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ABSTRACT
We present precise measurements of the growth rate of cosmic structure for the redshift range
0.1 < z < 0.9, using redshift-space distortions in the galaxy power spectrum of the WiggleZ
Dark Energy Survey. Our results, which have a precision of around 10 per cent in four
independent redshift bins, are well fitted by a flat � cold dark matter (�CDM) cosmological
model with matter density parameter �m = 0.27. Our analysis hence indicates that this model
provides a self-consistent description of the growth of cosmic structure through large-scale
perturbations and the homogeneous cosmic expansion mapped by supernovae and baryon
acoustic oscillations. We achieve robust results by systematically comparing our data with
several different models of the quasi-linear growth of structure including empirical models,
fitting formulae calibrated to N-body simulations, and perturbation theory techniques. We
extract the first measurements of the power spectrum of the velocity divergence field, Pθθ (k),
as a function of redshift (under the assumption that Pgθ (k) = −√

Pgg(k)Pθθ (k), where g is the
galaxy overdensity field), and demonstrate that the WiggleZ galaxy–mass cross-correlation
is consistent with a deterministic (rather than stochastic) scale-independent bias model for
WiggleZ galaxies for scales k < 0.3 h Mpc−1. Measurements of the cosmic growth rate from
the WiggleZ Survey and other current and future observations offer a powerful test of the
physical nature of dark energy that is complementary to distance–redshift measures such as
supernovae and baryon acoustic oscillations.
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1 IN T RO D U C T I O N

Recent cosmological observations have revealed significant gaps
in our understanding of the physics of the Universe. A set of
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measurements including the anisotropies of the cosmic microwave
background (CMB) radiation, the shape of the clustering power
spectrum of galaxies, the brightness of distant supernovae and the
projected scales of baryon acoustic oscillations have indicated the
presence of a ‘dark energy’ component which is propelling the cos-
mic expansion into a phase of acceleration (for recent results see
Komatsu et al. 2009; Guy et al. 2010; Reid et al. 2010; Percival
et al. 2010).

The physical nature of dark energy is not yet understood. Sev-
eral explanations have been put forward including the presence of
smoothly distributed energy such as a cosmological constant or a
quintessence scalar field, a large-scale modification to Einstein’s
theory of general relativity, or the effects of spatially varying cur-
vature in an inhomogeneous Universe. Further observational data
are required to distinguish clearly between the subtly varying pre-
dictions of these very different physical models (e.g. Linder 2005;
Wang 2008; Wiltshire 2009).

One of the most important observational data sets for address-
ing this issue is the large-scale structure of the galaxy distribution.
The clustering within this distribution arises through a process of
gravitational instability which acts to amplify primordial matter
fluctuations. The growth rate of this structure with time is a key
discriminant between cosmological models (e.g. Linder & Jenkins
2003; Linder & Cahn 2007; Nesseris & Perivolaropoulos 2008).
Two different physical dark energy scenarios with the same back-
ground cosmic expansion generally produce different growth rates
of perturbations; hence, growth measurements are able to discrim-
inate between models that are degenerate under geometric tests
(Davis et al. 2007; Rubin et al. 2009).

The growth of cosmic structure is driven by the motion of matter,
for which galaxies act as ‘tracer particles’. These flows imprint a
clear observational signature in galaxy surveys, known as redshift-
space distortions, because the galaxy redshift is generated by not
only the background cosmic expansion but also the peculiar velocity
tracing the bulk flow of matter (Kaiser 1987; Hamilton 1998). As
a consequence the two-point statistics of the galaxy distribution are
anisotropic on large scales, where the amplitude of the anisotropy
is related to the velocity of the bulk flow and hence to the growth
rate of structure.

Many previous galaxy surveys have measured this anisotropy
employing either the galaxy correlation function or power spectrum.
In the relatively local Universe, exquisite studies at redshift z ≈ 0.1
have been undertaken using data from the Two-degree Field Galaxy
Redshift Survey (2dFGRS; Peacock et al. 2001; Hawkins et al.
2003; Percival et al. 2004) and the Sloan Digital Sky Survey (SDSS;
Tegmark et al. 2004). The SDSS luminous red galaxy (LRG) sample
enabled these measurements to be extended to somewhat higher
redshifts z ≈ 0.35 (Tegmark et al. 2006; Okumura et al. 2008;
Cabre & Gaztanaga 2009). Noisier results have been achieved at
greater look-back times up to z ≈ 1 by surveys mapping significantly
smaller cosmic volumes such as the 2dF-SDSS LRG and Quasar
survey (2SLAQ; da Angela et al. 2008) and the VIMOS-VLT Deep
Survey (VVDS; Guzzo et al. 2008).

The current observational challenge is to map the intermediate-
redshift 0.3 < z < 1 Universe with surveys of comparable statistical
power to 2dFGRS and SDSS, so that accurate growth-rate mea-
surements can be extracted across the full (hypothesized) redshift
range for which dark energy dominates the cosmic dynamics. In
order to achieve this goal we have constructed the WiggleZ Dark
Energy Survey (Drinkwater et al. 2010), a new large-scale spec-
troscopic galaxy redshift survey, using the multi-object AAOmega
fibre spectrograph at the 3.9-m Australian Astronomical Telescope.

The survey, which began in 2006 August, targets ultraviolet-selected
(UV-selected) star-forming emission-line galaxies in several differ-
ent regions around the sky and at redshifts z < 1. By covering a
total solid angle of 1000 deg2 the WiggleZ Survey maps two or-
ders of magnitude more cosmic volume in the z > 0.5 Universe
than previous galaxy redshift surveys. This paper presents the cur-
rent measurements of the growth rate of structure using the galaxy
power spectrum of the survey. The data set will also permit many
other tests of the cosmological model via baryon acoustic oscilla-
tions, the Alcock–Pacyznski effect, higher order clustering statistics
and topological descriptors of the density field.

The improving statistical accuracy with which redshift-space dis-
tortions may be measured by observational data sets requires that
the theoretical modelling of the data also advances. Recent reviews
of this topic have been provided by Percival & White (2009) and
Song & Percival (2009). In the linear clustering regime, in the large-
scale limit, the theory is well understood (Kaiser 1987; Hamilton
1998). However, both simulations and observations have demon-
strated that linear theory is a poor approximation across a wide
range of quasi-linear scales encoding a great deal of clustering in-
formation (e.g. Jennings, Baugh & Pascoli 2011; Okumura & Jing
2011). The blind application of linear-theory modelling to current
surveys would therefore result in a significant systematic error in
the extraction of the growth rate and a potential misdiagnosis of the
physical nature of dark energy.

Various methodologies have been employed for extending the
modelling of redshift-space distortions to quasi-linear and non-
linear scales. The classical approach – the so-called ‘streaming
model’ (e.g. Hatton & Cole 1998) – modulates the linear-theory
clustering with an empirical damping function characterized by a
variable parameter, which is marginalized over when extracting the
growth rate. This model has provided an acceptable statistical fit to
many previous data sets, but the lack of a strong physical motivation
for the empirical function could lead to systematic errors when the
model is confronted by high-precision data.

In this paper we consider two alternatives. First, quasi-linear
redshift-space distortions can be modelled by various physically
motivated perturbation theory schemes (for recent reviews see Carl-
son, White & Padmanabhan 2009; Nishimichi et al. 2009). Given
that the accuracy of some current perturbation techniques breaks
down at a particular quasi-linear scale, leading to potentially large
discrepancies at smaller scales, the range of validity of these models
must be carefully considered. The second approach is to use numer-
ical N-body simulations to produce fitting formulae for the density
and velocity power spectra (Smith et al. 2003; Jennings et al. 2011),
which enables models to be established across a wider range of
scales. The main concern of this approach is that these fitting for-
mulae may only be valid for the subset of cosmologies and galaxy
formation models in which they were derived (an important point
given the unknown nature of dark energy).

A further significant issue in the modelling of redshift-space dis-
tortions in the galaxy distribution is the ‘galaxy bias’ relation by
which galaxies trace the matter overdensities that drive the veloci-
ties (e.g. Cole & Kaiser 1989). The typical assumption of a local,
linear, deterministic bias, for which there is a good physical motiva-
tion on large scales (Scherrer & Weinberg 1998), may break down
in the case of precise measurements of the clustering pattern on
quasi-linear scales (Swanson et al. 2008), also potentially leading
to systematic errors in growth-rate fits. In this study we consider
the introduction of stochasticity to the bias relation by varying the
galaxy–mass cross-correlation (Dekel & Lahav 1999). We note that
further studies of the WiggleZ data set involving the bispectrum,
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three-point correlation function, galaxy halo occupation distribu-
tion and comparison with numerical simulations will yield further
constraints on the form of galaxy bias.

The aim of this paper is to use the existing range of redshift-space
distortion models and galaxy power spectra from the WiggleZ Sur-
vey to derive measurements of the growth rate across the redshift
range z < 1 that are robust against modelling systematics. We as-
sume throughout a cosmological model consistent with the analysis
of the latest measurements of the CMB by the Wilkinson Microwave
Anisotropy Probe (Komatsu et al. 2009): a flat Universe described
by general relativity with matter density �m = 0.27, cosmological
constant �� = 0.73, baryon fraction �b/�m = 0.166, Hubble pa-
rameter h = 0.72, primordial scalar index of fluctuations ns = 0.96
and total fluctuation amplitude σ 8 = 0.8. In addition to providing
a good description of the temperature and polarization fluctuations
in the CMB, this model yields a good fit to distance measurements
from supernovae and baryon acoustic oscillations (Guy et al. 2010;
Percival et al. 2010). In this paper we test if the same model also
predicts the observed growth rate of structure. Future studies will
explore simultaneous fits to these data sets using different dark
energy models.

The layout of this paper is as follows. In Section 2 we present
the measurements of the various observational statistics quantifying
the anisotropic power spectrum. Section 3 summarizes the current
theory of redshift-space distortions in Fourier space and introduces
in more detail the models we will fit to the data. In Section 4 we
carry out the parameter fitting focussing on the growth rate and
the galaxy–mass cross-correlation. Section 5 presents an analysis
of the moments of the power spectrum and extraction of the power
spectrum of the velocity divergence field, and Section 6 lists our
conclusions.

2 MEA SU R EMEN TS

2.1 Sample

The WiggleZ Dark Energy Survey at the Australian Astronomical
Telescope (Drinkwater et al. 2010) is a large-scale galaxy redshift
survey of bright emission-line galaxies mapping a cosmic volume
of the order of 1 Gpc3 over redshift z < 1. The survey, which be-
gan in 2006 August and is scheduled to finish in 2011 January,
will obtain of the order of 200 000 redshifts for UV-selected galax-
ies covering of the order of 1000 deg2 of equatorial sky, using the
AAOmega spectrograph (Sharp et al. 2006). The survey design is
driven by the scientific goal of measuring baryon acoustic oscilla-
tions in the galaxy power spectrum at a significantly higher redshift
than existing surveys. The target galaxy population is selected from
UV imaging by the Galaxy Evolution Explorer (GALEX) satellite,
matched with optical data from the SDSS and Red Cluster Sequence
survey (RCS2; Gilbank et al. 2011) to provide an accurate position
for fibre spectroscopy. Full details about the survey design, execu-
tion and modelling are provided by Blake et al. (2009), Drinkwater
et al. (2010) and Blake et al. (2010).

In this paper we analyse a subset of the WiggleZ sample assem-
bled up to the end of the 10A semester (2010 May). We include data
from six survey regions – the 9-, 11-, 15-, 22-, 1- and 3-h regions –
in the redshift range 0.1 < z < 0.9, which together constitute a
total sample of N = 152 117 galaxies. Fig. 1 displays the distribu-
tion in right ascension and declination of the analysed sample for
the six survey regions, where the grey-scale level corresponds to
the relative redshift completeness. We divided the sample into four
redshift slices of width �z = 0.2 in order to map the evolution of
the growth rate with redshift. The effective redshifts at which the
clustering pattern was measured in each of these slices (evaluated

Figure 1. Grey-scale map illustrating the relative redshift completeness of each of the six WiggleZ Survey regions analysed in this paper. This figure is
generated by taking the ratio of the galaxy densities in the redshift and parent catalogues in small cells. The x- and y-axes of each panel represent right ascension
and declination, respectively.
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using equation 44 of Blake et al. 2010) were zeff = (0.22, 0.41, 0.60,
0.78). The numbers of galaxies analysed in each redshift slice were
N = (19608, 39495, 60227, 32787).

2.2 Power-spectrum estimation

We estimated the two-dimensional galaxy power spectrum Pg(k, μ)
in four redshift slices for each of the six WiggleZ Survey regions
using the direct Fourier methods introduced by Feldman, Kaiser
& Peacock (1994, hereafter FKP). Our methodology is fully de-
scribed in section 3.1 of Blake et al. (2010); we give a brief sum-
mary here. First, we mapped the angle-redshift survey cone into a
cuboid of comoving coordinates using a fiducial flat � cold dark
matter (�CDM) cosmological model with matter density �m =
0.27. We gridded the catalogue in cells using nearest grid point
assignment ensuring that the Nyquist frequencies in each direction
were much higher than the Fourier wavenumbers of interest (we
corrected the power-spectrum measurement for the small bias in-
troduced by this gridding using the method of Jing 2005). We then
applied a fast Fourier transform to the grid. The window function of
each region was determined using the methods described by Blake
et al. (2010) that model effects due to the survey boundaries, incom-
pleteness in the parent UV and optical catalogues, incompleteness
in the spectroscopic follow-up, systematic variations in the spectro-
scopic redshift completeness across the AAOmega spectrograph and
variations of the galaxy redshift distribution with angular position.
The fast Fourier transform of the window function was then used
to construct the final power-spectrum estimator. The measurement
was corrected for the small effect of redshift blunders using Monte
Carlo survey simulations as described in section 3.2 of Blake et al.
(2010).

Since each WiggleZ Survey region subtends a relatively small
angle on the sky, of the order of 10◦, the flat-sky approximation
is valid. We orient the x-axis of our Fourier cuboid parallel to the
line of sight at the angular centre of each region, and then repre-
sent each Fourier mode by wavevectors parallel and perpendicular

to the line of sight: k‖ = |kx| and k⊥ =
√

k2
y + k2

z . We can also

then determine the values of the total wavenumber of each mode
k =

√
k2

‖ + k2
⊥ and the cosine of its angle to the line of sight,

μ = k‖/k. We used two binning schemes for averaging the Fourier
modes k: in bins of k⊥ and k‖ (of width 0.02 h Mpc−1) and in bins
of k and μ (of width 0.02 h Mpc−1 and 0.1, respectively). We deter-
mined the covariance matrix of the power-spectrum measurement
in these binning schemes by implementing the sums in Fourier
space described by FKP (see Blake et al. 2010, equations 20– 22).
The angular size of each WiggleZ region implies that the effect of
wide-angle distortions (Raccanelli, Samushia & Percival 2010) is
not significant.

We note that the FKP covariance matrix of the power spectrum
only includes the contribution from the survey window function
and neglects any covariance due to non-linear growth of structure
or redshift-space effects. The full covariance matrix may be studied
with the aid of a large ensemble of N-body simulations (Rimes &
Hamilton 2005; Takahashi et al. 2011), which we are preparing in
conjunction with the final WiggleZ Survey sample. The impact of
using the full non-linear covariance matrix on growth-of-structure
measurements has not yet been studied, although Takahashi et al.
(2011) demonstrated that the effect on the accuracy of extraction of
the baryon acoustic oscillations is very small.

The power-spectrum model must be convolved with the window
function to be compared to the data. For reasons of computing

speed, we recast the convolution as a matrix multiplication:

Pconvolved(i) =
∑

j

Mij Pmodel(j ), (1)

where i and j label a single bin in the two-dimensional set (k⊥, k‖)
or (k, μ). We determined the convolution matrix Mij by evaluating
the full Fourier convolution for a complete set of unit vectors. For
example, to evaluate the jth row of matrix elements, corresponding
to a bin (kmin,j < k < kmax,j, μmin,j < μ < μmax,j), we defined the
three-dimensional model in Fourier space for the unit vector

Pmodel(k) = 1 (kmin,j < k < kmax,j ; μmin,j < μ < μmax,j ),

= 0 otherwise, (2)

applied the full convolution transform (equation 16 in Blake et al.
2010) and binned the resulting power-spectrum amplitudes in the
same (k, μ) bins. The vector of results defines the jth row of the
matrix M in equation (1). In summary, for each of the 24 subregions
we obtain a data vector Ps

g [spanning (k⊥, k‖) or (k, μ)], a covariance
matrix and a convolution matrix.

Figs 2 and 3, respectively, display two-dimensional power spectra
P(k⊥, k‖) and P(k, μ) for each of the four redshift slices, obtained
by stacking measurements across the six survey regions. For com-
parison we also plot in each case contours corresponding to the
best-fitting non-linear empirical Lorentzian redshift-space distor-
tion model described below. In Fig. 2 the non-circular nature of the
measurements and models in Fourier space encode the imprint of
redshift-space distortions. The overall ‘squeezing’ of the contours
in the k⊥ direction reflects the large-scale bulk flows. The apparent
‘pinching’ of the models near the k‖ = 0 axis is due to the damping
caused by the pairwise velocity dispersion discussed below in Sec-
tion 3.2, the amplitude of which is seen to increase with decreasing
redshift (the pinching results from the relative variation with μ of
the numerator and denominator of equation 10). Fig. 3, which bins
the clustering amplitude with the cosine of the angle to the line of
sight μ, illustrates how the coherent velocity flows boost the power
of radial (μ = 1) modes relative to tangential (μ = 0) modes for a
given scale k.

3 MODELLI NG THE REDSHI FT-SPACE
GALAXY POWER SPECTRU M

In this section we describe a range of 18 models of the redshift-
space galaxy power spectrum in the quasi-linear regime that we
will try fitting to our measurements. These models are listed in
Table 1. We assume that the shape of the underlying linear matter
power spectrum is accurately determined by observations of the
CMB radiation, and hence we fix the background cosmological
parameters. In this case, each redshift-space power-spectrum model
contains at least two parameters to be fitted: the growth rate f and
a linear bias b. In several cases discussed below we introduce a
third parameter, a variable damping coefficient σv. The multipole
power spectra of these models at redshift z = 0.6 are compared
in Fig. 4 assuming a linear bias b = 1, a growth rate f = 0.7
and (where applicable) a damping term σv = 300 h km s−1. For
the purposes of illustration, all models in Fig. 4 are divided by
a smooth ‘no-wiggles’ reference power spectrum from the fitting
formulae of Eisenstein & Hu (1998), which has the same shape as
the linear power spectrum but without the imprint of baryon acoustic
oscillations.
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Figure 2. The galaxy power-spectrum amplitude as a function of wavevectors (k⊥, k‖) perpendicular and parallel to the line of sight, determined by stacking
observations in different WiggleZ Survey regions in four redshift slices. The contours correspond to the best-fitting non-linear empirical Lorentzian redshift-
space distortion model. We note that because of the differing degrees of convolution in each region due to the window function, a ‘deconvolution’ method
was used to produce this plot. Before stacking, the data points were corrected by the ratio of the unconvolved and convolved two-dimensional power spectra
corresponding to the best-fitting model for the purposes of this visualization. Only the top-right quadrant of data for each redshift is independent; the other three
quadrants are mirrors of this first quadrant. The k⊥ = 0 axis is noisiest because it contains the lowest number of Fourier modes available for power-spectrum
determination.

Figure 3. The galaxy power spectrum as a function of amplitude and angle of Fourier wavevector (k, μ), determined by stacking observations in different
WiggleZ Survey regions in four redshift slices. The contours correspond to the best-fitting non-linear empirical Lorentzian redshift-space distortion model.
A similar stacking method was used to that employed in the generation of Fig. 2. In the absence of redshift-space distortions, the model contours would be
horizontal lines.

3.1 Density and velocity power spectra

The galaxy overdensity field, δg, is modified in redshift space by
peculiar velocities. In Fourier space, the redshift-space overdensity

field is given by

δs
g(k, μ) = δg(k) − μ2θ (k), (3)
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Table 1. Description of the quasi-linear redshift-space power-spectrum models fitted to the WiggleZ Survey measurements to determine the growth rate f .
The ‘damping’ for each model can be ‘variable’ (empirically fitted to the data), ‘linear’ (determined using equation 12 as motivated by Scoccimarro 2004) or
‘none’ (not included in the model). In each model we also fit for a linear bias parameter b.

Model Damping Fitted parameters Reference

1 Empirical Lorentzian with linear Pδδ(k) Variable f , b, σv Hatton & Cole (1998)
2 Empirical Lorentzian with non-linear Pδδ(k) Variable f , b, σv

3 Pδδ , Pδθ , Pθθ from one-loop SPT None f , b Vishniac (1983), Juszkiewicz, Sonoda & Barrow (1984)
4 Pδδ , Pδθ , Pθθ from one-loop SPT Variable f , b, σv

5 Pδδ , Pδθ , Pθθ from one-loop SPT Linear f , b
6 Pδδ , Pδθ , Pθθ from one-loop RPT None f , b Crocce & Scoccimarro (2006)
7 Pδδ , Pδθ , Pθθ from one-loop RPT Linear f , b
8 Pδδ , Pδθ , Pθθ from two-loop RPT None f , b
9 Pδδ , Pδθ , Pθθ from two-loop RPT Variable f , b
10 Pδδ , Pδθ , Pθθ from two-loop RPT Linear f , b
11 P(k, μ) from one-loop SPT None f , b Matsubara (2008)
12 P(k, μ) from one-loop SPT Linear f , b
13 P(k, μ) with additional corrections None f , b Taruya, Nishimichi & Saito (2010)
14 P(k, μ) with additional corrections Variable f , b, σv

15 P(k, μ) with additional corrections Linear f , b
16 Fitting formulae from N-body simulations None f , b Smith et al. (2003), Jennings et al. (2011)
17 Fitting formulae from N-body simulations Variable f , b, σv

18 Fitting formulae from N-body simulations Linear f , b

Figure 4. The multipole power spectra P	(k) for 	 = 0, 2, 4 for the different models listed in Table 1. The models are evaluated at redshift z = 0.6 assuming a
linear bias b = 1, a growth rate f = 0.7 and (where applicable) a damping term σv = 300 h km s−1. The models are labelled by their row number in Table 1.
The solid and dashed lines are models that, respectively, include and exclude the damping term. All models are divided by a smooth ‘no-wiggles’ reference
power spectrum from the fitting formulae of Eisenstein & Hu (1998), which has the same shape as the linear power spectrum but without the imprint of baryon
acoustic oscillations. The models agree well in the large-scale limit, but significant differences develop between the models at smaller scales.

where θ (k) is the Fourier transform of the divergence of the peculiar
velocity field u in units of the comoving Hubble velocity (i.e. u =
v/[H (a)a]), θ = ∇·u, and μ is the cosine of the angle of the Fourier
mode to the line of sight. Equation (3) assumes that the galaxy
separation is small compared with the distance to the galaxies, δg

and θ are small, the velocity field u is irrotational, and the continuity

equation holds. In this case the linear redshift-space power spectrum
of a population of galaxies may be written as

P s
g (k, μ) = Pgg(k) − 2μ2Pgθ (k) + μ4Pθθ (k), (4)

where Pgg(k) ≡ 〈|δg(k)|2〉, Pgθ (k) ≡ 〈δg(k)θ∗(k)〉 and Pθθ (k) ≡
〈|θ (k)|2〉 are the isotropic galaxy–galaxy, galaxy–θ and θ–θ power
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spectra for modes k, respectively. We will often refer to the Pθθ (k) as
the ‘velocity power spectrum,’ although it would be better described
as the ‘power spectrum of the velocity divergence field’.

Assuming that the velocity field is generated under linear pertur-
bation theory then

θ (k) = −f δ(k), (5)

where f is the growth rate of structure, expressible in terms of the
growth factor D(a) at the cosmic scale factor a as f ≡ dln D/dln a,
and δ is the matter overdensity. The growth factor is defined in terms
of the amplitude of a single perturbation as δ(a) = D(a) δ(1). Equa-
tion (5) additionally assumes that the linearized Euler and Poisson
equations hold in a perturbed Friedmann–Robertson–Walker uni-
verse. It represents a coherent flow of matter in which there is a
one-to-one coupling between the Fourier components of the veloc-
ity divergence and density fields.

Under the assumption of a deterministic, scale-independent, lo-
cal, linear bias b then

δg = b δ, (6)

and we may write Pgg = b2Pδδ and Pgθ = b Pδθ . If we additionally
assume that equation (5) applies, then equation (4) may be written
as

P s
g (k, μ) = b2 Pδδ(k)

(
1 + f μ2

b

)2

= b2 Pδδ(k) (1 + βμ2)2. (7)

Equation (7) is known as the large-scale ‘Kaiser limit’ of the
redshift-space power-spectrum model (Kaiser 1987), often ex-
pressed in terms of the parameter β = f /b. We assume no ve-
locity bias between galaxies and matter (Lau, Nagai & Kravtsov
2010).

Simulations and observations have demonstrated that equation (7)
is an unreliable model on all but the largest scales (smallest values
of k) due to the non-linear growth of structure. Deviations from the
Kaiser limit are evident for k > 0.02 h Mpc−1 and are particularly
noticeable in the θ power spectra (Jennings et al. 2011; Okumura
& Jing 2011). This failure of the model is due to the breakdown of
the relation between θ and δ (equation 5) rather than the underlying
structure of equation (4) (Scoccimarro 2004). Non-linear evolution
implies that a given overdensity δ produces a range of values of θ ,
and this range of velocities acts to smooth the galaxy overdensity
field in redshift space, or damp the θ power spectra. This non-
linear damping must be modelled in order to avoid introducing a
systematic error into our extraction of the growth rate f from data.
A variety of methods are available for implementing this non-linear
correction, which we discuss below.

3.2 The empirical non-linear velocity model

The standard ‘streaming model’ for describing the non-linear com-
ponent of redshift-space distortions (e.g. Hatton & Cole 1998) intro-
duces an empirical damping function F to be multiplied into equa-
tion (4), representing convolution with uncorrelated galaxy motions
on small scales:

P s
g (k, μ) = [Pgg(k) − 2μ2Pgθ (k) + μ4Pθθ (k)]F (k, μ) . (8)

The two models most commonly considered in the literature are
the Lorentzian F = [1 + (kσvμ)2]−1 and the Gaussian F =
exp [−(kσvμ)2], representing exponential and Gaussian convolu-
tions in configuration space, and each parametrized by a single

variable σv. The Lorentzian model produces better fits to data (e.g.
Hawkins et al. 2003; Cabre & Gaztanaga 2009) and we assume this
version of the model in our study.

Equation (8) is typically applied assuming that Pgg, Pgθ and Pθθ

are predicted by linear theory assuming equation (5); hence for the
Lorentzian model we obtain

P s
g (k, μ) = b2 Pδδ,lin(k)

(1 + f μ2/b)2

1 + (kσvμ)2
, (9)

where we generated the linear power spectrum Pδδ,lin(k) using the
CAMB software package (Lewis, Challinor & Lasenby 2000). This
is Model 1 in Table 1. We also considered the case where a non-
linear density power spectrum Pδδ,NL(k), generated by applying the
fitting formula of Smith et al. (2003) to the CAMB output, is used in
equation (9):

P s
g (k, μ) = b2 Pδδ,NL(k)

(1 + f μ2/b)2

1 + (kσvμ)2
. (10)

This is Model 2.
Although these models are motivated by virialized motions of

particles in collapsed structures, it is important to note that they are
heuristic in nature. The correction represented by F(k) in fits to real
data is typically of the order of 20 per cent at k ∼ 0.2 h Mpc−1.
These Fourier modes describe physical scales of tens of h−1 Mpc,
far exceeding the size of virialized structures. In addition, the form
of F and the value of σv depend strongly on details such as galaxy
type, dark matter halo mass and satellite fraction. However, it should
be noted that equation (9) does a very reasonable job of empirically
modelling real data sets at the precision available in previous redshift
surveys (e.g. Hawkins et al. 2003; Cabre & Gaztanaga 2009).

3.3 Perturbation theory approaches

A different approach to modelling clustering beyond linear scales
is to extend equations (4) and (5) into the quasi-linear regime using
perturbation theory techniques. These approaches have the advan-
tage of a stronger physical motivation compared to the empirical
streaming models, and the disadvantage that they are potentially
applicable for a narrower range of scales, depending on the type
of perturbation expansion. Standard perturbation theory (SPT) at
z = 0 is only accurate for the range k < 0.1 h Mpc−1, but other
expansion approaches are available with the precise range of valid-
ity dependent on the model in question and the accuracy required
(Carlson et al. 2009; Nishimichi et al. 2009). We describe the order
of the perturbative expansion by the number of ‘loops’ of resumma-
tion performed; calculations including up to two loops are currently
tractable.

Various methodologies have been introduced. The simplest tech-
nique is to use perturbation theory approaches to model the quasi-
linear behaviour of the functions Pδδ(k), Pδθ (k) and Pθθ (k) in
equation (4). These techniques have been recently reviewed by
Nishimichi et al. (2009) and Carlson et al. (2009) and include Eule-
rian SPT (e.g. Vishniac 1983; Juszkiewicz et al. 1984) together with
attempts to improve the convergence behaviour such as renormal-
ized perturbation theory (RPT; e.g. Crocce & Scoccimarro 2006)
which does not expand on the amplitude of fluctuations. When gen-
erating the perturbation theory predictions we assumed an input
linear power spectrum consistent with the latest CMB observations:
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�m = 0.27, �� = 0.73, �b/�m = 0.166, h = 0.72, ns = 0.96 and
σ 8 = 0.8.1

Going beyond the linear assumption may also lead to an alter-
native dependence of the redshift-space power spectrum on μ to
that exhibited by equation (4). Scoccimarro (2004) proposed the
following model for the redshift-space power spectrum in terms of
the quasi-linear density and velocity power spectra:

P s
g (k, μ) = [Pgg(k) − 2μ2Pgθ (k) + μ4Pθθ (k)]e−(kμσv)2

, (11)

where σv is determined by

σ 2
v = 1

6π2

∫
Pθθ (k) dk . (12)

The power spectra Pgg(k), Pgθ (k) and Pθθ (k) in equation (11) may
be generated by perturbation theory or other approaches. We note
that Pgθ (k) and Pθθ (k) are functions of f . The damping factor in
equation (11) is analogous to the streaming model of equation (8)
but has a very different physical motivation: it aims to model the
quasi-linear growth of the power spectra rather than virialized small-
scale motions. Indeed, it would be possible to add an extra empirical
damping factor F to equation (11) to model small-scale motions.

As discussed by Scoccimarro (2004), the model of equation (11)
is an approximation in which the Gaussian damping factor attempts
to reproduce the correct non-linear behaviour; equation (11) cannot
be strictly derived from theory. Given this approximation we con-
sider fitting σv as a variable parameter in addition to fixing it using
equation (12). Models 3–10 in Table 1 are various combinations
of SPT and RPT with different implementations of the damping
term.

We note that σv can also be expressed in velocity units by multi-
plying by the Hubble parameter H0 = 100 h km s−1 Mpc−1. When
calculating the damping term we use the linear velocity power spec-
trum as the input to equation (12), i.e. we set Pθθ (k) = f 2Pδδ,lin(k).

The final perturbation theory approaches we consider follow
Matsubara (2008) and Taruya et al. (2010), who present quasi-
linear perturbation theory models including terms up to μ6, of the
form

P s
g (k, μ) =

3∑
n=0

An(k) μ2n, (13)

where the coefficients An(k) are the functions of f . The Matsubara
(2008) results are a full angle-dependent treatment of SPT (Models
11 and 12), and Taruya et al. (2010) present an improved analysis
incorporating additional correction terms (Models 13–15). When
calculating the Taruya et al. model prediction we use power spectra
Pδδ(k), Pδθ (k) and Pθθ (k) generated by two-loop RPT.

3.4 Fitting formulae calibrated by simulations

Finally, N-body dark matter simulations can be exploited to cal-
ibrate the quasi-linear forms of the functions Pδδ(k), Pδθ (k) and
Pθθ (k). The advantage of this technique is that the results will be
(potentially) reliable across a wider range of scales than is accessi-
ble with perturbation theory. The disadvantage is that simulations
are expensive to generate and it is difficult to span a wide range of

1 We are very grateful to Martin Crocce for providing us with the one- and
two-loop outputs of RPT for our cosmological model at the redshifts in
question.

input cosmological models (although that is not a limitation for us
given that we are only considering a single fiducial model).

Smith et al. (2003) presented a widely used prescription for gen-
erating non-linear density power spectra Pδδ . Fitting formulae cal-
ibrated to N-body simulations for Pδθ and Pθθ as a function of
redshift, in terms of Pδδ , were recently proposed by Jennings et al.
(2011). We inserted these fitting functions into equation (11), scal-
ing by f and f 2, respectively, to correct for the differing notation
conventions. The Jennings et al. formulae, combined with vari-
ous implementations of the damping term, are Models 16–18 in
Table 1.

4 PARAMETER FI TS

4.1 Growth rate

We fitted the 18 models introduced in Section 3 and summarized
in Table 1 to the WiggleZ Survey galaxy power spectra Pg(k⊥,
k‖) measured in Section 2. For each of the four redshift slices
we determined the growth rate f fitting to the six survey regions,
marginalizing over the linear bias b (and the pairwise velocity dis-
persion σv where applicable). We also recorded the minimum value
of the χ 2 statistic for each model calculated using the full covari-
ance matrix. We repeated this procedure varying the range of scales

0 <
√

k2
⊥ + k2

‖ < kmax over which each model is fitted. Utilizing

a higher value of kmax produces an improved statistical error in the
measurement, but potentially causes a larger systematic error since
all models (and particularly some of the perturbation-theory mod-
els) are less reliable at larger values of k for which the non-linear
corrections are more significant. In the absence of systematic errors,
the best-fitting growth rate would be independent of kmax.

Fig. 5 displays the growth-rate measurements for the 0.5 < z < 0.7
redshift slice (which produces the highest statistical accuracy of the
four slices), comparing results for kmax = 0.1, 0.2 and 0.3 h Mpc−1.
At least one model can always be found that provides a good fit to
the data for each of the choices of kmax, as indicated by the minimum
values of χ 2 = (93.8, 436.5, 999.1) for kmax = (0.1, 0.2, 0.3) with
the number of degrees of freedom (87, 411, 981). The respective
probabilities for obtaining values of χ 2 higher than these are (0.29,
0.19, 0.34), indicating an acceptable goodness of fit. In Fig. 5 we
display the minimum values of χ 2 for every model relative to the
best-fitting model for each choice of kmax.

For kmax = 0.1 all models provide a good fit to the data and
consistent measurements of the growth rate. This confirms the con-
vergence of the different modelling approaches at large scales. For
kmax = 0.2 and 0.3 some models are significantly disfavoured by
larger values of χ 2, and these models produce measurements of the
growth rate which systematically differ from the best performing
models. For kmax = 0.3, models with a variable damping parame-
ter produce a fit with a significantly lower value of χ 2, suggesting
that equation (12) produces an unreliable prediction of the damping
coefficient for these smaller scales.

Considering all four redshift slices, the best performing models
for kmax = 0.3 h Mpc−1 are the Taruya et al. (2010) model, incor-
porating extra angle-dependent correction terms in addition to the
density and velocity power spectra from two-loop RPT (Model 14
in Table 1), and the Jennings et al. (2011) fitting formula calibrated
from N-body simulations (Model 17). The growth rates deduced
from these two very different modelling techniques agree remark-
ably well, after marginalizing over the variable damping term and
linear galaxy bias, with the difference in values being much smaller
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Figure 5. Measurements of the growth rate f for the 0.5 < z < 0.7 redshift slice for each of the 18 models listed in Table 1. The three panels, each consisting
of a pair of plots, correspond to different ranges of fitted scales 0 < k < kmax, where kmax = 0.1, 0.2 and 0.3 h Mpc−1. For each panel, the left-hand plot shows
the measurement of f and the right-hand plot displays the minimum value of the χ2 statistic relative to the best-fitting model for that choice of kmax. In the
left-hand plot, the vertical dashed line indicates the prediction of a flat �CDM cosmological model with �m = 0.27. The two vertical dotted lines span the
68 per cent confidence region of the growth rate measured for the Jennings et al. model with a variable damping parameter, facilitating an easy comparison of
the results for different models. In the right-hand plot, points with �χ2 < 0.1 are plotted at the left-hand edge of the panel and �χ2 = 1 is indicated by the
vertical dashed line. The three best performing models for kmax = 0.3 are highlighted by the red text.

than the statistical errors in the measurement. The level of this
agreement gives us confidence that our results are not limited by
systematic errors. We note that the empirical Lorentzian streaming
model, where we use the non-linear model power spectrum, also
performs well (Model 2 in Table 1). In Fig. 5 we have highlighted
these three models in red. For all scales and redshifts, these models
typically produce mutually consistent measurements of the growth
rate and minimum values of χ 2 which differ by �χ 2 ∼ 1. As a
further comparison, Fig. 6 illustrates the measurements for all 18
models in every redshift slice for kmax = 0.2, again highlighting the
same three optimal models in red.

We can use the dispersion in the results of fitting these three mod-
els to estimate the systematic error in the growth-rate measurement,
by taking the variance of the different growth rates weighting by
exp (− χ 2/2). The systematic error in f calculated in this manner
is (0.01, 0.04, 0.03, 0.04) in the four redshift slices (for kmax =
0.3 h Mpc−1). The magnitude of this error is less than half that of
the statistical error in each bin. This systematic error represents the
dispersion of growth-rate determinations within the set of redshift-
space distortion models listed in Table 1.

We quote our final results using the Jennings et al. (2011) model,
which usually produces the lowest value of χ 2, applied to kmax =
0.3 h Mpc−1. The growth-rate measurements in the four redshift
slices using this model, marginalizing over the other parameters,
are f = (0.60 ± 0.10, 0.70 ± 0.07, 0.73 ± 0.07, 0.70 ± 0.08). The
values of the galaxy bias parameter in each redshift slice using this
model, marginalizing over the other parameters, are b2 = (0.69 ±
0.04, 0.83 ± 0.04, 1.21 ± 0.04, 1.48 ± 0.08).

Fig. 7 explores in more detail the robustness of the growth-rate
measurements as a function of kmax for the three optimal mod-
els. We plot the growth rate determined in four redshift slices for
these models alone, considering a range of fitting limits between
kmax = 0.15 and 0.3 h Mpc−1. Fig. 7 empirically demonstrates that
systematic trends in the growth-rate measurement as kmax changes
are typically less than the statistical error in the measurement for
kmax = 0.3.

Fig. 8 displays the WiggleZ Survey measurements of the growth
rate of structure in four redshift slices, using the Jennings et al.
(2011) model with a variable damping parameter and fitting to
kmax = 0.3 h Mpc−1. We present our results multiplied by a redshift-
dependent normalization, f (z) σ 8(z), where σ 8(z) is the rms fluc-
tuation at redshift z of the linear matter density field in comoving
8 h−1 Mpc spheres, calculated for our fiducial cosmological model.
This weighting increases the model independence of the results
by removing the sensitivity to the overall normalization of the
power-spectrum model (Song & Percival 2009). Because the overall
galaxy power-spectrum amplitude scales with σ 8(z) b(z) at a partic-
ular redshift z, where b(z) is the linear bias factor, and the magnitude
of the redshift-space distortion due to coherent flows depends on
f (z)/b(z), then the measured value of the growth rate f (z) scales as
1/σ 8(z). The weighted fits in the four redshift slices are f (z) σ 8(z) =
(0.42 ± 0.07, 0.45 ± 0.04, 0.43 ± 0.04, 0.38 ± 0.04). The WiggleZ
measurements are compared to results previously published for the
2dFGRS, SDSS-LRG and VVDS samples, as collected by Song &
Percival (2009), and to the prediction of a flat �CDM cosmological
model with �m = 0.27. We note the following.
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Figure 6. Measurements of the growth rate f in four redshift slices assuming a fitting limit kmax = 0.2 h Mpc−1 for each of the 18 models listed in Table 1. The
vertical dashed line indicates the prediction of a flat �CDM cosmological model with �m = 0.27. The two vertical dotted lines span the 68 per cent confidence
region of the growth rate measured for the Jennings et al. model with a variable damping parameter, facilitating an easy comparison of the results for different
models. The three best performing models (based on the values of the χ2 statistic) are highlighted by the red text.

Figure 7. Measurements of the growth rate f in four redshift slices, varying the fitting limit kmax from 0.15 to 0.3 h Mpc−1 in steps of 0.05, for the three
optimal models: the non-linear empirical Lorentzian, Taruya et al. (2010) and Jennings et al. (2011) models. All models include a variable damping parameter.
The vertical dashed line indicates the prediction of a flat �CDM cosmological model with �m = 0.27. The two vertical dotted lines span the 68 per cent
confidence region of the growth rate measured for the Jennings et al. model for kmax = 0.3, facilitating an easy comparison of the results for different models.

(i) The WiggleZ Survey data set is the first to produce pre-
cise growth-rate measurements in the intermediate-redshift range
z > 0.4, the apparent transition epoch from decelerating to ac-
celerating expansion, with 10 per cent measurement errors that

are comparable to those obtained at lower redshift from existing
surveys.

(ii) The low-redshift z < 0.4 WiggleZ measurements agree well
with existing data.
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Figure 8. Measurements of the growth rate of structure weighted by a redshift-dependent normalization, f (z) σ 8(z), obtained in four redshift slices by fitting
WiggleZ Survey data. We assume the Jennings et al. (2011) model for non-linear redshift-space distortions, with a variable damping parameter, and fit to the
scale range k < 0.3 h Mpc−1. The WiggleZ measurements are compared to results previously published for the 2dFGRS, SDSS-LRG and VVDS samples
(black open circles) as collected by Song & Percival (2009). The prediction of a flat �CDM cosmological model with �m = 0.27 is also shown.

(iii) Our data set permits coherent flows to be quantified across
the entire redshift range z < 1 using observations from a single
galaxy survey.

(iv) A cosmological model in which general relativity describes
the large-scale gravitation of the Universe, and the current matter
density parameter is �m = 0.27, provides a good simultaneous
description of the initial conditions described by CMB observations,
the cosmic expansion history mapped by high-redshift supernovae
and baryon acoustic oscillations, and the growth history mapped by
galaxy bulk flows in the WiggleZ Dark Energy Survey.

4.2 Galaxy–mass cross-correlation

In order to characterize the galaxy bias relation in more detail we
introduced a cross-correlation parameter r between the galaxy and
matter overdensities such that 〈δgδ〉 = br〈δ2〉 and 〈δ2

g〉 = b2〈δ2〉
(where |r| ≤ 1 is required by the definition of a cross-correlation
coefficient). The value r = 1 corresponds to a fully deterministic
bias, whereas r ≤ 1 introduces a random stochastic element to the
bias relation. Measurements of this stochasticity in the SDSS were
presented by Swanson et al. (2008), who utilized a counts-in-cells
analysis to quantify its dependence on scale, luminosity and colour.
Swanson et al. found that a scale-independent deterministic linear
bias was in general a good match to the SDSS data, especially on
large scales, where the amplitude of the bias varied significantly with
luminosity for red galaxies but not for blue galaxies. Furthermore,
colour-dependent stochastic effects were evident at smaller scales.
We can extend this analysis to higher redshifts using the WiggleZ
power spectrum.

Equation (4) may be rewritten for a general cross-correlation
parameter r as

Pg(k, μ) = b2Pδδ(k) − 2μ2brPδθ (k) + μ4Pθθ (k), (14)

and assuming a model for the three power spectra Pδδ(k), Pδθ (k) and
Pθθ (k), the value of r may be extracted for each scale k by marginal-

Figure 9. The galaxy–mass cross-correlation parameter r as a function of
scale k, measured by fitting equation (14) to the WiggleZ power-spectrum
data assuming the growth rate predicted by �CDM and marginalizing over
a linear bias and variable damping factors. The measurements in different
redshift slices are combined.

izing over b. In this investigation we fix the value of the growth
rate f at the value predicted by the �CDM model, and we assume
the Smith et al. (2003) and Jennings et al. (2011) prescriptions for
the density and velocity power spectra. We also marginalized over
a variable damping parameter.

Fig. 9 displays the measurement of r in independent Fourier bins
of width �k = 0.04 h Mpc−1 between k = 0.02 and 0.3 h Mpc−1,
combining the results for different redshift slices and varying r
within the range −1 ≤ r ≤ 1. We find that the cross-correlation
parameter is consistent with the deterministic bias r = 1 (and this
result also applies for each separate redshift slice). Because the
probability distribution for r is asymmetric due to the hard upper
limit, in the cases when the confidence region is truncated at r = 1
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we plot in Fig. 9 the range below r = 1 enclosing 68 per cent of the
probability and the position of the peak of the likelihood.

5 A NA LY SIS O F THE POWER-SPECTRUM
M O M E N T S

5.1 Multipole moments of the power spectrum

In this section we explore some alternative techniques for quan-
tifying the redshift-space power spectra which can visualize their
information content more neatly. The galaxy power spectrum Ps

g(k,
μ) may be decomposed in a basis of Legendre polynomials L	(μ)
to give multipole moments P	(k):

P s
g (k, μ) =

∑
even 	

P	(k) L	(μ), (15)

P	(k) = 2	 + 1

2

∫ 1

−1
dμ P s

g (k, μ) L	(μ). (16)

The monopole (l = 0) spectrum primarily contains information
about the underlying shape of the isotropic clustering pattern. The
quadrupole (l = 2) spectrum holds the leading-order signal from
the anisotropic modulation in power due to redshift-space effects.
We note that the multipole moments may be expressed in terms of
the density–velocity power spectra Pδδ , Pδθ and Pθθ (e.g. Percival
& White 2009).

The multipole moments may be extracted from the power-
spectrum measurement in bins of μ by turning equation (16) from
an integral into a sum:

P	(k) = 2	 + 1

2

∑
μ bins

P s
g (k, μ)

∫ μ+�μ/2

μ−�μ/2
L	(μ

′) dμ′ . (17)

Alternatively, Yamamoto et al. (2006) introduced a direct estimator
for P	(k) which does not require binning of the power spectrum in μ

(which is particularly problematic at low k, where there are limited
modes available in Fourier space). We present the key equations of
the estimator here, referring the reader to Yamamoto et al. (2006)
for the full derivation.

The Yamamoto et al. estimator, which is valid when the distant-
observer approximation is applicable, is written using sums over
Ngal observed galaxies and Nran = Ngal/α random (mock) galaxies
(where α � 1). For each Fourier mode k we define the multipole
moments based on the data as

D	(k) =
Ngal∑
i=1

w(si) exp (isi .k) L	(ŝi .k̂), (18)

where si is the position vector of galaxy i and w(s) is a weight factor
for each galaxy, specified below. If we define the equivalent sum
R	(k) over the set of random galaxies, then an estimator for P	(k)
is

P	(k) = A−1 [D	(k) − αR	(k)] [D0(k) − αR0(k)]

− S	(k), (19)

where the shot noise term S	(k) is given by

S	(k) = A−1(1 + α)α
Nran∑
i=1

w(si)
2 L	(ŝi .k̂). (20)

The normalization A is given, in terms of sums over the Nc grid
cells x constituting the window function, as

A =
∑

x

W 2(x)w2(x) =
Ngal∑
i=1

W (si) w2(si), (21)

where W (s) is the window function normalized over its volume
V such that

∫
WdV = Ngal, or

∑
x W (x) = Ngal(Nc/V ). The

minimum variance in P	(k) is produced by the usual FKP weight
function

w(s) = [1 + W (s)P0]−1 , (22)

where P0 is a characteristic power-spectrum amplitude (which we
take as P0 = 5000 h−3 Mpc3, although this choice has very little
effect on our results). The error in the estimator for each Fourier
mode k is given by

[�P	(k)]2 = A−1α

Nran∑
i=1

w(si)
4W (si)

× [W (si)P (k) + 1 + α]2 [L	(ŝi · k̂)]2. (23)

We evaluated the estimator for P	(k) over the usual grid of
Fourier modes which describe fluctuations in a cuboid of di-
mensions (Lx, Ly, Lz), i.e. for modes k = (kx, ky, kz) =
(2πnx/Lx, 2πny/Ly, 2πnz/Lz) for integers (nx, ny, nz). We then
averaged the amplitudes in spherical shells of k to produce our
estimate of P	(k), which we write as Pgridded

	 (k). We note that the
discreteness of the Fourier modes in the grid produces a bias in the
estimate, which is particularly evident at low k. We corrected for
this bias using a model power spectrum P model(k) by evaluating

P
model,gridded
	 (k) = A−1α

Nran∑
i=1

w(si)
2W (si)

×P model(k)L	(ŝi · k̂), (24)

which we averaged in spherical shells of k to produce Pmodel,gridded
	 (k),

and also an exact determination using

P model,exact
	 (k) = 2	 + 1

2

∫ 1

−1
dμP model(k, μ) L	(μ). (25)

Our final estimate for the multipole power spectrum is then given
by

P	(k) = P
gridded
	 (k) + P model, exact

	 − P
model, gridded
	 . (26)

We generated this correction using the best-fitting non-linear em-
pirical Lorentzian redshift-space power spectrum (see Section 3.2)
as the input model P model(k).

Fig. 10 compares the measurement of the multipole power spectra
in four redshift slices obtained by the direct sum of equation (17)
with the Yamamoto et al. estimator of equation (19). In general, the
two different techniques for deriving the multipole power spectra
agree well and we obtain measurements of the monopole (	 = 0)
and quadrupole (	 = 2) with high signal-to-noise ratio. Current
galaxy redshift surveys do not yield a significant detection of the
hexadecapole (	 = 4).

The final row of Fig. 10 plots the measured quadrupole-to-
monopole ratio P2(k)/P0(k) as a function of scale for each redshift
slice. This statistic has the advantage of being less sensitive than
the power spectrum itself to the parameters which model the shape
of the underlying real-space galaxy clustering pattern (such as the
background cosmological parameters or a scale-dependent bias).
On large scales this ratio is expected to asymptote to a constant
value which may be derived from equation (7):

P2(k)

P0(k)
= (4/3)β + (4/7)β2

1 + (2/3)β + (1/5)β2
, (27)

where β = f /b. This value, indicated by the dotted ‘linear’ horizontal
line in the bottom row of Fig. 10, and derived using the prediction
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Figure 10. The multipole power spectra P	(k) for 	 = 0, 2, 4 for WiggleZ Survey observations in four redshift slices. The monopole (l = 0) spectrum primarily
contains information about the underlying shape of the isotropic clustering pattern. The quadrupole (l = 2) spectrum holds the leading-order signal from the
anisotropic modulation in power due to redshift-space effects. The (black) solid circles are generated from the stacked measurements of Pg(k, μ) across the
different survey regions using equation (17). The (red) open circles, which are offset slightly in the x-direction for clarity, are generated by combining the
estimates of P	(k) in each region using the Yamamoto et al. estimator of equation (19). The model lines correspond to the best-fitting non-linear empirical
Lorentzian redshift-space distortion model in each case. The bottom row displays the quadrupole-to-monopole ratio P2(k)/P0(k). Two models are overplotted:
the large-scale Kaiser limit predicted in a �CDM cosmological model with �m = 0.27, labelled as ‘linear’, and the non-linear redshift-space distortion model,
labelled as ‘damping’.

of f (z) in a �CDM model with �m = 0.27, lies in good agreement
with the measurements on large scales in each redshift slice. At
smaller scales the data deviate from this prediction due to the non-
linear effects which damp the velocity power spectrum. We also
plot the scale-dependent value of P2(k)/P0(k) for the best-fitting
non-linear empirical Lorentzian redshift-space distortion model in
each redshift slice, indicated by the ‘damping’ line.

5.2 Power spectra of the velocity divergence field

The characteristic angular dependence of the redshift-space galaxy
power spectrum Ps

g(k, μ) on its three component power spectra
Pgg(k), Pgθ (k) and Pθθ (k), exhibited by equation (4), gives us the
opportunity to extract these three power spectra directly from data.
This is of particular interest for the case of Pθθ (k) because this
quantity depends on the growth rate but not on the galaxy bias,
which is considered to be one of the principle sources of potential
systematic error in redshift-space distortion model fitting.

The signal-to-noise ratio of the power-spectrum measurements
from the current survey is not yet sufficiently high to extract three
independent functions cleanly (e.g. Tegmark et al. 2004) – which
is consistent with our failure to detect the hexadecapole in Fig. 10.
However, a good approximation of the galaxy–velocity cross-power
spectrum in the quasi-linear regime is Pgθ = −√

PggPθθ (Percival
& White 2009), which cancels (to first order) non-linear terms in
the power spectra and galaxy bias. Under this approximation we
can fit for the coefficients Pgg(k) and Pθθ (k) in the model (Song &
Kayo 2010) as

P s
g (k, μ) = Pgg(k) + 2μ2

√
Pgg(k)Pθθ (k) + μ4Pθθ (k). (28)

For each separate k bin, spaced by �k = 0.02 h Mpc−1, we fitted the
model of equation (28) to the stacked measurements of Pg(k, μ) from
the WiggleZ Survey data set in four redshift slices. We performed
the fit in 10 Fourier bins up to kmax = 0.2 h Mpc−1, choosing this
upper limit because equation (4) will likely not provide a reliable
description of the μ dependence of the power spectrum at smaller
scales (given that our model fits in Section 4.1 favour the inclusion
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Figure 11. Measurement of the WiggleZ Survey galaxy–galaxy and velocity–velocity power spectra in four redshift slices by maximum-likelihood fitting to
the stacked measurements of Pg(k, μ) across the different survey regions using the model of equation (28). The measurements of Pθθ are normalized by β−2 (in
order to match the large-scale limit of Pgg) and are offset slightly in the x-direction for clarity. For comparison, we plot the linear-regime matter power spectra,
the non-linear matter power spectra from Smith et al. (2003) and the non-linear velocity power spectra from Jennings et al. (2011). Our extraction of these two
power spectra rests on the assumption that Pgθ = −√

PggPθθ (Song & Kayo 2010), which has been validated at large scales by simulations (Percival & White
2009).

of an additional Lorentzian damping term over the range 0.2 < k <

0.3 h Mpc−1).
Fig. 11 displays the results of the fits for each redshift slice, where

for convenience we have divided the measurements of Pθθ (k) by the
best-fitting value of β2 = (f /b)2 so that the galaxy and velocity
power spectra are expected to have the same large-scale limit. For
comparison, we also plot in each case the non-linear galaxy and
velocity power spectra based on the fitting formulae proposed by
Smith et al. (2003) and Jennings et al. (2011), respectively, together
with the underlying linear matter power spectrum for our fiducial
cosmological parameters at these redshifts.

Our measurements constitute the first determination of the ve-
locity power spectrum as a function of redshift and cleanly reveal
the effects that we are modelling. At large scales k < 0.1 h Mpc−1,
the density and velocity power spectra are in close agreement with
each other and with the input model linear power spectrum. At
smaller scales the measurements diverge: the density power spectra
are boosted in amplitude in a manner that closely matches the fit-
ting formula of Smith et al. (2003), and the velocity power spectra
are damped by non-linear effects. The fitting formula of Jennings
et al. (2011) provides a good match to this damping: the value of
χ 2 statistic is (13.4, 11.8, 12.4, 3.6) for the four redshift slices,
respectively, for 10 degrees of freedom. The value of χ 2 for the
highest redshift bin corresponds to a 2σ fluctuation. As the χ 2 val-
ues for the other three redshift slices fall within the 1σ range for
the distribution, we do not view this with concern. We also find a
tentative indication that the amplitude of the non-linear correction

to the velocity power spectrum increases with decreasing redshift,
expected as a consequence of the growth of structure.

6 C O N C L U S I O N S

We have used the WiggleZ Dark Energy Survey data set to produce
the first precise map of cosmic growth spanning the epoch of cos-
mic acceleration and the first systematic study of the growth history
from a single galaxy survey. We have compared the measured power
spectra to 18 different redshift-space distortion models using a com-
bination of empirical models, fitting formulae calibrated by N-body
simulations, and perturbation theory techniques. We itemize our
conclusions as follows.

(i) Two quasi-linear redshift-space distortion models provide a
good description of our data for scales k < 0.3 h Mpc−1: the Taruya
et al. (2010) model, incorporating extra angle-dependent correction
terms in addition to the density and velocity power spectra from
two-loop RPT, and the Jennings et al. (2011) fitting formula cali-
brated from N-body simulations. In each model we included a vari-
able damping parameter. The growth rates deduced from these two
very different modelling techniques agree remarkably well with the
difference in values being much smaller than the statistical errors
in the measurement. The level of this agreement gives us confi-
dence that our results are not limited by systematic errors. We note
that the empirical Lorentzian streaming model, where we use the
non-linear matter power spectrum from Smith et al. (2003), also
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performs well and the minimum chi-squared values for these three
models typically differ by �χ 2 ≈ 1. We quote our final results using
the Jennings et al. (2011) model, which usually produces the lowest
value of χ 2: growth-rate measurements of f (z) = (0.60 ± 0.10, 0.70
± 0.07, 0.73 ± 0.07, 0.70 ± 0.08) at redshifts z = (0.22, 0.41, 0.6,
0.78), where we have marginalized over the variable damping factor
and a linear galaxy bias factor. A more model-independent way of
expressing these fits is f (z) σ 8(z) = (0.42 ± 0.07, 0.45 ± 0.04, 0.43
± 0.04, 0.38 ± 0.04).

(ii) These growth-rate measurements are consistent with those
expected in a flat General Relativistic �CDM cosmological model
with matter density �m = 0.27. Our observations therefore indi-
cate that this model provides a self-consistent description of the
growth of cosmic structure from perturbations and the large-scale,
homogeneous cosmic expansion mapped by supernovae and baryon
acoustic oscillations.

(iii) Assuming the growth rate predicted by the �CDM model
we can fit for the parameters of a stochastic scale-dependent bias
described by a galaxy–mass cross-correlation r(k). We find that this
bias is consistent with a deterministic model r = 1 for the range of
scales k < 0.3 h Mpc−1.

(iv) We considered various methods for presenting the infor-
mation contained in the redshift-space power spectra, including
deriving the multipole moments P	(k) using direct integration of
the binned power spectrum P(k, μ) and by implementing the es-
timator described by Yamamoto et al. (2006). Measurements of
the quadrupole-to-monopole ratio P2/P0 as a function of scale k
delineate the influence of redshift-space distortions in a manner in-
dependent of the shape of the underlying matter power spectrum or
a scale-dependent bias.

(v) Under the assumption Pgθ = −√
PggPθθ , which is a good

approximation in the quasi-linear regime, we used the redshift-
space power spectra to fit directly for Pgg(k) and Pθθ (k). We found
that (within an overall normalization factor) the galaxy and velocity
power spectra are consistent with each other and with the model
linear power spectrum at low k. For k > 0.1 h Mpc−1 we delineated
for the first time the characteristic non-linear damping of the velocity
power spectrum as a function of redshift, with a tentative indication
that the amplitude of the non-linear effects increases with decreasing
redshifts. The Jennings et al. (2011) fitting formula provides a good
fit to these power spectra.

A future investigation will involve the confrontation of these
data with a range of modified-gravity models, combining the large-
scale structure measurements with self-consistent fits to the CMB
observations. Furthermore, a joint analysis of the redshift-space
distortions and Alcock–Paczynski effect is also in preparation.
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