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ABSTRACT rn 
The Wiener index is a graphical invariant that has found extensive application in 
chemistry. We define a generating function, which we call the Wiener polynomial, whose 
derivative is a q-analog of the Wiener index. We study some of the elementary properties 
of this polynomial and compute it for some common graphs. We then find a formula for 
the Wiener polynomial of a dendrimer, a certain highly regular tree of interest to 
chemists, and show that it is unimodal. Finally, we point out a connection with the 
Poincar6 polynomial of a finite Coxeter group. 0 1996 John Wiley & Sons, Inc. 

the boiling point of paraffin. Since then, the index 
has been shown to correlate with a host of other 
properties of molecules (viewed as graphs). For 
more information about the Wiener index in chem- 
istry and mathematics, see [2, 31, respectively. 

We wish to define and study a related generat- 
ing function. If q is a parameter, then the Wiener 
polynomial of G is 

1 .  Introduction and Elementary 
Properties 

et d ( u , v )  denote the distance between ver- L tices u and v in a graph G. Throughout this 
article, we assume that G is connected. The Wiener 
index of G is defined as 

W(G) = c d ( u , v ) ,  
b, u )  

where the sum is over all unordered pairs {u ,  v} of 
distinct vertices in G. The Wiener index was first 
proposed by Wiener [l] as an aid to determining 

where the sum is taken over the same set of pairs 
as before. It is easy to see that the derivative of 
W(G; q )  is a q-analog of W(G) (see Theorem 1.1, 
number 5). In the rest of this section, we derive 
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some basic properties of W(G; q )  and find its value 
when G specializes to a number of simple graphs. 
In Section 2, we compute the Wiener polynomial 
of a dendrimer D,,, ,,, a certain type of highly regu- 
lar tree that models various chemical molecules. 
This permits us to rederive results of Gutman et al. 
[4]. We then use this formula to show that the 
coefficients of W( D,,, ,,; q )  are unimodal. Finally, 
we end with a section on comments and open 
questions. In particular, we point out the connec- 
tion with the Poincark polynomial of a Coxeter 
group. 

In what follows, any terms that are not defined 
will be found described in the text of Chartrand 
and Lesniak [5]. We use IS1 to denote the cardinal- 
ity of a set s. Also, if f (q)  is a polynomial in q,  
then degf(q) is its degree and [q']f(q) is the 
coefficient of 9'. The next theorem summarizes 
some of the properties of W(G; 9). Its proof fol- 
lows easily from the definitions and so is omitted. 

Theorem 1.1. The Wiener polynomial satisfies the 
following conditions: 

1. deg W(G; q )  equals the diameter of G. 
2. [qo]W(G; q )  = 0. 
3. [qllW(G; q )  = IE(G)I, where E(G) is the edge 

4. W(G; 1) = ( 'vr)'), where V(G) is the vertex 

set of G. 

set of G. 
5. W'(G; 1) = W(G). 

We next find the Wiener polynomial of some 
specific graphs. We let K,, P,, C,, and W, denote 
the complete graph, path, cycle, and wheel on n 
vertices, respectively. Also, let Q, be the cube of 
dimension n and K,,,, be the complete bipartite 
graph on parts of size m and n. Finally, P denotes 
the Petersen graph. Determining the Wiener poly- 
nomials of these graphs is a matter of simple 
counting, so the proof of the next result is also 
omitted. In the statement of the theorem, we use 
the standard q-analog of n which is [ n ]  = 1 + 
q + ... +q,-'.  

Theorem 1.2. We have the following specific 
Wiener polynomials: 

2. W(K,,,; q )  = mn9 + [( ;) + ( : ) ] q 2 .  

Combining the previous theorem with number 
5 of Theorem 1.1, we obtain the well-known Wiener 
indices of these graphs. 

Theorem 1.3. We have the following specific 
Wiener indices: 

2. w(K,,,,,,) = ( m  + nI2 - mn - rn - n. 
3. W(W,,) = ( n  - 1 X n  - 2). 
4. W(P)  = 75. 

5. W(P,,) = ( ' I ;  1). 

6. W(C2,,) = ( 2 ~ ~ ) ~ / 8 .  
7. W(C,,,+,) = (2n  + 2)(2n + 1)(2n)/8. 
8. W(Q,,) = n22"-2 .  

It would be interesting to see what various 
graph operations [6] do to the Wiener polynomial. 
Given graphs G, = (V,, E,) and G, = (V,, E,) with 
IV,l = n ,  and I E,I = k ,  for i = 1 , 2  we define six 
new graphs formed from G,, G,. 

1. Join: The graph G, + G, has V(G, + G,) = 

V, u V, and 

E(G, U G,) = E, U E ,  U (uv: u E V,,v E V2}  

In the other five cases, the vertex set is 
always V, x V,. 

2. Cartesian product: The graph G, X G, has 
edge set 

{ ( u l ,  u,>(v, ,v,):  ulv, E E, and u2 = v2 
or uzu2 E E ,  and u, = v,}. 

3. Composition: The graph G1[G2] has edge set 

{(u,, u,>(v,, v,) : u,u, E El 
or u2u2 E E, and u, = u l ] .  
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4. Disjunction: The graph G, V G, has edge set 

{(u l ,  u,)(v,, v,) : ulvl E El or u2v2 E E,  or both} 

5. Symmetric difference: The graph G, @ G, has 
edge set 

{ ( u , ,  u,>(v,, v2) : ulvl E E,  
or u2v, E E ,  but not both). 

6. Tensor product: The graph GI @ G, has edge 
set 

{ (u l ,  u,)(v , ,  v,) : ulvl E El and u2v2 E E,}. 

Taking a suggestion of Andreas Blass, it is some- 
times more natural to express our results in terms 
of the ordered Wiener Polynomial defined by 

W(G;9)  = c 9 , 

where the sum is now over all ordered pairs (u ,  v) 
of vertices, including those where u = v. Thus, 

l f ( l 1 , l ~ )  

( 1 1 ,  11) 

W(G; 9)  = 2W(G; 9) + IV(G)l. 

Also, it will be convenient to have a variable for 

the nonedges in Gi, so let k, = (:) - k ,  for 

i = 1,2. 

Proposition 1.4. Suppose that G, and G, are con- 
nected and nontrivial (not equal to K,). Then, with 
the preceding notation, 

Proof. In each part of this proof, let d,, d,, and d 
denote the distance functions in G,, G, and the 
graph formed from G, and G,, respectively. 

1. In G, + G,, all pairs of vertices are either at 
distance one or two. If d ( u , v )  = 1, then 
either uv E El or U D  E E,  or u E El, 

u E E,. This gives the linear coefficient in 
W(G, + G,; 9). The other term is obtained by 
counting the remaining vertex pairs. 

2. A geodesic for an ordered pair 

3. 

4. 

5. 

((u,, u,), (v,, v,)) is obtained by followfng a 
geodesic in G, for ((u,, u2), (v,, u,)) and then 
one in G, for ((v,, u,>,(v,, 71,)). The stated 
formula for W(G, X G,; 9) follows: 
First, consider pairs {(u,, u,), (v,, v,)} with 
u, = v,. Then, 

with a geodesic in the second case being 
( ~ 1 ,  ~ 2 1 ,  (wl, u2),  (u,, v,), where w1 is any 
vertex adjacent to u, in G,. These vertex 
pairs contribute the first two terms in the 
sum for W(G,[G,l; 9). If u, # v,, then 

since a u, to v, geodesic in G, gives rise to 
one in GI[ G, I by adding a second component 
equal to u2 for the first vertex and to v2 for 
all other vertices of the geodesic. 
This is similar to the previous proof where 

1 if u,v, E El or u2v2 E E,  =i 2 else, 

with a geodesic in the second case being 
(u,, u,), (w,, w,), (v,, v,), where ulwl E El 
and w2v2 E E,. 
This is again similar to the previous two 
proofs with 

1 if exactly one of ulvl E El 

2 else. 
or u2v, E E,  

In the second case, how to choose the middle 
vertex of the geodesic depends on whether the 
neighborhoods of u i  and vi are the same or not, 
i = 1,2, as well as on whether both u1v1 E El and 
uzv2 E E,  or neither. 
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As a corollary, we can rederive some of the 
W(G; 9) from Theorem 1.2 as well as the ordered 
Wiener polynomial of the grid Pm x P,,. 

Corollary 1.5. We have the following specific 
Wiener polynomials: 

1. W( K m ,  ,,; 9) = mn9 + [( ;) + (;)I9,. 
2. W(W,,; 9) = ( 2 n  - 219 + 

{Kn - l>(n  - 4)1/2)q2. 
3. w(Q,; 9) = 2"(1 + 9)". 
4. W(P, x PJ = ((1 + 9)m - 2q[m])((1 + 9)n 

- 29[nI)/(1 - 9)' 

Proof. For the first two polynomials, use part 1 of 
Theorem 1.4 as well as the fact that W, = C, ~ + 
K ,  and K m , ,  = K m  + K,, where K, is the com- 
pletely disconnected graph on i vertices. For the 
last two polynomials, use part 2 of the same 
theorem along with the n-fold product Q, = 

K ,  x ... x K,. Note that one needs 

W(K,; 9)  = 2 + 2 9  

and 

Now we will find the Wiener polynomial of a 
dendrimer, which will take considerably more 
work. 

2. The Wiener Polynomial of a 
Dendrimer 

For d 2 2, the d-ary dendrimer on n nodes, D,, d ,  is 
defined inductively as follows: The tree D,,d con- 
sists of a single node labeled 1. The tree has 
vertex set {l, 2, . . . , n). It is obtained by attaching a 
leaf n to the smallest numbered node of D,- ,, 
which has degree I d. It is convenient to consider 
Dn,d as if it were rooted at vertex number 1 with 
the nodes at each level ordered left to right in 
increasing order of their numbering. Thus, in a 
typical tree, the root has d + 1 children while 
every other internal vertex (possibly with one ex- 
ception) has d. The dendrimer D,,,, is pictured in 
Figure 1. 

Define nk (respectively, mk) to be the number of 
vertices in the d-ary dendrimer with exactly one 
descendant of vertex 2 (respectively, of vertex 3)  at 
level k + 1. Thus, 

d k  - 1 

d - 1  
nk = 2 + (d + 1)- 

and 

dk - 1 

d - 1  
mk = 3 + (2d)---. 

The tree in Figure 1 has no = 2, n ,  = 5, n,  = 11 
and m, = 3, m, = 7, m2 = 15. 

To describe W(D,,,; 91, we also need to give 
each vertex m > 1 a label A(m) in addition to its 

1 
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number. Specifically, if n ,  5 i n  < i zk  ~ 1, then 

N n z )  = ( I k + l , l ,  ,..., l , , ) ,  
k +  1 

where c 1,d’ = n - M k  + ( d  - l ) d k ,  
r = O  

0 5 I ,  < d Q i ,  

so that the 1 ,  are the digits in the base d expansion 
of n - n k  + ( d  - l ) d k  (possibly with a leading 
zero). Thus, all the vertices at level k + 1 have 
labels which are consecutive base d from 

O , d - l , O  , . . . ,  0 to l , d - l ,  ..., d - 1  . -3 ( ’  k f l  -1 
This implies that if rn has label h ( m )  = 

( l a +  ,, I , ,  . . . , I , )  then m‘s children are labeled left 
to right with 

( I , + , ,  i k r . .  . I to ( I , + , ,  I , ,  . . ., l o ,  d - 1). 

To illustrate, the labels of the vertices of D,,,, are 
also given in Figure 1. 

To find W( D,*, d ;  9), we first consider the corre- 
sponding difference polynomials: 

AW(D,,,,,; 9 )  = w(D,,,‘/; 9 )  - W(D,-,,d; 9) .  

So, if A(W(D,,,,; 9)) = C, c,9‘, then c, is the 
number of vertices in D,,,, that are at distance i 
from n. 

Lemma 2.1. 
Then, 

AW(D,,,,,; 9 )  = c d’q2‘+’ + c d J ( l l  + 1)92 ,+2 ,  

where k‘  = k - 1 or k for n k  I n < rnk or rnk I n 
< n k +  respectively. 

Suppose that h(n )  = ( I k +  I ,  I,, . . . , l o ) .  

k k ’  

I = 0 1 = O  

Proof. We will do the case n k  I n < rnk ,  the other 
being similar. Suppose first that n = nk so that 
I , =  ... - - 1,- , = 0. Thus, we wish to show that 

AW( DIlA 9)  = 4 + q 2  + dq3 + dq4 + .-. +dkq2,’ I. 

Every vertex at distance i - 1 from n k  ~ , in Dllk I, 
is at distance i from n k  in D,,A,d. When i = 2 j  is 
even, this accounts for all the vertices at distance 
2 j  from n k  and so 

[q2’lAW(Dl, , ,d ;9)  = 19,’ ‘ lAW(D,li  ,,,,; 9)  
= d1-l  

by induction. When i = 2 j  + 1 > 1, then any 
leaves of D,l,,d which are descendants of n k - i - l  
but not of nk-, are also at distance 2 j + 1 from n k .  
(If j = k ,  then let n- ,  = 1.) So, by induction, 

= [92’lAW(Dnk-, ,d;  9 )  

+ #(leaves at distance 2 j  + 1) 

d1- l  + d J - ’ ( d  - 1) if j < k 
= { 0 + d k  i f j = k  

= d1 for all j .  

This completes the proof when n = n k .  
Now suppose that nk < n < mk. We will con- 

struct a function f that sets up a bijection between 
vertices at distance i from vertex n in Dn,d and 
those at distance i from vertex n‘ in Dn,,d, where 
nk I n‘ < n, and then use induction. The bijection 
will hold for all i, 0 I i 5 2 k  + 1, except for i = 2 j ,  
where j will be determined shortly. 

All vertices satisfying nk < n < rnk are descend- 
ents of vertex 2. However, since n # n,, the unique 
2 to n path contains an edge uv where v is not the 
leftmost child of u. Let u be the lowest such vertex 
and define 

j = distance from u to n ,  
v’ = child of u just to the left of v, 
n’ = leftmost lowest descendant of v’. 

For a schematic sketch of this situation for d = 2, 
see Figure 2. 

It follows from the definitions and the way in 
which children of a vertex are labeled that 

where I > 0. So, I ,  = 1; if i # j - 1 and I ] - ?  only 
enters into the coefficient of 9,’. Construction of 
the bijection f will establish that 

[q‘IAW(D,, , ;q) = [q’lAW(D,. , , ;9> for i # 2 j .  

Thus, induction combined with the equations for 
A( n )  and Mn’) will complete the proof in this case. 
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U 

E Dn,d \ Dn',d 
FIGURE 2. Location of u ,  v ,  v ' ,  n ,  and n' when d = 2. 

Construct f as follows: Given any ordered tree 
T and one of its vertices u, then we let T(u) denote 
the subtree of T consisting of u and all its descend- 
ants. Note that there is a unique isomorphism of 
ordered trees g : D,,,(u) --f Dn,,d(u'). Also note 
that all vertices of D,, \ Dnr, d (other than n itself) 
are leaves at distance 2 j  from n. So, if w is any 
vertex of D,,,,d U n,  then let 

Thus, d(n ,w)  = d(n ' , f (w)) :  For w E D,,d(u) U 
Dn',d(u'), this follows because g is an isomor- 
phism. For any other w, the unique n to w and n' 
to w paths both go through u, so that d(n, w )  = 

d(n', w). The function f is also clearly bijective, so 
we are done when i # 2j.  

To complete the proof, note that f restricts to an 
injection from the vertices at distance 2 j  from n' 
in Dnf,d into those at distance 2 j  from n in Dn,d. 
The only remaining w with d(w, n )  = 2 j are the 
leaves of D,,,(u') which are d1-l  in number. So, 
by induction and Eqs. (2) and (3), 

as desired. rn 

We are now in a position to compute W( Dn, d ;  9). 
In the following theorem, 1.1 denotes the floor 
(round down) function. 

Theorem 2.2. Suppose that 

A( n )  = ( l k +  1, I , ,  . . . , I , )  

and define 

A , ( M )  = I ,  + I,d + ... I J - l d J - - l  

If nk 5 n < mk, then 
k 

w ( D , , , ; ~ )  = C d'(n - n,  + 1 ) 9 ~ ~ + '  
1=0 

+ d i ( l i  + l ) (A,(n)  + 1) 9 2 r t 2 ,  i 
where k' = k - 1 or k for nk I n < 
< nk+ I, respectively. 

or mk 5 n 

Proof. Since W(D,, d ;  9) = 0, we have 
n 

w(D, ,d ;  9 )  = Aw(D,,,,d; 9 ) .  
m = 2  

Thus, the theorem will follow from Lemma 2.1 and 
summation. Summing the coefficients of q2'+' in 
the various AW( D,,,, d ;  9 )  is easy since the nonzero 
ones are all equal to d'. The nonzero [921+2]  
AW(D,,,,d; q )  are periodic with period d'". In fact, 
this periodic sequence is 

d'+ 1 d ' ,  . . ., d ' , 2 d ' ,  . . . , 2 d ' ,  . . , , d'+' I . . . ,  I 

where each block of equal values is of size d'. 
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Thus, the sum of a complete period is d 

and the term containing this expression in 
[ q2' + I W (  D,,, n; q )  comes from summing all com- 
plete periods prior to the (perhaps partial) period 
containing c = [ q 2 ' + 2 ] A W (  D,l, d ;  4). The term 

d2' (  I )  comes from summing all complete 

blocks of the last period prior to the (perhaps 
partial) block containing c. Finally, 

d'(1' + l ) ( h , ( n )  + 1) 

is the contribution of the block containing c. 

We now rederive the Wiener index of a com- 
plete dendrimer, as was first done in [4]. A com- 
plete dendrimer is Dl,,d, where n = nk - 1, i.e., as 
an ordered tree, it is complete to level k .  The 
reader should be warned that in [4] they only 
consider complete dendrimers and index them 
with two parameters that are different from ours. 
We have 

k 

-1 h(nk - 1) = 1, d - 1, ..., d - 1 r 
and 

hj(nk  - 1) = d' - 1 

for i < k. Substituting these values into the formu- 
las of Theorem 2.2 gives 

w ( D ~ k - i , d ; 9 )  
k -  1 dk-' - 1 

r = O  
= C d ' * d ' ( d  + 1) q2'+l 

d - 1  
dk-1-1 - 

+ c d 2 ' ( d +  1) - 
k - l  1=0 I 

+d2'(  :) + d' - d . d' 

q2'+l 

k- 1 dk-' - 1 

I=o d - 1  
= C d2 ' (d  + 1) 

d + l  k -  1 

r = O  

Taking the derivative of the previous equation and 
setting t = 1 gives the Wiener index according to 

Theorem 1.1, number 5. To evaluate the summa- 
tions, use 

kdk+' - ( k  + l ) d k  + 1 k -  1 c ( i  + 1)d' = 
i = O  ( d  - 112 

and its variants repeatedly to obtain 

w( D n k -  1, d )  

d +1 ( 2 k  - l ) d 2 k + '  - ( 2 k  + l ) d 2 k  + dk+'  + dk  
- 

- -[ d -1 ( d  - 1)2 

1 ( 2 k  - l ) d 2 k + 2  - ( 2 k  + l ) d 2 k  + d 2  + 1 
- 

( d 2  - 1)2 

kd2k - ( k  + l ) d 2 k - '  + dk-'  

( d  - 112 
+ 

d - 1  

I kd2k+2  - ( k  + l ) d 2 k  + 1 
- 

( d 2  - 1)2 

kd2k+2  - ( k  + l ) d 2 k  + 1 + d ( d  + 1) 
( d 2  - 1)2 

Simplification of the above expression yields the 
following result which is equivalent to Eq. (9) of 
[4] after a change of variables: 

Corollary 2.3. The Wiener index of a complete 
dendrimer is 

~ ~~ ~ 

3. Unimodaiity 

We say a sequence ( a m ) m z 0  is unimodal if, for 
some index k, 

Unimodal sequences appear in many areas of 
mathematics. For a survey, see Stanley's article [7]. 
We will show that the coefficients of W( D,, d )  are 
unimodal. First, however, we need a general 
result about sequences and their differences. The 
diference sequence of is ( h a , ) ,  I, where 
Aam = a, - a,_'. 
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Proposition 3.1. Suppose that (a,,,),, ~ and 
(b,,),,, are two sequences with ha,, ,  I A b,, for all 
m in some interval I of integers. If a, 5 b, for 
some M E I, then a,,, I b,,, for all m 2 M with 
m E I. On the other hand, if a ,  2 b, for some 
M E I, then a,,, 2 b,,, for all m I M with m E I. 

Proof. We consider the case a M  < b,, the other 
being similar. Using the given inequalities, we 
have, for m 2 M, 

171 111 

a,?, = a ,  + All, < b, + 
k = M + 1  k = M + 1  

Ab,  = b,,,, 

as desired. 

We need coefficients of W(D,,,L,; q )  to play the 
roles of a M  and b, in the previous proposition. 

Proof. Note that by the choice of p, we have 

k 

A ( p k ) =  l , l , d - 1 ,  ..., ( -  
and so 

for i 2 k. Using Theorem 2.2 and the previous two 
equations, we get 

( d  + 1). (6) - - 2d2k-1 

Using Theorem 2.2 again, we obtain 

[$k+l]W(t)  = &(p,  - n k  + 1) 

= d q m k  - nk + 2 d k )  = 3 d 2 k .  (7) 

Comparison of Eqs. (6) and (7) and the fact that 
d 2 2 yield the inequality in the statement of 
lemma. 

One last application of Theorem 2.2 together 
with Eqs. (4) and (5) gives 

But this is the same as the value obtained in Eq. 
(71, so we are done with the proof. 

We now put the various pieces together to get 
the promised theorem. 

Theorem 3.3. Let W ( t )  = W(D,,,; 4). Then, the 
coefficients of W( t )  are unimodal. Furthermore, 
for n k  I n < p k ,  either [ q z k ] ~ ( t )  or [ q 2 k + 1 1 ~ ( t )  is 
a maximum. On the other hand, for p k  I n < n k + l ,  
we have a maximum at [q2k+2]W(t ) ,  so that in this 
case the sequence is increasing. 

Proof. We will only consider the case n k  I n < 
p k .  The reader can easily fill in the details in the 
other one. Since deg W ( t )  5 2 k  + 2, it suffices to 
show that the following two equations hold: 

for the first inequality, fix i and consider the 
sequence whose terms are given by all, = 

[q'lW(D,,,,,; 9). So, in particular, a,, = [q ' ]W(t ) .  
Similarly, define b,,, = [ q ' + ' l  W( D,,,, ',; q )  so that 
b,, = [q '+ ' ]W( t ) .  Lemma 2.1 shows that these two 
sequences satisfy the supposition of Proposition 
3.1 for m 2 m,r /2J .  By the lemma just proved, 
apl  ,,*, I bPl ,,*,. Since n 2 n k  > p , l / 2 1 ,  Proposition 
3.1 applies to show that a ,  I b,, as desired. 

The second inequality is clearly true for nk I 
M < mk, since, then, [ q 2 k + 2 1 ~ ( t )  = O. If mk 5 n < 
p k ,  then consider the sequences defined by a,, = 

Iq2k+'lW(Dn,,d;  q )  and b,, = [q2k+21W(Dn,,d; 9). 
These satisfy the hypothesis of Proposition 3.1 for 
m 2 mk. By the previous lemma, ark  = bpi. So, since 
n < pk, we can apply Proposition 3.1 to get a ,  2 b,,, 
which concludes the proof. rn 
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4. Comments and Open Questions 

Since the Wiener polynomial is a new graphical 
invariant, there are many questions one could ask 
about it. We summarize some of them in this 
section. 

(I) The reader has probably noticed that we did 
not provide a formula for W(G, @ G,; q )  in terms 
of W(G,; q )  and W(G,; 4). It would be interesting 
to fill this gap in the list of Wiener polynomials 
related to graph operations. 

(11) A referee pointed out that the generating 
function for the Wiener polynomial of the com- 
plete dendrimer has a nice form. It can be obtained 
algebraically from the equation for W( Dnkp ,, d ;  q )  
given at the end of section 2, but the referee asked 
for a combinatorial proof. We give such a demon- 
stration next. 

Proposition 4.la. The generating function for 
W(Dnkpl,d; 4) is 

Proof. Let T, = Dnk- l ,d  and F ( z )  = C k Z l  
W(T,;q)zk .  Consider T,-, as embedded in T, so 
that their roots coincide. Then (1 - z ) F ( z )  is the 
generating function for all u to v paths in Tk such 
that a least one of u, v is a leaf, u it v. Now there 
is a d2-to-1 mapping from paths P of length 1 in Tk 
to paths P '  of length I - 2 in T k - ,  gotten by 
removing the two endpoints of P.  Furthermore 
one of the endpoints of P is a leaf iff one of the 
endpoints of P'  is a leaf. So (1 - d2q2z)(1 - z ) F ( z )  
is the generating function for all paths in T, of 
length one or two with at least one endpoint a leaf. 
Now if k > 2 then T, has exactly d times as many 
such paths as TkPl .  So (1 - dz)(l - d2q2z)(1 - 
z )F(  z )  is a polynomial of degree 2 which is easy to 
compute directly, giving the numerator of the frac- 

rn 
(111) The Wiener polynomial refines the Wiener 

index since it gives information about how many 
pairs of vertices are at a given distance i, not just 
the sum of all distances. One can also refine the 
Wiener polynomial itself as follows: Define the 

tion in the statement of the proposition. 

Wiener polynomial of a graph G relative to a vertex 
v by 

d(v ,uI)  W,,(G;q) = c q 
W E  v 

The next result is immediate from the definitions 
and will be useful latter. 

Proposition 4.1. We have the following relation- 
ship between the ordered and relative Wiener 
polynomials: 

W ( G ; q )  = W,(G;q) .  

Furthermore, if G is vertex transitive, then for any 
vertex v E G, we have 

U 

W(G; q )  = IVI W,(G; 9). rn 

(IV) In certain cases, the Wiener polynomial is 
closely related to a polynomial that appears in the 
theory of Coxeter groups. We follow the text of 
Humphreys [8] in terms of definitions and nota- 
tion. Let (W, S )  be a Coxeter system and let T = 

{ wsw : w E W, s E S). There should be no confu- 
sion between the notation for a Coxeter group W 
and the one for the Wiener invariants since the 
latter is always followed by a parenthesized ex- 
pression. The absolute length of w E W is the mini- 
mum number k such that 

w = t,t, ... t,, where t ,  E T V i .  

We write f ( w )  = k in this case. The absolute length 
function differs from the ordinary length function 
in that the factors in the product for w are re- 
quired to be in T rather than in S. Recently Barcelo 
and Goupil[9] along with Garsia found a beautiful 
connection between absolute length and NBC 
bases. 

Our interest is in the Poincare' polynomial of W 
which is defined by 

r I (W;q)  = c qi""'. 
Z U t  w 

It is related to the extended Wiener polynomial as 
follows: We define a graph C, associated with 
any Coxeter group. The vertices of G, are the 
elements of W and we connect v and w by an 
edge if v = wt for some t E T .  This graph is 
related to the strong Bruhat ordering of W. Note 
that f(w) = d(1, w),  where 1 is the identity element 
of W and distance is taken in G, . Combining this 
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observation with Proposition 4.1 and the easily 
proved fact that G ,  is vertex transitive, we obtain 
the connection between the two polynomials. 

Proposition 4.2. 
and G, is the corresponding graph, then 

If W is a finite Coxeter group 

W(G,; 9 )  = IWI n ( W ;  9) .  

The next theorem is well known; see the book of 
Orlik and Terao [lo]. 

Theorem 4.3. 
its Poincarg polynomial factors 

If W is a finite Coxeter group, then 

n ( W ;  9 )  = n ( 1  + eq) ,  

where the product is over all exponents e of W. 
In particular, the roots of n(W;  q )  are all negative 
rational numbers. 

e 

The comment about the roots of n( W; 9) relates 
to the concept of unimodality as follows: We say a 
sequence (anr)nr  
for all m 2 1. The relationship between these three 
concepts is easy to prove (see [71). 

is log concave if a: 2 a, - a, + 

Proposition 4.4. Let ( u , , ~ ) ~  , be a sequence of 
positive numbers and let f ( q )  = CF=, a m q m  be the 
corresponding polynomial. 

1. If f(9) factors over the negative rationals, 

2. If ( a n l )  is log concave, then it is also uni- 
then ( a n l )  is log concave. 

modal. 

This brings up three questions: 

1. For which graphs G is the coefficient se- 

2. For which graphs G is the coefficient se- 

3. For which graphs G does W(G; 9) factor over 

quence of W(G; 9) unimodal? 

quence of W(G; 9) log concave? 

the negative rationals. 

Note that both the graphs G, and Q, satisfy the 
last condition, which is the strongest of the three. 

(V) There are two theorems that are useful for 
computing the Wiener index of a tree that we have 
been unable to find analogs for in the case of the 
Wiener polynomial. The first is due to Wiener 
himself [ l l .  

Theorem 4.5. Let T be a tree and let e be an edge 
in E = E(T). Let n,(e) and n,(e) be the number of 
vertices in the two components of T - e. Then, 

W(T) = C n,(e>n,(e). 
e E E  

The second is a result of Gutman [ll]. It is 
useful when the tree in question has few vertices 
of high degree. 

Theorem 4.6. Let T be a tree and let v be a 
vertex in V = V ( T )  with deg v 2 3. Let 
n,(v), . . . , ndeg Jv) be the number of vertices in 
each of the components of T - v. Then, 

Note that this theorem immediately gives the 
Wiener index of the path P,, as in Theorem 1.3, 
number 5, as well as the fact that Pn has the 
largest Wiener index of any tree. It would be nice 
to get analogous results for Wiener polynomials, 
possibly by comparing them coefficient-wise. 

(VI) Because of the development of parallel ar- 
chitectures for interconnection computer networks, 
there has recently been interest in a generalization 
of the distance concept. A container, C(u,v) ,  is a 
set of vertex-disjoint paths between two vertices U ,  

v E V(G) ,  i.e., any two paths in C(u, v) only inter- 
sect at u and v. The width, w = w(C(u,v)),  is the 
number of paths in the container while the length, 
I = I(C(u, v)), is the length of the longest path in 
C( u, v). For fixed w, define the w-distance between u 
and v as 

d,(u, v) = min Z(C(u, v)), 
C ( U ,  v) 

where the minimum is taken over all containers 
C(u, v) of width w. Note that when w = 1 then 
d,(u, v) reduces to the usual distance between u 
and D. For more information about these concepts 
and their relation to networks, see the article of 

Now we can define the w-Wiener polynomial 
Hsu [121. 

by 
W,(G; 9) = q d w ( u , v ) .  

u.  u 
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It would be interesting to compute this polynomial 
for various graphs and study its properties, e.g., 
unimodality. It would also be interesting to see if 
this object yields any useful information in chem- 
istry, group theory, or computer science. 
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