboloi-

dal reflectors there are also far zone reflected fields and associated

reflection boundaries.

Employing the geometrical theory of diffraction developed by

Keller, the field of the feed induces a class of rays diffracted at

the edge of the reflector. These rays radiate into both the illumi-
nated and shadow regions and their fields when properly corrected, as

described in App. I, combine with the geometrical optics field to pro-

duce a continuous total field at the shadow and reflection boundaries.

Rays multiply-diffracted across the aperture are not included in this

analysis; most practical reflectors are large enough so that these rays
can be neglected.

1
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Fig. 1 - Reflector Antenna.

The forward and rear axial directions are caustics of the rays

diffracted from the circular edge of the reflector; consequently the

geometrical theory of diffraction fails in the neighborhood of these

aspects. In the case of the parabolic reflector the forward axial

direction is also a caustic of the far zone reflected rays. The fields

in the cross-hatched regions of Fig. 2 are calculated from integral

representations. In the forward axial region, the conventional aperture

field method4 is employed. In the rear axial direction equivalent elec-

tric and magnetic ring currents are employed; these currents are expressed

in terms of the edge diffraction coefficients.

In sumrary, the method of solution described in the following

chapters provides a complete 360 degree pattern in any plane containing

I the antenna axis. Aperture blockage by the feed alone is treated approx-
imately in the usual manner; however, for reasons of simplicity the
aperture blockage by the feed support has not been included in the solu-

tion.

Although the analysis described in the chapters to follow is applied
to calculate the far-zone field of an isolated reflector antenna, it can

2
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Fig. 2 - Different regions of the secondary field pattern.

be extended to calculate a) the near-zone field, (b) the coupling between
reflector antennas, and (c) the environmental effect on the pattern of
a reflector antenna.

C. Previous Work

Since the advent of microwaves as a means of tracking and communi-
cation, the interest in reflector antennas has grown rapidly. The sub-
Ject of reflector antennas has been treated exensively by both Silver

5

and Fradin.0 Though a wide variety of papers on various aspects of this
subject have been published, relatively few have been concerned with the
wide angle radiation. Tartakovskii 7 studied the radiation pattern of an
ideal paraboloid using the current-distribution8 and aperture-field
methods and compared the regions of validity of the two, Schouten and
Teukelman9 applied the current-distribution nethod to obtain the radia-

tion pattern for a paraboloidal reflector with a dipole feed and expressed

~3



the radiation integral in the form of an infinite series of Bessel 1*unc-
tions. Afifi1 ° compared the experimental results obtained for the case
of a dipole feed with the theoretical results based on the current-

distribution method. Computations based on the classical radiation

integral are very complicated compared with those based on the geoetri-
cal theory of diffraction. Furthermore, they do not correctly predict

the pattern behind the reflector.

Kinber 1 was the first to apply the Keller's theory of diffracted

rays to this problem. He presented curves which show the general behtav-

ior of the pattern for an uniformly illuminated aperture. His results

were not corrected for the shadow boundary and the rear axial caustic.

Lysher1 2 and Peters 1 3 have both investigated the fields behind a para-
bolic reflector using the geometrical theory of diffraction, after

approximating the real geometry by simplified versions. Lysher approx-

imated the reflector by a flat disc, and Peters considered diffraction

at a half plane edge tangent to the edge of the reflector, thereby,
neglecting the curvature of the edge. Nevertheless, their results appear

to be in reasonable agreement with the measured values. Peters and

Rudduck 1 4 and Peters and Kilcoyne' 5 have employed the geometrical theory

of diffraction to explain the radiation mechanism of reflector antennas;
they also describe how it may be used to improve the design. Recently

Rusch18 studied the edge diffraction for paraboloids and hyperboloids

and compared the patterns ootained with those obtained from an integral
formula. His results are not valid at the shadow boundary.

In reviewing the previous work it is evident that there is no

thorough treatment of the complete pattern of a symnetrical reflector
antenna. The previous solutions fail at shadow boundaries or caustics,

or else th 'v approximate the reflector geometry.

if



ii. WIDE ANGLE SIDE LOBES

This chapter begins with a description of the physical configura-
tion of the feflector antenna and the various coordinate systems used
in its analysis. The field of the primary feed radiation is described

next, and subsequently, the two point method to determine the fields

away from the axis, and the ring current method to determine the fields

in the rear axial region are developed.

A. The Configuration and the Coordinate System

The reflecting surface considered here is a portion of a surface
of revolution. Let the vertex of the surface be contained in this por-

tion. A surface of revolution is generated by rotating a curve about a

straight line referred to as the axis of revolution. This urface is

terminated by a plane perpendicular to the axis; therefore che edge of

the surface is a circle and the reflector is said to be axially syrinet-

nic. In such a case the circle containing the edge of the reflector is

called the aperture circle and the plane containing it, the aperture
plane. The paraboloid of revolution and sphere are two reflecting sur-

faces of widespread practical interest. In the case of the parabolic

reflector the shape of the reflector is comonly described in terms of

the f/D ratio, i.e. the ratio of the focal length to the diameter.

The reflector is assumed to have a sharp edge and a perfectly con-
ducting surface. The feed is generally placed at the axial focus. Its

primary radiation pattern is in general not isotropic. The reflector

is assumed to be in the far zone region of the primary radiation field,

and the dimensions of the reflectcr, as well as the distance to the

field point are assumed to be large compared with a wavelength, thus
the geometrical theory of diffraction can be employed to calculate the
field of the edge diffracted rays.

Four coordinate systems are used in this analysis to describe the

field of the primary feed, the aperture and edge geome'.ry and the far
zone field of the reflector antenna. The field of the feed is described

in the spherical coordinate system shown in Fig. 3a, which is centered

on the axis of the reflector at the phase reference of the feed; this

field may be obtained either from calculation or measurement. The coor-
dinate system shown in Fig. 3b is introduced to describe the field of

the feed at the reflector; it has the same origin as the previous coor-

dinate system, but its polar axis is the z axis instead of the y axiz.
Setting * = A - 0'. the transformation of variables and unit vectors,

denoted by a superscript. between the two coordinate sy steS is

(i) COS COS q f sin Of

5
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Fig. 3 - Coordinate systems used in the analysis.
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(2) - cos p' sin sin cpf sin e

(3) Si =o + l 3\ I

(4) -fcs p sin co

where

(5) P = J1 - sin 2 sin '

The cylindrical coordinate system (p',cp',z') shown in Fig. 3c is
used to describe the aperture and edge of the reflector; its origin is
at the center of the aperture. This coordinate system is useful in the

description of the edge diffracted rays, aperture fields, and equivalent
edge currents which will be described later. Finally we have the spherL-

cal coordinate system shown in Fig. 3d to describe the far zone field of
the reflector antenna. The origin of this coordinate system coincides
with that of Fig. 3c.

B, The Field of the Feed

For the purpose of the present analysis, the feed is asstmed to be
a radiator whose dimension is small compared with the aperture diameter
ana its pattern is assumed to be broadly directional with its maximum

value coincident with the reflector axis. Furthermore, for the sake of
simplifying the following discussion the pattern of the feed is assured
to be linearly-po].arized in the direction ef. It is clear that this is
not an essential restriction because an elliptically polarized field
can always be represented as a swn of linearly polarized fields. For
the linear polarization state just described the yz-plane is the E-plane

and the xz-plane is the H-plane.

In the far zone the field of the feed is given by

e-jkR'
(6) E efA g(f,cpf) F-

where

(7) bf= - (
sin ef

f7



P

Q2I

Fig. k - The two edge diffracted rays which contribute to

the field behind the reflector.

A is the normalization constant,

g(ef,cpf) is the primary feed pattern (with its maximum magnitude

equal to unity).

In terms of the coordinate system shown in Fig. 3b

(8) cos sin C , cos P ( ) e-jkR'
P R'

where

(9) f(..,) = g(e pg)

In the E- and 11-planes the above expression reduces to

e f -jkR'

(1O) e = + 0'A'e() ,
-- 2 2

where the sign is determined by sgn(-cos8).

8



e-jkR'

(ii) wfh = y fh(*)

in which the pattern functions fe and fh may be wr.itten as functions of
only in the two principal planes.

C. The Two Point Method

As mentioned earlier, this method is used to calculate the field

of the reflector antenna at aspects away from the forward and rear axes

of symmetry. It should be noted, however, that the two point method is

applicable to all practical single reflector antennas.

Earlier it was pointed out that according to geometrical optics
concepts the region surrounding the reflector antenna may be divided

into an illuminated region and a Fhadow region. The geometrical optics

field at any field point P is then given by

1(f(P), P in the illuminated region.(12) 0 )

0, P in the shadow region.

This geometrical optics field propagates along ray paths which emanate

radially from F.

Next let us turn our attention to the diffracted rays and field at
P. Consider the path from F to P which also includes a point on the
edge of the reflector; the path consists of two straight line sections

in a homogeneous medium. There exist two points Q, and Q2 on the edge

of the reflector which make the distance along this path a minimum and
maximum, respectively. According to Keller's extension of Fermat's

principle these minimum and maximum paths are the trajectories of two

edge diffracted rays. We may fix Q, and Q2 in the following way. Let

V be the vertex of the reflector; the plane defined by FVP intercepts
the edge of the reflector at Q, and Q_.

The total field at P

(13) E(P) = g-o(P) +

where V-(P) is the sum of the fields which are edge diffracted at Q,

and Qa. However, over a certain range of 0, the contributions to the

diffracted field come only from one of these two points as the other

gets shadowed by the reflector itself, as showm in Fig. 5. Thus

- -d
(14) fd(p) { (P) + E2(P) P visible from andSd~=)4 P not visible fromQ

~9
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'Fig. 5 - Different regions illuminated by the two edge diffracted rays.

where E1 (P), Ed(p) are the fields of the edge d.ffracted rays at Q1 and
Q2 , respectively. The ray incident on the edge at Q2 gives rise to a
surface diffracted ray which propagates along the back surface of the

reflector. The surface ray sheds rays tangentially so it propagates

into the shadow region shown in Fig. 5. These rays have not been

included in our analysis; in general, their effect on the pattern is
very small. The contributions from rays multiply-diffracted across the

aperture and from rays diffracted from the edge and then reflected from

the inner surface of the reflector are small and have been neglected.

Since high frequency diffraction is essentially a local phenomenon,_d(p) can be determined in terms of the reflector and ray geometry at

e point of diffraction Qi on the edge. The field of an edge dif-
fracted ray is given by

17
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r Pi + e-Jkri
(jy) (Qi) E d(Qi( ( -

where

D is the dyadic diffraction coefficient for a straight edge)

-fE (Qi) is the electric field of the feed at edge at Qi,

i = 1, 2.

Pi is the distance of the caustic from the edge at Qi, and,

rj is the distance from Qi to P.

D and p are both as defined by Kouyoumjian,18 and they are given in

App. I and App. II. respectively.

Referring to these appendices, it is seen that D is a function of

the incident and diffracted ray geometries at the edge; it does not

depend on edge curvature. The curvature of the edge is taken into

account by the divergence factor, the square root term in Eq. (15),
which is expressed in terms of the caustic distance at the edge.

Next let us explicitly determine the caustic distance p3, p2 at

Qj, Q2. We define the radius of the aperture to be a, the distance
from the focus F to any point on the edge to be Ro, the angle subtended

by the edge at F to be 2a (Fig. 5), the distance from the center of the

aperture 0 to the field point P to be R (Figs. 3d, 4).

As shown in App. II, the caustic distances for this are

(16) Par=

R sin e - a

and

(17) P =  -ar2
R sin 0 + a

Thus at Q1, the divergence factor becomes

PI-

(r(p 1 + ri)ly r sin 0

and at

I,



ar2 ( 2 + r,) sin

In the far zone the divergence factors reduce to

1 a/ a
(19a,b)i R

at Q% and Q2, respectively. The factor j is caused by the phase dis-
continuity which occurs at the caustic between Q_ and the field point.

Substituting from Eqs. (19a) and (19b) into Eq. (15) and making

use of the far zone approximations

(20) r, = R - a sin 0

(21) r2 = R + a sin e

in the phase term and rl, r2  R in the amplitude, we have for the far

zone edge diffracted fields

(22 a e-jk(R- a sin e)(22) r, l(P) = D(Ql) "E(Qd) -le

-d _ e-jk(R + a sin e) +

(23 MEP, - a e 2Rain)j
(n(Q2) * Ef(Q2) s R

It is seen that the scalar product of D andEf depends on the

polarization of the electric field of feed with resnect to the diffract-
ing edge. From Eqs. (10) and (11) we see that this electric field is
normal to the edge for the E-plane pattern whereas it is parallel to
the edge on the 11-plane pattern. The pattern in these two planes is of

particular interest; the analysis for each case is carried our sepa-

rately.

a) E-plane Analysis ( T ir/2)

The two edge points Q. and Q2 lie in the yz-plane as shown in
Fig. 6. Equation (10) yields for the incident field at Q0,

_.:-jkRo(24) EAe(Q ) x ix fea

in which a = at the edge of the reflector. From Fig. 6 one obtaij.z

l= -X

12
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Pd, Y -x d

A A A
p' = - X 1

in which we set d1 = 0e = d in the far zone. Hence

) P(Q) = s(Q) + (xx x )Dh(q)•

6 e-jkRo

(25) - Dh(Ql) Afe(a) e

Substituting Eq. (25) into Eq. (22),

-d = a Ae)-kRDh(Q) a e-jk(R a sin 0)

(26) _kP= Afe(R 0)  ' )

For the rays diffracted at Q2,

_f ^ e-jkRo

(27) Ee(Q2) = (x x 12) Afe(a)

and from Fig. 6 one obtains

e2  X

pd2  x x d

P2 = x12

Following the sam e procedure as that used for the field U'"fracted from

Q1, one finds that the field diffracted from Q2 is

e -JkR° as e-jk(R + a sin e) + jt

H(P) se(a) O Dh(Q, in e R

The field in the E-plane due to the direct radiation from the feed

is given by [Eq. (10)]

(29) El(p) =+ Afe(4) -

which after substituting

(30) R t= R -b cos 0

in the phase term and R' R in the aniplitude reduces to

14



() -~ A-jk(R -b cos 0)
(31) E (P) -+ Afe(*) -

where the sign is determined by sgn(cos 8) and

b is the distance between the aperture center and the focus.

b) H-plane Analysis (4 = 0)

The configuration of rays for this case is shown in Fig. 7. The

points Q1 and Q2 now le in the xz-plane. The electric field in the

incident ray is given by (Eq. (ii)]

(32) =y Afh(a)-ko

R0

Therefore

(3 " f(Q) = [y^yDs(Q 1 ) + (yxd) (yl') Dh(QI)" v E ()

(33) = y Ds(Q;) Afh(a). - jI R  •

Next on substituting Eqs. (33) in Eq. (15) and employing Eqs. (19), (20),

(21) after making the usual far zone approximations, one obtains

e-jkRo e-jk(R- a sin 0)
(34) F(P) = YAfh(a) Ds(Q1 ) a R

Ro Vsin OR

- e-jkR°

P)= DAf'h(a) o D(Q) ejk(R + a sin e) + jA

and

e-jk(R - b cos e)(36) El (P) = YAfh()

The total E- and H-plane fields in various kegions lying away from

the axis can now be obtained on substituting Eqs. (26). (28) and (31)

or EqS 34 -nA a fn.() inoEqS. (13 and 1'1). If the tangent to th

surface at the edge makes an angle et with the z-axis, 'he region given

by et < 0 < will be seen only by one of the two points; see Fig. 5.

The shadow boundary for feed illumination is given by 6 = i - c. The

fields contributing to the illmination of the different regions are
presented in tabular form; again it is convenient to refer to Fig. 5.

15
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Table 1 - Total Fields in Different Regions covered

by the Two Point Method

Region Total Field

it i~-f + -d -I

< e < et
--I -d

et<e E. + E2

The diffraction coefficients appearing in Eqs. (25) and (33)

include the correction factor F which will take into account the smooth

variation of the total fields across the shadow boundary. Therefore,
this transition region has not been considered separately.

Both the E- and H-plane fields are calculated using this method

over the complete range of aspects except in the vicinity of 8 = 0

anid 9 = g. The aperture field method and the ring current method will

give the contributions to the field at aspects around 9 = 0 and e

respectively.

D. The Ring Current Method

The rear axis of the reflector forms a caustic for the diffracted
rays and therefore, the geometrical theory of diffraction cannot be

applied directly to find the field in this direction. As mentioned

previously, a different method employing equivalent ring currents will

be used for this purpose.

The relationship of these equivalent currents flowing along the

edge of the reflector and the scalar diffraction coefficients for the

hard and soft boundary conditions may be deduced by examining the two-

dimensional diffraction of a plane wave normally incident on a perfectly-

condacting half plane. We will consider two cases separately, in one

case the incident electric field is parallel to the edge and in the

other, the incident magnetic field is parallel to the edge. Using the

geometrical theory of diffraction the diffracted electric field in the

first case it! fo, nd to he

(37) Ed = E'(Q) Ds(Q) jks

and the diffracted magnetic field in the second case to be

17



(38) li= 11'(Q) Dh( k-  ,

where s is the perpendicular aistance from the edge to the field point.

Alternatively, these diffracted fields may be described in terms of

electric and magnetic line currents I and M flowing along the edge of

the half plane.

e/4 e-jks

(39) Ed = o e

and

(4o) lid ky° 02L/ e-jks M

In the case of an arbitrarily polarized incident wave, Ei(Q) must

be replaced by its component tangent to the edge e • Ei(Q) and H1 (Q)

must be replaced by its component tangent to the edge i * Hi(Q). With

this in mind and comparing Eq.. (37) with Eq. (39) and Eq. (40), it is

seen that the equivalent electric and magnetic edge currents are

(41) 1 = - (Q) Ds(Q) I
ZO L

and

(42) M X - xI i(Q) Dh(Q) IT e -
jA1 4 ,

k

in which I is a unit vector in the direction of incidence and we have

made use of the relationship

(43) 'fi(q)- x il
Zo

It is seen that these equivalent edge currents not only are a

function of the position on the edge, but they also depend upon the

angles of incidence and diffraction (as defined in Fig. 17 of App. I)

at the edge point in question.

These currents are now used to calculate the field directly on

the rear axial caustic of the reflector antenna. It can be shown that

this procedure leads to a result identical with that obtained when the

Braunbek currents
19 '2 0 are employed and the field on the axial caustic

is calculated by evaluating the radiation integral asymptotically

This latter procedure is known to be a ,ery good high frequency approxi-

mation.

18



At aspects close to the rear axial caustic we employ the sa-e
equivalent currents as are used for the"rear axial case itself.

Strictly speaking this does not seem to be justified, but we fi.d that
the patterns calculated by this procedure blend smoothly wit. the

patterns calculated by the two point method. Moreover, we ncte that

near the rear axial caustic Ds and Dh are slowly varying ftu.Ctions of
the angle of diffraction in this application, and so keeping them con-

stant for a limited range of aspects is not a poor approxiimtion.

These equivalent currents have been used by Ryan2 s to calculate the

scattered fields at the axial caustics of several bodies of revolution.

In calculating the field near the rear axial caustic of the reflec-

tor

(44) I(cp' ) = - E(P)- cos ,V' Ds (7,7') -4
zok

and

(45) M(cp') = - Ef(' ) sin cp' Dh ( ej

where the angles 7,7' are the angles of diffraction and incidence at

the edge of the reflector as shown in Fig. 8. The electric field Ee

produced by the ring current I( ') is given by the radiation integral

(App. III).

e= jkaZo eJkR fAn I((P)e jka sin e cos (c- ')

46 4n R Jo (xk( ') dcp'
f(46)

and the electric field produced by the magnetic ring current M(p') is

given by

(7 = jka&1kRf2,t M(cp)eJka sin e cos (q-q.')

(4)4n RJO (Rx p') dp'

The total electric field is then given by the superposition of fe and

Em. Thus

() E=e +n

In order Lo evaluate these integrals it is necessary to express

the field of the feed Ef as a function of cp'. Ef(cp') can be determined

from measurement or calculation. In the former case it is customary

to measure the E- and f-plane patterns of the feed. The measurement

of the feed patterns in these Lwo planes may suffice, if the differ-

ence between the two patterns is not too great.
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HALF- PLANE CURRENT

Figure 8.
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If the pattern of feed is relatively uniform we may fun-tionally
interpolate between Ee and -plane patterns. The type of -*r,.erpolation
used in this analysis is described below:

(149) Ef %cpt) =f E(a) - [4(a) - Ef(a)] COS2(pt
- h

which can be wri ten as

(50) Ef(pl') = T - 6 cos 2'p ,

where

(51) T- e 22

(52) e - -h

2

Eqs. (44), (46) and (50) now yield

a ej(kR - 27
e - !7 1R s f (T-8 cos 2(p')ejka sin 0 cos (r-' ')cos (P'

4R 0

(53) (R^ x RA x $f,) d.c,

and similarly, Eqs. (45), (47) and (50) yield

e - " )h (T-b cos 2p' )ejka sine cos (p-9)')sin '

(54) ( x ̂ , ) ap, ,

where Ds = Ds(7,79) and Dh = Dh(7,7') as mentioned earlier.

The vector products appearing in the integrals are different for
the two principal planes and therefore, the evaluation of the integrals

is carried out for the E- and H-planes separately.

a, E-plane Analysis

In the E-plane (p = )the vector product appearing in the integral

of Eq. (53) can be expressed in the norm

(55) xR x ' x sin p' - cas 0 cos'

2-



Employing this relationship in Eq. (53) it is found upon evaluating the
integral that the x-component vanishes and the 0- component, denotcd by

Fe(G), is

(56 I.e(e) = ~cos e[(T - .Jo(X) + (A-5) J.(X) - 1,J":(,)]

where

X = ka sine ,

Jm(X) is the mth order Bessel function with argument X.

Eq. (53) can now be written as
-- a R 6 4X J1.

Ee =-M Ds cos 0 e-[(T Jo(X) + (T-6) J2(X) J4(X)]eIt

(57)

Returning to Eq. (54), for the E-plane the vector product inside

the integral can be expressed in the form

(58) R x = - x cos e Cos cp -e sin cp'

Again the x-component vanishes on evaluating the integral leaving only

the 6-component which is given as

(59) F1(e0) = (r + 2) Jo(X) - (T+b) J2(X) + 2 J4(X)]

Thus Eq. (54) reduces to

(6 o) e a- D J £-(IR 4[T + ) o( ) (T+) J() + J4(X)]

hR 21 V~2 2J

Emloying Eqs. (57) and (60) in Eq. (4~8),

a (k R 
-)[AiJo(X) AsJ 4 (X)]

where

(62a) A= T(Dh - Ds cos 0) +5 6(Dh + Ds cos 0)
2

(62b) A2 =-T(D 1 + Ds cos 0) - 5 (Dh - Ds cos 0)

(62c) A3  (Dh + Ds cos 0) •
2
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b) H-plane Analysis

In the H-plane = 0, ff and the vector product

(63) Rx Rx ' =-ycos 4' + 0sin c' cos 0,

and

(64) Rx ' =-ycos e sin €' - Ocos p'.

Substituting Eq. (63) in Eq. (53) and evaluating the integral, the

contribution from the 0-component vanishes leaving

-j(kR- T)

(65) -a D e [(T- 6) Jo(X) -(T-6) J W J •
js R 2 0(2 22~ -~ 4()

Next evaluating the integral in Eq. (54) after substituting Eq. (64)

in the equation, we obtain the y-component as

-j (kR- 45

(66) = _y aD o e R [(T+ I)J (X) + (T+6)6J

The total field is obtained as earlier by superposing F and F obtained

above. Thus

-j(kR- 
t)

w ia e
(67) = R [B1 Jo( X) + B2 J 2 (X) + B3 J 4 ()]

where

(68a) B1 
= T(D - Dh cos 0) -- (D + Dh cos 0),

(68b) B2 = -T(Ds + Dh cos 0) + 6(Ds - Dh cos 0),

85

(68c) B3 = + Dh cos e).

The rear axis is common to both the E- and H-planes and therefore,

we expect both these planes to give identical results corresponding to

this direction. This has been found to be so, with the rear axial field

given by

-.j (kR- !)
^ [ (T- D+(T+-) Dh] e(69) E (15 = T) D s 2 T

R
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III. MAIN LOBE AND ADJACENT SIDE LOBES

In Lhis chapter a description of the aperture-field method and its

application to compute the fields in the forward axial region are giver.

The aperture blockage caused by the feed structure and its effect on

the radiation pattern are also discussed.

A. Methods of Calculation

The forward axis of a reflector of revolution with axial illumina-

tion is a caustic of the diffracted rays; moreover in the case of a

parabolic antenna one also ha6 a congruence of the ordinary reflected

rays. Consequently, geometrical optics and the geometrical theory of
diffraction fail at and near the forwerd axial direction, and as in

the case of the rear axial caustic, we calculate the field ia the

neighborhood of forward aspect from an integral rcpresentation.

One may calculate the field of the refle=ctor antenra in the for-
ward axial region either from the current induced on the surface of

the reflector (current-distribution method) or from equivalent sources
in the aperture of the reflector (aperture-field method). In the

current-distribution method the electric current flowing on the surface

of the reflector is approximated by the gc.ometrical optics current

-f(70) .1 (R') 2 n x

where here R' is the position vector of a point on the surface of theA,

reflector, n is a unit normal to the surface at R' and Rf(R') is the

magnetic field of the feed at R'. The calculation of the far field of

the reflector from JS is not easy. in the case of the parabolic

reflector, a simple approach is to be tound in the aperture-field

method described in this chapter. In the aperture-field method geo-
metrical optics is used to determine the, aperture field in terms of
the field of the feed, taking into account the reflection which occurs

at the surface of the reflector.

Both of these approaches have been discussed and compared by

Silver, see Chapters 5 and 12 in [5]. The current-distribution method

is clearly the more accurate method; however, as t;he diameter of the
aperture in terms of a wavelength increases, the pattern calculated

from the current-distribution method approaches the patt-ern calculated

from the aperture-field method. This approach is particularly rapid

in the forward axial region, and as a result the aperture-field method
can be used to calculate the pattern of most aperture sizes of practi-

cal interest in the forward axial region. This conclusion is also

supported by the work of Tartakovskii7 who shows patterns calculated

by the two methods; in the forward axial region they are seen to agree

well. However, in the case of very deep reflectors with f/D < about
.25 it may be necessary to use the current-distribution method.
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B. The Aperture-Field Distribution

As mentioned earlier, the forward axial fields are computed here
for the case of a parabolic reflector only; however the method can be
applied to reflectors of other shapes also. Figure 9 shows the con-

figuration of the ray system employed to determine the aperture field.
Consider a tube of rays emanating from the feed F located at the focal
point of the reflector; this tube of rays is reflected from the surface

at QQI and appears at PP' in the aperture. The intensity of this tube

of rays at PP' is obtained from the principle of power conservation in

a tube of rays. Let the intensity of the reflected field at PP' be
IEaj. The intensity of the incident field at the surface of the reflec-

tor isIEf(R')j. Therefore, according to the principle of power concen-

tration in a tube of rays

(71) lEf(R,)1 2 R' d* p' d" dp'= lEal2 dp' p' do';

which reduces to

(72) IEal lEf(R')I Rd.

dIp

pa

10 F

Fig. 9 - Rays used to calculate the aperture field distribution.
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For the paraboloid of revolution with focal distance f

(73) = tan- 1 P r pt

4f

which yields

(74) aL-  __1_ 1
dp? +P R'

4f

so that employing Eqs. (6), (9), (72) and (74)

(75) JEa= A L(4 ')
R'

Finally adding polarization and phase information
e-jkRo

(76) Ea(pt,,,) A A h(p',q') e o

where

h(p', ) = f(*,cp,) = g(efpf) ,

Ro is the distance from the focus to the edge of the reflector.

The normalizing constant A is chosen so that the amplitude of the
electric field in the center of the aperture is unity. Since h(o) =
1, A = f the focal distance, and

(77) Za(p' cp' f h(pl ,@l ) -e-J~

Even though it has been assumed that the feed radiation is linearly
polarized in the y direction, the aperture field is in general not
linearly polarized due to the curvature of reflecting surface. The
aperture field has a cross polarized component in the x direction which
vanishes in the two principal planes leaving only the y component. It
is also seen that the direction of the x component reverses as one
moves from one quadrant to the adjacent one; see Fig. 12.2 in [5].
Furtherwr.re, the magnitude of this component Ms a .I compared to
y component. Therefore, these cross polarized fields do not really
contribute to the far zone field in the two principal planes; however
they give rise to small cross--polarized lobes in the axial planes at
450 to the principal planes.

2 1
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As mentioned earlier h(ptp') may be determined from calculation
or a series of pattern measurements; however in many cases it suffices
to measure the field of the feed in its E- and H-planes and to deter-
mine the field of the feed elsewhere by the functional interpolation
scheme described on page 21.

Thus the aperture electric field is given by

(78) fa(pt,,,,) = ;fja(p') _-a p,) _ Ea'Jco~'

This can be written in terms of T and 5 [Eqs, (51) and (52)], both of
which are functions of p'. Consequently,

(79) E(p,,p) = ^ [T(p,) - b(p,) cos 2Cp,]

C. Integral Representation of the Field

The integral representation of the far zone of a radiating system
is described in App. III. If we completely enclose the reflector by
the dotted surface S as showm in Fig. 10, and if the exact values of
the equivalent currents Js = n x H and Ks = B x n are known every-
where on S, then the radiation from the reflector can be found exactly.
However, in the present case the reflector diameter is taken to be
large in terms of a wavelength; consequently. we may employ the follow-
ing approximations in calculating 'the reflector far zone field in the

forward axial region.

1) Js = o on the back side of the reflector,

2) s = Ea x z, where Ea is given.by Eq. (79),
3) JY = z x -a, where Ra _zx "Ea

Zo
In addition, the approximations R z = cos e 1 1 and sin 0 ' 0

may be used in the amplitude of the integrand of the radiation inte-
gral, with the result that the far zone electric field of the reflec-
tor in the forward axial region is given to a good approximation by

(8o) - e-jkRf ak ea(.
- -. R JAS( ; ds'

Employing Eq. (79) this y4elds
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Fig. 10 - Surface of integration for the aperture-field method.

jC) =Re Zq a
- - cos 2 3 ] ejkp' sin 9 cos (p-q')

(81) pt dp, dpt'

Carrying out the integration with respect to p',

* fa
(R) = y a e-jkR 2. [T(p') Jo(kp .. +

R k
(82)

(82. . 6(p') cos 2qp J2(kp' sin n)] p' dp'

in which Jo and J2 are Bessel functions of order 0 to 2 respectively.

If one considers the two principal planes only, the cos 2c term inside
the integral takes the value -l for the E-plajie and +1 for the 1....

T and 5 can be expressed in terms of the known l'unctions fe() = h(P)

and fh(r) 1hh(P') usino Eqs. (51), (52) and (77), as
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(83) T(p?) f e-jk"o [he(p') + Ih(p')]
2R1

(84) 6(p,) e-jko [he(P,) _
2R'

The expressions for he and hh may be found from tL.e measured teed
patterns and the integration in Eq. (82) can then be evaluated numeri-
cally by the Simpson's method. To avoid cumulacive errors forty points
per wavelength are taken in the integration, which is repeated at half
degree intervals. The far zone pattern is normalized to the main beam
miximum value, which is taken to be 0 dB.

D. lae Aperture Blockage

The presence of the feed and its support in the path of the reflected
rays has not been taken into account in the preceding analysis. One
can expect that this will give rise to wide angle scattering and there-
for increase the side lobe levels while reducing the gain slightly.
Because of the complicated nature of the feed structure, which includes
the actual radiator and its supporting structure, an exact analysis of
the contribution made by the aperture blockage is a difficult task.
However, an approximate assessment of the increase in side lobe levels
in the forward region can be made if one assumes that the feed blocks
out a portion of the aperture radiation equal to its physical cross
section, as viewed from the forward axial direction. In other words,
one assumes that the feed gives rise to a shadow in the aperture field
in the geometrical optics sense. This is the customary method of ap-
proximating the effect of aperture blockage. In the second example
treated hera, there is a significant aperture blockage; in this case
the shadow area can be approximated by a circle of radius c. Since
the shadow area is located at the center of the reflector aperture
and is relatively small, the aperture field here is approximately equal
to unity. The far field set-up by this "shadow" aperture can be written
as

(85) Es = - .. j k 2.c 2 J1 (kc sin e) e-JkRo
kc sin e

where J1 is the Bessel function of crdcz 1. The resultant field in the
forward axial region can then be obtained by the super-position of
Eqs. (82) and (85).

Since the hypthetical shadow aperture is small compared with the
reflector aperture, its pattern given by Eq. (85) will be very broad
describing a backgrowid radiation in the forward axial iegion which is
roughly constant and opposite in phase to the reflector pattern on axis.
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IV. MI ASUREMENTS

In order to check the thorctical aialy-si given in the previous
chapter measurements were talun on a parabolic reflector arntenra opcrat-

ing in the X-band range of frequencies. A description of the anterinna,
the antenna range and the E- and 11-plane pattern-, obtained for the
primary field of the feed are presented in this chapter.

A. Description of the Antenna

The antenna used to obtain the far field power -patterns (Figs. 15

and 16) is shown in Fig. 11. The diameter of the aperture of the para-
bolic reflector is 24.0 inches and its focal length is 8.0 inches. The

edge of the surface has a thickness of 0.057 inch which can be considered

small compared with the measurement wavelength. The feed is an open-
ended flanged rectangular waveguide. The feed support consists of a

tripod which is fabricated of polystyrene. The cylindrical legs of this

tripod are 0.37 inch in diameter and are mounted well away from the edge

of the reflector to minimize interference with the edge diffraction. A
simple tuner in the form of a waveguide plunger is employed to match
the feed to a crystal mixer. The i-f output o' the mixer is fed to a

coaxial transmission line, which is attached to one of the legs of the

tripod.

The position of the feed was carefully checked to ensure that its

effective phase center was at the focal point of the reflector. It was

first positioned mechanically, then finally adjusted to obtain: 1) a

maximum radiated signal in the forward axial direction, 2) a pattern

symmetrical about the reflector axis. It was found that the focus of

the reflector is about 0.1 inch behind the aperture of the feed.

B. The Antenna Range

An outdoor antenna range was employed. The patterns of the reflec-

tor antenna were measured at a range of 45 feet, which corresponds to

R = D2 /X, here D is the aperture diameter. A block diagram of the

antenna measuring system is shown in Fig, 12.

The transmitter consists of a frequency stabilized X-13 klystron.

The transmitted power is approximately 150 milliwatts, and the measure-

ment frequency is 11 Ghz. The transmitter feeds a horn which has cor-

rugated inner walls to minimize its side lobe level. The horn has a

gain of about 20 db, and its half' power beam widths are approximately

15 degrees in the E- and 11-planes. Tae horn is mounted about 13 feet
above the ground. TM parab-lic antenna ic mounted at the top of a

metal mast 6 feet long and 1.75 inches in diameter. The mast in turn
is mounted on a pedestal whose height and axis rotation are adjustable.

The rotation ol Lhe pedestal is controlled from a panel by a selsyn

system; a second selsyn system controls the rotation of the recorder

30



POLYSTYRENE ROD

(a)

0"9" POLYSTYRENE-F-- A-OUTPUT TO
RECEIVER

1.6 0.4"

H-1.62" OP EN TUNER
SUPPORTING
FLANGE

V (b) (c)

Fig. 11. Description of the parabolic reflector antenna
used in the measurements.
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drum from the panel. Ln record ig the patterns, two degrees of alnenna
rotation correspor.d to one inch of recorded pattern. Before a pattern
measurement, both ti.e height of the antenna and the orientation of the
axis of rotation of the mast were carefully checked to mnke certain the
range was aligned.

The i-f output of the parabolic antenna is fed to a Scientific-

Atlanta series 1600 receiver, which in turn is connected to a Scientific-
Atlanta series 1520 recorder. The receiving system, including the crys-
tal mixer at the antenna feed, has a sensitivity of about -96 dbw at
11 Ghz. In principle, the antenna measuring system is sensitive enough
to record the complete E- and H-plane patterns of the parabolic antenna
at a 45 feet range. In other words, the transmitter power level and

receiver noise level are not a limitation to pattern measurement.

Satisfactory E-plane patterns were recorded. Also satisfactory H-plane
patterns were recorded, except for the deep shadow region behind the
reflector; there only the primary lobe of the rear axial caustic was
strong enough to be measured without interference from a background
signal. These measured E- and H1-plane patterns are compared with cal-
culated patterns in the next chapter.

During the measurement of the pattern behind the reflector, the
main beam illuminates a field of closely mowed grass. Rough calcula-
tions show that the terrain backscatter from this field of grass is
about the same order of magnitude as the H-plane signal received behind

the reflector. It is believed that this terrain scatter is the spurious

background signal mentioned in the preceding paragraph.

C. The Primary Feed Patterns

The patterns of the primary feed also were measured at a range of
45 feet. The flanged waveguide feed supports only dominant TE0 mode,
so that it produces a linearly polarized field. The measured patterns

in both E- and H-planes are shown in Fig. 13. It is seen that the E-
plane pattern has a taper of about 13 db, and the H-plane pattern a
taper of about 16 db at angular distances corresponding to the reflec-
tor edge. The beam widths at the 3 db level are 660 and 560 in the E-
and H-planes, respectively. The patterns are roughly similar to those

calculated from theoretical formulas for the unflanged open-end rectan-
gu.lar waveguide, assuming that no reflected waves exist at the guide

termination. 2 However, these formulas were not used in the analysis
as the representation of the primary feed pattern; it was found to be

rather critical in detenrmining the secondary pattern. Therefore, the
measured primary patterns, in both E- and H-planes were represented

closely by empirical formulas, so that they could be employed to inter-

polate the valu3s at each of the points used in the integration of
Eq. (82). For the E-plane a good empirical expression is given by

(86) fe() = e-3 5 x 0- 4  2 + 1.3 x LO- 8  4'
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and the the H-plane

(87) fhi~ -4.4 X 10-4 42 + 2.0 X 10-8 4

where * is measured in degrees. These formulas are valid crly in thle
forward region of the feed where the patterns have a rnonotcrnic behavior.
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V. RESULTS AND DISCUSSION

The methods developed earlier are applied to calculate the patterns

of two parabolic reflector antennas. One of them is the same antenna

described in the last chapter, the cther is a parabolic reflector with

a dipole feed. A comparsion of the calculated patterns is presented in

this chapter, and some conclusions are reached concerning the utility

of the geometrical theory of diffraction in this type of problem.

The scattering from the feed and its support are only approximated

crudely, see section 3.4; therefore it is desirable in evaluating the

present method of analysis to begin with a case where the scattering

from the feed and its support is minimal. In such a case we can see

how well this method predicts the wide angle radiation from the reflector.

A. Parabolic Reflector with Dipole Feed

10
Afifi has measured the H-plane pattern of a parabolic antenna

mounted on a ground plane. The feed consists of a dipole positioned at

the focus, which lies in the aperture of the reflector In this con-

figuration there is no scattering from the feed suppor and the scatter-

ing from the feed itself is relatively small compared with the edge

diffraction and direct feed radiation.

The aperture diameter is lO.65Xand f/D ratio is 0.25. Afifi's

measured pattern is compared with , pattern calculated from computer

programs based on the two point and ring current methods; the pattern

calculated by the latter method blends smoothly with that calculated by

the former method at 0 = 1680. The pattern in the forward axial region

was not calculated as it would simply coincide with that calculated by

Afifi, who used the current-distribution method. At the shadow boundary

the secondary pattern is 6 dB below that of the primary pattern; this

was used to relate the levels of the calculated and measured patterns

shown in Fig. 14,

The agreement between calculated and measured patterrs is excellent

between the forward axial region and the shadow boundary of the reflec-

tor (from 100 to 900) and also in the shadow region behind the reflector

from 900 to 1300. The agreement in the deep shadow region at aspects

greater than 1300 is good. Based upon previous experience with pattern

measurement in the deep shadow region, it is safe to attribute a good

part discrepancy here to measurement error at these low signal levels,

see the discussion on page 33. Thus, in general, this comparison

between calculated and measured patterns is very gratifying, because it
confirms the accuracy of our solution based upon the geometrical theory

of diffraction.
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B. Parabolic Reflector with Flanged Waveguide Feed

This antenna and the measurement of its patterns, together with

the patterns of its feed, are described in Chapter IV. The patterns
are calculated from computer programs which are based on all of the
analytical methods described in Chapters -1 and III, including the
aperture blockage due to the feed alone. The pattern calculations for
the forward and rear axial regions are joined smoothly with those cal-

culated by the two point method.

The calculated and measurei E-plane patterns are compared in

Fig. 15. The patterns were first ca)culated neglecting aperture blockage
(solid curve), and then the effect of aperture blockage was included

(dotted curve) in the region between 0 and 25 d-grees. It was felt that

the nature of the approximation did not justify the inclusion of aperture
blockage at the larger aspect angles. In part, this belief was based

on the fact that the scattering from the dielectric rods contributes

perceptibly at the larger aspect angles, and this was not included in the

analysis,

The power level of che main beam maxima of the three patterns is

chosen to be 0 dB, and it is clear that the calculated patterns predict

the shape of the main beam well, as one would expect. The calculated
and measured patterns also are in very good agreement in the region
behind the reflector, where aperture blockage does not affect the pattern
directly. The close agreement of the lobe structure of the two patterns
in this region again confirms the accuracy the analysis based on the
geometrical theory of diffraction. This agreement is all the more

remarkable when one notes that it occurs at pattern levels which are

40 to 50 dB down with respect to the main beam maximum.

In the illuminated region, between 30 and the shadow boundary at

1070, the calculated and measured patterns are in fairly good agreement.
In the region between 50 and 300 tALe agreement is poor unless the effect

of aperture blockage is included. The calculation without aperture
blockage is of interest in the region between 50 and 300, because it

indicates the minimum achievable side lobes in the region close to the
main beam, for a given aperture illumination. Any significant z .erture
blockage raises the level of these side lobes.

In he H-alan anerure taper is 3 dB greater than that in the

E-plane; furthermore, the orientation of the dieTecLric rods of the tilpod

with respect to the polarization of the feed is such os to result in a

somewhat greater scattering from the tripod. Thus one vould expect
larger discrepancies between the calculated and measured patterns in this
plane, and this expectation is confirmed in Fig. 16, where the overall

agreement between the two patterns is only fair. Despite the absence of
detailed agreement, the general behavior of the measured pattern is pre-
dicted qualitatively by the calculated pattern; this observation is par-

ticularly true when one notes that the comparison is made over a dynamic
range exceeding 60 dB.
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As in the case of the E-plane pattern, the shape of the main beam

is predicted well from the ap2rture-field method. Also the shape of the

main lobe of the rear axial caustic is predicted well by the theory.
The minor lobe structure in the deep shadow region behind the reflector

was too low to be measured accurately, and it is not included in the

measured pattern.

It is evident from the above discussion that the scattering from

the feed and its support can play an important part in determining the

side lobes of a reflector antenna; hence it is desirable to extend the

present solution to include a careful analysis of this effect.

C. Wide Angle Side Lobes

The following observations concerning the characteristics of the
wide angle side lobes of a parabolic reflector antenna are based on the

two examples described here. In the region between the forward axial
region and the shadow boundary the wide angle side lobes depend upon

the direct feed radiation, the edge diffracted radiation, and the aper-

ture blockage if it is significant. The average level of these side

lobes Is closely related to the feed pattern. There is a pattern

maximum near the shadow boundary which results from the in phase com-

bination of the feed radiation and the edge diffracted radiation. The

edges of both reflectors are sham; hence the field at the shadow

boundary is 6 dB below the feed field illuminating the edge.

The field drops sharply as one enters the shadow region. In the

deep shadow region the many well def..ned lobes of the measured pattern
shown in Fig. 15 confirm the radiation mechanism associated with the

two edge diffracted rays. Finally, we note that there is another pattern

maximum at the rear axial caustic. The fields diffracted at the edge of

the reflector in the vicinity of the E-plane are primarily responsible

for this relatively large pattern maximum. It can be eliminated by

placing a limited amount of absorber at appropriate positions on the

rim of the parabola.1 4 Also, this same absorber will reduce the deep

shadow pattern of Fig. 15 to roughly that of Fig. 16. This illustrates

the usefulness of the geometrical theory of diffraction solution in

antenna design, which stems from its direct association with the radi-

ation mechanism.

D. Conclusions

The complete pattern of a parabolic reflector antenna can be

calculated using the singly-diffracted rays of the geometrical theory

of diffraction, with proper corrections for the forward and real axial

directions. Excellent agreement uith experimental patterns can be

expected, if the aperture blockage is aot significant.

The solution has the usual advantages of a solution based on the

geometrical theory of diffraction, namely, it is obtained in the form
of simple functions, its computation cost is low, it is directly related

to the radiation mechanism of the antenna so it can be readily used

in the design problem, and it can be easily extended and modified as the

need arises.
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JLALF-PLAN.E DIPI"A WCTIOi: COEI"FICIEI[:T

The dyadic diffraction coefficient D for the half-plane can. Oe
expressed in terms of the two scalar diffraction ccefficients Ds a .d
Dh for the soft and hard boundary conditions, respectivey. Let the
total scalar field U be the sum of a geoetrical optics field and a
diffracted field Ud. At the surface of the half-plene U = 0 for the
soft boundary condition, whereas U/6y = 0 for the hard coundary ccndi-
tion, see Figure 17. The diffraction of a scalar plane wave field by

a half-plane has been solved exactly by Somerfeld-2: recently Pazhak

and Kouyoumxjian24 have obtained an asymptotic solutioi. for the spherical

wave illumination of the wedge. This solution is particularly amenable

to interpretation in terms of the geometrical theory of diffraction.

In this appendix we reproduce the results of their solution only for

the half-plane and for the illumination of the edge at normal incidence.

f Source

, I

0

'igvxe 17. half-plane diffraction in the plane which contains
the source and is perpendicular to the edge.

Fig. 17 - Half-plane diffraction in the plane which contains the scurce

and is perpendicular to the edge.

Let Ui(sl,cp) be the field of the spherical wave incident az -he edge

of the half-plane. The diffracted fields for the soft (s) and h-rd (h)

boundeay conditions are

(Al) d = u(s',p') Ds(cpi.') e s
sUs Ss

!

h h S-sTs')

where the scalar diffraction coefficients are givern ty
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-e F[~- F(k a+)

(A2) Ds(cp,q,) - 1
h 2 5___ irk' +

2 2

with

(A3) F(k a) = j2 Jifa, ejkLaT %T,-ai e-J'r

(A4) a; = 2 cos( '

2

(AS) L : SS

S + St

F(kLa;) is a correction factor needed only in the transition regions of
the reflection and shadow boundaries. Away from these boundaries, more
precisely when kLa; > 10, F(kLaT) = 1 and may be replaced by unity in
Eq. (A2). It is to emphasize this behavior that we show the diffraction
coefficient to be a function of T and cp' only.

The integral appearing in this factor is related to the tabulated
refne-1 -integral-: - -

Se-i2x d = e-J' dT - f 'e'  di

x 0 0

where

e = (0.5 - i -5

0

and

4Xe-J 2 d 2'~~[(jx)-s\~ 
x]

C and S being the tabulated Fresnel integrals of argument X.

Thus

(A6) se- 2 d -0- x 0 5 s-
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The values of the functions C and S are obtained using the library sub-

routines available in the IBM 360/75 computer.

For rays normally incident on the edge of a perfectly-conducting

half-plane the dyadic diffraction coefficient
1 8

(A7) D = e e Ds + Pd p Dh

where

e is the unit vector tangent to the edge,

= e x I; I being the unit vector in the direction

of the incident ray,

Pd = e x d; d being the unit vector in the direction

o the diffracted ray.

Thus the diffracted electromagnetic field

(A8 e -jks

(A8) Ed(s,) = ' Ei(s"') sCs + s') 

_ _In the case of high frequency diffraction, it is interestingto

note how imately scalar diffraction is related t vector (electro-

magnetic) diffraction, as evidenced by the form of the dyadic diffrac-

tion coefficient.
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APP2I-DIX II

CAUSTIC DISTANCES

Employing differential geometry a new formula has been derived 8

for the distance p of a caustic from the point of diffraction Q on a

curved edge.

Let

I be the distance from the phase center of the source

to Q,

Pe be the radius of curvature of the edge,

e,n be the unit vectors tangent and normal to the edge

directed outward from the center of curvature,

respectively,

I,d be the unit vectors in the direction of the incident

and diffracted rays at Q,

0 be the angle between I and e.

Then

(A9) n

Pe sin2p

Substituting a for Pe, 3 for 1, Ro for L, we get

( o)-a _ fi" - di)
(A.0) 1 1-~ I-~

Pi Ro a

with i = 1, 2 corresponding to Q, and Q2, respectively.

a) Diffraction at Q, (see Fig. 6)

n. =y

~Ro

z R cos e + (R sin O-.)
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Thus

AR sin -a
nj* il -- and ni d, r 3.

which yield

(All) p ara
R sin e-a

b) Diffraction at %2

A A

ya z(f-h)

RO

z Rcos 0 + y(R sin + a)
a2 =r r2

Thus
*^ = and 312. A (R sin e + a)

n2 •12 = y-~ and n2 •d2 = -, r

which yield

(A12) P2 a ra
R sin e + a
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APPENDIX III

FAR ZONE INTEGRAL REPRESENTATION OF THE FIELD

y

P1 P

x

Fig, 18 - Geometry of the Source Point P' and the Field Point P.

The far zone criteria for the radiation field are &iven by

a) kr >> I,

b) R >> DIwith R' W D,

where

r is the distance between the source point P' and the

field point P,

RI is the distance between P' and 0, and

D' is the maximuim distance of the source distribution

from 0.
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These cO:n(.itio!!s lead to uhe following approximations in the radiatio,
integral:

a) r c- R - • in the calculation of phase,

b) r = R in the rLmplitude term,
1

c) terms of order and - are neglected.

The electric field E and the magnetic field H will each be trans-
verse to the direction of propagation R and are related by the char-

acteristic impedance of the rmedium Zo, so that

(A13) zEZoTIx k

The electric field due to an electric current moment dpe is given by

f -Jk

(A14) e() = jkZo e
-  J eJkR " R R x [R x de)

sources

and the corresponding magnetic field follows from Eq. (A13) as

_A15 Re.T = - j  f ej  R x dge,R'>

41 R sources

The electric field due to a magnetic current moment dpm is obtained

from the above equation by duality and is

(A6)_f' ejk '  R

A jkZo e- jk R  " R "IoR x d-m(R')
source

The current moments for surface and line distributions of current are

given by

(Al?) dpe(R' ) = T (T') ds'

(A17) d7,(~ O' ds'I(,') If di'

, ~~'R (_ (fl = s ) ast

Therefore, the total electric field due to both clectric and magnetic

current sources is given by

jkZo e-Jk R

L_ - U
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where the vector far field amplitude

(A20) U e'' R~i x ~p( + YoAx d
source

In the case of an aperture lying in the xy-plane the equivalent

surface current sources are given by
( l) 78 = x Ra aniK

(A21) "is xz a sI=5 Ea x Z

where Ea and Ha are the aperture fields. If the source point is
described in cylindrical coordinates (p',O,'cp) and the field point by
spherical coordinates (Rep),

(A22) R5 R = p' sin e cos

49



I!

REFERENCES

1. Jasik, H. and Bresler, A.D., "A Low Noise Feed System for Large

Parabolic Antennas," in Electromagnetic Theory and Antennas

(Proc. Symp. held at Copenhagen, Denmark, June, 1962) Ed: E.C.

Jordan., New York: McMillan Co. (Pergamon Press Book), 1963,

pp. 1167-1171.

2. Einstein, H.B. and Warner, H.B., "Mathematical Evaluation of Radio

Frequency Hazards to Resistive Devices," IEEE Trans. Vol. EMC-7,

No., 3, pp. 287-296 (1965).

3. Keller, H.B., "Diffraction by an Aperture," J. Appl. Phys.,

Vcl. 28, No. 6, pp. 426-444 (1957).

4. Silver, S., Microwave Antenna Theory and Design, New York: Dover

Publications, Inc., 1965, p. 158.

5. Silver, Opt. Cit., Chapters 5, 6, 12.

6. Fradin, A.Z., Microwave Antennas (Trans. from Russian) New York:

Pergamon Press, 1961, Chapter 7.

7. Tartakovskii, L.B., "Side Radiation from Ideal Paraboloid with

Circular Aperture," Radio Engineering and Electronics, Vol. 4, No. 6,

pp. 14-28 (1959).

8. Silver, Op. Cit., p. 144.

9. Schouten, J.P. and Beukelman, B.J., "On the Radiation Pattern of a

Paraboloid of Revolution," Appl. Sci. Res. (B), Vol. 4, pp. 137-

150 (1954).

10. Afifi, M.S., "Radiation from Paraboloid of Revolution," in Electro-

magnetic Wave Theory-Part 2 (Proc. Symp. held at Delft, The Nether-

lands, September, 1965) Ed: J. Brown, New York: Pergamon Press,

1967, pp. 669-687.

11. Kinber, B.E., "Lateral Radiation of Paraboli7 Antennas," Radio

Engineering and Electronics, Vol. 6, No. 4, 'p. 481-492 (1961).

12. Lysher, L.J., "A Study of the Near-Field Behind a Parabolic Antenna,"

M.S. besis, The Ohio State University, Columbus, Ohio, 1962.

13. Peters, L., Jr., Notes on "Reduction of Radio Frequency Interference

through Antenna Design".

14. Peters, L., Jr., and Rudduck, R.C., "RFI ReductiLon by Control of

Antenna Sidelobes," IEEE Trans., Vol. EMC-6, pp. 1-11 (1964).

50



15. Peters, I., Jr., and Kilcoyne, T.F., "Radiating Mechanisms in a

Reflector Antenna System," IEEE Trans., Vol. MC-7, pp. 368-374

(1965).

16. Rusch, W.V.T., "Edge Diffraction from Truncated Paraboloids and

Hyperboloids," Jet Propulsion Laboratory Technical Report 32-1113,

California Institute of Technology, Pasadena, California (June 1,
1967).

17. Kouyoumjian, R.G., "Asymptotic High Frequency Methods," Proc. of

the IEEE, Vol. 53, pp. 864-876 (1965).

18. Kouyoumjian, R.G., Unpublished Notes.

19. Braunbek, W., "Neue Naherungsmethode fur die Beugung am eben Schrim",

Zeits fur Physik, Vol. 127, p. 381 (1950).

20. Keller, J.B., Lewis, R.M. and Seckler, B.D., "Diffraction by an

Aperture II," J. Appl. Phys. Vol. 28, No. 5, pp. 570-579 (1957).

21. Jones, E.M.T., "Paraboloid Reflector and Hyperboloid Lens Antenna,"

Trans. I.R.E., Vol. AP-2, pp. 119-127 (1954).

22. Silver, Op. Cit., p. 344.

23. Sommerfeld, A., Otics, New York: Academic Press, 1964, pp. 247-
272.

24. Pathak, P.H. and Kouyoumjian, R.G., "The Dyadic Diffraction Coeffi-

cient for a Perfectly-conducting Wedge," Paper to be published.

25. Ryan, C.E., "A Geometrical Theory of Diffraction Analysis of the

Radar Cross Section of a Sectionally Continuous Second-Degree

Surface of Revolution," Ph.D. Dissertation, The Ohio State University,

Columbus, Ohio (1968).

51



UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA -R&D

(Security clossification of title, body of abstract and indexing annotation mett be entered when the overall report is classified)

I. ORIGINA.TING ACTIVITY (CoWMC azaOr),lectroScienc e Laboratory, 2a. REPORT SECURITY CLASSIFICATION

(Co~ase~'~ecto~cinceLabratry, Unclassified
Department of Electrical Engineering, The Ohio Stat .. GROUP

University Research Foundation, Colmbus, Ohio 43212)

. REPORT TITLE

THE WIDE ANGLE SIDE LOBES OF REFLECTOR ANTENNAS

4. DOSCRIPTIVE NOTES (Type of report rAd inclusive dates)

Scientific Interim

5. AUTHOR'S) (Last nanie, first nowu. initial)

PA.J. Ratnasiri

R.G. Kouyoumjian

P.H. Pathak
6 REPONT DATE 23 March 1970 7. TOTAL NO. OF PAGES ,7 NO.OF REFS

525
Ga. CONTRACT OR GRANT NO. 9. ORIGINATOR'S REPORT NUMBES)

Contract AF 19(628)-5929

Project, Task, Work Unit Nos. ElectroScience Laboratory 2183-1

5635-02-01
.DoD Element 6102F 9b. OTHER omOTNR S)(Any other nubr.- that may, be

DoD Subelement 681305 AFCRL-69-0413

0. AVAILASILITY/LIMIYATION NOTICES

This document has been approved for public release 
and sale;

its distribution is unlimited.

11. SUPPLEMENTARY NOTES 7,Z SPONSORING MILITARY ACTIVITY

Air Force Cambi..dP e Research
TECH, OTHER Laboratories (CRDL.G. Hanscom Fieid

Bedford, Massachusetts 01730

13. ABSTRACT

The complete pattern of a parabolic reflector antenna hes--been

calculated using the singly-diffracted rays of the geometrical theory

of diffraction, with proper corrections for the forward and rcal axial

directions. Excellent agreement with experxmental patterns can be

expected, if the aperture blockage is not significant.

The solution has the usual advantages of a solution based on the

geometrical theory of diffraction, namely, it is obtained in the form

of simple functions, its computation cost is low, it is directly related

to the radiation mechanism of the antenna and so it can be readily used

in the design problem, and it can be easily cxtended and modified as the

need arises.

OD oRM 1473
JAN 64 UNCLASSIFIED

Security Classification



UNCLASSIFIED
Security Classification

Reflector antenna

Secondary pattern

Diffraction

Rear axial field

Aperture field

Waveguide feed

Dipole feed

Parabola

Antenna measuring system

INSTRUCTIONS

i. ORIGINATING ACTIVITY: Enter the name and address 10. AVAILABILITY/LLIITATION NOTICES: Ent-,r any HIMl-

of the contractor, subcontractor, grantee, Department of tations on further dissemination of the report, other than those

Defense activity or other organization (corparate author) imposed Jf it curity classification, using standard statements
issuing the report. such as:

2o. REPORT SECURITY CLASSIFICATION. Enter the over- (1) "Qualified requesters may obtain copies of this
all security cla.*silication of the report. kidicate whether report from DO2C."

"Restricted Data" Is included. Marking ir. to be in accord (2) "Foreign announcement and dissemination of this

ance with appropriate security regulations. report by DDC is not authorized."
25. GROUP: Automatic downrding is specified in DaD (3) "U. S. Go-etnment agencies may obtain copies of

Directive 5200.10 and Armed r orces-Industrial Manual. this report directly from DDC. Othler qualified DDG

Enter the group number. Also, when applicable, show that users shall request through

optional markings have been used for Group 3 and Group 4

as authorized. (4) "U. S. military agencies may obtain copies of this
3. REPORT TITLE: Enter the comp!ete report title in all report directly from DDC. Other qualified users
capital letters. Titles in all cases should be unclassified, shall request through
If a meaningful title cannot be ,elected without classiffca-
tion, show title classification in all capitals in parenthesis (r
immediately following the title. (5) "All distribution of this report is controlled. .ual-

4. DESCRIPTIVE NOTES: If appropriate, enter the type of fied DDC users shall request through

report, e.$., interim, progress, summary, annual, or final.
Giave the inclusive dates when a specific reporting period is If the report has been furnished to the Office of Technical
covered. Services, Department of Commerce, for sale to the public, indi-

5. AUTHOR(S): Enter the narfo) of author(s) as shown ofn cate this fact and enter the price, if known.
or in the report. Enter last name, first name, middle initial. 11. SUPPLEMENTARY NOTES; Use for additional explana.
If military, show rank and branch of service. The name of

the principal author is anabsolute minimum requirement. tor notes,
12. SPONSORING MILITARY ACTIVITY: Enter the name of

. REPORT DATL Enter th date of the repor: as day, the departmental proect office or laboratory sponsoring (pay.

month, year, or month, year. I more than one date uppeas ang for) the research and development. Include nadress.

on. TOT L repor R use date S; ofe pubc to p13. ABSTRACT: Enter an abstract giving a brief and factual

7a. TOTAL NUMBER OF PAGES: The tors page count summary of the document indicative of the report, even

s~aould follow norrmal pagttion procedures, i.e., enter the though it may also appear elsewhere in the bo y of the tch.
number of pages containing information. nicalreport. If additional space is required, a continiattion

7b. NUMBER OF REFERENCES: Enter the total number if sheet shall be attached,
references cited in the report. It is highly desirable that the abstract of classified re-

So. CONTRACT OR GRANT NUMBER: If appropriate, enter ports be unclassified. Each paragraph of the abstract shall
the applicable number of the contract or grant under which end with an indication of the military security classification

the report was written, of the information in the paragraph, represented as (TS), (Si.

8b. 8c, & 8d. PROJECT NUMBER: Enter the appropriate (C), or/UW.

: I;..=. A.noorm'nt identification. such as project number, There is no limitation on the length of the abstract. How.

subprofect number, system puibera, task number, etc. everp Ou5ICAe irlgh fe

no. ORIGINATOR'S REPORTr NUMBERiS): Enter the offi- 14. KEY WORDS: Key words are technically meaningful tern.s
cial report number by which the document will be ,dentified or short phrases that characterize a report and may be used as
and controlled by the originating activity. This number must index entries for cataloging the report. Key words must be
be uiique to this report. selected so that no security classification is required. Identi-
9b. OTHIER REPORT S:MBEitS)If the report I,ks been flers, tuch as eouipment model designation, trade name, mili-

tacy project rode nome, geographic location, may be used as
assigned any other r.port numbers (either bv the origirato, key words but wil be followed by an indication of technical
or by the sponsor). aloo enter this numbers). context. The arsigrament of links, rules, and weights is

I optional.

UNCLASSIFIED


