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ABSTRACT

Higher order statistics are a useful and complementary tool for measuring the clustering of

galaxies, containing information on the non-Gaussian evolution and morphology of large-scale

structure in the Universe. In this work we present measurements of the three-point correlation

function (3PCF) for 187 000 galaxies in the WiggleZ spectroscopic galaxy survey. We explore

the WiggleZ 3PCF scale and shape dependence at three different epochs z = 0.35, 0.55 and

0.68, the highest redshifts where these measurements have been made to date. Using N-body

simulations to predict the clustering of dark matter, we constrain the linear and non-linear

bias parameters of WiggleZ galaxies with respect to dark matter, and marginalize over them

to obtain constraints on σ 8(z), the variance of perturbations on a scale of 8 h−1 Mpc and its

evolution with redshift. These measurements of σ 8(z), which have 10–20 per cent accuracies,

are consistent with the predictions of the � cold dark matter concordance cosmology and test

this model in a new way.

Key words: methods: statistical – cosmological parameters – cosmology: observations –

large-scale structure of – Universe.

⋆ E-mail: fmarin@astro.swin.edu.au

1 IN T RO D U C T I O N

In the current structure formation paradigm (e.g. Press & Schechter

1974; White & Rees 1978; White & Frenk 1991; Berlind &

Weinberg 2002), galaxies form inside dark matter (DM) haloes,

which evolved from small perturbations in the early Universe. This

C© 2013 The Authors

Published by Oxford University Press on behalf of the Royal Astronomical Society

 at T
h
e A

u
stralian

 N
atio

n
al U

n
iv

ersity
 o

n
 D

ecem
b
er 1

9
, 2

0
1
3

h
ttp

://m
n
ras.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/


WiggleZ three-point correlation function 2655

allows us to connect the galaxy field to the overall matter distribu-

tion, and therefore to use large-scale galaxy clustering to constrain

cosmological models and their parameters (see for instance Peacock

et al. 2001; Eisenstein et al. 2005; Percival et al. 2007; Kazin et al.

2010; Sánchez et al. 2012 and references therein). This connec-

tion, however, is not a perfect one, since galaxy observables such

as luminosity, colour, etc. are also shaped by baryonic physics and

environmental effects, with the consequence that different types of

galaxies have different clustering properties (Norberg et al. 2001;

Zehavi et al. 2005, 2011), described as ‘galaxy bias’.

The galaxy two-point correlation functions (2PCF) have been

the main tool to constrain cosmology using large-scale structure,

because the shape of the two-point clustering of matter depends

on cosmological parameters such as the matter density, baryon

fraction and neutrino mass. In some cases, it is possible to obtain

these constraints marginalizing over the bias of the galaxy popu-

lations we use; an example is the cosmological constraints from

baryon acoustic oscillation (BAO) measurements (Cole et al. 2005;

Eisenstein et al. 2005; Beutler et al. 2011; Blake et al. 2011a;

Sánchez et al. 2012) where parameters such as the cosmic distance

scale and the Hubble expansion rate H(z) can be measured using

only the position of the BAO peak, which does not depend on the de-

tails of the galaxy population used, at first order. However, there are

other cosmological parameters which cannot be constrained using

two-point galaxy clustering statistics only.

In particular, the amplitude of primordial perturbations,

parametrized in the low-redshift Universe by σ 8(z), the rms of

the matter density field in 8 h−1 Mpc spheres extrapolated to red-

shift z by linear theory, is degenerate with the details of the galaxy

population, encoded in the large-scale linear galaxy bias parameter

b1. On large scales, these two parameters have the same effect on

the overall amplitude of the galaxy 2PCF; therefore, one can only

constrain the product b1σ 8.

Resolving this degeneracy requires use of another observable,

or adoption of a particular galaxy evolution model. For the first

approach, other observables such as lensing (e.g. Fu et al. 2008; Lin

et al. 2012) or the mass function of galaxy clusters (e.g. Eke, Cole &

Frenk 1996; Rozo et al. 2010; Kilbinger et al. 2013) have been used

to constrain σ 8, but current constraints are degenerate with other

parameters such as the matter density �m. The second approach,

selecting a particular galaxy population with a known evolution of

its clustering, allows disentangling of the linear galaxy bias and

σ 8, and has been studied in Tojeiro et al. (2012) using a passively

evolving luminous subsample of Sloan Digital Sky Survey (SDSS)-

I/II and SDSS-III galaxies. This method gives good constraints on

σ 8, but whereas it works well for their galaxy sample (of luminous

red galaxies, LRGs), for other galaxy surveys it might be difficult

to find a suitable passive galaxy population.

Another, complementary way to break these degeneracies is

to measure three-point correlation functions (3PCF) of the same

galaxy data set. Two-point statistics are only a complete description

for Gaussian fields, but the late-time large-scale structure, driven

by non-linear gravitational clustering, is strongly non-Gaussian

(Bernardeau et al. 2002), and higher order correlation functions thus

encode additional information that can be used to constrain galaxy

population and cosmological models. The first measurements of

the 3PCF were carried out in angular catalogues as a way to ver-

ify the hierarchical model of structure formation (Peebles & Groth

1975), and more recently, in large-scale spectroscopic surveys such

as 2dFGRS (Verde et al. 2002; Jing & Börner 2004; Gaztañaga et al.

2005) and SDSS (Kayo et al. 2004; Nichol et al. 2006; Kulkarni et al.

2007; Gaztanaga et al. 2008; Marı́n 2011; McBride et al. 2011b;

Guo et al. 2013). The main goal of these measurements is to test

theories of growth of structure and the predictions of cosmological

simulations, and to measure the biasing of the galaxies with respect

to the DM distribution.

In this work, we present the results of the measurement of the

3PCF for a sample of 187 000 galaxies from the WiggleZ Dark

Energy Survey (Drinkwater et al. 2010), which probes galaxies

in the range 0.1 < z < 1.0 with a median redshift z ∼ 0.6. Using

N-body simulations to study DM statistics, we estimate the WiggleZ

galaxy bias and thereby measure σ 8. These estimations have been

done in the past (Gaztañaga et al. 2005; Ross, Brunner & Myers

2006; Marı́n 2011; McBride et al. 2011b), but the fact that the

WiggleZ survey spans such a large range of redshifts with a large

overall volume allows us to split our galaxy sample into redshift

slices and measure σ 8 as a function of redshift, hence constraining

the large-scale structure growth history.

This paper is organized as follows. In Section 2, we describe

our survey and the simulations we use; in Section 3 we introduce

the galaxy 3PCF and how it is measured, along with the model

connecting galaxy and DM clustering. In Section 4, we present

the measurements of the WiggleZ 3PCF as a function of scale and

shapes. In Section 5, we discuss constraints on the galaxy bias

and σ 8 as a function of redshift. In Section 6, we summarize our

findings. We note that a fiducial flat � cold dark matter (�CDM)

cosmological model with matter density �m = 0.27 and Hubble

parameter H0 = 100 h km s−1 Mpc−1 with h = 0.7 is used throughout

this paper to convert redshifts to distances, which are measured in

h−1 Mpc.

2 DATA A N D S I M U L AT I O N S

2.1 The WiggleZ Galaxy Survey

The WiggleZ Dark Energy Survey (Drinkwater et al. 2010) is a

large-scale galaxy redshift survey performed over 276 nights with

the AAOmega spectrograph (Sharp et al. 2006) on the 3.9 m Anglo-

Australian Telescope. With a area coverage of 816 deg2, this survey

has mapped 240 000 bright emission-line galaxies over a cosmic

volume of approximately 1 Gpc3.

Target galaxies in seven different regions were chosen using UV

photometric data from the GALEX survey (Martin et al. 2005)

matched with optical photometry from SDSS DR4 (Adelman-

McCarthy et al. 2006) for regions in the Northern Galactic Cap

(9 h, 11 h and 15 h), and from the Red-Sequence Cluster Survey 2

(RCS2; Gilbank et al. 2011) for those regions in the Southern Galac-

tic Cap (0 h, 1 h, 3 h, 22 h). The selection criteria consisted of

applying magnitude and colour cuts (Drinkwater et al. 2010) in or-

der to select star-forming galaxies with bright emission lines with a

redshift distribution centred around z ∼ 0.6. The selected galaxies

were observed in 1 h exposures using the AAOmega spectrograph,

and their redshifts were estimated from strong emission lines.

To study the evolution of the bias and σ 8 with cosmological time,

we use three overlapping redshift slices [0.1, 0.5], [0.4, 0.8] and

[0.6, 1.0]. We estimate the effective redshift of each sample by

averaging the redshifts of galaxy pairs at the distances covered by

our study, i.e. from 10 to 100 h−1 Mpc; we find that the effective

redshifts for the closest, middle and farthest slices are zeff = [0.35,

0.55, 0.68], respectively. Table 1 shows the details of the samples

used.

Fig. 1 shows the angular distribution of galaxies in the regions

considered. We show the targets in RA, Dec. coordinates, where

it can be seen that the angular completeness varies considerably
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2656 F. A. Marı́n et al.

Table 1. Number of galaxies in WiggleZ regions used in this paper.

Redshift [0.1, 0.5] [0.4, 0.8] [0.6, 1.0] JK subregions

zeff 0.35 0.55 0.68 N JK
i

00 h 6601 10 698 8774 9

01 h 6038 9437 7880 8

03 h 6492 10 241 8756 8

22 h 13 508 16 146 11 024 15

09 h 10 106 18 978 11 424 12

11 h 13 603 23 940 13 919 16

15 h 14 517 30 015 19 471 20

All regions 74 440 119 455 81 248 88

between regions, due to masking of bright stars, the availability of

input GALEX imaging, and differences in the accumulated observa-

tion time within each region and between regions. If not taken into

account properly by modelling the angular selection function, these

non-uniformities may lead to artificial structures, different from

what we can expect from cosmic variance. Several studies, such as

Gaztañaga et al. (2005), Nichol et al. (2006), McBride et al. (2011a)

and Norberg et al. (2011), agree that higher order correlation func-

tions are more sensitive to these effects than the two-point function.

However, as we describe below in Section 3.2, we conclude that our

modelling of the angular completeness is adequate to carry out our

analyses.

Fig. 2 shows the redshift distribution of the different regions,

peaking at z ∼ 0.6, but extending to redshift z ∼ 1.0. The variable

number density with redshift determines the effective redshifts of

our samples as measured above. It can also be seen that the average

distribution of galaxies varies between regions.

This is partly explained by cosmic variance, but also the selection

functions of SDSS and RCS2 galaxies differ considerably at low

redshifts, owing to the available colours for galaxy selection from

the input catalogues (Drinkwater et al. 2010). To deal with these

Figure 2. Redshift distribution of WiggleZ galaxies. The thin lines corre-

spond to the radial selection function for each individual angular region.

The thick lines represent the redshift distribution of all WiggleZ galaxies

(black), WiggleZ galaxies in the North Cap (blue) and WiggleZ galaxies in

the South Cap (red).

issues we model the angular coverage and redshift distributions in

each survey region individually (Blake et al. 2010).

2.2 The GiggleZ simulations

In order to measure galaxy bias we need to model the underlying DM

correlations. For the two-point functions, there exists a large amount

of literature of models (e.g. Peebles 1980; Kaiser 1987; Bernardeau

et al. 2002; Cooray & Sheth 2002; Smith et al. 2003, and references

therein), but in the case of the higher order correlations, modelling

Figure 1. Angular distribution of WiggleZ galaxies. The top four regions correspond to those WiggleZ galaxies in the RCS2 footprint; the bottom three regions

to the ones obtained using SDSS. Colours correspond to subregions containing the same effective area.
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has focused mostly on the large-scale behaviour (e.g. Jing & Borner

1997; Bernardeau et al. 2002), although there have been efforts to

model the non-linear, small scales (e.g. Yang, Mo & van den Bosch

2003; Fosalba, Pan & Szapudi 2005). Most importantly, for the

3PCF there is no satisfactory treatment of redshift-space distor-

tions, although some attempts have been made for the bispectrum,

the Fourier transform of the 3PCF, by Scoccimarro, Couchman &

Frieman (1999) and Smith, Sheth & Scoccimarro (2008), which are

valid for limited range of scales. Therefore, as has been done in

previous works (Gaztañaga et al. 2005; Marı́n 2011; McBride et al.

2011b), we will obtain constraints on the galaxy bias and cosmolog-

ical parameters by comparing the WiggleZ galaxy 3PCF with the

DM correlations measured in N-body simulations, which include

the full set of non-linear effects.

We measured the DM correlation functions using the Gigaparsec

WiggleZ Survey simulations (GiggleZ; Poole et al., in prepara-

tion), which have been generated in support of WiggleZ science.

In a 1 h−1 Gpc3 periodic cube, 21603 DM particles with indi-

vidual masses of mp = 7.5 × 109 h−1 M⊙ were evolved using a

flat �CDM model, with cosmological parameters from Wilkinson

Microwave Anisotropy Probe 5 (WMAP5) results (Komatsu et al.

2009). In order to compare the correlation functions of WiggleZ

galaxies and DM, we measured them in snapshots of the simulation

at the same effective redshifts as the WiggleZ subsamples.

DM haloes are identified in two steps (Springel et al. 2001):

First, using a friends-of-friends algorithm with a linking length of

l = 0.2 times the mean particle separation, bound structures are

found (parent haloes). Secondly, given the high resolution of our

simulation, we were able to find gravitationally bound substructures

inside these parent haloes. From the main halo catalogue, we create

subsets ordered by maximum circular velocity (which we use as a

proxy for halo mass) with the same mean number density as the Wig-

gleZ galaxies n ∼ 2.5 × 10−4 (h−1 Mpc)−3. These halo catalogues

are used to carry out consistency checks in our phenomenological

model to estimate the bias and cosmological parameters.

3 T H E G A L A X Y 3 P C F

3.1 Definitions and methods

The galaxy n-point correlation functions are the average of corre-

lated galaxy overdensity δgal measured at n different points (Peebles

1980). Whereas the 2PCF ξ (r) allows us to estimate the probability

of finding pairs with a separation r, the 3PCF ζ (r1, r2, r3) describes

the probability of finding triplets with galaxies as vertices. The joint

probability of finding three objects in three infinitesimal volumes

dV1, dV2 and dV3 is given by the ‘full’ 3PCF (Peebles & Groth

1975; Peebles 1980),

P = [1 + ξ (r1) + ξ (r2) + ξ (r3) + ζ (r1, r2, r3)]

×n̄3dV1dV2dV3, (1)

where n̄ is the mean density of objects, ξ is the 2PCF and ζ is the

reduced or ‘connected’ 3PCF. In other words, this means that the

probability of finding galaxies in a particular triangular configura-

tion has contributions from triplets found by random chance, plus

contributions from correlated pairs plus the third point found at ran-

dom (the ξ terms), and lastly by intrinsically correlated triplets (the

ζ term). In the DM or galaxy field, the 2PCF and 3PCF are given

by

ξ (r) = 〈δ(x1)δ(x + r)〉 (2)

Figure 3. Parametrization of triangles for calculation of correlation func-

tions.

ζ (r1, r2, r3) = 〈δ(x1)δ(x2)δ(x3)〉, (3)

where δ is the fractional overdensity of objects (galaxies, haloes or

DM particles) or the continuous field studied, and x1, x2 and x3

form a closed triangle (see Fig. 3). The triangle sides ri are the dis-

tances between objects in the triplet; thus, the 3PCF depends upon

the scales and shapes of spatial structures (Barriga & Gaztañaga

2002; Gaztañaga & Scoccimarro 2005; Sefusatti & Scoccimarro

2005; Marı́n et al. 2008). Since the ratio ζ/ξ 2 is both predicted on

large scales from perturbation theory (Bernardeau et al. 2002) and

measured to be close to unity over a large range of length scales,

even though ξ and ζ each vary by orders of magnitude (Peebles

1980), we will often present results using the ‘reduced’ (or normal-

ized) 3PCF,

Q(s, u, θ) ≡
ζ (s, u, θ )

ξ (r1)ξ (r2) + ξ (r2)ξ (r3) + ξ (r3)ξ (r1)
.

Here, s ≡ r1 sets the scale size of the triangle, and the shape pa-

rameters are given by the ratio of two sides of the triangle, u ≡
r2/r1, and the angle between those two sides, θ = cos−1(r̂1 · r̂2),

where r̂1, r̂2 are unit vectors in the directions of those sides. The

reduced 3PCF is also better suited for visualizing the growth of non-

Gaussian structure and the shape dependence of clustering than ζ .

On the other hand, on large scales, since ξ → 0, the ratio ζ/ξ 2

becomes very unstable and its errors non-Gaussian, with the conse-

quences of overestimating the covariances, diminishing the overall

signal-to-noise ratio (S/N) and introducing a systematic deviation

in the confidence intervals of the fitted parameters; therefore, we

use ζ and not Q for model fits.

In this work, we measure correlation functions for triangles with

base side s = 10, 15, 20 and 30 h−1 Mpc, with the shape parameters

u = 1.0, 2.0, 3.0 and 10 equally spaced bins in θ . In total, we

measure correlations for 120 triangular configurations.

3.2 Measuring correlation functions

We measure first the 2PCF and 3PCF in each WiggleZ region (i.e.

in angular and redshift cuts). For a particular WiggleZ region, we

calculate the 2PCF using the estimator of Landy & Szalay (1993),

ξ =
DD − 2DR + RR

RR
. (4)

Here, DD is the number of data pairs normalized by ND × ND/2, DR

is the number of pairs using data and random catalogues normalized

by NDNR, and RR is the number of random pairs normalized by

NR × NR/2, where ND and NR are the number of points in the data

 at T
h
e A

u
stralian

 N
atio

n
al U

n
iv

ersity
 o

n
 D

ecem
b
er 1

9
, 2

0
1
3

h
ttp

://m
n
ras.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/


2658 F. A. Marı́n et al.

and in the random catalogue of the region, respectively. The 3PCF

is calculated using the Szapudi & Szalay (1998) estimator

ζ =
DDD − 3DDR + 3DRR − RRR

RRR
, (5)

where DDD, the number of data triplets, is normalized by N3
D/6,

and RRR, the random data triplets, is normalized by N3
R/6. DDR

is normalized by N2
DNR/2 and DRR by NDN2

R/2. Due to the low

density of our galaxies n ∼ 2.5 × 10−4 h3 Mpc−3, we are limited by

shot noise on these large scales and consequently the application of

FKP weighting (Feldman, Kaiser & Peacock 1994) to the pair and

triplet counts does not affect the results. To estimate the number

of pairs and triplets, we use the NTROPY-NPOINT software, an exact

n-point calculator which uses a kd-tree framework with true parallel

capability and enhanced routine performance (Gardner, Connolly

& McBride 2007; McBride et al. 2011a).

The random catalogues were built using the methods described by

Blake et al. (2010), which estimate the angular and radial selection

function of each survey region due to survey geometry and incom-

pleteness in the parent photometry and spectroscopic follow-up.

This modelling process produces a series of Monte Carlo random

realizations of the angular and redshift catalogue in each region,

which is used in our correlation function estimations. In this paper,

we measure the 3PCF using 10 random catalogues for each region,

with NR = 4ND for each of the random catalogues for the intermedi-

ate scales (s = 10, 15 h−1 Mpc), and NR = ND for the largest scales

(s = 20, 30 h−1 Mpc).

For our choice of binning (resolution) of the triangles, we use the

same scheme as Marı́n (2011) and McBride et al. (2011a): first, we

select the central s, u and θ , and their corresponding side lengths in

redshift space si, with i = 1, 2, 3. Then, to calculate the 2PCF and

3PCF, we accept triangles with sides in the range (1 − 0.075)si <

ri < (1 + 0.075)si, implying a 15 per cent binning resolution. This

is a higher resolution than used for the LRGs (Marı́n 2011) but is

justified by the higher number density of the WiggleZ galaxies.

In Fig. 4 we explore the effects of the radial and angular selection

functions on the 2PCF and connected 3PCF ζ for a selection of con-

Figure 4. Correlation function measurements for a GiggleZ halo catalogue.

Selecting a set of triangular configurations, with s = 15 h−1 Mpc (top) and

s = 20 h−1 Mpc (bottom) and u = 2, we plot the redshift-space reduced

2PCF of the third side ξ (s3(θ )) (left-hand panels) and connected 3PCF,

ζ (right-hand panels) of a selected DM halo catalogue from the GiggleZ

simulation with similar clustering as WiggleZ galaxies, showing the effects

of radial and angular selection functions.

figurations (s = 15, 20 h−1 Mpc, u = 2). Using a DM halo catalogue

from the GiggleZ simulation that has a similar two-point clustering

as our WiggleZ sample at z = 0.55, we create three different kinds

of mock catalogues with the same geometry as the survey: the first

group (red dashed line) does not include any radial or angular se-

lection effects apart from the large-scale boundaries of the WiggleZ

regions. The green (dot–dashed) lines denote measurements from

mocks with the same radial selection function of WiggleZ galaxies

at zeff = 0.55. The blue (solid) lines show mocks with the same an-

gular and radial selection function of WiggleZ galaxies. In general,

the measurements of the correlation functions using the different

mocks are very similar, signalling that our selection functions and

random catalogues allow us to recover the intrinsic correlations of

the galaxy field.

3.3 Galaxy bias model

Since different types of galaxies form inside different DM haloes,

they are an imperfect tracer of the overall DM distribution (Bardeen

et al. 1986; Berlind & Weinberg 2002; Cooray & Sheth 2002), and

their n-point correlations will differ as well. Many models of this

galaxy bias have been proposed, and an accepted working model on

large scales is the deterministic and local bias formalism, where we

relate real-space galaxy overdensity δgal to the underlying matter

density δm (Fry & Gaztanaga 1993; Frieman & Gaztanaga 1994):

δgal = b1δm +
b2

2
δ2

m + · · · (6)

up to second order, where δgal and δm are the local galaxy and matter

overdensities smoothed over some scale R. To leading order, this

bias prescription leads to a relation between the galaxy and mat-

ter 2PCF and connected 3PCF. Following Pan & Szapudi (2005),

leading-order perturbation theory (Bernardeau et al. 2002) shows

that if we fix all cosmological parameters except the overall ampli-

tude of the initial spectrum of perturbations characterized by σ 8,

then there is a degeneracy between the effect of this parameter and

the bias on the two-point and three-point functions. The relations

between matter and galaxy correlations in this model are

ξgal(r) = (σ8/σ8,fid)2b2
1ξm(r) (7)

ζgal(r12, r23, r31) = (σ8/σ8,fid)4
[

b3
1ζm(r12, r23, r31)

+ b2b
2
1(ξm(r12)ξm(r23) + perm.)

]

. (8)

In observations we measure the correlation functions in redshift

space, where the ‘real’ correlations are distorted by peculiar veloci-

ties (with respect to the Hubble expansion), which on large scales de-

pend on the growth rate of perturbations f ≈ �m(z)0.55 and on galaxy

bias. For the two-point function, we have that ξz-space ∼ f2ξr-space,

with (Kaiser 1987)

f2 = 1 +
2

3

(

f

b1

)

+
1

5

(

f

b1

)2

. (9)

In the case of the 3PCF, there is also an effect from redshift-space

distortions of similar order (Scoccimarro et al. 1999). However, it

depends not only on the linear bias and f, but also on the non-linear

bias and the shape and scale parameters of the triangle observed.

As mentioned before, analytical models of these distortions have

been proposed for the bispectrum on large scales (Scoccimarro

et al. 1999) where its validity is limited. On small, non-linear scales
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WiggleZ three-point correlation function 2659

(Smith et al. 2008) the transformation back to configuration space is

challenging (six-dimensional integrals) and numerically intractable.

For these reasons we opt to use an empirical model that has

been used by Pan & Szapudi (2005) and Gaztañaga et al. (2005) in

analyses of the 2dFGRS galaxies. We use the N-body measurements

of the correlation functions in redshift space in equations (7) and (8),

replacing ξr-space → ξz-space and ζr-space → ζz-space at the different

effective redshifts of our WiggleZ slices. Given the low S/N of

the 3PCF measurements, this is justified by the fact that for low-

bias tracers (such as the 2dFGRS galaxies studied in the papers

mentioned above) with b ∼ 1, f2,b1
≈ f2,b1=1, with differences of

the order of 10 per cent when (b1 − 1) = 0.3, smaller than the

statistical error in our measurements (of the order of 20–30 per

cent); the impact of the constraints on σ 8 is slightly lower. Since

we use N-body simulation measurements to compare to our galaxy

correlations, the only cosmological parameter we modify is σ 8

through the ratio σ 8/σ 8, fid in equations (7) and (8).

The justification of this model is illustrated by Fig. 5, where we

take two halo samples (groups) from the GiggleZ simulation at red-

shift z = 0.6, with a similar number density as WiggleZ galaxies

nh = 2.5 × 10−4 (h−1 Mpc)−3. The first sample, ‘group 05’, is com-

posed of low-mass haloes, with clustering similar to that of WiggleZ

galaxies, and the second sample, ‘group 44’, consists of very mas-

sive haloes. We measured their correlation functions in real space

and then estimated their linear and non-linear bias parameters by

comparison with the matter correlation functions measured in the

GiggleZ simulation, using equations (7) and (8) for a fixed σ 8(z =
0) = 0.812 (see Section 5.1). In the case of the low-bias sample,

χ2
r,g05/d.o.f. = 0.87, and for the high-mass sample χ2

r,g44/d.o.f. =
0.96. We then performed measurements in redshift space; we ob-

serve that in the case of the low-bias tracers, using the same bias

in redshift space fits well their redshift-space 2PCF and 3PCF, with

χ2
z,g05/d.o.f. = 1.07, but the same cannot be said for the high-mass

haloes where χ2
z,g44/d.o.f. = 22.44. Since WiggleZ galaxies have a

low linear bias b1 ∼ 1 (Blake et al. 2011b; Contreras et al. 2013),

Figure 5. The 2PCF ξ (s3(θ )) (left) and connected 3PCF ζ (right) of two

samples (groups) of haloes from the GiggleZ simulations in real space (top)

and redshift space (bottom) at a snapshot z = 0.6. The black lines show

results from the DM particles from the simulation, the blue triangles display

measurements for a halo sample (‘group 05’) with average mass 4.8 ×
1011 h−1 M⊙ and the red squares show results for a halo sample (‘group

44’) with average mass 6.9 × 1012 h−1 M⊙. The blue (short dashed) and red

(dot dashed) lines denote biased DM for low-mass and high-mass haloes,

respectively (bias parameters are listed in the figures).

the approach we take is adequate for obtaining measurements of

the linear and non-linear bias parameters and σ 8 as a function of

redshift.

4 R ESULTS

In this section we present the measurements of the 2PCF ξ , con-

nected 3PCF ζ (s, u, θ ) and reduced 3PCF, Q(s, u, θ ) of WiggleZ

galaxies for a range of scales and shapes at different redshifts. We

explore differences between regions, evolution with redshift, and

our estimation of statistical errors and covariance.

4.1 Building the WiggleZ Survey correlations

In Fig. 6 we show the measurements of the correlation functions

in the zeff = 0.55 sample for each WiggleZ region. Measurements

in different regions are consistent within the statistical errors from

cosmic variance and shot noise. On these scales we notice how small

differences in ξ and ζ translate to larger discrepancies in Q. The

noisiest three-point functions are obtained in the smallest regions

(in terms of volume), in this case the regions overlapping with the

RCS2 survey.

We will build a ‘combined’ set of correlation functions calculated

by optimally weighting individual contributions of the regions.

To measure the diagonal errors and covariance matrices, ideally

we require a large number of mock galaxy catalogues whose cor-

relation functions have similar amplitude and shape dependence to

the one observed in our data. However, this is not currently tractable

for WiggleZ galaxies due to their low bias, which would necessitate

many high-resolution simulations in a cosmological volume. In past

studies, we have used lognormal realizations (Blake et al. 2010) to

generate a large number of mocks suited to match the WiggleZ

two-point amplitudes. Unfortunately, by their construction (from

generating points with a particular two-point distribution), these are

not capable of reproducing the higher order clustering of galaxies.

Figure 6. The 2PCF ξ (s3) (top left), the connected 3PCF ζ (middle left)

and the reduced 3PCF Q (bottom left) of each WiggleZ region in the zeff =
0.55 slice, for triangles with s1 = 15 h−1 Mpc and u = 2. In the right-hand

plots, we show the corresponding diagonal errors.
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In this work, error measurements in each region are calculated

from jack-knife (JK) resampling (Zehavi et al. 2005; McBride et al.

2011a; Norberg et al. 2011). In this method, we divide the whole

volume of the sample in identical subsamples i = 1, . . . , N, and we

then measure correlation functions for the whole volume minus the

ith subsample N times to get a set of N correlated measurements. In

our case, in all WiggleZ regions we take subregions of equal area

(weighted by sky completeness), with an equivalent physical size

of approximately 120 × 150 × 900 (h−1 Mpc)3 at z = 0.55. The

angular cut has the same area independent of region, as can be seen

in Fig. 1; thus, some WiggleZ regions have more JK subregions

than others, depending on their total area coverage.

In order to obtain the JK variance in each region, we measure

each Xi statistic (where Xi can be the 2PCF or the 3PCF), subtracting

one of the JK subregions in turn. Then, we calculate the variance

σXi
of the individual WiggleZ region as

σ 2
Xi

=
N JK

i − 1

N JK
i

N JK
i

∑

j=1

(

X2
i,j − 〈Xi〉2

)

, (10)

where N JK
i is the number of jack-knife subsamples, in region i (see

Table 1). Then, we calculate the correlations in the overall survey

using inverse-variance weighting. For the statistic Xcomb, this is

calculated as

Xcomb =

⎛

⎝

Nreg
∑

i=1

1

σ 2
Xi

⎞

⎠

−1 ⎛

⎝

Nreg
∑

i=1

Xi

σ 2
Xi

⎞

⎠ , (11)

where σ 2
Xi

is the variance of the statistic in the WiggleZ subregion

(calculated in equation 10), taken from the JK resampling method.

Nreg = 7 is the number of WiggleZ regions we use for the calculation

of the combined correlations. We do this for ξ , ζ and Q. In principle,

there should be no difference between calculating correlations using

this method and measuring triplet counts across the whole survey;

in practice, our method is more computationally efficient and gives

us extra systematics tests by allowing us to compare results region

by region.

Overall diagonal errors and covariance matrices are calculated

by JK resampling the whole set of survey regions (see Fig. 1). In

this way, we produce a catalogue of N JK
tot = 88 measurements. The

variance of the correlations is calculated as

σ 2
Xcomb

=
N JK

tot − 1

N JK
tot

N JK
tot

∑

j=1

(

X2
j − 〈X〉2

)

. (12)

We also use this method to calculate the covariance matrix, which

is used in the maximum likelihood approach to measure the galaxy

bias and cosmological parameters.

4.2 The combined WiggleZ 3PCF

Fig. 7 shows the measurements of the redshift-space 2PCF ξ (s3(s,

u, θ )), connected 3PCF ζ (s1, s2, θ ) and reduced 3PCF Q(s1, s2, θ ) of

WiggleZ galaxies (from optimally combining the seven independent

regions) in all redshift slices for a range of scales s1 = 10, 15, 20

Figure 7. The combined redshift-space 2PCF ξ (s3(θ )) (left), connected 3PCF ζ (s, u = 2, θ ) (middle) and reduced 3PCF Q(s, u = 2, θ ) (right) of WiggleZ

galaxies in the zeff = 0.55 slice (blue triangles and error bars), in the slice at zeff = 0.35 (green dashed line) and in the zeff = 0.68 slice (red dash–dotted line).

Different rows cover the range of scales of the triangles. Errors have been determined by JK resampling.
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and 30 h−1 Mpc and shape u = 2 as a function of θ . We have

additionally measured the correlations using u = 1 and 3, for a total

of 120 configurations, which are shown in Appendix A.

We note qualitatively that we recover the same shape depen-

dence of the galaxy 3PCF (mostly noticeable when looking at Q)

which has been observed for galaxies at low redshift (Marı́n 2011;

McBride et al. 2011a), namely a bigger 3PCF amplitude at small

and large θ , i.e the collapsed and elongated configurations. This

‘V-shape’ is more prominent for large scales and elongated shapes;

it is a consequence of the morphology of galaxy structures varying

from spherically shaped clusters and groups on small ∼1 h−1 Mpc

scales to filaments on the largest scales. This shape dependence of

the 3PCF depends on the galaxy type under investigation. It has

been observed in SDSS (Kayo et al. 2004; McBride et al. 2011a)

and 2dFGRS (Gaztañaga et al. 2005) that L∗ blue galaxies tend to

have small 3PCF amplitudes on small scales and very pronounced

V-shapes on large scales, compared to red galaxies and to L >

L∗ galaxies, such as LRGs (Marı́n 2011). However, at a different

redshift, we find that the shape dependence of the WiggleZ 3PCF

agrees with these lower redshift measurements.

We also note that on larger scales the behaviour of the reduced

3PCF Q(θ ) for the most elongated shapes is more erratic, specially

for the z = 0.35 and 0.68 slices. This is due to the fact that as

ξ → 0 on large scales, the measurements of Q are less robust and

its errors become non-Gaussian. But if we turn to analyse ζ instead,

we can see that it is adequately measured up to the largest scales

shown here, s3 ∼ 100 h−1 Mpc.

Comparing the clustering signal in different redshift slices, we

can see that in general the differences in the 3PCF are small and

the signal is weaker than in the case of the central zeff = 0.55 slice.

This does not necessarily indicate that there is no evolution of the

clustering of WiggleZ galaxies with redshift; the underlying DM

clustering changes with redshift, and consequently the linear and

non-linear bias factors evolve. From the 2PCF measurements we

can estimate the evolution of the linear bias, and using the 3PCF we

can also test if there is evolution in the non-linear bias parameter.

In Fig. 8, we illustrate how the errors in our measurements vary

with redshift by showing the 1σ diagonal errors (from JK resam-

pling) of the 2PCF and 3PCF measurements for a selection of con-

figurations (s = 15, 20 h−1 Mpc and u = 2) of our (combined)

Figure 8. Diagonal errors of the correlation functions from JK resampling.

Top: errors for the s = 15 h−1 Mpc, u = 2 triangles for the 2PCF σ ξ (left),

connected 3PCF σ ζ (centre) and reduced 3PCF σQ (right); the solid line

corresponds to measurements in the zeff = 0.55 slice, the dashed line for the

z = 0.35 slice and the dot–dashed line for the z = 0.68 slice. Bottom: same

quantities for the s = 20 h−1 Mpc, u = 2 triangles.

Figure 9. The correlation matrix of the WiggleZ 2PCF and 3PCF of trian-

gles with s1 = 15 h−1 Mpc with u = 1, 2 and 3. Each element of the matrix

is the covariance of each s, u and θ triplet.

redshift samples. It can be clearly seen that measurements are more

accurate in the central redshift slice (zeff = 0.55) than in the outer

ones. In these configurations, the relative error in the 2PCF is around

σ ξ/ξ ∼ 0.15, and for the connected 3PCF ζ the relative errors reach

σ ζ /ζ ∼ 0.5 in the central redshift slice.

4.3 Covariance estimation

We estimate the correlations between measurements of the 2PCF ξ

and 3PCF ζ by empirically calculating the covariance matrix. Using

the JK method, given a number of measurements NJK in number of

bins Nb, a fractional error of a quantity X for the sample k can be

written as

�k
i =

Xk
i − 〈Xi〉
σXi

, (13)

where in our case, if i ≤ Nb, then X = ξ (s3) and otherwise X = ζ (s1,

s2, s3(θ )), and σXi
is the standard error on Xi calculated using the

JK method. Then we calculate the correlation matrix (covariance

matrix normalized by diagonal errors) as

Cij =
1

NJK

NJK
∑

k=1

�k
i �

k
j . (14)

As an example that shows the observed behaviour of all con-

figurations at different redshift samples, we show in Fig. 9 the

correlation matrix of both ξ (s3(θ )) and ζ (θ ) for the configurations

with s = 15 h−1 Mpc, and u = 1, 2 and 3. In this case, the number of

bins Nb = 30, making Cij a 60 × 60 matrix. We divide this matrix

into four regions depicting the auto- and cross- correlations. In the

case of the ξ (s3) − ξ (s3) covariance, we notice that although it is

dominated by diagonal terms, the off-diagonal terms are important

too; the black stripes (signalling high covariance) in the off-diagonal

matrices (ξ (u1, s3) − ξ (u2, s3) where u1 �= u2) correspond to tri-

angles that share a similar s3. The ζ -correlation matrix also shows

important non-diagonal elements that are more correlated for the

elongated shapes (a combination of true covariance and binning).

The ξ (s3) − ζ cross-covariance is small but needs to be considered

in the analysis.

5 C O N S T R A I N T S O N G A L A X Y B I A S A N D σ 8

We compare the DM correlations measured in the GiggleZ simu-

lations to the WiggleZ 2PCF and 3PCF in order to constrain the
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linear and non-linear bias parameters using the local bias model

described in Section 3.3. In this analysis, we assume that all cos-

mological parameters are fixed, and fitted for σ 8(z) by scaling the

amplitude of the DM correlations in the manner of equations (7)

and (8), with all quantities measured in redshift space. We want to

emphasize that since we use N-body simulation measurements to

compare to our galaxy correlations, and not an analytical model,

the only cosmological parameter we can modify is σ 8(z) through

the ratio σ 8/σ 8, fid, where the fiducial value corresponds to the one

used in the GiggleZ simulation σ 8, fid(z = 0) = 0.812.

5.1 Methods

We carry out a maximum likelihood parameter estimation test,

where we look to minimize the quantity

χ2 =
i=2Nb
∑

i=1

j=2Nb
∑

j=1

�iC
−1
ij ,SVD�j , (15)

where Nb is the number of triangular configurations used. We have

Nb distances where we measure the 2PCF of s3 and Nb triangles

where we measure the 3PCF; therefore, we have (2Nb)2 elements

in our covariance matrix. The value of �i is the difference between

the correlation measured and the biased DM correlation:

�i =
(

ξ (s3)obs
i − ξ (s3)model

i

)

/σξ (s3)i, for i ≤ Nb, (16)

�i =
(

ζ (s, u, θ )obs
i − ζ (s, u, θ)model

i

)

/σζ (i), for i > Nb, (17)

where ξmodel and ζ model are given by equations (7) and (8).

In order to invert the covariance matrix we use the approach

of Gaztañaga & Scoccimarro (2005) and repeated in several 3PCF

works (Gaztañaga et al. 2005; Marı́n 2011; McBride et al. 2011a), of

employing only the highest eigenmodes of the covariance matrix to

minimize effects of numerical noise. We employ the singular value

decomposition (SVD) method, where our normalized covariance

matrix can be decomposed C = UDVT (and where V = U for a

symmetric matrix), where the diagonal matrix Dij = λ2
i δij stores

the eigenvalues in decreasing order, and the columns of the matrix

U store the eigenmodes of C. When inverting the matrix C−1 =
VD−1UT (where D−1

ij = (1/λ2
i )δij ) we need to discard some of

these eigenmodes, meaning set some D−1
ii ≡ 0. First, we use a finite

number of JK samples to estimate our covariance. Since using JK

samples assumes the statistical independence of the subsamples, the

JK regions should have a larger spatial extent than the largest scales

studied. In our case, we use NJK = 88 JK regions because our largest

scales are of the order of ∼100 h−1 Mpc. However, we use a large

number of 2PCF and 3PCF measurements, and generally NJK < Nb,

which will make our matrix singular for modes i > NJK − 1 (see

Press et al. 1992 for instance). Therefore, all those eigenmodes

have to be discarded. A second cut comes from the fact that even

though the covariance matrix is not singular when the first cut is

applied, there are still eigenvalues λ2
i with very low numerical value,

which will make unstable the inversion of Cij with λ2
i <

√
2/NJK

(Gaztañaga & Scoccimarro 2005). Adding these unstable modes,

as explained by these authors and later in Section 5.2, is equivalent

to introducing artificial ‘signal’ to our measurements that will bias

our fits.

We also have to set the minimum and maximum scale of the

model fit. In our analysis this means that we choose configurations

with the third size in a range s3 = [s3, min, s3, max]. The minimum

scale is given by the range of validity of the local bias model. The

Figure 10. Dependence of the best-fitting bias parameters and σ 8 on the

number of eigenmodes used for the zeff = 0.55 2PCF and 3PCF analysis.

In the left-hand panel, we show eigenmodes used after SVD (from the

λ2
i >

√
2/NJK limit), with fixed s3, min = 20 and s3, max = 120 h−1 Mpc. The

top-left panel shows the total S/N according to equation (18) as a function

of number of eigenmodes used. The top-right panel shows the χ2/d.o.f.,

and lower panels show the 68 per cent CL intervals for b1, b2 and σ 8. The

vertical dashed line represents the eigenmode limit where λ2
i =

√
2/NJK,

with NJK = 88.

maximum scale could be set by systematics in the selection function

or when the correlation signal is weak. In Figs 10–12, we show how

our choices of the number of eigenvalues used, the values of s3, min

and s3, max, respectively, affect our constraints for our zeff = 0.55

sample.

We wish to make a sensible default choice for these options and

establish that our essential conclusions are not very sensitive to this

choice. Fig. 10 investigates the dependence of our results on the

number of eigenmodes included, fixing s3, min = 20 h−1 Mpc and

s3, max = 120 h−1 Mpc. We observe that if we use a small number of

eigenvalues, we have large variations in the best-fitting values and

poor constraints, especially in b2; there is a range when the num-

ber of eigenvalues used is ∼50 where our results are insensitive,

Figure 11. Dependence of the best-fitting bias parameters and σ 8 on the

fitting range s3, min, with s3, max = 120 h−1 Mpc for the zeff = 0.55 2PCF and

3PCF analysis. The top-left panel shows the number of eigenmodes used

where λ2
i =

√
2/NJK as a function of s3, min. The top-middle panel shows

the total S/N, top-right panel the χ2/d.o.f. of the best-fitting parameters.

The lower panels show the 68 per cent CL intervals for b1, b2 and σ 8.

 at T
h
e A

u
stralian

 N
atio

n
al U

n
iv

ersity
 o

n
 D

ecem
b
er 1

9
, 2

0
1
3

h
ttp

://m
n
ras.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/
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Figure 12. Same as Fig. 11, in this case fixing s3, min = 20 h−1 Mpc and

having quantities shown as a function of s3, max.

and when we include modes with λ2
i >

√
2/NJK ∼ 65 we again

have unstable behaviour. In this figure, we also consider the depen-

dence of the minimum χ2 per degree of freedom on the number of

eigenmodes employed, where the degrees of freedom are equal to

the eigenmodes used minus the number of parameters we seek to

constrain. We note that good fits are produced for a wide range of

choices. We can also estimate the total S/N of the modes used as

(Gaztañaga & Scoccimarro 2005)

(

S

N

)

i

=
1

λi

j=2Nb
∑

j=1

Uji

Xj

σXj

, (18)

where Xj = ξ j when j < Nb, and Xj = ζj−Nb
when j > Nb.

Our conclusion from this analysis is that any systematic fluctua-

tions in our parameter measurements do not dominate the statistical

errors for a wide range of choices. Our default fits are performed

for an eigenmode cut λ2
i =

√
2/NJK and a fitting range between

s3, min = 20 and s3, max = 120 h−1 Mpc for the zeff = 0.55 and 0.68

slices, and s3, max = 100 h−1 Mpc for the zeff = 0.35 sample.

Another aspect to consider in our analysis is that the measured

redshifts in our survey contain a small fraction of ‘redshift blunders’

(Blake et al. 2010), failures that tend to wash out the clustering

we measure in our galaxy field. This redshift blunder fraction is

fb = 0.03 for the zeff = 0.35 and 0.55 slices, and fb = 0.05 for

the outer zeff = 0.68 slice; the correction to the 2PCF (since ξ ∝
〈δgalδgal〉) is to multiply the data and errors by (1 − fb)−2, meaning

that the clustering amplitude increases, and the correction to the

three-point function (where ζ ∝ 〈δgalδgalδgal〉) is (1 − fb)−3.

5.2 Constraints at zeff = 0.55

In Fig. 13, we show the measurements of b1, b2 and σ 8 in the zeff =
0.55 slice.

The measured linear bias, b1 ∼ 1, agrees with values obtained

for WiggleZ galaxies using other methods (Blake et al. 2011b;

Contreras et al. 2013), using two-point statistics, where in our study

we additionally marginalize over all values of σ 8. We detect a

significantly non-zero value for the non-linear bias b2 ∼ −0.4.

We measure the amplitude of fluctuations σ 8(z) with 10 per cent

accuracy and find that our results agree with independent predic-

tions, based on cosmological parameter measurements from the

CMB in a �CDM model. It is important to note that these estimates

are independent of any other observable than the galaxy clustering

itself. Extrapolated to z = 0, our measurements of σ 8 from WiggleZ

galaxies are consistent with conclusions from 3PCF measurements

of other tracers such as the LRGs (Marı́n 2011), which provides

evidence that this method is robust against the type of galaxy used.

As is shown in Table 2, the empirical bias model is an adequate

fit to the data, and that can be graphically seen in the right-hand

Table 2. Constraints on bias parameters and σ 8 for WiggleZ

samples.

zeff b1 b2 σ 8 χ2/d.o.f. S/N

0.35 0.72+0.14
−0.14 −0.36+0.11

−0.08 0.69+0.12
−0.11 1.10 3.25

0.55 0.99+0.10
−0.09 −0.41+0.09

−0.08 0.61+0.06
−0.05 0.96 4.99

0.68 1.06+0.16
−0.18 −0.48+0.14

−0.12 0.53+0.08
−0.07 0.82 4.62

Figure 13. Left: constraints on the bias parameters b1, b2 and σ 8 for the zeff = 0.55 WiggleZ redshift slice. The contours represent 1σ , 2σ and 3σ joint

confidence regions for a two-parameter fit. Right: DM reduced 3PCF (black thick line), the WiggleZ Q(θ ) for the zeff = 0.55 slice and the biased DM Q(θ )

(dashed line) using the best-fitting parameters found in this analysis.
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plots of Fig. 13, where we show the biased DM Q(θ ), which in our

model depends on the bias parameters but not on σ 8:

Qgal =
1

b1

(

Qm +
b2

b1

)

. (19)

We can see that our galaxy bias model is adequate on all scales,

but our fits are mainly driven by the s = 10 and 15 h−1 Mpc

configurations, which have the highest S/N.

5.3 Constraints at different redshifts

We repeated the analysis of the correlation functions for the other

two redshift slices in order to get constraints on the bias param-

eters and σ 8 as a function of redshift. In Table 2 we show our

results. In general, we can see that there is a clear trend in all the

parameters with redshift, and that from the values of χ2/d.o.f.,

our model of the bias provides a good fit. We also estimated the

covariance between the best-fitting parameters in different red-

shift slices, expected due to the overlap between redshift samples.

In order to make this measurement we fitted the bias parameters

and σ 8 to each delete-1 JK sample, obtaining NJK = 88 sets of

best-fitting parameters which we used to construct a covariance

matrix. We show the correlation matrix of these parameters in

Fig. 14. We observe that in any individual redshift slice there is

Figure 14. Correlation matrix of WiggleZ best-fitting parameters b1, b2

and σ 8 as a function of redshift.

a positive correlation between b1 and b2 and a negative correla-

tion between these parameters and σ 8. Although there is overlap

in the redshifts of the samples studied, the correlation coefficients

between the best-fitting parameters in separate redshift slices are

small.

In the following, we study the change of the bias parameters and

σ 8(z) with redshift in more detail.

5.3.1 Constraints of WiggleZ bias

Fig. 15 displays the change of the galaxy bias with redshift. Due

to our selection criteria, we are not necessarily selecting the same

population of galaxies at different redshifts (Li et al. 2012), specially

at redshifts z < 0.5. Therefore, we only can make general statements

about evolution of the bias of WiggleZ galaxies. For the linear bias

b1, it can be seen that there is an upward trend of bias with redshift,

consistent with what is expected for the evolution of haloes of a

given mass: massive objects are less common in older times, and

therefore more biased.

In order to compare our measured bias evolution to the expecta-

tion of simple models, we also plot the evolution of the bias of DM

haloes of fixed mass with redshift in the halo model. These are given

by the analytical expectation using Sheth–Tormen mass functions

(Sheth, Mo & Tormen 2001) for the DM haloes, and the linear and

non-linear bias from the work of Scoccimarro et al. (2001). Since

our galaxies are a subsample of the total population, with a par-

ticular colour and luminosity selection, we do not expect that they

should follow exactly one track of evolution, but in any case, our

measured bias evolution seems to agree with those galaxies living

in haloes with masses ∼1012 h−1 M⊙.

In our measurements and in the halo model, it is expected that

when a galaxy tracer has a linear bias ∼1, it should have a small but

significantly negative non-linear bias b2. In the right-hand panel of

Fig. 15, we show the evolution of the WiggleZ galaxies’ non-linear

bias. These have negative values, and their trend agrees with what is

expected of ∼1012 h−1 M⊙ haloes. A more detailed analysis using

halo occupation distribution models is needed to have a complete

picture of how WiggleZ galaxies populate DM haloes; this is beyond

the scope of this paper.

Figure 15. Evolution of the bias parameters. Left: evolution of linear bias: triangles denote best-fitting parameters from our WiggleZ regions. Lines show halo

model prediction of bias for haloes of masses Mh = 1011 (green dash–dotted line), 1012 (blue solid line) and 1013 h−1 M⊙ (red dashed line). Right: evolution

of the non-linear bias parameters.
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5.3.2 Evolution of cosmic growth

In Fig. 16 we plot our measurements of σ 8 as a function of redshift

from the WiggleZ survey data. In linear theory, the value of σ 8 is

calculated as

σ 2(R = 8, z) =
∫

d3k

(2π)3
|W (k, R = 8)|2 Plin(k, z), (20)

where W(k, R) is the Fourier transform of a top-hat window of

radius R = 8 h−1 Mpc. The linear power spectrum evolves as

Plin(k, z) ∝ [D(z)/D(z∗)]2P (k, z∗), where z∗ is a reference redshift

(e.g., the redshift of recombination) and D(z) is the linear growth

factor, obtained from the solution to the linearized equations of mo-

tion of primordial overdensities (Peebles 1980; Bernardeau et al.

2002). The evolution of the linear growth factor depends on the pa-

rameters of the cosmological model (Lahav & Suto 2004). Thus, we

obtain

σ8(z) =
D(z)

D(z = 0)
σ8(z = 0). (21)

Therefore, σ 8(z) measurements from the 2PCF and 3PCF can be

used to study the evolution of the linear growth factor.

As predicted by the standard cosmological model, the value of

σ 8(z) we measure decreases at earlier times, in agreement with the

WMAP5 cosmological parameters. Assuming a flat �CDM model

with �m = 0.27 we find that when extrapolated to the present epoch,

σ8(z = 0) = 0.79+0.06
−0.07. Our results also agree with the latest estima-

tion of σ 8(z) using BOSS/SDSS-LRG passive galaxies from Tojeiro

et al. (2012); modelling the evolution of the linear bias for their par-

ticular population they find similar values to ours. However, in our

work we need to make no assumptions about the evolution of the

bias, just in the validity (range of scales) of the empirical bias model

we adopt. We also find agreement with other measurements of σ 8

from the 3PCF of the SDSS LRG sample (Marı́n 2011); they find

σ8(z = 0.35) = 0.65+0.02
−0.05, consistent with our measurements at the

same effective redshift.

Figure 16. Evolution of σ 8(z). The blue symbols correspond to the esti-

mates of σ 8(zeff) from the 2PCF and 3PCF of WiggleZ galaxies at different

redshifts, marginalizing over the linear and non-linear bias parameters. The

blue solid line corresponds to the evolution of σ 8(z) in a flat WMAP5-�CDM

universe, with �m = 0.27 and σ 8(z = 0) = 0.812; the blue shaded region

corresponds to combined WMAP5 errors. The red dashed line corresponds

to the evolution of σ 8(z) in a flat �m = 1 CDM universe. The black dash–

dotted line shows the evolution of a flat �� = 1 universe. All models are

normalized at the epoch of recombination.

We also plot in Fig. 16 the evolution of σ 8 in two different

models of flat universes, an Einstein–de Sitter model (flat �m = 1)

and another one with no matter content, just cosmological constant.

As WMAP5 (Komatsu et al. 2009) measured the amplitude of CMB

perturbations at the epoch of recombination z ∼ 1100, we normalize

σ 8 at that redshift for the three cosmologies shown here. We find that

an Einstein–de Sitter universe is disfavoured (�χ2 = 3.5 for one-

parameter fit) when combining measurements of the three WiggleZ

redshift samples, as well as spatially flat models with low matter

content (�χ2 = 45.01 for �m = 0.01).

6 SU M M A RY A N D C O N C L U S I O N S

We have measured the redshift-space two- and three-point clustering

statistics for the WiggleZ galaxies and obtained constraints on the

linear and non-linear galaxy bias and the cosmological parameter σ 8

at three different epochs. Our results can be summarized as follows.

(i) We obtain significant measurements of the WiggleZ 3PCF,

recovering its shape dependence on large scales, spanning a wide

redshift range for all regions and subregions (in angle and redshift)

of the galaxy sample.

(ii) These measurements are in agreement with standard models

for the growth of structure driven by gravitational clustering, re-

flecting the morphology of the clustering large-scale structures, i.e.

the ‘cosmic web’.

(iii) Using a simple local bias parametrization along with an

empirical treatment of redshift-space distortions of the correlation

functions, we get constraints on the bias parameters as a function

of redshift. Our estimation of the linear bias agrees with evolution

of DM haloes ∼1012 h−1 M⊙.

(iv) For all our redshift samples, we detect a significant non-zero

(negative) non-linear bias, also consistent with the models for the

non-linear bias evolution of haloes of masses ∼1012 h−1 M⊙.

(v) We also constrain the evolution of σ 8 with redshift, and by

extension, the evolution of the linear growth factor. We find that

our measurements are consistent with the predictions of a WMAP5

�CDM concordance cosmology and with measurements from other

methods and observables.

The improvement in the measurements of the higher order corre-

lations in the last 10 years has been dramatic, and it is remarkable

that we can now measure the 3PCF using galaxies up to redshift

z ∼ 1. Although the S/N of the WiggleZ 3PCF is weaker than lower

redshift measurements from the SDSS main sample (McBride et al.

2011a,b) and SDSS LRG sample (Kulkarni et al. 2007; Marı́n 2011),

we nonetheless have extended the utility of higher order correlations

functions to z ∼ 1, using the WiggleZ survey data. We note that

using JK resampling for error estimation probably overestimates the

variance on large scales (Marı́n 2011); our measurements would be

improved by the availability of mock galaxy catalogues. At the same

time, with improved statistics we need to improve our modelling of

redshift-space distortions and small-scale effects in order to extract

as much information as possible from the higher order correlations.

Also, improved modelling would help to combine 3PCF mea-

surements with other observables such as clustering and lensing

(see Mandelbaum et al. 2012), two-dimensional redshift-space dis-

tortions two-point statistics or the passive galaxies method (Tojeiro

et al. 2012).

In the near future, with improved measurement techniques and

with bigger surveys, we will be able to use these techniques to

measure the growth factor accurately and discriminate between

�CDM model and modified gravity models (Linder & Cahn 2007).
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A P P E N D I X A : W I G G L E Z 3 P C F

MEASUREMENTS OF I SOSCELES

A N D V E RY E L O N G AT E D T R I A N G L E S

In Fig. A1, we plot the results of the WiggleZ correlation functions

measured for isosceles configurations, where u = s2/s1 = 1, for the

three redshift slices we studied. In these configurations, the third

side length runs from s3 ∼ 0 on very small angles θ ∼ 0, where

the bias model we use is no longer valid due to high non-linearities.

Since the third triangle side s3 covers a large range of scales, for

purposes of plotting we show the absolute values of the 2PCF and

connected 3PCF on a logarithmic scale, while Q(θ ) is shown on a

linear scale (which can take positive or negative values). We can

observe first that in general the errors in these measurements are

smaller compared with the ones we showed in Fig. 5 for the u = 2

configurations. As in the u = 2 configurations, there is no significant
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Figure A1. The WiggleZ combined correlations of isosceles triangles (u = 1) in redshift space. We show the absolute 2PCF |ξ (s3(θ ))| (left), absolute connected

3PCF |ζ (s, u = 1, θ )| (middle) and reduced 3PCF Q(s, u = 1, θ ) (right) of WiggleZ galaxies in the zeff = 0.55 slice (blue triangles), in the slice at zeff = 0.35

(green dashed line) and in the zeff = 0.68 slice (red dash–dotted line). Errors have been determined by JK resampling.

evolution in the amplitude of the correlation values. The 3PCF of

equilateral triangles (u = 1, θ ∼ 1) is small and even negative,

as expected when galaxies cluster in filamentary structures on the

largest scales.

In Fig. A2, we plot the results of the WiggleZ correlation func-

tions measured on very elongated configurations, where u = 3, for

the three redshift slices we studied. For these configurations, the

S/N is much smaller than in other u configurations, specially on

large θ . For the zeff = 0.35 slice (green dashed line), ζ and Q are

poorly measured on the largest scales, justifying our decision to

use a maximum separation s3, max smaller than that adopted for the

other two redshift slices. Note that we reach scales where the BAO

features could in principle be observed s3 ∼ 100 h−1 Mpc, but the

WiggleZ low galaxy bias makes it difficult to achieve a significant

detection that could be used to constrain cosmological parameters

[as claimed by Gaztanaga et al. (2008) for SDSS LRGs].
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Figure A2. The WiggleZ combined correlations of very elongated triangles (u = 3) in redshift space, for the 2PCF ξ (s3(θ )) (left), connected 3PCF ζ (s, u =
3, θ ) (middle) and reduced 3PCF Q(s, u = 3, θ ) (right) of WiggleZ galaxies in the zeff = 0.55 slice (blue triangles), in the slice at zeff = 0.35 (green dashed

line) and in the zeff = 0.68 slice (red dash–dotted line). Errors have been determined by JK resampling.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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