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Abstract

Inference based on cluster-robust standard errors in linear regression models,
using either the Student’s ¢ distribution or the wild cluster bootstrap, is known
to fail when the number of treated clusters is very small. We propose a family of
new procedures called the subcluster wild bootstrap, which includes the ordinary
wild bootstrap as a limiting case. In the case of pure treatment models, where
all observations within clusters are either treated or not, the latter procedure can
work remarkably well. The key requirement is that all cluster sizes, regardless of
treatment, should be similar. Unfortunately, the analogue of this requirement is not
likely to hold for difference-in-differences regressions. Our theoretical results are
supported by extensive simulations and an empirical example.

Keywords: CRVE, grouped data, clustered data, wild bootstrap, wild cluster boot-
strap, subclustering, treatment model, difference-in-differences, robust inference

*An earlier version of this paper was entitled “The subcluster wild bootstrap for few (treated) clus-
ters.” The authors are grateful to participants at the 2016 University of Calgary Empirical Microeconomics
Workshop, McMaster University, the 2016 Canadian Econometric Study Group, the 2016 Atlantic Canada
Economics Association Meeting, the 2016 Southern Economics Association Conference, New York Camp
Econometrics XII, Society for Labor Economics 2017 meeting, International Association for Applied
Econometrics 2017 conference, and 2017 European Meeting of the Econometric Society for helpful com-
ments, as well as to Phanindra Goyari, Andreas Hagemann, Doug Steigerwald, Brennan Thompson, an
editor, and a referee. This research was supported, in part, by a grant from the Social Sciences and
Humanities Research Council of Canada. Much of the computation was performed at the Centre for
Advanced Computing of Queen’s University.



1 Introduction

It is common in many areas of economics to assume that the disturbances (error terms)
of regression models are correlated within clusters but uncorrelated between them. In-
ference is then based on a cluster-robust variance estimator, or CRVE. However, ¢ tests
based on cluster-robust standard errors tend to overreject severely when the number of
clusters is small. How many clusters are required to avoid serious overrejection depends
on several things, including how the observations are distributed among clusters and, for
the important special case of binary regressors that do not vary within clusters, how many
clusters are “treated”; see MacKinnon and Webb (2017b).

The wild cluster bootstrap (WCB) of Cameron, Gelbach and Miller (2008) often leads
to much more reliable inferences, but, as MacKinnon and Webb (2017b) shows, this
procedure can also fail dramatically. When the regressor of interest is a dummy variable
that is nonzero for only a few clusters, tests based on the restricted WCB can underreject
severely, and tests based on the unrestricted WCB can overreject severely.

In this paper, we investigate a family of procedures that we call the subcluster wild
bootstrap. The key idea is to employ a wild bootstrap data generating process (DGP)
which clusters at a finer level than the covariance matrix.! In many cases, this will simply
be the ordinary wild bootstrap DGP of Wu (1986) and Liu (1988), which does not cluster
at all. However, it could also be, for example, a DGP that clusters by state-year pair
when the covariance matrix clusters by state. Thus the subcluster wild bootstrap DGP
deliberately fails to match a key feature of the (unknown) true DGP. This is done in order
to reduce the dependence of the bootstrap DGP on the actual sample.

In Section 2, we study a simple theoretical model for which all the observations in each
cluster are either treated or not, and we explain why ¢ tests and wild cluster bootstrap
tests fail when the number of treated clusters is small. In Section 3, we then analyse
the performance of the ordinary wild bootstrap for this pure treatment model. We show
that, even when the number of clusters is very small, the procedure can be expected to
work well if certain conditions are satisfied. The key condition is that all clusters should
be (approximately) the same size. We then explain why such a condition will rarely be
satisfied for difference-in-differences (DiD) regressions. Finally, we extend the analysis to
the case of genuine subclusters.

In Section 4, we report the results of a large number of simulation experiments. We
show that the ordinary wild bootstrap, combined with CRVE standard errors, often works
very well in cases where the wild cluster bootstrap performs very badly either because the
number of clusters is small or the number of treated clusters is very small, occasionally
made worse by heteroskedasticity. Bootstrap tests based on the ordinary wild bootstrap
often yield surprisingly reliable inferences even when there are just two treated clusters,
and sometimes when there is just one.

Combining the wild bootstrap with a popular CRVE is not the only way to obtain
improved finite-sample inferences in linear regression models with clustered disturbances.
In Section 5 and the appendix, we discuss several alternative methods that involve using

'We assume that the covariance matrix is clustered at the coarsest possible level, in terms of nested
clusters, which is usually the appropriate thing to do; see Cameron and Miller (2015).



a different CRVE and/or ¢ tests with a calculated, and usually non-integer, number of
degrees of freedom.

A completely different approach for the case of few treated clusters was suggested in
Conley and Taber (2011). It is based on randomization inference. MacKinnon and Webb
(2018a) studied that procedure and proposed an improved one which uses ¢ statistics
rather than coefficient estimates and sometimes works well. However, randomization in-
ference with few treated clusters fails when cluster sizes vary or there is heteroskedasticity
of unknown form across clusters, and it cannot be used when the number of clusters is
very small.> We therefore do not consider randomization inference in this paper.

In Section 6, we discuss an empirical example for which the ordinary wild bootstrap
yields sensible results even though there are just eight clusters. We also present results
for several alternative procedures.

In the appendix, we provide a more complete treatment than the one in Section 5
of some alternative procedures for cluster-robust inference that are not based on the
bootstrap. We also report the results of some additional simulation experiments which
investigate the performance of those procedures when there are few treated clusters.

Section 7 concludes and provides recommendations for applied work.

2 A Pure Treatment Model

In general, we are concerned with linear regression models in which there are N obser-
vations divided among G clusters, with N, observations in the g cluster. However, we
focus on the special case of a pure treatment model, for which in the first G; clusters all
observations are treated and in the remaining Gy = G' — Gy clusters no observations are
treated. This model can be written as

Yig = B1 + Badig + €ig, (1)

where y;, denotes the i*" observation on the dependent variable within cluster g, and d;,
equals 1 for the first G clusters and 0 for the remaining Gy = G — (G; clusters. As usual
in the literature on cluster-robust inference, we assume that

E(ese;) =2, and E(es€,) =0 for g #h, (2)

where the €, are vectors with typical elements €;,4, and the €2, are N, x N, positive definite
covariance matrices. The model (1) is estimated by OLS, and standard errors are based
on the cluster-robust variance estimator, or CRVE,

G(N —1) Y S o
G-Dv -k XX (ngnggeng)(X x)~". 3)

2Ferman and Pinto (2015) proposes a procedure to handle aggregate data with heteroskedasticity,
and MacKinnon and Webb (2018b) suggests a method that combines randomization inference and the
bootstrap which can be used when the number of clusters is small. Ibragimov and Miiller (2016) proposes
an alternative procedure which requires at least two treated clusters.



In this case, where k = 2, X, has typical row [1 d;y], €, is the Ny-vector of OLS residuals
for cluster g, and X is the IV x 2 matrix formed by stacking the X, matrices vertically.

Expression (3) is often called CV;y. There is more than one way to make inferences
based on it. The most popular way is to compare a t¢ statistic based on the square root
of the appropriate diagonal element with the ¢(G — 1) distribution; see Bester, Conley
and Hansen (2011). There are also other covariance matrix estimators, and any of the
estimators can be combined with more sophisticated procedures to determine the degrees
of freedom; see Section 5 and the appendix.

2.1 Why CRVE Inference Can Fail

It is shown in MacKinnon and Webb (2017b, Section 6), that the cluster-robust ¢ statistic
for B2 = 0 in equation (1) can be written under the null hypothesis as

b — c(d—di)e (1)

A A < /27
(Zngl( d"g) €, (dg - d”g))l i

where the N-vectors d, ¢, and € have typical elements d;,, 1, and €;4, respectively, ¢, is an
Ng-vector of 1s, d, is the subvector of d corresponding to cluster g, and d is the fraction
of treated observations. The scalar c is the square root of ((G —1)(N — 2))/(G(N - 1)),
the inverse of the degrees-of-freedom correction in expression (3). In what follows, we
omit the factor ¢, since it does not affect any of the arguments.

With ¢ omitted, the numerator of the ¢ statistic (4) can be written as

eh e

/ !/

—d)Y teg—d Y e, (5)
g=1 g=G1+1

The first term is the contribution of the treated clusters, and the second term is the

contribution of the untreated ones. Similarly, the summation inside the square root in
the denominator can be written as

Gy e
(1—=d)?D (1,6 +d* Y (L,€,)" (6)
g=1 g=G1+1

The first and second terms here are evidently supposed to estimate the variances of the
corresponding terms in expression (5). However, MacKinnon and Webb (2017b) showed
that expression (6) is a very poor estimator when either G; or Gy is small.

To see why this is the case, suppose that G; = 1. Then expression (6) reduces to

B e G
(L—d)?(hér)* +d* ) (L,e,)? = Z Lhég), (7)
9=2 g=2

where the first term is zero because the residual subvector €, must be orthogonal to
the treatment dummy d. It is obvious from equation (7) that expression (6) provides a



dreadful estimator of the variance of
(1—d)te; —d ZL €, (8)

which is what expression (5) reduces to when G; = 1. Unless cluster 1 contains a sub-
stantial fraction of the population, d will be much less than one half, and (1-— J)Q will
therefore be very much larger than d2 Thus, unless the disturbances for the first cluster
(the elements of €;) are much less variable than those for the other clusters, most of the
variance of expression (8) will come from the first term. However, from equation (7) it is
evident that the variance of that term is incorrectly estimated to be zero.

Note that, for the pure treatment model (1), small values of Gy have the same con-
sequences as small values of GG;. In contrast, for DiD models, only small values of G
cause problems. It is not difficult to make inferences from such models even when Gy = 0,
provided treatment starts at different times for different clusters.

This argument explains why tests based on the cluster-robust t statistic (4) using
conventional critical values almost always overreject very severely when G; = 1 or Gy = 1.
The denominator of (4) grossly underestimates the variance of the numerator. As Mac-
Kinnon and Webb (2017b) shows, this underestimation, and the resulting overrejection,
become much less severe as Gy increases. Just how rapidly this happens depends on
the sizes of the treated and untreated clusters and on the covariance matrices €2, of the
disturbances within each cluster.

2.2 The Wild Cluster Bootstrap and Why It Can Fail

Suppose there are B bootstrap samples indexed by b. In the case of regression (1), the
restricted wild cluster bootstrap DGP for bootstrap sample b is

y;'kgb = Bl + gigvgbv (9)

where f3; is the restricted OLS estimate of 1, which in this case is just the sample mean
of the dependent variable, €;, is the restricted residual for observation 7 in cluster g, and
'U;‘b is a random variable that typically follows the Rademacher distribution and takes the
values 1 and —1 with equal probability. Other auxiliary distributions can also be used,
but the Rademacher distribution seems to work best in most cases; see Davidson and
Flachaire (2008) and MacKinnon (2015). However, when G < 11, it is better to use a
distribution with more than two mass points; see Webb (2014).

To perform a bootstrap test, each of the B bootstrap samples generated by the boot-
strap DGP (9) is used to compute a bootstrap test statistic #3°; see below. The symmetric

bootstrap P value is then calculated as

! ZH(|t;”\ > [t]), (10)

b:l

where I(-) denotes the indicator function. It would of course be valid to use an equal-tail
P value instead of (10), and the latter would surely be preferable if the distribution of



the 3° were not symmetric around the origin.

In most cases, the wild cluster bootstrap works well. Even when G is quite small (say,
between 15 and 20), simulation results in MacKinnon and Webb (2017b) and MacKinnon
(2015) suggest that rejection frequencies tend to be very close to nominal levels, provided
that cluster sizes do not vary extremely and the number of treated clusters is not too
small. However, the restricted wild cluster bootstrap tends to underreject very severely
when G is small. When G; = 1, it typically never rejects at any conventional level. In
order to motivate the wild bootstrap procedures that we introduce in the next section,
we now explain why this happens.

The bootstrap ¢ statistic analogous to 5 is

c(d—di)e

t*b —
N EENVCE
(Zle (dy — dug)'€les (dy — d"g))

(11)

where €; is an V- vector formed by stacking the vectors of bootstrap disturbances (—:;b with
typical elements € elgv , and €] b is the vector of OLS residuals for cluster g and bootstrap
sample b; compare equatlon (4)

Now consider the extreme case in which G; = 1. The numerator of the right-hand
side of equation (11) becomes

(1—d),e’ — dZL; e (12)

this is the bootstrap analog of expression (8). Because d = Ni/N, the first term in
expression (12) must be the dominant one unless N is extraordinarily large or the variance
of the disturbances in the first cluster is extraordinarily small. In expression (12) and
henceforth, we omit the factor ¢. Because it multiplies both the actual and bootstrap
t statistics, it cannot affect bootstrap P values.

For the Rademacher distribution, the bootstrap disturbance vectors €]’ can have just
two values, namely, €, and —€;. When GG; = 1, the distribution of the bootstrap statistics
t5? is then bimodal, with half the realizations in the neighborhood of ¢, and the other
half in the neighborhood of —t3; see MacKinnon and Webb (2017b, Figure 4). The wild
cluster bootstrap fails for G; = 1 because the absolute value of the bootstrap test statistic
is highly correlated with the absolute value of the actual test statistic. This makes it very
difficult to obtain a bootstrap P value below any specified small level and leads to severe
underrejection. However, the problem rapidly becomes less severe as (G increases.

It might seem that this problem could be solved by using unrestricted instead of
restricted residuals in the bootstrap DGP (9). However, this creates a new problem,
which is just as severe. When unrestricted residuals are used with G; = 1, the first
term in expression (12) always equals zero, just like the first term on the left-hand side
of equation (7), because the unrestricted residuals sum to zero for the single treated
cluster. As a consequence, the bootstrap ¢ statistics have far less variance than the actual
t statistics, and the bootstrap test overrejects very severely. Again, the problem rapidly
becomes less severe as (G; increases.

b



Figure 1: Rejection frequencies for several tests, G = 14, N/G = 200, p = 0.1
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Figure 1 illustrates the poor performance of the procedures discussed so far when the
number of treated clusters is small. It shows rejection frequencies at the .05 level for
four tests with G = 14, N/G = 200 for all g, and p = 0.10. The horizontal axis shows
the number of treated clusters, GGy, which varies from 1 to 13. The vertical axis has
been subjected to a square root transformation in order to present both large and small
rejection frequencies in the same figure. The rejection frequencies are based on 400,000
replications. For details of the experiments, see Section 4.

Simply using ¢ statistics based on heteroskedasticity-robust standard errors—specifically,
the HCy variant proposed in MacKinnon and White (1985)—combined with the #(2798)
distribution results in very severe overrejection for all values of (G;. This overrejection
would have been even more severe if either N/G or p had been larger.

Using ¢ statistics based on the CV; covariance matrix (3), combined with the #(13)
distribution, leads to severe overrejection when G; = 1 and G = 13, but the overrejection
is much less severe for values of Gy that are not too far from G/2. This is exactly what
the arguments of Subsection 2.1 suggest.

The two wild cluster bootstrap methods perform exactly as the analysis of MacKinnon
and Webb (2017b) predicts. The restricted wild cluster bootstrap (WCR) almost never
rejects for G; = 1 and G; = 13, underrejects severely for G; = 2 and G = 12, performs
almost perfectly for G; = 3 and G; = 11 (a coincidence that would not have occurred if G
had been larger or smaller), and overrejects modestly for other values of G1. In contrast,
the unrestricted wild cluster bootstrap (WCU) overrejects very severely for G; = 1 and
G1 = 13, but it improves rapidly as G; becomes less extreme and performs extremely well
for 6 < Gy <8

A very different bootstrap procedure is the pairs cluster bootstrap, in which the boot-



strap samples are obtained by resampling the matrices [y, X,] with replacement for
g = 1,...,G. This procedure has at least one major drawback: (G varies across the
bootstrap samples and may well equal 0 for many of them. Because this procedure tends
to overreject very severely when G is small, we do not study it further; see MacKinnon
and Webb (2017a).

3 The Wild and Subcluster Wild Bootstraps

The wild cluster bootstrap fails when G; = 1 because the same value of the auxiliary
random variable v;‘b multiplies every residual for cluster g. Thus the vector of bootstrap
disturbances for the treated cluster is always proportional to the vector of residuals. This
is an essential feature of the wild cluster bootstrap, because it allows the bootstrap samples
to mimic the (unknown) covariance structure of the €,. But it leads to highly unreliable
inferences when either G or (in the pure treatment case) Gy is small.

The idea of the subcluster wild bootstrap is to break up the vector of residuals within
each cluster into mutually exclusive subvectors and multiply each subvector by an auxiliary
random variable. In the simplest case, each subvector has just one element, and the
subcluster wild bootstrap corresponds to the ordinary wild bootstrap. Of course, standard
errors are still computed using a CRVE like (3); using the same form of ¢ statistic for the
original sample and the bootstrap samples is imperative.

Even though the wild bootstrap fails to capture some important features of the true
DGP, it yields asymptotically valid inferences when both GGy and Gy are large, and it often
yields greatly improved inferences when one or both of them is small. Most importantly,
it yields (approximately) valid inferences for the pure treatment model (1) whenever all
clusters are the same size and the amount of intra-cluster correlation is not too large, even
when GG; = 1. This is a very important special case.

In Section 3.4, we discuss variants of the subcluster wild bootstrap in which there
are fewer subclusters than observations, so that each subcluster contains more than one
observation. However, in the next three subsections, we focus on the ordinary wild boot-
strap. It is the easiest one to describe and implement, and, in the case of cross-sectional
data, it seems to be the one that should be used in practice most of the time.

3.1 The Ordinary Wild Bootstrap
The restricted wild bootstrap DGP analogous to equation (9) is

Yig = D1+ Eigviy. (13)

The only difference between equations (9) and (13) is that, for the former, the auxiliary
random variable takes the same value for every observation in cluster g, and, for the latter,
it takes an independent value for every observation. Instead of just two possible vectors
of bootstrap disturbances e;b for cluster g, there are now 2™V possible vectors.

Consider once again the special case in which G; = 1. Provided Nj is not too small and
the amount of intra-cluster correlation is not too large, the DGP (13) solves the problem of
the absolute value of the numerator of the bootstrap test statistic being highly correlated
with the absolute value of the numerator of the actual test statistic; see expression (12).
Of course, solving this problem comes at a cost: The bootstrap disturbances no longer



mimic the covariance structure of the €,. Thus it may seem that using the bootstrap DGP
(13) cannot possibly yield (approximately) valid inferences. However, it actually does so
in at least two important cases.

The first case is when G tends to infinity and the limit of ¢ = G/G is strictly between
0 and 1. The ordinary wild bootstrap works in this case because, whenever we bootstrap
an asymptotically pivotal test statistic, the asymptotic validity of bootstrap tests does
not require the bootstrap DGP to mimic the true, unknown DGP. It merely requires
that the bootstrap DGP belongs to the family of DGPs for which the test statistic is
asymptotically pivotal. Two papers in which this point has been explicitly recognized are
Davidson and MacKinnon (2010) and Gongalves and Vogelsang (2011).

Consider the ¢ statistic (4) and its bootstrap analog (11). Under the wild bootstrap
DGP (13), the numerators of (4) and (11) do not have the same distributions. But, in
both cases, the denominator correctly estimates the standard deviation of the numerator
when G is large and ¢ is bounded away from 0 and 1. Therefore, assuming that we
can invoke a central limit theorem, both test statistics are approximately distributed as
standard normal for large G, so that computing a bootstrap P value for (4) using the
empirical distribution of B realizations of (11) is asymptotically valid. A formal proof of
the asymptotic validity of the ordinary wild bootstrap for linear regression models with
clustered disturbances is given in Djogbenou, MacKinnon and Nielsen (2018), which was
written after this paper.

The second case, which we discuss in detail in Subsection 3.2, is when cluster sizes
are equal and the covariance matrices €2, for every g are the same up to a scalar factor
Ag. This implies that the patterns of intra-cluster correlation must be the same for all
clusters, but there can be heteroskedasticity across them.

The wild bootstrap DGP (13) imposes the null hypothesis. We could instead use the
unrestricted wild bootstrap DGP

yf; = ﬁl + BQdig + gigU;‘gb7 (14)
where 31 and Bg are unrestricted OLS estimates, and the €, are unrestricted residuals.
If the restricted wild bootstrap works well, then so should the unrestricted one, provided
the bootstrap t statistic is redefined so that it is testing the hypothesis 5y = 32 instead of
the hypothesis f; = 0. Using (14) instead of (13) will inevitably affect the finite-sample
properties of bootstrap tests, often making P values smaller, but it makes it much easier
to compute confidence intervals. In the simulation experiments of Section 4, we study
both the restricted and unrestricted wild and wild cluster bootstraps.

3.2 Equal Cluster Sizes

Our most important, and most surprising, result is that the ordinary wild bootstrap
can yield approximately valid inferences even when G, is very small, provided all cluster
sizes are the same, so that N, = N/G. It is also essential that there not be too much
intra-cluster correlation, especially when G; = 1, and that the covariance matrices €2,
satisfy a certain condition. The result is true even when there is an arbitrary pattern of
heteroskedasticity at the cluster level.

Whenever we make approximations in this section, they are not asymptotic approx-



imations in the usual sense. The problem is that, when any of G, G, or Gy is fixed
as N — oo, the OLS estimator 3 = [/5’1 Bg]’ in the model (1) is not consistent, at
least not without very unrealistic assumptions about the intra-cluster correlations; see
Carter, Schnepel and Steigerwald (2017). This inconsistency is implied by the results on
regression with common shocks in Andrews (2005).

In the cases that interest us, where GG and GG are fixed, the vector ,é is asymptotically
equal to By plus a random term, so that neither consistency nor asymptotic normality
holds. However, when N, and hence the N, is large and the amount of intra-cluster
correlation is not too large, we may reasonably expect this random term to be very
small. The experiments in Section 4 confirm both the accuracy of this conjecture and the
dependence of the quality of the approximation on N, and the amount of intra-cluster
correlation. We use the symbol “=” to denote approximations that should generally be
accurate when these conditions hold.

From expressions (5) and (6), the actual ¢ statistic under the null hypothesis is

(1— J) 25:11 Ly€g + d Z§:G1+1 Ly €q

t2 =
(1= 4P Sh@e)? + 42 S5, (4e)?)

- (15)

Now consider the bootstrap ¢ statistic based on the ordinary wild bootstrap DGP (13).
Omitting the b superscripts for clarity, it is

(1—-d)xo, ve +d X5, e

- - 12"
((1 —d)? Zlel(l,;é;)Q +d? Z§G1+1(I’Igé;>2>

ty =

(16)

The bootstrap ¢ statistic (16) evidently has the same form as the ¢ statistic (15), but with
bootstrap disturbances replacing actual disturbances and bootstrap residuals replacing
actual residuals in the numerator and denominator, respectively.

We now make the following key assumptions:

1. G, Gy, and N are fixed, with N, = N/G forg=1,...,G.
2. Q, = )\gQ for all ¢, for some positive definite matrix €, with A; = 1 and Ag > 0.
3. The average intra-cluster correlation, say p, is small if G; is small.

Assumption 1, that the cluster sizes are equal, can always be verified, because they can
be observed. In practice, the N, only need to be approximately equal. Assumption 3
will be discussed below. Assumption 2 is important. It says that the covariance matrices
for all clusters are proportional, with factors of proportionality A, that may differ. It
follows that Var(tye,) = /\gL/gQLg = \w? for all g. Thus we are allowing there to be
an arbitrary pattern of cross-cluster heteroskedasticity, but the same pattern of within-
cluster correlation and heteroskedasticity for all clusters. The condition that A\; = 1 is
just an arbitrary normalization.

From (15) and the definition of w? we may conclude that, in this special case, the

10



variance of the numerator of ¢, is simply

Z)\gw +d? Z Agw?. (17)

g=G1+1

The variance of t; itself depends on how well the denominator of (15) estimates expression
(17). This denominator involves two terms. The first involves a summation over G,
random scalars (¢,€,)* that estimates the first term in (17), and the second involves a
summation over Gy random scalars that estimates the second term.

Now define 0; as 1/(A\,w?) times the expectation of a typical element (1,’gég)2 in the first
summation, and 6y as 1/A\w? times the expectation of the same typical element in the
second summation. In most cases, the factors 6; and 6, will be less than one, sometimes
much less when G or G is very small; indeed, we saw in the previous section that 6; = 0
when GG; = 1. This point is discussed further at the end of this subsection. These two
factors will almost always be different, because they depend on the numbers and sizes of
the treated and untreated clusters.

We now assume that B = By, which implies that €, = ¢, for all observations. For
the approximation to be good, N should not be too small, and Assumption 3 must hold.
If there were a substantial amount of intra-cluster correlation and G; were small, then 3
might depend excessively on the the common component(s) of the disturbances for the
treated cluster(s). When the approximation is a good one, the square of the denominator
of (15) will be approximately equal to

B G1 B G
(1=d)?0: > Agw? +d?0y Y Agw™ (18)
g=1 g=G1+1

Thus, from (17) and (18), we conclude that

(1—dP? S A +d* S5 g 0 A
(1—d)26, zf;l A, +d26, zg:(hH

I

Var(ts) (19)

Notice that w? does not appear in this expression.

We now turn our attention to the bootstrap ¢ statistic 5. Because the ordinary wild
bootstrap does not preserve intra-cluster correlations, the variance of ng€; is not A\,w?
Instead, assuming again that €, = ¢, for all observations, it is approximately A,V
times o2, the average diagonal element of Q. Thus the variance of the numerator of ¢} is
approximately

G1 G
d)? > NgNyo® +d* > A\Nyo?. (20)
g=1 g=G1+1

By essentially the same argument that led to expression (18), the square of the denomi-
nator of ¢5 must be approximately equal to

_ G1 3 G
(1 — d)291 Z )\gNgUZ -+ d290 Z )\gNgO'Z. (21)

g=1 g=G1+1

11



Therefore, using (20) and (21), we conclude that

(1 - d)? Zngll Ag + C?Q Z?:GlH Ag
(1-d)20, 50 A+ 20050 ¢ 1 Ay

Var(t;) = (22)

which is just expression (19). The factors of N,o? have cancelled out in the same way

that the factors of w? did previously. The same factors of A, appear in both (19) and (22)

because the wild bootstrap preserves the heteroskedasticity of the original disturbances.
Our key result, from (19) and (22), is that

Var(t;) = Var(ta). (23)

This result depends critically on Assumptions 1, 2, and 3. If N, differed across clusters, in
violation of Assumption 1, then the values of N,0? would differ across clusters. So would
the values of Var(tj€,), which would now equal /\gwg instead of A\,w? for appropriately
defined scalars wg. Without Assumption 1, we could not have made Assumption 2. If only
the latter assumption were violated, it would again be the case that Var(L;eg) = )\gwg
instead of Agw?. Then the ratio of Var(t)e,) to Var(e,€;) would not be the same for
all g, which is essential for the result (23) to hold. Assumptions 1 and 2 are not actually
necessary. In principle, both the N, and the €2, could vary across clusters in such a way
that the ratio of Var(ij€,) to Var(ey€;) is constant. Larger clusters would need to have
less intra-cluster correlation than smaller ones.

Assumption 3 is not stated precisely, because it seems to be impossible to do so. Just
how much intra-cluster correlation is allowable necessarily depends on G, GGy, the sizes of
both treated and untreated clusters and the patterns of intra-cluster correlation within
them, the error in rejection frequency that is tolerable, and so on. When Assumption 3 is
seriously violated, the wild bootstrap will fail in almost the same way as the wild cluster
bootstrap fails. Suppose that G; = 1, which is by far the worst case. If the disturbances
for cluster 1 happen to be unusually large in absolute value, so will be 5, and so will be
the absolute values of the restricted residuals €;;. If the €;; are correlated, then the |&;|
will tend to be large when 32 is large. This will cause exactly the same sort of failure as
occurs for the restricted wild cluster bootstrap; see the discussion around equation (12).
We expect the restricted wild bootstrap to underreject in this case.

A similar argument applies to the unrestricted wild bootstrap. When the ¢; are
correlated, the |€;]| will tend to be too small, causing the variance of the B; to be too
small. This will cause exactly the same sort of failure as occurs for the unrestricted wild
cluster bootstrap; see the last paragraph of Subsection 2.2. We expect the unrestricted
wild bootstrap to overreject in this case.

Our simulation results (see Section 4) suggest that the failure of Assumption 3 can
cause serious errors of inference when G; = 1, but not when G; > 2, unless the amount
of intra-cluster correlation is very large. Because the signs of the distortions caused by
its failure are known, we can be confident that Assumption 3 is not seriously violated
whenever the bootstrap P values for the restricted and unrestricted wild bootstraps are
similar, with the former larger than the latter.

The argument that led to (23) does not imply that ¢, and ¢ actually follow the same
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Figure 2: Rejection frequencies for ordinary wild bootstrap tests, G = 14, N/G = 200
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distribution under the null hypothesis. It merely suggests that they have approximately
the same variance. When G is fixed, neither ¢, nor t5 will be asymptotically N(0,1)
under the null. However, since the numerators of both test statistics are weighted sums of
disturbances that have mean zero —compare (4) and (11)—it seems plausible that they
will both be approximately normally distributed when NV is large.

In order to obtain an asymptotic normality result, it is essential that G should tend
to infinity as NV tends to infinity, although perhaps at a slower rate; see Djogbenou, Mac-
Kinnon and Nielsen (2018). To see the problem, consider a random-effects model in which
the disturbance €, is equal to a cluster-level random effect v; plus an individual random
effect u;g. When the number of clusters G is fixed, there are only G realizations of the
v;. Fach of them must have a non-negligible effect on the OLS estimates. Therefore, the
distribution of those estimates, and of ¢ statistics based on them, must depend on the
distribution of the v;. Only by letting G — oo could we invoke a central limit theorem in
order to make the dependence on that distribution vanish asymptotically.

In the analysis that led to (23), we treated the denominators of ¢ and t} as constants
when they are in fact random variables. This should be a good approximation when
Assumption 3 holds and N is reasonably large. Moreover, if those random variables have
similar distributions for the actual and bootstrap samples, that should help to make the
distribution of ¢5 mimic the distribution of ¢,.

We also assumed that the factors ; and 6y, which determine how badly the two terms
in the denominators of (15) and (16) underestimate the quantities they are trying to
estimate, are the same for t5 and 5. It makes sense that these factors should be approxi-
mately the same, because the underestimation arises from the orthogonality between the
OLS residuals and the treatment dummy, which is present for both the actual residuals
and the bootstrap ones. The orthogonality causes the variances of sums of residuals to
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be smaller than the variances of the corresponding sums of disturbances in a manner that
depends on Gy, GGy, and the number of elements in each of the sums; see Section A.3 of the
appendix to MacKinnon and Webb (2017b). If these factors were substantially different
between the actual and bootstrap test statistics, then the approximation (23) would no
longer hold. This is most likely to happen when Assumption 3 fails or N is small, because
the residuals, which are used to construct the €7, might then be poor estimators of the
disturbances.

Figure 2 shows rejection frequencies for the tests proposed in this section for the same
cases as Figure 1, but for four values of p. These tests combine the ordinary wild bootstrap,
either restricted (WR) or unrestricted (WU), with the CV; covariance matrix. We use
the w2 wild bootstrap—see Davidson and Flachaire (2008) and MacKinnon (2013)—in
which the i*" residual is divided by the square root of the i*" diagonal element of either
the projection matrix Mx =1 — X (X’'X)™' X', or its restricted version, as appropriate,
before being multiplied by the auxiliary random variable. This procedure is analogous to
using HC, standard errors.

The new tests perform extraordinarily well, with two exceptions. They do not perform
well when G; =1 or G; = 13 and p > 0.02, or when G; = 2 or G; = 12 and p = 0.20.
These are cases where Assumption 3 is seriously violated and wild cluster bootstrap tests
fail dramatically; see Figure 1. Even when G; = 1 and G; = 13, the new tests perform
quite well for p = 0.02 and, arguably, for p = 0.05. They always perform very much better
than the wild cluster bootstrap.

3.3 Differing Cluster Sizes and Difference in Differences

The key result (23) depends critically on Assumption 1. Without it, the ratio of Var(tj€,)
to Var(cye;) would not be the same for all g, and #; would not have approximately the
same variance as ty when GG; or GGy is small. The ratio would evidently be larger for large
clusters than for small ones, because the number of off-diagonal terms is proportional
to N, 92, and these terms must surely be positive, at least on average.

Suppose that, instead of being the same size, the treated clusters were all smaller than
the untreated ones. This would make the variance of the first term in the numerator of ¢,
smaller relative to the variance of the second term, and likewise for the first and second
terms in the numerator of ¢3; see equations (15) and (16). However, the effect would be
stronger for ¢, than for ¢3, because Var(¢€,) increases faster than N, while Var(¢j€;) is
proportional to N,. Since 1 —d >> d unless a large proportion of the clusters is being
treated, it is primarily the first terms that determine Var(ty) and Var(t3). Moreover, it is
the first terms that the corresponding terms in the denominators of ¢, and 5 underestimate
(often severely) when G or G is small.

We conclude that, when G; is small (at any rate, not too much larger than G/2),
and the treated clusters are smaller than the untreated ones, it must be the case that
Var(t;) > Var(ty). This will lead the ordinary wild bootstrap test to underreject. By a
similar argument, the test will overreject whenever the treated clusters are larger than
the untreated ones. Of course, this is only a problem when at least one of G; and G is
small. For G; and Gy sufficiently large, the denominators of ¢5 and t3 correctly estimate
the variances of the numerators, and so Var(ty) = Var(ty) = 1.

To investigate the effect of varying cluster sizes, we allow the N, to depend on a
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Figure 3: Effects of varying cluster sizes on rejection frequencies for WR + CV;
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parameter 7y that varies between 0 and 2. When ~ = 0, all clusters are the same size.
When v = 2, the largest cluster is about 6.5 times as large as the smallest one. For details,
see Section 4. In the experiments, G = 14, p = 0.10, and the average value of N/G is 200.

Figure 3 plots rejection frequencies at the .05 level for the restricted (WR) variant of
the wild bootstrap when clusters are treated from smallest to largest. Instead of v, which
is hard to interpret, the horizontal axis shows the ratio of the largest to the smallest cluster
size. There are eight curves, which correspond to G; = 1,2,4,6,8,10,12,13. We expect
to see increasing underrejection for GGy < 7 as cluster sizes become more variable, and
increasing overrejection for G; > 7, because treating the G; smallest clusters is equivalent
to treating the G — (G largest clusters.

The ordinary wild bootstrap performs just as the theory of Subsection 3.3 predicts. It
works quite well for 4 < G; < 10 even when cluster sizes vary by a factor of more than
six. Because p = 0.10, it underrejects fairly severely for both G; = 1 and G; = 13 when
all clusters are the same size. It then underrejects more and more severely for G; = 1, and
it overrejects more and more severely for G; = 13, as cluster sizes become more variable.
Performance for G; = 2 and G; = 12 is much better than for G; = 1 and G; = 13 but
still not very good when cluster sizes vary by a factor of three or more. Results for the
WU variant, not shown in the figure, are quite similar except for G; = 1 and G; = 13,
where there is overrejection instead of underrejection when all clusters are the same size.

The situation depicted in Figure 3 is a rather extreme one. In practice, it should be
rare for only the largest or the smallest clusters to be treated. Thus, for Gy > 2, we would
generally expect to see better performance than is shown in the figure. Moreover, since
the investigator knows the cluster sizes, he or she will know whether the wild bootstrap
is likely to overreject or underreject. For example, if the treated clusters are, on average,
smaller than the untreated ones, there is likely to be underrejection. In that case, a
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significant bootstrap P value would provide strong evidence against the null hypothesis,
but an insignificant one might be misleading.

We could create a sample with equal-sized clusters by taking averages of individual
observations. For example, if every observation is associated with a jurisdiction and a
time period, we could create a balanced panel by averaging over all the observations
associated with each jurisdiction and time period. Unfortunately, this will probably not
yield good results if the sample is not balanced originally. When we take averages over
different numbers of observations, we implicitly create intra-cluster covariance matrices
that depend on those numbers. As a result, Assumption 2 will be violated.

The result that Var(ty) = Var(ty) when cluster sizes are equal applies only to pure
treatment models like (1). In the case of difference-in-differences regressions, only some
of the observations in the treated clusters are actually treated. Untreated observations
may belong either to the control clusters in any period or to the treated clusters in the
pre-treatment period. This means that expression (5) for the numerator of the ¢ statistic
has to be replaced by

el et G
(1—d) Z d;eg —d Z(Lg —d,) e, —d Z L;eg. (24)
9=1 g=1 g=G1+1

Recall that the d, are Ny-vectors equal to 1 for treated observations and 0 for untreated
ones. The numerator of the ¢ statistic now has three terms instead of two. The first term
corresponds to the treated observations in the treated clusters, the second corresponds
to the untreated observations in the treated clusters, and the third corresponds to the
untreated clusters. The first two terms are not independent, because they both depend
on the same set of treated clusters.

It is clear from expression (24) that the analysis which led to the approximations (19)
and (22) does not apply to the DiD case. The previous arguments about what happens
when cluster sizes differ suggest that the subcluster bootstrap is likely to underreject (over-
reject) when the number of treated observations in each treated cluster is small (large)
relative to the number of untreated observations, and/or relative to the number of ob-
servations in each untreated cluster. Underrejection will probably be more common than
overrejection, however, because the number of treated observations per treated cluster
can only be relatively large if two conditions are satisfied: The treated clusters must be
relatively large, and a substantial fraction of the observations in them must be treated. In
most cases, we would not expect both these conditions to be satisfied. Section 4 provides
some evidence on how well the wild and wild cluster bootstraps perform in the DiD case.

3.4 Using Actual Subclusters

Up to this point, we have only discussed the wild cluster bootstrap and the ordinary wild
bootstrap. In general, the subcluster wild bootstrap is a sequence of procedures with the
former as one limiting case and the latter as the other. In between, there could potentially
be a large number of bootstrap DGPs that involve some degree of clustering, but at a
finer level than the covariance matrix estimator.

Recall from Subsection 3.3 that the ordinary wild bootstrap fails when cluster sizes
vary and at least one of G; and Gy is small, so that the denominators of the actual and
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bootstrap t statistics do a poor job of estimating the variance of the numerators. The
fundamental reason for this failure is that the ratio of Var(c €;) to Var(c,€,) varies across
clusters. This happens because, with the ordinary wild bootstrap, the elements of € are
uncorrelated, while those of €, are not.

Suppose the observations within each cluster fall naturally into subclusters. For ex-
ample, with panel data, every observation will be associated with a time period as well
as a jurisdiction. With survey data, every observation might be associated with a city or
a county within a larger region. In such a case, equation (1) can be rewritten as

Yitg = B1 + Badirg + €itg, (25)

where ¢ indexes jurisdictions or regions, the level at which the covariance matrix is clus-
tered, t indexes time periods or locations, and ¢ indexes individual observations. In this
case, there is a natural subcluster wild bootstrap DGP:

y:tl_)g =B+ gitg”:gb‘ (26)

This is a variant of the wild cluster bootstrap, since the auxiliary random variable v;k;’ is
the same for all ¢ within each tg pair. But it is not the usual wild cluster bootstrap, for
which the auxiliary random variable would be v;b.

For the DGP (26), the bootstrap disturbances will be correlated within subclusters
but uncorrelated across them. If the correlations between €;, and €, are substantially
larger than the correlations between €;, and €54, for ¢ # j and s # t, then much of
the intra-cluster correlation is really intra-subcluster correlation. In this case, we would
expect Var(tj€;) to provide a better approximation to Var(tj€,) than would be the case
for the ordinary wild bootstrap. In consequence, we would expect Var(t;) to be closer to
Var(ty) and bootstrap tests to perform better when cluster sizes vary.

There is a contrary argument, however. Suppose that each cluster contains M obser-
vations that can be evenly divided into S equal-sized subclusters. Therefore, the total
number of unique off-diagonal elements is M (M —1)/2, and the number of those that are
contained within the S diagonal blocks is M (M/S — 1)/2. The ratio of these numbers
is (M —1)/(M/S — 1), which is always greater than S. Therefore, using S subclusters
will capture a fraction of the intra-cluster correlations that is less than 1/S. With unbal-
anced subclusters, this fraction would be further reduced. We conclude that, unless the
intra-subcluster correlations are large relative to the remaining intra-cluster correlations,
the potential gain from using actual subclusters instead of the ordinary wild bootstrap is
likely to be modest.

Moreover, there is a cost to subclustering at anything but the individual level. With the
restricted subcluster wild bootstrap, when the number of treated or untreated subclusters
is small, the bootstrap t statistics will be correlated with the actual ¢ statistic. With the
unrestricted subcluster wild bootstrap, in the same cases, the variance of the bootstrap ¢
statistics will be too small. These are precisely the reasons why the two variants of the
wild cluster bootstrap fail when G; or Gq is too small; see Subsection 2.2 above. The
whole point of the subcluster wild bootstrap is to avoid this type of failure, but we are
very likely to encounter it if we subcluster at too coarse a level.
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Our tentative conclusion is that subclustering at a very fine level should yield results
similar to those from using the ordinary wild bootstrap DGP, and subclustering at a very
coarse level is likely to yield unreliable results unless G; and Gq are both fairly large (in
which case subclustering may not be necessary at all). Subclustering at an intermediate
level may be beneficial if the correlations within subclusters are a lot higher than the
correlations between them.

Subclustering at an intermediate level may also perform well when cluster sizes vary.
Suppose, for example, that WR overrejects (as it is likely to do when the treated clusters
are large) and WCR underrejects (as it is likely to do whenever G is small). Then there
may well be intermediate levels of subclustering for which the restricted subcluster wild
bootstrap outperforms both of them. We consider this case, and also one in which the
treated clusters are small, in Section 4.

4 Simulation Experiments

We perform a very extensive set of simulation experiments, mainly for the pure treatment
model (1) with G small and G often very small. The primary objective is to see whether
combining the ordinary wild bootstrap DGP with CV; standard errors works as well the
analysis of Subsection 3.2, which necessarily involves some approximations, suggests that
it should. Secondary objectives are to study subclustering and to investigate situations in
which the theory of Subsection 3.3 suggests that the ordinary wild bootstrap should not
work well.

In all experiments, the disturbances are normally distributed, equicorrelated within
clusters with correlation coefficient p, and uncorrelated across clusters. In most of them,
there are 400,000 replications, and the bootstrap methods use B = 399 bootstrap sam-
ples.? Using such a large number of replications is essential in order to distinguish between
experimental noise and small but systematic failures of exactness for the bootstrap tests.

Figure 1, in Subsection 2.2, shows rejection frequencies at the .05 level for four existing
tests with G = 14, N/G = 200 for all g, and p = 0.10. This figure would have looked
more or less the same for any moderate value of G. As G increases, the range of extreme
values of (G; for which the WCR bootstrap severely underrejects and the WCU bootstrap
severely overrejects gradually becomes a little wider, but the range of moderate values for
which both bootstrap tests perform well becomes larger relative to G. When G = 40, for
example, both wild cluster bootstrap tests perform extremely well for 6 < G; < 34. With
the exception of the t test based on HC, standard errors, all of these tests appear to be
almost invariant to the value of p.

Numerous experiments suggest that, whenever the WCR and WCU P values differ
substantially, at least one of them must be seriously misleading. Thus it is often easy to
tell when (7 is too small. In contrast, when the two P values do not differ much and lead
to the same conclusion, they both seem to be at least fairly reliable. Of course, the P
values being similar does not guarantee that they are entirely reliable; consider the cases
of G; =4 and Gy = 10 in Figure 1, where both methods overreject slightly.

3In empirical analysis, it is desirable to use a larger value for B, but 399 seems to work well in simulation
experiments, where randomness in the bootstrap P values tends to average out across replications. We
use 999 instead of 399 for the experiments that involve power, because there is power loss of order 1/B.
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Figure 4: Rejection frequencies for G =7, N/G = 200
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Figure 2, in Subsection 3.2, shows rejection frequencies at the .05 level for ordinary
wild bootstrap tests, both WR and WU, for the same cases as Figure 1 and also for other
values of p. Instead of the w2 wild bootstrap, we could have used the slightly simpler w0
procedure, which employs the restricted or unrestricted residuals without any rescaling.
For the model (1), the two WR procedures are numerically identical, because the only
regressor in the restricted model is a constant. Thus the rescaling involves the same
factor for every observation, which for computing bootstrap t statistics is equivalent to
not rescaling at all. However, the two WU procedures differ. Limited evidence suggests
that the w2 procedure we use rejects slightly less often than the w0 procedure.

Figure 3, in Subsection 3.3, shows what happens when cluster sizes differ in a particular
way. In those experiments, N, is determined by a parameter v, as follows:

N, = [N exp(19/G) g=1,....,G -1,

> exp(vi/G) |

where [-] denotes the integer part of its argument, and Ng = N — Zf:_ll N,. Every N,
is equal to N/G = 200 when v = 0. As + increases, cluster sizes become increasingly
unbalanced. For the most extreme case in the figure, where v = 2 and the clusters are
sorted from smallest to largest, Ny = 67 and Ny, = 438.

Because the empirical example of Section 6 effectively involves 7 clusters, we per-
formed a set of experiments similar to the ones in Figures 1 and 2, but with G = 7.
These used only 100,000 replications. Results are shown in Figure 4. The ordinary wild
bootstrap procedures continue to perform extraordinarily well, although WR underrejects
very slightly for G; = 1 and G; = 6. WCR works remarkably well for G; = 2 and G; = 5,
and WCU works almost perfectly for G; = 3 and G; = 4.

Figure 5 investigates the consequences of using genuine subclusters. In these experi-
ments, G = 14, p = 0.10, and N, = 256 for all g. The horizontal axis shows the number
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Figure 5: Rejection frequencies as level of subclustering changes, G = 14, N/G = 256
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Figure 6: Rejection frequencies for subclustering when cluster sizes vary, G = 16
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of subclusters S per cluster, which varies from 1 (the wild cluster bootstrap) to 256 (the
wild bootstrap) by factors of 2. The vertical axis shows rejection frequencies for G; = 2
for restricted and unrestricted bootstrap tests for two values of p. The CRVE is always
calculated using just 14 clusters, but the subcluster wild bootstrap (denoted SWR or
SWU in the figure) uses between 14 (S = 1) and 3584 (S = 256) clusters.

In the top panel of the figure, there are actually 14 clusters. Thus the “correct” value
of S is 1. However, the unrestricted wild cluster bootstrap overrejects very severely, and
the restricted one underrejects very severely. As the level of subclustering becomes finer,
both procedures improve. For S = 256 (the ordinary wild bootstrap), they perform almost
perfectly when p = 0.05 and extremely well when p = 0.10. The restricted versions always
underreject less severely than the unrestricted ones overreject.

In the bottom panel of the figure, there are actually 112 clusters. Thus the “correct”
value of S'is 8, but the investigator mistakenly allows for much larger clusters than actually
exist. One can think of this as analogous to clustering at the state level when in reality
there is only clustering at the county level and the counties are nested within states. In
this case, the restricted wild subcluster bootstraps work extremely well for S > 4. The
unrestricted ones do not work quite as well, but for S > 8 they certainly perform very
much better than they do in the top panel.

In Figure 5, results are shown for two values of p. We obtained results for larger
and smaller values as well. As expected, the performance of WCR and WCU is almost
invariant to p, but the performance of all the subclustering procedures deteriorates as p
increases. This is particularly true for small values of S.

The ordinary wild bootstrap works particularly well in Figure 5 because all of the
assumptions of Subsection 3.2 are satisfied. We relax assumption 1, that cluster sizes
are equal, in Figure 6. There are now 16 clusters, four each with 128, 256, 384, and 512
observations, for a total of N = 5120. When cluster sizes vary, it matters which clusters
are treated. The figure shows two extreme cases, in which either two of the largest clusters
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Figure 7: Effect of G on rejection frequencies when Gy = 2 and p = 0.2
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(N, = 512) or two of the smallest clusters (N, = 128) are treated. The horizontal axis
again shows S, the number of subclusters per cluster. This varies from 1 (the wild cluster
bootstrap) to 128 by factors of 2, and then finally to the wild bootstrap.

When the two largest clusters are treated, both WR and WU overreject, as the results
of Subsection 3.3 predict. Since WCR underrejects (although nothing like as severely as
it does for equal cluster sizes), there are several values of S for which SWR performs
better than either WR or WCR. In fact, for S = 8, the rejection frequency is 0.0472.
Similarly, when the two smallest clusters are treated, both WR and WU underreject,
again as predicted. Since WCU overrejects, as usual, there are several values of S for
which SWU performs better than either WR or WCR. The best case is again S = 8, for
which the rejection frequency is 0.0587.

The results in Figure 5, together with additional ones for larger values of G; and other
values of p, suggest that, when cluster sizes are equal, it is better to use the ordinary wild
bootstrap than to subcluster at any level. However, Figure 6 shows that this is not so
when cluster sizes vary. There must be many cases that look like the ones in the figure, in
which WR and WU both either overreject or underreject, WCR underrejects, and WCU
overrejects. In such cases, it seems likely that there will be subclustering schemes for
which either SWR or SWU (but not both) outperform WR and WU.

There may also be cases in which Assumption 2 is violated and subclustering works well
because the correlations within subclusters are substantially larger than the correlations
across them. Recall that, in our experiments, the correlations both within and across
subclusters within the same cluster are all the same.

The next set of experiments is designed to investigate the effects of the number of
clusters and their (common) size. Figure 7 reports the results of several experiments for
G = 2 with balanced clusters. The value of p is 0.20, which in our view corresponds to
the worst realistic case. The vertical axis shows rejection frequencies at the .05 level. The
horizontal axis shows G, which varies from 4 to 17, because G' = 4 is the smallest value for
which Gy > 1 when GG; = 2. Both variants of the ordinary wild bootstrap perform almost
perfectly when G = 4. As @ increases, their performance gradually deteriorates, but it
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is still generally quite good. As in Figure 2, the restricted variant underrejects, and the
unrestricted variant overrejects. The former improves modestly as N/G increases, and
the latter improves quite substantially.

We also obtained results with p = 0.10. As expected, both methods worked better
than they do in Figure 7. The worst rejection rates for WR were 0.0459 for N/G = 20
and 0.0472 for N/G = 500. The worst rejection rates for WU were 0.0608 for N/G = 20
and 0.0538 for N/G = 500. The worst cases occurred when G was 16 or 17.

We showed in Subsection 3.2 that the ordinary wild bootstrap is approximately invari-
ant to heteroskedasticity at the cluster level. To investigate this potentially important
result, we perform a number of experiments in which the standard deviation o, for cluster
g depends on a parameter 4, as follows:

oy on(191) -

According to equation (27), o, equals 1 when § = 0 and is increasing in 6. In the
experiments, ¢ varies between —2 and 2, so that o, varies between 0.135 and 7.39. The
treated clusters are always the ones with the highest indices. Therefore, exp(d) can be
thought of as the ratio of the highest standard deviation for a treated cluster to the lowest
standard deviation for an untreated cluster.

All the experiments have 400,000 replications, with G = 14, N = 2800, p = 0.10, and
B = 399. They are therefore comparable to the experiments of Figures 1 and 2. We
performed five sets of experiments, for G; = 1,2,...,5. However, for reasons of space, we
only report results for G; = 2 and G| = 4.

Figure 8 plots rejection frequencies at the .05 level against § for all four tests. As the
theory of Subsection 3.2 predicts, the two ordinary wild bootstrap tests work very well,
especially when GG; = 4. In contrast, the performance of the two wild cluster bootstrap
tests is very sensitive to 6. Remarkably, when G; = 4 and § > 0.4, the WCR bootstrap
rejects more often than WCU. Given the slopes of the two curves near § = 2, it seems
very likely that this would also be the case for G; = 2 when ¢ is large enough.

There has been very little investigation of the effects of heteroskedasticity across clus-
ters on inference using the wild cluster bootstrap. In particular, all of the simulations in
MacKinnon and Webb (2017b) assume that the disturbances are homoskedastic. Figure 8
suggests that the wild cluster bootstrap can perform much worse under heteroskedasticity
than under homoskedasticity. Since that is not the case for the ordinary wild bootstrap,
it may be attractive to use the latter when there is cluster-specific heteroskedasticity even
when G| is not particularly small.*

All of the experimental results so far are for the pure treatment case, in which every
observation in the treated clusters is treated. In Subsection 3.3, we showed that the
key results (19) and (22) do not apply to DiD regression models. To investigate the
performance of the ordinary wild bootstrap for these models, we performed another set
of experiments in which only a fraction ¢ of the observations in the treated clusters is
treated. The experiments have G = 20, N = 4000, p = 0.10, and ¢ = 0.05,0.10, ..., 1.00.

4Experiments in MacKinnon and Webb (2018a) show that randomization inference procedures also
perform poorly with cluster-specific heteroskedasticity and few treated clusters.
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Figure 8: Effects of heteroskedasticity on rejection frequencies
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Figure 9: Effects of fraction of treated observations in treated clusters
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These experiments use G = 20 rather than G = 14 because the wild cluster bootstrap
happens to perform very well when G = 14 and G; = 3, even though it usually performs
poorly with such a small number of treated clusters.

Figure 9 reports rejection frequencies at the .05 level as functions of ¢ for four tests.
The top panel shows results for G; = 2, and the bottom panel shows results for G; = 3.
As expected, the two wild cluster bootstrap tests perform badly when G; = 2. The
restricted variant (WCR) very rarely rejects, and the unrestricted one (WCU) always
rejects more than 16% of the time. In contrast, the two wild bootstrap tests perform
about the same, with the unrestricted variant (WU) always rejecting a bit more often
than the restricted one (WR). Both tests underreject severely when 1 is small, but the
extent of the underrejection diminishes steadily as i increases. When ¢ = 1, WU actually
overrejects very slightly.

All four tests perform much better when G; = 3, but WCR still underrejects quite
noticeably, and WCU still overrejects fairly severely. The two wild bootstrap tests still
underreject (except for WU when ¢ > 0.95) but not nearly as much as when G; = 2.
They are fairly reliable for ¢ > 0.75, always rejecting at least 4% of the time.

An actual DiD model with treatments starting at different times would normally in-
clude a full set of time and cluster dummy variables. We did not use such a model here,
partly for reasons of computational cost, but more importantly because the dummies
would eliminate any intra-cluster correlations in the disturbances of the DGP. There-
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Figure 10: Power of Various Procedures
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fore, in order for there to be any reason to use a CRVE, we would need to use a more
complicated DGP that creates intra-cluster correlations which dummies cannot eliminate.

It seems very unlikely that the amount of intra-cluster correlation left after regressing
on a full set of dummy variables would be anything like as large as 0.10 on average. Thus
the results for the wild bootstrap tests in Figure 9 are probably quite a bit worse than we
would see in practice with 20 clusters of 200 observations each. Of course, with clusters
that were substantially larger or variable in size, we might well see even worse results.

The final simulation experiments concern power. Figure 10 presents results from four
sets of experiments for equation (1) with 100,000 replications and p = 0.10. In all cases,
G =14, N = 2800, N, = 200, and B = 999. The four panels show results for G; = 1, 3,
5, and 7. In the experiments, [y varies from 0.00 to 1.50 for G; = 1 and G; = 3, and from
0.00 to 1.00 for Gy = 5 and G; = 7. Nominal 5% rejection frequencies are calculated for
tests based on CV; and the #(13) distribution, as well as for the WCR, WCU, WR, and
WU bootstrap tests.

In the top left panel of Figure 10, where G; = 1, we see that the WCR bootstrap is
severely lacking in power, while CV; t tests and the WCU bootstrap apparently have a
great deal of power. The theoretical results in Section 6 of MacKinnon and Webb (2017b)
suggest that, under the null when G; = 1, WCR should underreject severely and CV;
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and WCU should be similar to each other and overreject severely. The same relationships
among these three tests evidently hold for all values of S5. The only useful tests here are
WU and WR, which have rather different power functions. The former appears to have
considerably more power, but it also rejects quite a bit more often under the null.

As G increases, the power functions for the five tests converge. There are still no-
ticeable differences when G; = 3, however. In this case (see the lower left-hand panel),
the power functions for the bootstrap tests cross. WCU overrejects under the null and
consequently has higher power than the other tests for small values of 5, but WCR is
the most powerful bootstrap test for large values. When G; = 7 (see the lower right-hand
panel), there are almost no observable differences among the four bootstrap procedures.
CV; seems to have a little more power, but it is also slightly oversized. For 8, = 0, it
rejects 5.97% of the time, compared with between 4.89% (WCU) and 5.25% (WCR) for
the bootstrap procedures.

Based on these experiments, it appears that size and power generally go hand in hand.
Tests that have approximately the correct size generally have very similar power functions.
Tests that overreject under the null have relatively high power, and tests that underreject
under the null have relatively low power.

5 Alternative Procedures

The bootstrap is not the only way to obtain inferences that are more accurate than using
CV; standard errors. The most widely-used approach, which is due to Bell and McCaffrey
(2002), is to replace CV; by the alternative estimator

G
A PR S B 29)

g=1

where M, g_gl/ 2 is the inverse symmetric square root of the ¢ diagonal block of the N x N
projection matrix Mx =I— X (X'X ) 'X’. This block is the N, x N, symmetric matrix
My, =1y, — Xg(X’X)_lX;. Thus CV, omits the scalar factor in CV; and replaces the
residual subvectors €, by rescaled subvectors M, /2.

The CV; estimator generalizes the HCs heteroskedasticity-consistent covariance matrix
estimator discussed in MacKinnon and White (1985), and the former reduces to the latter
when all the N, are equal to 1. Both these estimators are intended to correct the downward
bias of the OLS residuals. The fact that the CV, estimator would be unbiased if the €
matrix were proportional to an N x N identity matrix suggests that it may be attractive;
see Young (2016).

Methods that employ bias-reduced standard errors generally also adjust the degrees of
freedom used to compute P values or critical values with the ¢ distribution. The first im-
plementation of such a procedure is in Bell and McCaffrey (2002). More recently, Imbens
and Kolesar (2016) suggests a slightly modified version of the Bell-McCaffrey procedure,
and Young (2016) proposes a way to reduce the bias of the diagonal elements of CV; and
compute critical values. All these procedures are discussed, and their performance studied
by simulation, in the appendix. We mention them here because we implement them in
the empirical example of Section 6.
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6 Empirical Example

Angrist and Lavy (2001) studies the impact of teacher training on student outcomes using
a matched comparisons design in Jerusalem schools. The paper tests whether students
who were taught by teachers that received additional training increased their test scores
by more than students taught by teachers with no additional training. The analysis is
done separately for students in religious and secular schools. We focus our attention on
255 students taught in eight religious schools. With one exception, each school was either
treated or not treated. The eight schools had 54, 48, 41, 40, 28, 24, 19, and 1 students,
respectively. Although the example nominally has G = 8 and G = 3, it effectively has
G = 7 and (G; = 2, because there is one untreated school with just one student and one
school with 52 untreated students and just two treated students.’

We restrict attention to the change in math scores between 1994 and 1995, as this
coefficient is puzzling but reported to be quite statistically significant; see column 4 of
Table 5 in the original paper. The experimental design allows for a very simple identifi-
cation strategy:

diff;; = By + fitreated;s + €;5.

Here diff;, is the difference in math scores for student 7 in school s between 1994 and 1995,
and treated;s is an indicator for whether a student was in a school taught by a treated
teacher. For the religious schools, both 1994 and 1995 are pre-treatment years, so that
a test of B = 0 can be regarded as a test for common trends. The standard errors are
clustered by school.

In column 1 of Table 1, we repeat the analysis of Angrist and Lavy (2001) and add
numerous additional results. Our coefficient estimate is essentially the same as the one
reported in the paper, but our standard error estimate is somewhat smaller.® The CRVE
P value, based on the ¢(7) distribution, suggests that the treatment has a negative impact
that is statistically significant at well below the 1% level.

In column 1 of the second block of results, we report four bootstrap P values, using
wild cluster and wild bootstraps, both restricted and unrestricted. All bootstrap P values
use B = 99,999 replications. Because G = 8, the wild cluster bootstrap DGPs use the
six-point distribution proposed in Webb (2014). The ordinary wild bootstrap DGPs use
the Rademacher distribution. All four bootstrap procedures agree that the coefficient is
significant only at the 5% level.

It may seem surprising that all four bootstrap procedures agree in this case. Since the
two treated schools are only a little larger than the average size of 254/7 = 36.3 (ignoring
the school with just one student), it is not surprising that the ordinary wild bootstrap
works well. The two wild cluster bootstrap procedures actually work well despite the
fact that GGy is very small because G is extremely small. Figure 4 in Section 4 shows
rejection frequencies for G = 7 and G; = 1,2,...,6 with equal-sized clusters, and the
WCB procedures (especially WCR) work reasonably well when G; = 2 and G = 5.

SExample code for estimating WCR and WR P values can be found at http://qed.econ.queensu.
ca/pub/faculty/mackinnon/wild-few/

6Qur coefficient estimate is actually —0.866476, which we report as —0.866. Angrist and Lavy (2001)
reports a value of —0.867, which is what would have been obtained if the original estimate were first
rounded to 4 and then to 3 digits.
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Table 1: Effects of Teacher Training on Math Score Difference

full sample  drop 48 drop 40
coefficient —0.866 —0.778 —0.903
CV; std. error 0.195 0.206 0.205
t stat. (P value) —4.45 (.003) —3.78 (.009) —4.41 (.005)
WCR P value 0.031 0.411 0.322
WCU P value 0.024 0.053 0.033
WR P value 0.020 0.247 0.109
WU P value 0.014 0.152 0.039
CVPr std. error 0.233 0.397 0.387
CV, std. error 0.207 0.279 0.285
dfy 3.055 3.499 3.765
dfpm 2.366 1.534 1.642
dfik 2.030 2.792 3.102
p 0.081 0.100 0.111
CV, + t(7) P value 0.004 0.032 0.019
CV}’r + dfy P value 0.033 0.132 0.084
CVy + dfgy P value 0.039 0.144 0.111
CV,y + dfix P value 0.051 0.075 0.048
N 255 207 215
G 8 7 7
G, 3 2 2

Notes:

The outcome variable is the difference between 1994 and 1995 math test scores.
All bootstrap P values use B = 99,999.

Because there is one school with just one student, and one otherwise untreated
school with just two treated students, the effective values of G and G are probably
smaller by 1 than the reported values.

CV}" is the bias-reduced standard error proposed in Young (2016). dfy, dfgy, and
dfix are, respectively, the degrees of freedom obtained by the methods of Young
(2016), Bell and McCaffrey (2002), and Imbens and Kolesar (2016); see the appendix
for details.

The next block in the table reports two alternative standard errors, both of which
are somewhat larger than the usual CV; standard error. The following block reports
the degrees of freedom calculated by three different methods, which are described in the
appendix. These are much smaller than G — 1 = 7. The penultimate block reports four
P values based on the alternative standard errors and various degrees of freedom. At
0.004, the P value based on the CV; standard error and the #(7) distribution is not much
larger than the one based on the CV; standard error and ¢(7), but the others are a good
deal larger. The procedure of Imbens and Kolesar (2016) actually yields a P value that
is slightly greater than 0.05.
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In order to make inference more difficult, we next drop either the school with 48 treated
students or the school with 40 treated students from the sample; see columns 2 and 3 of
Table 1. After dropping either of these schools, we are left with two treated schools, one
of which only has two treated students. When we do this, neither the coefficient nor the
standard error changes much. Both alternate samples yield CRVE P values, based on the
t(6) distribution, that are significant at the 1% level.

It seems very strange that dropping roughly half the treated students apparently has
very little effect on the significance of the estimated coefficient. In fact, it does have a
substantial effect, which is masked by the unreliability of cluster-robust standard errors
when G is very small. This is clear from the bootstrap P values. In all cases, the P
values based on restricted estimates are much larger than the ones based on unrestricted
estimates. None of the former suggest that the null hypothesis should be rejected.

The difference between the P values based on restricted and unrestricted estimates is
much more pronounced for the wild cluster bootstrap (WCR and WCU) than for the wild
bootstrap (WR and WU). The former is precisely what the theory reviewed in Subsection
2.2 implies, so that the WCR and WCU P values evidently convey very little information.
The WR and WU and P values also do not yield unambiguous results, but they are very
much closer, and for column 2 they yield the same inferences.” Moreover, there are two
reasons to suspect that the WU P value of 0.039 in column 3 is too small: The treated
school in that case is relatively large, and the WR P value is quite a bit larger than
the WU one. Thus, if the results in column 3 were the only ones we had, it would be
reasonable to conclude that there is insufficient evidence against the null hypothesis.

For the full sample, there is not much conflict among the four bootstrap P values
and the three P values that use bias-reduced standard errors together with calculated
degrees of freedom. Every procedure rejects the null or comes very close to doing so.
This contrasts with the very small P values obtained using either CV; or CV, standard
errors together with the ¢(7) distribution. There is more conflict for the two subsamples,
which is not at all surprising, because for both of them almost all the treated observations
belong to a single cluster. Using a number of different procedures has revealed how fragile
the results for each of the subsamples is.

7 Conclusion and Recommendations

Although the wild cluster bootstrap works well much of the time, MacKinnon and Webb
(2017b) has shown that it often fails when the number of treated clusters is small, whether
or not the total number of clusters is small; see Subsection 2.2. What very often happens
in these cases is that the restricted wild cluster bootstrap P value is quite large, and the
unrestricted wild cluster bootstrap P value is very much smaller. When that happens,
neither of them can be trusted.

We have proposed a family of new bootstrap procedures, called the subcluster wild
bootstrap, which includes the ordinary wild bootstrap as a limiting case. These procedures
often work much better than the wild cluster bootstrap when there are few treated clusters.

"The differences between WR and WU are roughly what we would expect given the level of intra-
cluster correlation. Our estimates of p are 0.0808 for the full sample, 0.0997 for the sample of column 2,
and 0.1114 for the sample of column 3.
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In principle, the subcluster wild bootstrap can be implemented in a variety of ways.
However, it seems that the best approach is usually just to combine the ordinary wild
bootstrap with cluster-robust standard errors.

We showed in Subsection 3.2 that, for a pure treatment model, the ordinary wild
bootstrap can be expected to work very well under certain conditions. Firstly, clusters
must be either treated or untreated. That is, if any observation in a cluster is treated, then
every observation must be treated. Secondly, every cluster must have the same number of
observations and the same covariance matrix up to a scalar factor which may be different
for every cluster. Thirdly, the number of observations per cluster must be sufficiently large.
Finally, if there is just one treated (or untreated) cluster, the intra-cluster correlations
must be small, and if there are just two treated (or untreated) clusters, they must not be
very large. When the last of these conditions is violated, the unrestricted (WU) P value
will almost certainly be smaller than the restricted (WR) P value, so that it is easy to
tell when there is a problem.

The conditions discussed in the previous paragraph are quite stringent. With just a
few treated clusters, it is very likely that the ordinary wild bootstrap will underreject
(overreject) when the treated clusters are smaller (larger) than average. It is also likely to
underreject for difference-in-differences regression models with few treated clusters, unless
the treated clusters are relatively large and have a large proportion of treated observations.
In that case, it may overreject.

We have obtained a large number of simulation results. These results strongly confirm
the theoretical results of Section 3 which predict when the ordinary wild bootstrap will
or will not perform well. One unexpected result is that the wild cluster bootstrap, unlike
the ordinary wild bootstrap, is very sensitive to heteroskedasticity across clusters when
the number of treated clusters is small. This is a disturbing feature of the WCB that does
not seem to have been observed previously.

Of course, bootstrap-based procedures are not the only ones that may be able to
provide reasonably reliable inferences when there are few treated clusters. In the appendix,
we discuss several recently proposed procedures which employ less-biased cluster-robust
standard errors and calculate the appropriate degrees of freedom for each test. Procedures
of this type can work very well in many cases, but none of them appears to dominate
either the wild cluster bootstrap or the ordinary wild bootstrap across a wide range of
cases. Moreover, some of these procedures can be computationally burdensome or even
infeasible for sample sizes that are not large by current standards. In contrast, the wild
and wild cluster bootstraps are perfectly feasible for samples with millions of observations
in total and hundreds of thousands per cluster.

When the restricted (WCR) and unrestricted (WCU) variants of the wild cluster
bootstrap yield similar inferences, there is no real need to employ any other procedure.
The results may not be entirely reliable, especially if the number of treated clusters is
small. However, unless the sample is dominated by one or two very large clusters, as in
some of the experiments in Djogbenou, MacKinnon and Nielsen (2018), it seems to be
very uncommon for both of them to be severely misleading in the same direction.

In practice, WCR and WCU will very often yield different inferences when the number
of treated clusters is small. Typically, the latter will reject the null and the former will
not. When that happens, we evidently cannot rely on the wild cluster bootstrap. In such
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cases, the ordinary (or subcluster) wild bootstrap can often allow us to make reasonable,
albeit imperfect, inferences, as in the empirical example of Section 6. Moreover, the wild
bootstrap will probably outperform the wild cluster bootstrap when there is a substantial
amount of cluster-specific heteroskedasticity, unless the numbers of treated and untreated
clusters are so large that both procedures work very well.

In principle, for the ordinary wild bootstrap to provide valid inferences, we need the
conditions of Subsection 3.2 to be satisfied. In practice, however, we are likely to obtain
reasonably reliable inferences when the number of treated clusters is not too small (2
is a lot better than 1), when the treated and untreated clusters are approximately the
same size, and when the sample size is not too small (50 observations per cluster is a lot
better than 10 when there are not many clusters). It can also be useful as a conservative
procedure even in the case of DiD models, where it will often tend to underreject. However,
like the wild cluster bootstrap, the procedure should never be relied upon if the restricted
and unrestricted wild bootstrap P values are not quite similar.
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Appendix: More about Alternative Procedures

As we discussed in Section 5, an alternative to the widely-used CV; covariance matrix
is the CV, matrix defined in equation (28). This can be combined with a procedure to
calculate the degrees of freedom for a t test. The first implementation of such a procedure
is in Bell and McCaffrey (2002), the paper that proposed CV,. The Bell-McCaffrey
degrees-of-freedom parameter, dfgys, for testing a hypothesis about f; is based on results
in Satterthwaite (1946) and is computed as follows:

1. Calculate the Ny x 1 vectors 27, for g = 1,...,G, as the j™ columns of the N, x k
matrices X, (X'X)™"

2. Create the N x G matrix Z, where the ¢'" column of Z is the column vector
~1/2
Zy=MM, ', (29)

Here M, is the N, x N matrix containing the rows of Mx that correspond to
cluster g.

3. Form the matrix Z'Z and find its eigenvalues, A\; to Ag. Then compute

(Z5a%)

dfgm =
BM Zg;:l )\Z

(30)

For a pure treatment model like (1), dfgy can be much smaller than G — 1, especially
when G or Gy is small.

Since it depends on the vectors 27, dfgys is designed only for testing hypotheses about
Bj. It would need to be recomputed to test a hypothesis about any other coefficient.

It is worth mentioning that CV, runs into difficulty when the regression includes
cluster-level fixed effects, because the M, matrices are singular. For such models, it is
necessary to partial out the fixed effects. That is, we need to remove the cluster means
from the regressand and all the other regressors before running the regression. For a
detailed treatment of fixed effects in this context, see Pustejovsky and Tipton (2017).
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Imbens and Kolesar (2016) suggests a slightly modified version of the Bell-McCaffrey
procedure. The latter implicitly assumes that the {2 matrix is proportional to an identity
matrix. Instead, Imbens and Kolesar (2016) assumes that € is generated by a random-
effects model. Thus each of the €2, has diagonal elements equal to 1 and off-diagonal
elements equal to p. The residuals are used to obtain p, an estimate of p.® Substituting
p into the £, blocks of 2 yields an estimated covariance matrix Q2. The Imbens-Kolesar
degrees-of-freedom parameter, dfig, is then calculated using (30), except that the eigen-
values are those of the matrix Z’€2Z instead of the matrix Z’Z. In the pure treatment
model with equal-sized clusters, dfjx is numerically equal to dfgy;.

Although using CV; is conceptually the easiest way to reduce the bias of the CRVE,
it can be computationally challenging; see below. As an alternative, Young (2016) has
recently proposed a way to reduce the bias of the diagonal elements of CV;. As with
dfgm, there is a different calculation for each coefficient Bj.g

1. Calculate the vector z; as the j™ column of the matrix X (X’X)~". This vector
can be created by stacking the subvectors z{ that were formed in step 1 of the dfgy
calculation above. Then calculate the scalar ¥ = 2 z;.

2. Define the G'x k matrix D with ¢" row Dy = (27)'X,. The bias factor for coefficient

7 is then
_— (\If—Tr((X/X)—lprD)) ( G(N —1) ) 1)

J U G —1)(N k)

3. Calculate the bias-reduced CV; standard error of 3; as

v (CV1);/BF;. (32)

The second factor in expression (31) is the first factor in equation (3), which defines
CV;. It is simply there so that these factors cancel out in expression (32).

For convenience, we refer to Young’s bias-reduced estimator as CV}*, even though
it does not actually yield an estimator of the covariance matrix. Expression (32) just
provides a standard error for Bj that is larger than the square root of (CVy),;, because
the first factor in (31) is always less than unity, since the trace is necessarily positive.

Young (2016) also proposes a degrees-of-freedom parameter for the CV; and CV}P*
estimators. It is computed as follows:

1. Calculate W, = (27)'z{ for all g. Then form the G-vector ¥ with typical element

V,. Note that the scalar ¥ defined above is equal to 25:1 ,.

8This can be done in more than one way. The procedure that we use gives equal weight to all off-
diagonal elements of every €2, matrix. Also, we normalize the diagonal elements of the £2, to be unity,
which Imbens and Kolesdr (2016) does not do. This normalization is valid because the ratios of the
eigenvalues, which are what matters for (30), are invariant to any rescaling of the Q matrix.

9We are grateful to Alwyn Young for providing a Stata program, which clearly explains how his bias
reduction procedure works.
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Figure 11: Times for several tests with G = 20, k = 50
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2. Compute B = E?;l \IJgQ and the matrix D defined just before (31) above.

3. Young’s degrees-of-freedom parameter is

(¥ - Tr(X'X)"'D'D))
B - 2Tr((X'X)" (Do ®)D) + Tr((X'X)"'D'D(X'X)"'D'D)’

dty = (33)

where “o” denotes the direct or Hadamard product.

In our experience, even though it is calculated very differently, dfy tends to be quite
similar to dfgy.

The big advantage of Young’s procedures is that they are much less computationally
demanding than the ones based on CV,. Although calculating CV, is quite easy when
N and all of the IV, are of moderate size, doing so becomes difficult, or even impossible,
when any of the N, is very large. The problem is that, for every cluster, it is necessary
to form, store, invert, and take the symmetric square root of an N, x N, matrix. This
requires a great deal of memory, and, for the models we estimate, it seems to become
numerically unstable when any of the N, is greater than about 2000.

Figure 11 plots computer time (on a Xeon server with 64 GB of memory, but using
only one core) against sample size for a model with G = 20 and k = 50. The program
used was written in Fortran 95 and compiled with the Intel Fortran Compiler. Both axes
are logarithmic. The values of N are 1000, 1400, 2000, and so on up to 1,024,000. The
two bootstrap methods use B = 999 bootstrap samples.

Using CV; standard errors is always the least expensive method. Perhaps surprisingly,
the additional cost to calculate Young’s bias factor and degrees of freedom is very modest.
Even for N = 1,024,000, it only increases CPU time by about 15%.

Both bootstrap methods (WCR and WR) are much more expensive than CV; and
Young’s variant of it, but their cost increases quite slowly at first because many of the
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Figure 12: Rejection frequencies for BR-DF tests, G = 14, N/G = 200, p = 0.10
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calculations are reused across bootstrap samples. Even for large samples, their cost is
roughly proportional to N. Thus the bootstrap methods are entirely feasible for very
large sample sizes. WR is a little more expensive than WCR, especially for large sample
sizes, because it needs BN random numbers instead of BG.

In contrast, simply computing CV; is more expensive than either bootstrap method
for N > 4000, and calculating dfjx adds substantially to the cost. We ran out of memory
attempting to compute CVy for N > 64,000, and the cost for N = 64,000 was already
about 4000 times the cost of either bootstrap method. An applied researcher working
on a laptop with non-optimized code would probably run out of memory much sooner or
have to endure much longer computing times.

The computational cost and memory requirements of methods based on CV, increase
rapidly with N. Therefore, even with substantial increases in the performance of standard
computers over time, and assuming that problems of numerical instability can be solved,
it will probably be many years before CV; can routinely be calculated for sample sizes as
large as, say, 200,000.

It should be noted that, in computing dfjx, we did not calculate or store the N x N
matrix . Instead, we used the fact that its diagonal elements are 1, its within-cluster
off-diagonal elements are p, and all other elements are 0 so as to compute Z’ QZ in the
most efficient fashion that we could devise.

We perform a few additional simulation experiments for the procedures just discussed.
We refer to these collectively as BR-DF procedures, since they all involve bias reduction,
and most also involve calculating the number of degrees of freedom.

Figure 12 is comparable to Figures 1 and 2. It shows rejection frequencies for three
tests for a pure treatment model with G = 14, N, = 200 for all g, p = 0.10, and 13 values
of G;. Using CV; instead of CVy, again in conjunction with critical values from the ¢(13)
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distribution, results in somewhat better performance, although there is still overrejection.
The improvement is not nearly as dramatic as the scale of the vertical axis suggests,
because results for G; = 1 and G; = 13 are not included. They cannot be computed due
to the singularity of some of the M, matrices.

When dfgy is used with CVy, there is severe underrejection rather than severe over-
rejection for the more extreme values of (G;. However, this procedure works very well for
5 < Gy < 9. For this experiment, dfix and dfgy; are always numerically identical, so these
results apply to both procedures.

When dfy is used with CVlbr, the rejection frequencies for 2 < G; < 12 are very similar
to the ones for dfgy with CV,. However, the test works perfectly for G; = 1 and G; = 13.
This remarkable result occurs because, for those two very special cases, dfy = 12, and
the bias factor, which is very small, is apparently just the right magnitude to correct the
extreme bias in the standard error. When G = 2 instead of 1, dfy = 1.69, and the bias
factor is very much larger.

Figure 13 is comparable to Figure 8. It shows that, like the WCR and WCU bootstraps,
but unlike WR and WU, all of the BR-DF tests are quite sensitive to heteroskedasticity.
In all cases, rejection frequencies increase with the amount of heteroskedasticity. Because
cluster sizes are equal, dfgy and dfix are once again numerically equal, so the figure does
not show results for the latter.

Figure 14 deals with the same case as Figure 3. Cluster sizes vary, and the horizontal
axis shows the ratio of the largest to the smallest value of IV,. For readability, only results
for G; = 3 and GG; = 11 are shown. It is evident that all the procedures, including
the WR bootstrap, are sensitive to cluster sizes. Using CV, with dfix seems to be a bit
less sensitive than the other methods, but the WR bootstrap is the only procedure that
performs well for equal cluster sizes. Results for CV, with dfgy are not shown. They
typically lie between the ones for CVy with dfix and the ones for CV{D‘r with dfy.
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Figure 13: Effects of heteroskedasticity on rejection frequencies for BR-DF tests

Rej. rate
0.25

] G, =2
. CV{’F - t(dfy ) e
0209  CVy+¢(13)
] CVa + t(dfgyy) ---------------
0.15
0.10
0.05
O-OO:|'""'|""'|'""T""F"'"F" 'r“".‘"“i"“‘]""""]""I""I""[ — 7T 71710
-20 -16 -12 -0.8 —-04 0.0 0.4 0.8 1.2 1.6 2.0
Rej. rate
0.11
— G, =4
0.10 T CVPT o (dfy) oo
0.094  CVy+¢(13)
0.08 4 CVa + t(dfgpy) memmeeeeees
0.07 4 I
0.06 - et e
0,05 e e
0.04
0.03 ] _--______._._.T_-.-_-.TT.'.’.'.:: ...... 2
0.2 ++-“—+—+—+1r—"r"1r—"1"1T""T—"T"T"T"-"T"T"T"T"T7T770
-20 —-16 -12 -0.8 —-04 0.0 0.4 0.8 1.2 1.6 2.0

39



Figure 14: Effects of varying cluster sizes on rejection frequencies for several tests
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