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Abstract. In ecosystems with frequent surface fire regimes, fire and fuel heterogeneity has been largely overlooked
owing to the lack of unburned patches and the difficulty in measuring fire behavior at fine scales (0.1–10 m). The diverse
vegetation in these ecosystems varies at these fine scales. This diversity could be driven by the influences of local
interactions among patches of understorey vegetation and canopy-supplied fine fuels on fire behavior, yet no method we
know of can capture fine-scale fuel and fire measurements such that these relationships could be rigorously tested. We
present here an original method for inventorying of fine-scale fuels and in situ measures of fire intensity within longleaf
pine forests of the south-eastern USA. Using ground-based LIDAR (Light Detection and Ranging) with traditional fuel
inventory approaches, we characterized within-fuel bed variation into discrete patches, termed wildland fuel cells, which
had distinct fuel composition, characteristics, and architecture that became spatially independent beyond 0.5 m2. Spatially
explicit fire behavior was measured in situ through digital infrared thermography. We found that fire temperatures and
residence times varied at similar scales to those observed for wildland fuel cells. The wildland fuels cell concept could
seamlessly connect empirical studies with numerical models or cellular automata models of fire behavior, representing a
promising means to better predict within-burn heterogeneity and fire effects.
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Introduction

Burn heterogeneity is critical in maintaining diversity in fire-
dependent systems (Rice 1993; Williams et al. 1994; Collins
and Smith 2006). Understanding fine-scale heterogeneity in fre-
quent surface fire regimes is critical because it is the scale
where most ecologically relevant fire effects are thought to occur
(Rebertus 1988; Mitchell et al. 2006; Thaxton and Platt 2006).
Currently, fuels and fire behavior are poorly understood at fine
scales (<10 m2). Most studies have focussed on fire effects at
larger spatial scales ranging from 10 m2 to 10 000 ha (e.g. Hobbs
and Atkins 1988; Turner et al. 1998; Finney 2001, 2004; Collins
and Smith 2006). Variation of fuels within a fuel bed, however,
can often exceed variation among fuel beds (Brown and Bevins
1986). Furthermore, burn heterogeneity in fire-dependent sys-
tems is often defined as only the mosaic of burned and unburned
patches, not the variation in fire intensity within completely
burned areas. As frequent surface fire regimes burn thoroughly,
leaving no or few unburned patches, variation in fire intensity
within burned areas is especially critical to predicting fire effects.
Several investigators have suggested that this variation may be

critical in regulating second-order fire effects including forest
structure and plant diversity (e.g. hardwood mortality, seedling
recruitment, and understorey species demography) (Rebertus
1988; Mitchell et al. 2006; Thaxton and Platt 2006).

High-frequency surface fire regimes support diverse ecosys-
tems such as prairies, oak (Quercus L. spp.) woodlands and
pine (Pinus L. spp.) woodlands. Longleaf pine woodlands of the
south-eastern Coastal Plain (USA) have a frequent (1–5-year
return interval), low-intensity surface fire regime that sustains
high microscale understorey plant diversity with species rich-
ness as high as 50 species m−2 (Walker and Peet 1984; Kirkman
et al. 2004). Despite being characterized as having a continuous
fuel bed (Scott and Burgan 2005), fine-scale variation in longleaf
pine forest fuels and fire behavior may contribute to sustaining
these high levels of plant diversity (Mitchell et al. 2006). Several
species studied within this diverse assemblage have been docu-
mented to modify fire behavior as fuels (Rebertus et al. 1989;
Robbins and Myers 1992). The extent to which heterogeneity
in fire intensity at this scale explains variation in fire effects
has been hypothesized but not tested (Thaxton and Platt 2006),
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in large part owing to difficulty in measuring within-fuel bed
variation and fire behavior.

Quantifying both fuel and fire heterogeneity at fine scales,
however, has met with limited success, despite increasing evi-
dence for its importance (Hobbs and Atkins 1988; Mitchell
et al. 2006; Thaxton and Platt 2006). Presently, no standard
procedures – or terminology – exist for characterizing fuels at
scales smaller than stands or fuel beds. Fuel sampling typically
quantifies fuel bed characteristics, requiring either coarse-scale
methods (e.g. Brown transects) or averaging finer-scale sampling
over the larger unit (Ottmar et al. 2003). Fernandes et al. (2000)
documented numerous empirical studies that summarize within-
stand fire behavior and fuel variation into burn unit averages.
The recently published Fuel Characteristic Classification Sys-
tem (FCCS) (Ottmar et al. 2007; Riccardi et al. 2007) describes
vertical heterogeneity within fuel strata to a finer level of detail
than ever before, but the horizontal continuity of those strata is
assumed constant within a fuel bed or forest stand.

The stand-level focus is in part due to the modeling tools
used to estimate fire behavior. The most widely used fire predic-
tion and fire effects models run on fuel data that are idealized
into homogeneous fuel beds. For example, BEHAVE PLUS
(Andrews et al. 2005) and FARSITE (Finney 2004) both assume
homogeneity and continuity at scales finer than the fuel bed
(Rothermel 1972). These assumptions imply that any spatial
complexity within a given fuel type is inconsequential to fire
behavior, but these generalizations have prevented important
linkages between fire behavior and ecological fire effects. Fur-
thermore, coarse, landscape-scale characterization of the fuels
nationwide has become a focal priority (Keane et al. 2001).
Attempts to model fires within heterogeneous fuels have been
few and concentrated on mean fire behavior across the fuel bed
rather than interactions of different fuel types (Frandsen and
Andrews 1979; Catchpole et al. 1989).

Fire effects research hypothesizes important relationships
between fine-scale fuel variation and fire in frequently burned
ecosystems, yet has rarely characterized the variation in fuels or
linked fuels to variation in fire behavior at a common scale.
In their critique of contemporary fire ecology, Johnson and
Miyanishi (2001) commonly found that fire effects researchers
failed to properly quantify the fire environment that they sug-
gest is directly influencing those patterns. Quantifying the fire
environment has often focussed on visual estimates of flame
length (Byram 1959; Rothermel 1972; Nelson and Adkins
1986; Fernandes et al. 2000). The dynamic nature of flames,
often flickering at up to 10 Hz (Schultze et al. 2006), requires
some integration that necessarily homogenizes flame-driven fire
behavior measurements. Also, estimating flame length visually
is inherently difficult because flames are often obscured by
smoke (Fernandes et al. 2000). Finally, the fire effects of interest
are not necessarily the flames themselves but rather the heating
of vegetation, soils or fuels that are either involved in combustion
or about to combust.

Studies of fire effects have often relied on point-measures
of fire intensity to capture salient variation (Kennard et al.
2005). For example, fuels are characterized at larger scales but
thermocouples or temperature-sensitive paints measure a point
that requires error-prone spatial extrapolation (Iverson et al.
2004). The precision of these techniques for measuring fireline

intensity is inadequate as thermocouples, thermal paints, and
waxes often suggest temperatures lower than the combustion
threshold and have significant measurement lags (Hobbs and
Atkins 1988; Iverson et al. 2004; Kennard et al. 2005). Eco-
logical studies have also used post hoc severity measures rather
than linking fuels to fire (e.g. Rice 1993; Drewa 2003), but such
approaches cannot be predictive of fire effects. Some of these
shortcomings can be overcome with new technology, specifi-
cally digital infrared thermography, which can record precise
temperatures over a wider spatially explicit area (Kennard et al.
2005). Given the important potential feedbacks between fuels,
fire behavior and fire effects, measurements of fuels and tem-
perature remain a basic bottleneck for rigorously testing these
relationships.

In the present manuscript, we describe a strategy for synthe-
sizing fuel and fire characteristics at the same scale using spatial
statistics and then discuss the utility of our approach for better
understanding both fire effects on ecological processes and fire
behavior prediction. This approach quantifies and classifies fuel
heterogeneity into groups at a range of scales from <1 m2 to
>10 m2. We refer to these discrete patches as wildland fuel cells
because they could be modeled as grid cells or pixels within
the fuel bed, expounding on the term first used by Catchpole
et al. (1989). We present here a novel, integrated methodology
for characterizing wildland fuel cells as distinct aggregations of
fuels particles within a fuel bed and corresponding fire behavior
in longleaf pine forest fuels of the south-eastern United States.
The distribution and arrangement of these wildland fuel cells
captured variation that has definable properties such as height,
volume, and bulk density, all of which are important determi-
nants of fire behavior (Frandsen and Andrews 1979; Fujioka
1985; Andrews and Queen 2001; Scott and Burgan 2005), and
likely varies at multiple scales among other forested ecosystems.
We employed both remote sensing and direct inventories to char-
acterized fuel structure and fuel spatial distribution at sub-metre
scales, and statistically assessed the scale of fuel arrangement.
Specifically, we tested the following hypotheses: first, are wild-
land fuel cells quantifiable and classifiable, and second, if so, at
what scale are they arranged in longleaf pine ecosystems? We
also tested whether the spatial variation among wildland fuel
cells is significantly correlated with variation in fire behavior as
measured by in situ infrared thermal imaging.

Methods
Study areas
The research study site was in frequently burned longleaf pine
woodlands at Ichauway, an 11 000-ha reserve of the Jones
Ecological Research Center in southwestern Georgia, USA.
Ichauway is located within the Plains and Wiregrass Plains
subsections of the Lower Coastal Plain and Flatwoods section
(McNab and Avers 1994). Ichauway has an extensive tract of
second-growth longleaf pine (Pinus palustris P. Mill.) and has
been managed with low-intensity, dormant-season prescribed
fires for at least 70 years, at a frequency of 1 to 3 years. The
specific study site used had 1 year of fuel accumulation. The
understorey is dominated by a diverse assemblage of grasses,
forbs and sparse shrubs (see Outcalt 2000).
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Fig. 1. Ground-based LIDAR (Light Detection and Ranging) image of 4 × 4 m plots: (a) sub-cm density point cloud
illustrating the accuracy of this tool; and (b) Triangular Irregular Network (TIN) of LIDAR data used in spatial analysis and
mapping of fuel bed heights.

Fuels inventory
In early Spring 2007, a total of 30 surveyed 4 × 4 m plots were
set up throughout the forest matrix with a goal to capture sub-
metre variation in fuel bed characteristics across a range of
overstorey structures (i.e. within forest gaps, along gap edges,
etc.). The 4 × 4 m area was chosen because it was a large enough
area to capture heterogeneity at sub-metre scales, but small
enough to support intensive sampling with minimal impact to
the vegetation. Spatially explicit point-intercept sampling data
were recorded for each plot using a graduated dowel rod. We
used 0.33-m spacing between point-intercept samples, includ-
ing sampling along the edge of the plot, totaling 169 sample
points within each plot. A ladder was suspended horizontally
across each plot using saw-horses at each end to sample the
interior of the plot, taking care not to disturb the vegetation.
The sampling arrangement and intensity were performed to cap-
ture the spatial variation of the fuel bed found within this small
(4 × 4 m2) area and to relate to the centimetre-level 3D laser data
collected from the ground-based LIDAR (Light Detection and
Ranging). At each sample point, fuel bed and litter depth (i.e.
height above ground in cm), as well as presence or absence of
fuel and vegetation types were recorded.

As horizontal fuel continuity is an important predictor of fire
behavior (Fernandes et al. 2000), but one of the most difficult fuel
properties to measure (Brown 1981), we employed a mobile ter-
restrial laser scanner (MTLS) consisting of Optech’s ILRIS 36D
(Vaughan, ON, Canada) (Intelligent Laser Ranging and Imag-
ing System) ground-based laser scanner to collect fuel heights
and continuity. This LIDAR is mounted on a lift atop a mobile
platform, increasing its versatility in capturing details about the
terrain at multiple angles.The ILRIS uses a 1500-nm wavelength
laser with a pulse frequency of 2500 points per second, recording
first or last returns of each laser pulse (user-defined). The field
of view is 40◦ in both horizontal as well as vertical planes. It has
a range of 5 to 1500 m (at 80% reflectivity). The ILRIS has a
pan-tilt base providing it a 360◦ rotation in the horizontal plane
and approximately ±40◦ in the vertical plane. The lift makes
possible the vertical movement of the scanner up to a height
of ∼9 m. Mean point spacing of the laser data is user-defined,
typically ranging from 1 mm to 3 cm (Fig. 1).

Within 2 weeks of field data collection, the MTLS collected
ground-LIDAR data on all 30 plots. Prior to data collection, ref-
erence targets (consisting of a Styrofoam ball on top of a metal
rod) were placed at all four corners of the plot.A double reference
target (two Styrofoam balls on one metal rod) was used at the
north-west corner of each plot to orient the plot for data process-
ing. An additional one to four reference targets were placed just
outside the 4-m plots to align LIDAR volume estimations with
biomass clip plots. Biomass reference targets were placed in rel-
atively homogeneous fuel types, with a circular area of 0.3 m2.
The MTLS was restricted to mapped roads and trails, as well as
a buffer of 6 to 10 m around each plot, to reduce site degradation
and vegetation disturbance. The ILRIS was lifted to 6- to 7-m
height at each plot with a goal to capture as much of an aerial
view as possible, without bole or canopy obstruction. The abil-
ity to vary the height and angle of the ILRIS (hence, using the
MTLS) allows significant reduction in shadowing effects within
the fuelbed that may be found when using the ILRIS on a tri-
pod. The ILRIS was set to a downward angle tilt of 25◦ (from
horizontal). A true color digital photograph was taken by the
ILRIS for each plot, and used in the field to delineate the focus
area.This eliminates any unnecessary data collection, enhancing
efficiency in the field and reducing file storage size. First-return
laser pulses were recorded with 5-mm mean point spacing. One
scan was taken on opposite sides of the plot to further reduce
shadowing effects and ensure more accurate and complete sub-
cm data for both the 4-m and biomass plots. These two scans
were merged in the processing stage to a single spatial coherent
dataset. Data collection with the MTLS took ∼20 min per plot.

Fire behavior monitoring
In each plot, we recorded fire behavior using an FLIR S60 digi-
tal thermal imaging system (FLIR Systems, Boston, MA, USA).
The camera and operator were positioned on a boom ∼7 m above
the ground and 10 m from the plot edge. Thermal images were
captured as the fires burned through the plots at 0.25 Hz. The
imager was coupled to a 0.5× lens to increase the field of view
so each plot was captured in its entirety. The S60 records tem-
peratures in each of 76 000 pixels per image (320 by 240 pixels)
with a sensitivity of 0.06◦C and accuracy of ±2%. The system is
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Fig. 2. Spatial data to delineate fuel cells required matching (a) LIDAR (Light Detection and Ranging) and (b) in situ
thermal imagery of burns with georeferenced point intercept data of fuel characteristics.

capable of recording temperatures from −40◦C to 1500◦C. The
camera calculates temperatures using measurements of emitted
radiation with wavelengths between 7.5 and 13 µm. The mea-
surements were corrected for air temperature, relative humidity,
distance from target, and the emissivity was set at 0.96. A flare
was placed at each plot corner and ignited immediately before the
fires to provide surveyed reference points (Fig. 2). Fire images
were analyzed using FLIR Systems’ ThermaCAM Researcher
Pro software version 2.7. Each image was then transformed into
a tab-delimitedASCII file where each cell represented pixel tem-
perature. These files were again transformed into TIFF files for
post-processing, with the temperature data in these files captured
as pixel color values. The TIFF files were rectified and georef-
erenced using image processing software (IMAGINE, ArcGIS).

LIDAR data processing and analysis
LIDAR raw data consisted of a four-column text file containing
x, y, z coordinates and laser return intensity values for each of
the sampled laser points. Of the two scans taken per plot, the
first was horizontally rectified by compensating for the original
scanning geometry, where the instrument had a downward tilt of
25◦ with respect to horizontal. Using the common points (ref-
erence targets) and the process of 3D conformal transformation
(Wolf and Ghilani 1997), both scans were combined into a single
spatially coherent dataset. The merged dataset was then oriented
in cardinal space using the double reference target (in the NW
corner of the 4 × 4 m plot). The digital image and the double

reference target for the NW corner of the plot were especially
helpful in this merging process and in orienting the plot in car-
dinal space. The 4 × 4 m plot area and biomass plot areas were
clipped from the resulting merged scans using the reference tar-
gets. Roughly 600 000 to 700 000 sample laser points were found
within each 4 × 4 m plot. Point-densities, volume estimates, and
height distributions were calculated for each biomass plot and
each 4 × 4 m plot.Total volume (cm3) was calculated in each plot
by determining the presence or absence of laser points within
each cm3 space. The process involved using a 1-cm3 window to
move through each plot’s point cloud in the x, y, and z directions
respectively. Every time a point was (or points were) found in the
3D window, 1 cm3 of volume was added to the volume counter
for that plot.

Fire
A total of 22 of 30 plots were burned in three prescribed burns
conducted at an operational scale (∼70 ha each) using strip head
fires on 23, 27 February and 16 March 2007. Fuel moisture
was estimated gravimetrically every hour, and ambient weather
conditions were collected with an on-site weather station. At
all plots, 2-m microscale wind speeds and direction were sam-
pled at two plots corners with self-contained, fire-resistant cup
anemometers. Wind data were averaged every 4 s. A strip head
fire was ignited 5 m upwind of each plot with >100 m separating
strip heads from downwind strips when plots were ignited. Plots
within a burn unit were burned and sampled from downwind
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to upwind. Each operational strip head fire was allowed to burn
through the plots unperturbed by additional lines of fire. Weather
data were used as covariates in the analysis to isolate the effects
of fuels on observed fire behavior.

Statistical analysis
The point-intercept data for the study plots were converted to
distance matrices for use in cluster analysis. Euclidean distances
were used for continuous variables (fuel bed height, litter height),
whereas asymmetric Jaccard distances were used for the 0–1
binary variables (presence or absence of longleaf pine litter, etc).
Cluster trees were then calculated using the centroid method, and
the number of clusters was selected based on the Cubic Clus-
tering Criterion and Pseudo-F value traces (Everitt 1980). In
the case of multiple local maxima for these criteria, the clus-
ter groups were compared with known plot characteristics to
select the final number of clusters (SAS Institute Inc. 2003).
This process is similar to development of fuel beds at larger
scales (Dimitrakopoulos 2002).

Summary statistics over time (represented by the multiple
image captures by the camera) were computed for each pixel
in the thermal imagery data, including maximum temperature,
90th quantile temperature (Q90), and residence time >500◦C.
The 90th quantile temperature data were used to analyze the
thermal imagery because the lowest temperature measured on
the camera’s high-temperature setting was 300◦C; thereby, Q90
distinguished unburned patches from smoldering fire. Screening
models in the preliminary analysis also suggested that Q90 was
the most sensitive to the fuel cell types developed from the clus-
ter analysis, and thus this variable served as a thermal imaging
response in all analyses.

Semivariograms were developed for the LIDAR height data
and thermal imagery data for individually selected plots to deter-
mine the appropriate scale of wildland fuel cells for the present
study. Histograms of pairwise distances provided insight into the
spatial dependence among cells. Afterwards, smoothed curves
were calculated for both the regular and robust semivariograms
(Cressie 1993). These curves provide additional information on
the scale of spatial correlation, and assist in the selection of
a parametric model for the semivariogram, which could then
be used in advanced modeling methods (SAS Institute Inc.
2003).

In order to analyze thermal imagery data or LIDAR data on
the same scale as the point-intercept data, the data were smoothed
using a narrow bandwidth smoother to maintain as many features
of the original dataset as possible (Cleveland et al. 1992). For
22 of the 30 Ichauway plots, predicted values of fuel properties
at each of the point-intercept coordinates (169 points per plot)
were used as responses in exploratory analysis of the relationship
between thermal imaging data and fuel cell types.

In this initial exploration, the thermal imagery data were
analyzed using mixed effects models with fuel cell type as a
fixed effect, and plot as a random effect (Handcock and Wallis
1994). Based on the semivariogram analysis, several types of
spatial models were tested to study within-plot correlations for
the random effect plot. To examine the overall spatial influence
of wildland fuel cells on fire behavior, mixed effects models
using 10 of the 15 available wildland fuel cells were applied
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Fig. 3. Semivariograms of plot data show that both LIDAR (Light Detection and Ranging) and fire temperatures
(90th quantile of temperature readings) both vary at sub-metre scales, as the sill is reached between 0.5 and 0.75 m
in both cases.

to the 22 of the 30 Ichauway plots that received fire; the 90th
temperature quantile was the response variable.

Results

The results of the cluster analysis indicated fuel bed variation in
the present study was captured by defining 15 discrete wildland
fuel cells, 12 of which were represented by three or more samples
across the 30 plots (Table 1). The wildland fuel cells represented
a variety of fuel types ranging from patches of bare ground and
coarse woody debris to complexes of pine litter, shrubs, and
grasses. The most common wildland fuel cells in this study area
were mixed graminoids, wiregrass with shrubs, and wiregrass
with perched longleaf pine litter (Table 1).

These wildland fuel cells varied at small spatial scales. A
semivariogram of LIDAR heights used to assess the patch size
of fuels showed that wildland fuel cell heights became spatially
independent beyond 0.5 m2 (Fig. 3). This is a critical result for
determining the appropriate scale at which fuels differ in this
ecosystem. The distribution of wildland fuel cells also varied
considerably among plots (Fig. 4). Of the 30 16-m2 plots, the
average number of fuel cell types per plot was slightly larger than
two, with a maximum of five types and with eight plots domi-
nated by a single fuel cell, although there was within-fuel cell
variation in height in those plots. When multiple wildland fuel
cells were present, the arrangement was often a mosaic pattern
with patches and contours varying at scales <1 m (Fig. 4b).

Fuel cell type and their distribution across the plots had influ-
ence on fire behavior measures (Table 2, Fig. 4). In the mixed
model used to assess the relationship of fuels and fire behav-
ior, fuels cells were a significant predictor of fire behavior (90th
temperature quantile, residence time and maximum temperature)
across all plots independently of burn conditions (P = 0.0024,
F = 5.09, numerator d.f. = 9, denominator d.f. = 16). Several
methods were considered to model within-plot correlation
between fire behavior and fuels, including non-spatial corre-
lation models (independence and compound symmetry) and
spatial models. The spatial models that included wildland fuel
cells had much lowerAkaike Information Criterion (AIC) values
than the non-spatial models, indicating the importance of spa-
tial relationships of wildland fuel cells in modeling within-plot

correlations. Within the class of spatial models, those with Gaus-
sian semivariograms worked best; this would be expected given
the graphs of the empirical semivariograms (Fig. 3), in which
the semivariograms increased quickly to a plateau.

Wildland fuel cells also interacted to influence fire behavior
(Fig. 5). One conspicuous example of this interaction was a fuel
cell of bare ground that caused a continuous fireline burning
through other wildland fuel cells to form two parallel flanks.
As the convective dynamics brought these two flanks together,
an area of higher fire intensity and longer residence time was
observed instead of the lower intensity that would have been
expected if a single fire line had burned the fuel. The convec-
tive dynamics in the wake of slower-burning wildland fuel cells
that dominate the heat contours of the plot (Fig. 4a) resulted
in the decoupling of the direct relationship between maximum
temperatures and downwind wildland fuel cells.

Although the analysis presented shows that the spatial models
of wildland fuel cells are much better at predicting fire behavior
than models without spatially explicit wildland fuel cells, the
spatial model consistently overestimated effects of within-plot
spatial correlation. Thus the model predicted that points >1 m
apart were still strongly spatially correlated, contrary to observed
data. Although two-dimensional variations in wildland fuel cells
accounted for a significant proportion of the variation in fire
behavior, additional modeling will be required to capture the
fire behavior resulting from interactions among fuels cells.

Discussion

These data are the first to statistically derive the relevant scale of
variation in type (wildland fuel cell) and architecture (LIDAR)
of within-fuel bed variation of fire-frequented forests. Although
these fuel beds have been described as continuous (Scott and
Burgan 2005), they show considerable heterogeneity of fuels
and fire behavior at the sub-metre scale. We show that fuel beds
are composed of distinct types of wildland fuel cells that differ
in fuel properties (Table 1). Although we did not measure all
the properties that influence the way that fuels might regulate
fire intensity, such as density and chemical composition, we do
show that type and fuel height can be discerned and significantly
influence fire behavior at fine scales. As accurate fuel heights
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Table 2. Fire behavior in the wildland fuel cells referred to in Table 1
Actual sample size refers to the number of times the fuel cell was encountered in each pixel within

all plots

Fuel Cell Mean 90th quantile Mean maximum Mean frames Actual
temperature (◦C) temperature (◦C) >500◦C sample size

1 381.4 (80.3) 540.6 (70.1) 2.00 (1.13) 648
2 349.2 (46.6) 522.6 (77.7) 1.96 (1.58) 944
3 408.3 (100.3) 530.2 (110.8) 2.03 (1.47) 210
4 384.5 (62.1) 580.5 (73.2) 2.40 (1.60) 42
5 330.3 (45.3) 480.6 (58.1) 0.87 (0.76) 177
6 335.3 (32.8) 504.7 (62.0) 1.38 (1.12) 117
7 423.8 (48.6) 588.2 (36.2) 3.50 (1.04) 56
8 374.6 (56.9) 565.4 (73.6) 2.05 (1.49) 488
9 357.3 (61.6) 547.5 (55.8) 1.79 (1.11) 764
10 425.3 (54.6) 582.6 (41.5) 3.04 (1.28) 97
12 0 0 0 3

and thus volume have been a difficult measure to obtain in the
field (Loudermilk and Cropper 2007), the approach described
here has the potential for determining bulk density of fuels with
greater precision than was possible with traditional methods.
These characteristics can then interact with variation in under-
storey vegetation to create wildland fuel cells that are defined by
their three-dimensional structure. For example, perched pine lit-
ter lying on wiregrass may burn more intensely or achieve higher
maximum temperatures than a similar quantity perched among
other vegetation, particularly forbs (Myers 1990).Also, fuel type
has been reported to be important in these systems (oak v. pine
litter) in determining fire behavior and fire effects at large scales
(Williamson and Black 1981). Although the present paper does
not address details of the relationship between wildland fuel
cells and fire behavior, some predictable patterns emerged: the
dominant vegetation type (Fuel Cell 1: longleaf pine needles
and wiregrass) burned with greater intensity when contrasted
with a similar fuel cell of old-field (historically plowed) vegeta-
tion (Fuel Cell 2); and although pine needles burned with high
intensity (Fuel Cells 7 and 10), their presence alone does not
have a uniform effect. It is also likely that wildland fuel cells
that represent lower intensity and short residence times may be
more important locations driving oak demography owing to their
fire-sensitive morphology. One conspicuous shortcoming in the
present work is the poor representation Fuel Cell 11, character-
ized by pine cones and pine branches (Table 1). The 30-cm point
intercept grid as well as LIDAR missed many pine cones, which
can burn with high intensity and long residence time (e.g. center
and center left of Fig. 4c). Although these data were collected
during a year without much pine reproduction, synchronized but
episodic cone production occurs in longleaf (Boyer 1979) and
may play an important but as of yet untested role in regulat-
ing plant community structure through influences on mortality
and recruitment after fire. Thus the temporal changes in wild-
land fuel cells at small scales may also substantially influence
fire behavior. Although it is beyond the scope of the current
study to exhaustively explore fuel cell types and characteristics,
the present work does show that (i) wildland fuel cells can be

categorized and quantified; (ii) their spatial scale can be defined;
and (iii) the latter properties can be related to fire behavior.

Conceptually, wildland fuel cells can connect fire heterogene-
ity and fire ecology in frequently burned forests because they
represent a predictive link between fire behavior and effects.
Previous attempts to model fire behavior required a generalized
description of fuel bed characteristics at coarse scales (Finney
2004). The applicability of the knowledge gained from these
scales, however, may be limited when applied to forests with
frequent surface fire regimes that burn fuels thoroughly (Miller
and Urban 1999). Even in forests with complete burns, spa-
tial heterogeneity of fuels and subsequent fire have been shown
to regulate forest structure, nutrient dynamics, and diversity
(Lertzman and Fall 1998; Brown and Sieg 1999; Liu et al. 2005;
Menges et al. 2006). The wildland fuel cell concept represents a
synthesis of several different fuel characteristics, including type,
quantity and arrangement, that can all influence fire behavior.
In this way, they are conceptually analogous to ecological site
units (Barnes et al. 1982), which are spatially explicit elements
derived from analysis of species composition as well as site char-
acteristics. Ecological site units emerge as discrete entities from
a mass of complex multivariate data much as the wildland fuel
cells do.

Last, numerical modeling- and physics-based approaches
have made vast improvements by working with first principles
of fluid dynamics (Linn et al. 2005), but have not been inte-
grated with field studies to test assumptions and improve model
performance. Detailed observations of fuels and fire behavior
could further development of numerical modeling-based fire
behavior prediction and extend them to help predict commu-
nity response to fire. For this to occur, empirical studies that
link fuels, fire behavior and fire effects are needed. The fuel cell
method coupled with digital infrared thermography provides a
novel and rigorous means of investigating these relationships.
Also, if new physics-based models are going to be less compu-
tationally demanding, studies will be needed to explore how to
make calculations more parsimonious, integrate heterogeneous
fuels, and detect thresholds of fire effects. The fuel cell method
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Fig. 5. Time series showing the interaction of fine-scale fuel variation
and fire behavior in the wake of a pocket gopher mound (Fuel Cell 12:
bare mineral soil). Interactions among wildland fuel cells are both critical
and complex for predicting fire effects. (a) 23 February 2007 12:17:34; (b)
12:18:31; (c) 12:19:11; and (d) 12:21:42. Total elapsed time was 4 min 8 s.

provides an empirical setting that is inherently structured to be
compatible for such research.

For these potentials to be realized, considerable work is
needed on understanding how small-scale regulation of eco-
logical effects can be expanded to scales relevant for land
management. The high level of detail in the measurements
reported here and used to define wildland fuel cells were nec-
essary to explore the appropriate scales needed to explain the
observed clustering of fuels and variation in fire behavior.
Nonetheless, there remains a challenge in how to bridge the gap
between the scales described in the current study, which vary
from 1 to 5 m2, and the scales relevant for wildland fire manage-
ment, which range from tens to hundreds of hectares. This could
be done by understanding the link between how larger-scale pat-
terns of overstorey structure influence smaller-scale understorey
patterns in vegetation (Mitchell et al. 2006).

In summary, our results show that fuel and fire behavior vary
at similarly fine scales in frequently burned fuel beds. Under-
standing this fine-scale fuel heterogeneity and fire behavior is
critical to predicting fire effects in these surface fire regimes
because individual plant demography (recruitment and death)
tends to occur at small scales, is complex in its interaction with
fire and has proved to be difficult to study (Rebertus et al. 1989).
These fine-scale patterns in fire intensity may be an important,
and as of yet poorly explored, mechanism driving patterns in
plant distribution through impacts on recruitment and mortality
that otherwise might appear stochastic.
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