THE WILLMORE FLOW WITH SMALL INITIAL ENERGY

ERNST KUWERT \& REINER SCHÄTZLE

Abstract

We consider the L^{2} gradient flow for the Willmore functional. In [5] it was proved that the curvature concentrates if a singularity develops. Here we show that a suitable blowup converges to a nonumbilic (compact or noncompact) Willmore surface. Furthermore, an L^{∞} estimate is derived for the tracefree part of the curvature of a Willmore surface, assuming that its L^{2} norm (the Willmore energy) is locally small. One consequence is that a properly immersed Willmore surface with restricted growth of the curvature at infinity and small total energy must be a plane or a sphere. Combining the results we obtain long time existence and convergence to a round sphere if the total energy is initially small.

1. Introduction

For a closed, immersed surface $f: \Sigma \rightarrow \mathbb{R}^{n}$ the Willmore functional (as introduced initially by Thomsen [11]) is

$$
\begin{equation*}
\mathcal{W}(f)=\int_{\Sigma}\left|A^{\circ}\right|^{2} d \mu \tag{1}
\end{equation*}
$$

where $A^{\circ}=A-\frac{1}{2} g \otimes H$ denotes the tracefree part of the second fundamental form $A=D^{2} f^{\perp}$ and μ is the induced area measure. The associated Euler-Lagrange operator is

$$
\begin{equation*}
\mathbf{W}(f)=\Delta H+Q\left(A^{\circ}\right) H \tag{2}
\end{equation*}
$$

Here H is the mean curvature vector and $Q\left(A^{\circ}\right)$ acts linearly on normal vectors along f by the formula (using summation with respect to a g-orthonormal basis $\left\{e_{1}, e_{2}\right\}$)

$$
\begin{equation*}
Q\left(A^{\circ}\right) \phi=A^{\circ}\left(e_{i}, e_{j}\right)\left\langle A^{\circ}\left(e_{i}, e_{j}\right), \phi\right\rangle . \tag{3}
\end{equation*}
$$

Received October 12, 1999.

In (2) the Laplace operator $\Delta \phi=-\nabla^{*} \nabla \phi$ is understood with respect to the connection $\nabla_{X} \phi=\left(D_{X} \phi\right)^{\perp}$ on normal vector fields along f, where ∇^{*} denotes the formal adjoint of ∇.

In this paper we continue our study from [5] of the L^{2} gradient flow for (1), briefly called the Willmore flow, which is the fourth order, quasilinear geometric evolution equation

$$
\begin{equation*}
\partial_{t} f=-\mathbf{W}(f) . \tag{4}
\end{equation*}
$$

As a main result we have shown in [5] that the existence time is bounded from below in terms of the concentration of the measure $f_{\#}\left(\mu\left\llcorner|A|^{2}\right)\right.$ in \mathbb{R}^{n} at time $t=0$. Here we study the operator (2) and the flow (4) under the assumption that $\mathcal{W}(f)$ is - either locally or globally - small. This condition is natural from the variational point of view and may be interpreted geometrically by saying that the deviation of f from being round is small in an averaged sense. One of our results is:

Theorem 5.1. There exists $\varepsilon_{0}(n)>0$ such that if at time $t=0$ we have $\mathcal{W}\left(f_{0}\right)<\varepsilon_{0}$, then the Willmore flow exists smoothly for all times and converges to a round sphere.

The smallness assumption implies, if ε_{0} is not too big, that Σ is topologically a sphere and that f is an embedding (see [13] for the case $n=3$). Moreover, any sequence f_{k} with $\mathcal{W}\left(f_{k}\right) \rightarrow 0$ subconverges, after appropriate translation and rescaling, to some round sphere in the sense of both Hausdorff distance and measure [8]. However the f_{k} need not be graphs over the limit sphere, as can be seen by modifying Example 1 in [12]. At present we do not know an example ruling out the possibility of dropping the smallness condition in Theorem 5.1 entirely; in any case it is desirable to replace the number ε_{0} by a more explicit constant. ${ }^{1}$

The statement of the theorem was recently proved in [9] under the stronger assumption that f_{0} is close to a round sphere in the $C^{2, \alpha_{-}}$ topology, using a center manifold analysis which gives related stability results for a couple of other flows; see [2] for an overview. Our method, which is (and has to be) entirely different, involves deriving a priori estimates from the equation satisfied by the curvature, somewhat analogous to the work of Huisken [3, 4]. However, in our problem the crucial estimates are of integral type and the smallness condition is essential in

[^0]ruling out possible concentrations related to the scale invariance of the functional.

2. Estimates for surfaces with locally small Willmore energy

Here we derive some bounds for immersed surfaces $f: \Sigma \rightarrow \mathbb{R}^{n}$ depending on the L^{2} norms of their curvature A and of their Willmore gradient $\mathbf{W}(f)=\Delta H+Q\left(A^{\circ}\right) H$, under the assumption that the L^{2} norm of A°, the tracefree part of the curvature, is locally small.

Recall the equations of Mainardi-Codazzi, Gauß and Ricci:

$$
\begin{align*}
\left(\nabla_{X} A\right)(Y, Z) & =\left(\nabla_{Y} A\right)(X, Z) ; \quad \nabla H=-\nabla^{*} A=-2 \nabla^{*} A^{\circ} \tag{5}\\
K & =\frac{1}{4}|H|^{2}-\frac{1}{2}\left|A^{\circ}\right|^{2} \tag{6}\\
R^{\perp}(X, Y) \phi & =A^{\circ}\left(e_{i}, X\right)\left\langle A^{\circ}\left(e_{i}, Y\right), \phi\right\rangle-A^{\circ}\left(e_{i}, Y\right)\left\langle A^{\circ}\left(e_{i}, X\right), \phi\right\rangle \tag{7}
\end{align*}
$$

Note $\left\langle R^{\perp}(X, Y) \phi, \phi\right\rangle=0$ and in particular $R^{\perp}=0$ for $n=3$, i.e., codimension one. The Codazzi equations imply that ∇A and $\nabla^{2} A$ can be expressed by ∇A° and $\nabla^{2} A^{\circ}$, respectively. In particular one has inequalities

$$
\begin{equation*}
|\nabla A| \leq c\left|\nabla A^{\circ}\right|, \quad\left|\nabla^{2} A\right| \leq c\left|\nabla^{2} A^{\circ}\right| \tag{8}
\end{equation*}
$$

Lemma 2.1. For any p-linear form ϕ along f we have

$$
\begin{align*}
&\left(\left(\nabla \nabla^{*}-\nabla^{*} \nabla\right) \phi\right)\left(X_{1}, \ldots, X_{p}\right) \tag{9}\\
&= K \phi\left(X_{1}, \ldots, X_{p}\right)+K \sum_{k=2}^{p} \phi\left(X_{k}, X_{2}, \ldots, X_{1}, \ldots, X_{p}\right) \\
&-K \sum_{k=2}^{p} g\left(X_{1}, X_{k}\right) \phi\left(e_{i}, X_{2}, \ldots, e_{i}, \ldots, X_{p}\right) \\
& \quad+R^{\perp}\left(e_{i}, X_{1}\right) \phi\left(e_{i}, X_{2}, \ldots, X_{p}\right)-\left(\nabla^{*} T\right)\left(X_{1}, \ldots, X_{p}\right) .
\end{align*}
$$

Here the tensor T is given by
$T\left(X_{0}, X_{1}, \ldots, X_{p}\right)=\left(\nabla_{X_{0}} \phi\right)\left(X_{1}, X_{2}, \ldots, X_{p}\right)-\left(\nabla_{X_{1}} \phi\right)\left(X_{0}, X_{2}, \ldots, X_{p}\right)$.
Proof. From the proof of Lemma 2.1 in [5] we have

$$
\begin{aligned}
& \left(\left(\nabla \nabla^{*}-\nabla^{*} \nabla\right) \phi\right)\left(X_{1}, \ldots, X_{p}\right) \\
& \quad=\left(R^{p}\left(e_{i}, X_{1}\right) \phi\right)\left(e_{i}, X_{2}, \ldots, X_{p}\right)-\left(\nabla^{*} T\right)\left(X_{1}, \ldots, X_{p}\right) .
\end{aligned}
$$

Now the curvature operator R^{p} is given by

$$
\begin{aligned}
& \left(R^{p}\left(e_{i}, X_{1}\right) \phi\right)\left(e_{i}, X_{2}, \ldots, X_{p}\right) \\
& \quad=\quad R^{\perp}\left(e_{i}, X_{1}\right) \phi\left(e_{i}, X_{2}, \ldots, X_{p}\right) \\
& \quad-\phi\left(R\left(e_{i}, X_{1}\right) e_{i}, X_{2}, \ldots, X_{p}\right) \\
& \quad-\sum_{k=2}^{p} \phi\left(e_{i}, X_{2}, \ldots, R\left(e_{i}, X_{1}\right) X_{k}, \ldots, X_{p}\right) \\
& \quad=R^{\perp}\left(e_{i}, X_{1}\right) \phi\left(e_{i}, X_{2}, \ldots, X_{p}\right) \\
& \quad-K \phi\left(g\left(X_{1}, e_{i}\right) e_{i}, X_{2}, \ldots, X_{p}\right)+K \phi\left(g\left(e_{i}, e_{i}\right) X_{1}, X_{2}, \ldots, X_{p}\right) \\
& \quad-K \sum_{k=2}^{p} \phi\left(e_{i}, X_{2}, \ldots, g\left(X_{1}, X_{k}\right) e_{i}, \ldots, X_{p}\right) \\
& \quad+K \sum_{k=2}^{p} \phi\left(g\left(e_{i}, X_{k}\right) e_{i}, X_{2}, \ldots, X_{1}, \ldots, X_{p}\right) .
\end{aligned}
$$

Inserting yields the desired formula.
q.e.d.

We will need three different choices for ϕ in (9). Taking first $\phi=A$ yields $T=0$ and $\nabla^{*} \phi=-\nabla H$ by (5), and we get Simons' identity ([10])

$$
\Delta A=\nabla^{2} H+2 K A^{\circ}+R^{\perp}\left(e_{i}, \cdot\right) A\left(e_{i}, \cdot\right) .
$$

To bring this in a more useful form, let us denote by $S^{\circ}(B)$ the symmetric, tracefree part of any bilinear form with normal values along f. In particular, we have

$$
S^{\circ}\left(\nabla^{2} H\right)=\nabla^{2} H-\frac{1}{2} g(\cdot, \cdot) \Delta H-\frac{1}{2} R^{\perp}(\cdot, \cdot) H
$$

Now $\Delta\left(\frac{1}{2} g(\cdot, \cdot) H\right)=\frac{1}{2} g(\cdot, \cdot) \Delta H$ and $R^{\perp}\left(e_{i}, X\right) \frac{1}{2} g\left(e_{i}, Y\right) H=$ $-\frac{1}{2} R^{\perp}(X, Y) H$, which implies, using (6) and (7),

$$
\begin{equation*}
\Delta A^{\circ}=S^{\circ}\left(\nabla^{2} H\right)+\frac{1}{2}|H|^{2} A^{\circ}+A^{\circ} * A^{\circ} * A^{\circ} \tag{10}
\end{equation*}
$$

Here and in the following we denote by $A * B$ any universal, linear combination of tensors obtained by tensor product and contraction from A and B. Our second choice in (9) is $\phi=\nabla H$, where now

$$
T(X, Y)=\nabla_{X, Y}^{2} H-\nabla_{Y, X}^{2} H=R^{\perp}(X, Y) H
$$

Using again (5), (6) and (7), we infer

$$
\begin{equation*}
\nabla^{*}\left(\nabla^{2} H\right)=\nabla\left(\nabla^{*} \nabla H\right)-\frac{1}{4}|H|^{2} \nabla H+A * A^{\circ} * \nabla A^{\circ} \tag{11}
\end{equation*}
$$

Finally taking $\phi=\nabla A^{\circ}$ in (9) yields

$$
\begin{aligned}
T(X, Y, Z, V) & =\left(R^{2}(X, Y) A^{\circ}\right)(Z, V)=(A * A * A)(X, Y, Z, V), \\
\nabla^{*} T & =A * A * \nabla A^{\circ} .
\end{aligned}
$$

Thus we obtain from (9) and (6), (7)

$$
\begin{equation*}
\nabla^{*}\left(\nabla^{2} A^{\circ}\right)=\nabla\left(\nabla^{*} \nabla A^{\circ}\right)+A * A * \nabla A^{\circ} \tag{12}
\end{equation*}
$$

We now convert (10), (11) and (12) into integral estimates.
Lemma 2.2. If $f: \Sigma \rightarrow \mathbb{R}^{n}$ is an immersion with $\mathbf{W}(f)=W$ and $\gamma \in C_{c}^{1}(\Sigma)$ satisfies $|\nabla \gamma| \leq \Lambda$, then

$$
\begin{equation*}
\int|\nabla A|^{2} \gamma^{2} d \mu \leq \frac{c}{\Lambda^{2}} \int|W|^{2} \gamma^{4} d \mu+c \int\left|A^{\circ}\right|^{4} \gamma^{2} d \mu+c \Lambda^{2} \int_{[\gamma>0]}|A|^{2} d \mu \tag{13}
\end{equation*}
$$

Proof. Multiply (10) by $\gamma^{2} A^{\circ}$ and integrate by parts to obtain, after applying (5),

$$
\begin{aligned}
& \int\left|\nabla A^{\circ}\right|^{2} \gamma^{2} d \mu+\frac{1}{2} \int|H|^{2}\left|A^{\circ}\right|^{2} \gamma^{2} d \mu \\
& \quad \leq \frac{1}{2} \int|\nabla H|^{2} \gamma^{2} d \mu+c \int\left|A^{\circ}\right|^{4} \gamma^{2} d \mu+\int \gamma \nabla \gamma * A^{\circ} * \nabla A^{\circ} d \mu
\end{aligned}
$$

Using the equation $\Delta H+Q\left(A^{\circ}\right) H=W$ we have

$$
\begin{aligned}
\frac{1}{2} \int|\nabla H|^{2} \gamma^{2} d \mu= & -\frac{1}{2} \int\langle H, \Delta H\rangle \gamma^{2} d \mu+\int \gamma \nabla \gamma * A * \nabla A^{\circ} d \mu \\
= & -\frac{1}{2} \int\langle H, W\rangle \gamma^{2} d \mu+\frac{1}{2} \int\left\langle H, Q\left(A^{\circ}\right) H\right\rangle \gamma^{2} d \mu \\
& +\int \gamma \nabla \gamma * A * \nabla A^{\circ} d \mu \\
\leq & \frac{c}{\Lambda^{2}} \int|W|^{2} \gamma^{4} d \mu+c \Lambda^{2} \int_{[\gamma>0]}|H|^{2} d \mu \\
& +\frac{1}{2} \int\left\langle H, Q\left(A^{\circ}\right) H\right\rangle \gamma^{2} d \mu+\int \gamma \nabla \gamma * A * \nabla A^{\circ} d \mu
\end{aligned}
$$

It is easy to see the inequality

$$
\begin{equation*}
0 \leq\left\langle Q\left(A^{\circ}\right) H, H\right\rangle \leq\left|A^{\circ}\right|^{2}|H|^{2} \tag{14}
\end{equation*}
$$

Furthermore we have

$$
\int \gamma \nabla \gamma * A * \nabla A^{\circ} d \mu \leq \frac{1}{2} \int\left|\nabla A^{\circ}\right|^{2} \gamma^{2} d \mu+c \Lambda^{2} \int_{[\gamma>0]}|A|^{2} d \mu
$$

Inserting these inequalities, absorbing and recalling (8) proves the claim.
q.e.d.

Lemma 2.3. Under the assumptions of Lemma 2.2 we have for $\eta=\gamma^{4}$

$$
\begin{align*}
& \int\left|\nabla^{2} H\right|^{2} \eta+\int|A|^{2}|\nabla A|^{2} \eta d \mu+\int|A|^{4}\left|A^{\circ}\right|^{2} \eta d \mu \tag{15}\\
& \leq c \int|W|^{2} \eta d \mu+c \int\left(\left|A^{\circ}\right|^{2}\left|\nabla A^{\circ}\right|^{2}+\left|A^{\circ}\right|^{6}\right) \eta d \mu \\
&+c \Lambda^{4} \int_{[\gamma>0]}|A|^{2} d \mu
\end{align*}
$$

Proof. We start multiplying (11) by $\eta \nabla H$ and integrating by parts. This yields

$$
\begin{aligned}
& \int\left|\nabla^{2} H\right|^{2} \eta d \mu+\frac{1}{4} \int|H|^{2}|\nabla H|^{2} \eta d \mu \\
& \leq \int|\Delta H|^{2} \eta d \mu+\int A * A^{\circ} * \nabla A^{\circ} * \nabla A^{\circ} \eta d \mu \\
&+\int \gamma^{3} \nabla \gamma * \nabla H * \nabla^{2} H d \mu \\
& \leq c \int|W|^{2} \eta d \mu+c \int\left|A^{\circ}\right|^{4}|H|^{2} \eta d \mu \\
&+\varepsilon \int|H|^{2}\left|\nabla A^{\circ}\right|^{2} \eta d \mu+c(\varepsilon) \int\left|A^{\circ}\right|^{2}\left|\nabla A^{\circ}\right|^{2} \eta d \mu \\
&+\frac{1}{2} \int\left|\nabla^{2} H\right|^{2} \eta d \mu+c \Lambda^{2} \int|\nabla H|^{2} \gamma^{2} d \mu
\end{aligned}
$$

Now by (13) we can estimate

$$
\int|\nabla H|^{2} \gamma^{2} d \mu \leq \frac{c}{\Lambda^{2}} \int|W|^{2} \eta d \mu+\frac{c}{\Lambda^{2}} \int\left|A^{\circ}\right|^{6} \eta d \mu+c \Lambda^{2} \int_{[\gamma>0]}|A|^{2} d \mu
$$

Using the inequality $c\left|A^{\circ}\right|^{4}|H|^{2} \leq \varepsilon|H|^{4}\left|A^{\circ}\right|^{2}+c(\varepsilon)\left|A^{\circ}\right|^{6}$ and rearranging, we arrive at

$$
\begin{align*}
& \int\left|\nabla^{2} H\right|^{2} \eta d \mu+\int|H|^{2}|\nabla H|^{2} \eta d \mu \tag{16}\\
& \quad \leq c \int|W|^{2} \eta d \mu+c \Lambda^{4} \int_{[\gamma>0]}|A|^{2} d \mu \\
& \quad+c(\varepsilon) \int\left|A^{\circ}\right|^{2}\left|\nabla A^{\circ}\right|^{2} \eta d \mu+c(\varepsilon) \int\left|A^{\circ}\right|^{6} \eta d \mu \\
& \quad+\varepsilon \int|H|^{4}\left|A^{\circ}\right|^{2} \eta d \mu+\varepsilon \int|H|^{2}\left|\nabla A^{\circ}\right|^{2} \eta d \mu
\end{align*}
$$

Next we use (10) to compute

$$
\begin{aligned}
& \int|H|^{2}\left|\nabla A^{\circ}\right|^{2} \eta d \mu \\
&=-\int|H|^{2}\left\langle A^{\circ}, \Delta A^{\circ}\right\rangle \eta d \mu+\int H * \nabla H * A^{\circ} * \nabla A^{\circ} \eta d \mu \\
&+\int|H|^{2} A^{\circ} * \nabla A^{\circ} * \nabla \eta d \mu \\
&=\left.-\left.\int|H|^{2}\left\langle A^{\circ}, \nabla^{2} H+\frac{1}{2}\right| H\right|^{2} A^{\circ}+A^{\circ} * A^{\circ} * A^{\circ}\right\rangle \eta d \mu \\
&+\int H * \nabla H * A^{\circ} * \nabla A^{\circ} \eta d \mu+\int|H|^{2} A^{\circ} * \nabla A^{\circ} * \nabla \eta d \mu \\
& \leq \frac{1}{2} \int|H|^{2}|\nabla H|^{2} \eta d \mu+\int H * \nabla H * A^{\circ} * \nabla A^{\circ} \eta d \mu \\
&+\int|H|^{2} A^{\circ} * \nabla A^{\circ} * \gamma^{3} \nabla \gamma d \mu \\
&-\frac{1}{2} \int|H|^{4}\left|A^{\circ}\right|^{2} \eta d \mu+c \int|H|^{2}\left|A^{\circ}\right|^{4} \eta d \mu \\
& \leq\left(\frac{1}{2}+\delta\right) \int|H|^{2}|\nabla H|^{2} \eta d \mu+c(\delta) \int\left|A^{\circ}\right|^{2}\left|\nabla A^{\circ}\right|^{2} \eta d \mu \\
&+\delta \int|H|^{2}\left|\nabla A^{\circ}\right|^{2} \eta d \mu+c(\delta) \Lambda^{2} \int|H|^{2}\left|A^{\circ}\right|^{2} \gamma^{2} d \mu \\
&-\frac{1}{2} \int|H|^{4}\left|A^{\circ}\right|^{2} \eta d \mu+c \int|H|^{2}\left|A^{\circ}\right|^{4} \eta d \mu .
\end{aligned}
$$

From the inequalities

$$
\begin{aligned}
c \int|H|^{2}\left|A^{\circ}\right|^{4} \eta d \mu & \leq \delta \int|H|^{4}\left|A^{\circ}\right|^{2} \eta d \mu+c(\delta) \int\left|A^{\circ}\right|^{6} \eta d \mu \\
c(\delta) \Lambda^{2} \int|H|^{2}\left|A^{\circ}\right|^{2} \gamma^{2} d \mu & \leq \delta \int|H|^{4}\left|A^{\circ}\right|^{2} \eta d \mu+c(\delta) \Lambda^{4} \int_{[\gamma>0]}\left|A^{\circ}\right|^{2} d \mu
\end{aligned}
$$

we see that

$$
\begin{align*}
& (1-\delta) \int|H|^{2}\left|\nabla A^{\circ}\right|^{2} \eta d \mu+\left(\frac{1}{2}-2 \delta\right) \int|H|^{4}\left|A^{\circ}\right|^{2} \eta d \mu \tag{17}\\
& \leq\left(\frac{1}{2}+\delta\right) \int|H|^{2}|\nabla H|^{2} \eta d \mu \\
& \quad+c(\delta)\left(\int\left|A^{\circ}\right|\left|\nabla A^{\circ}\right|^{2} \eta d \mu+\int\left|A^{\circ}\right|^{6} \eta d \mu+\Lambda^{4} \int_{[\gamma>0]}|A|^{2} d \mu\right) .
\end{align*}
$$

Adding the inequalities (16) and (17) yields

$$
\begin{aligned}
& \int\left|\nabla^{2} H\right|^{2} \eta d \mu+\left(\frac{1}{2}-\delta\right) \int|H|^{2}|\nabla H|^{2} \eta d \mu \\
& \quad+(1-\delta-\varepsilon) \int|H|^{2}\left|\nabla A^{\circ}\right|^{2} \eta d \mu+\left(\frac{1}{2}-2 \delta-\varepsilon\right) \int|H|^{4}\left|A^{\circ}\right|^{2} \eta d \mu \\
& \leq \\
& \quad c(\delta, \varepsilon)\left(\int\left|A^{\circ}\right|^{2}\left|\nabla A^{\circ}\right|^{2} \eta d \mu+\int\left|A^{\circ}\right|^{6} \eta d \mu+\Lambda^{4} \int_{[\gamma>0]}|A|^{2} d \mu\right) \\
& \quad+c \int|W|^{2} \eta d \mu .
\end{aligned}
$$

The claim of the Lemma follows by choosing $\varepsilon=\delta=\frac{1}{8}$. q.e.d.
Proposition 2.4. If $f: \Sigma \rightarrow \mathbb{R}^{n}$ is an immersion with $\mathbf{W}(f)=W$ and $\eta=\gamma^{4}$, where $\gamma \in C_{c}^{1}(\Sigma)$ satisfies $|\nabla \gamma| \leq \Lambda$, then

$$
\begin{aligned}
& \int\left|\nabla^{2} A\right|^{2} \eta d \mu+\int|A|^{2}|\nabla A|^{2} \eta d \mu+\int|A|^{4}\left|A^{\circ}\right|^{2} \eta d \mu \\
& \quad \leq c \int|W|^{2} \eta d \mu+c \Lambda^{4} \int_{[\gamma>0]}|A|^{2} d \mu+c \int\left(\left|A^{\circ}\right|^{2}\left|\nabla A^{\circ}\right|^{2}+\left|A^{\circ}\right|^{6}\right) \eta d \mu
\end{aligned}
$$

Proof. Multiply (12) by $\eta \nabla A^{\circ}$, integrate by parts and apply (10) to get

$$
\begin{aligned}
\int\left|\nabla^{2} A^{\circ}\right|^{2} \eta d \mu \leq & \int\left|\Delta A^{\circ}\right|^{2} \eta d \mu+c \int|A|^{2}|\nabla A|^{2} \eta d \mu \\
& +\int \gamma^{3} \nabla \gamma * \nabla A^{\circ} * \nabla^{2} A^{\circ} d \mu \\
\leq & c \int\left|\nabla^{2} H\right|^{2} \eta d \mu \\
& +c \int|A|^{2}|\nabla A|^{2} d \mu+c \int|A|^{4}\left|A^{\circ}\right|^{2} \eta d \mu \\
& +\frac{1}{2} \int\left|\nabla^{2} A^{\circ}\right|^{2} \eta d \mu+c \Lambda^{2} \int\left|\nabla A^{\circ}\right|^{2} \gamma^{2} d \mu
\end{aligned}
$$

The claim now follows from Lemma 2.2 and Lemma 2.3, recalling (8).
q.e.d.

We next need a multiplicative Sobolev inequality.
Lemma 2.5. Under the assumptions of Proposition 2.4 we have

$$
\begin{align*}
& \int\left(\left|A^{\circ}\right|^{2}\left|\nabla A^{\circ}\right|^{2}+\left|A^{\circ}\right|^{6}\right) \eta d \mu \tag{18}\\
& \leq c \int_{[\gamma>0]}\left|A^{\circ}\right|^{2} d \mu \cdot \int\left(\left|\nabla^{2} A\right|^{2}+|A|^{2}|\nabla A|^{2}+|A|^{4}\left|A^{\circ}\right|^{2}\right) \eta d \mu \\
& \quad+c \Lambda^{4}\left(\int_{\gamma \gamma>0]}\left|A^{\circ}\right|^{2} d \mu\right)^{2}
\end{align*}
$$

Proof. Recall the Michael-Simon Sobolev inequality ([7])

$$
\begin{equation*}
\left(\int_{\Sigma} u^{2} d \mu\right)^{\frac{1}{2}} \leq c\left(\int_{\Sigma}|\nabla u| d \mu+\int_{\Sigma}|H||u| d \mu\right) \tag{19}
\end{equation*}
$$

with $c=c(n)$. Letting $u=\left|A^{\circ}\right|\left|\nabla A^{\circ}\right| \gamma^{2}$ we obtain

$$
\begin{aligned}
& \int\left|A^{\circ}\right|^{2}\left|\nabla A^{\circ}\right|^{2} \eta d \mu \\
& \leq c\left(\int\left|A^{\circ}\right|\left|\nabla^{2} A^{\circ}\right| \gamma^{2} d \mu\right)^{2}+c\left(\int\left|\nabla A^{\circ}\right|^{2} \gamma^{2} d \mu\right)^{2} \\
&+c\left(\int|A|\left|A^{\circ}\right|\left|\nabla A^{\circ}\right| \gamma^{2} d \mu\right)^{2}+c\left(\int\left|A^{\circ}\right|\left|\nabla A^{\circ}\right| \gamma|\nabla \gamma| d \mu\right)^{2} \\
& \leq c \int_{[\gamma>0]}\left|A^{\circ}\right|^{2} d \mu \int\left(\left|\nabla^{2} A^{\circ}\right|^{2}+|A|^{2}\left|\nabla A^{\circ}\right|^{2}\right) \eta d \mu \\
&+c \Lambda^{4}\left(\int_{[\gamma>0]}\left|A^{\circ}\right|^{2} d \mu\right)^{2}+c\left(\int\left|\nabla A^{\circ}\right|^{2} \gamma^{2} d \mu\right)^{2}
\end{aligned}
$$

In the last term, we integrate by parts to get

$$
\begin{align*}
\int\left|\nabla A^{\circ}\right|^{2} \gamma^{2} d \mu \leq & c \int\left|A^{\circ}\right|\left|\nabla^{2} A^{\circ}\right| \gamma^{2} d \mu+c \Lambda \int\left|A^{\circ}\right|\left|\nabla A^{\circ}\right| \gamma d \mu \tag{20}\\
\leq & c\left(\int_{[\gamma>0]}\left|A^{\circ}\right|^{2} d \mu\right)^{\frac{1}{2}} \cdot\left(\int\left|\nabla^{2} A^{\circ}\right|^{2} \eta d \mu\right)^{\frac{1}{2}} \\
& +\frac{1}{2} \int\left|\nabla A^{\circ}\right|^{2} \gamma^{2} d \mu+c \Lambda^{2} \int_{[\gamma>0]}\left|A^{\circ}\right|^{2} d \mu
\end{align*}
$$

Absorbing and inserting proves the claimed inequality for the first term in (18). For the other term, choose $u=\left|A^{\circ}\right|^{3} \gamma^{2}$ in (19) and compute

$$
\begin{aligned}
& \int\left|A^{\circ}\right|^{6} \eta d \mu \\
& \leq c\left(\int\left|A^{\circ}\right|^{2}\left|\nabla A^{\circ}\right| \gamma^{2} d \mu+\int|A|\left|A^{\circ}\right|^{3} \gamma^{2} d \mu+c \Lambda \int\left|A^{\circ}\right|^{3} \gamma d \mu\right)^{2} \\
& \leq c\left(\int\left|\nabla A^{\circ}\right|^{2} \gamma^{2} d \mu\right)^{2}+c \int_{[\gamma>0]}\left|A^{\circ}\right|^{2} d \mu \cdot \int|A|^{2}\left|A^{\circ}\right|^{4} \eta d \mu \\
&+c \Lambda^{4}\left(\int_{[\gamma>0]}\left|A^{\circ}\right|^{2} d \mu\right)^{2}
\end{aligned}
$$

Combining with (20) proves the estimate for the second term on the left of (18).

Proposition 2.6. Let $f: \Sigma \rightarrow \mathbb{R}^{n}$ be an immersed surface, and let $\Lambda=\|\nabla \gamma\|_{L^{\infty}}$, where γ has compact support on Σ. There exists a constant $\varepsilon_{0}=\varepsilon_{0}(n)>0$ such that if

$$
\int_{[\gamma>0]}\left|A^{\circ}\right|^{2} d \mu<\varepsilon_{0},
$$

then we have for a constant $c=c(n)<\infty$

$$
\begin{aligned}
& \int\left(\left|\nabla^{2} A\right|^{2}+|A|^{2}|\nabla A|^{2}+|A|^{4}\left|A^{\circ}\right|^{2}\right) \gamma^{4} d \mu \\
& \quad \leq c \int|\mathbf{W}(f)|^{2} \gamma^{4} d \mu+c \Lambda_{[\gamma>0]}^{4}|A|^{2} d \mu
\end{aligned}
$$

This is an immediate consequence of Proposition 2.4 and Lemma 2.5. As a first application we deduce the following result.

Theorem 2.7 (Gap Lemma). Let $f: \Sigma \rightarrow \mathbb{R}^{n}$ be a properly immersed (compact or noncompact) Willmore surface, and let $\Sigma_{\varrho}(0)=$ $f^{-1}\left(B_{\varrho}(0)\right)$. If

$$
\begin{aligned}
\liminf _{\varrho \rightarrow \infty} \frac{1}{\varrho_{\Sigma_{\varrho}}^{4}(0)} \int_{\Sigma}|A|^{2} d \mu & =0, \quad \text { and } \\
\int_{\Sigma}\left|A^{\circ}\right|^{2} d \mu<\varepsilon_{0} & =\varepsilon_{0}(n)
\end{aligned}
$$

then f is an embedded plane or sphere.
Proof. We take $\gamma(p)=\varphi\left(\frac{1}{\varrho}|f(p)|\right)$, where $\varphi \in C^{1}(\mathbb{R})$ satisfies $\varphi(s)=1$ for $s \leq \frac{1}{2}, \varphi(s)=0$ for $s \geq 1$ and $\varphi \geq 0$. Then we have $\Lambda=c / \varrho$ in Proposition 2.6. Since $\mathbf{W}(f)=0$ by assumption, we can let $\varrho \rightarrow \infty$ and conclude $A^{\circ} \equiv 0$. This implies, by a standard result of differential geometry [13], that f maps into a fixed, round 2 -sphere or plane $S \subset \mathbb{R}^{n}$. As f is complete, it follows that $f:(\Sigma, g) \rightarrow S$ is a global isometry.
q.e.d.

We shall now derive an L^{∞} bound for A° from Proposition 2.6.
Lemma 2.8. For $\gamma \in C_{c}^{1}(\Sigma)$ with $|\nabla \gamma| \leq \Lambda$ and any normal p-form ϕ along f we have the inequality

$$
\left\|\gamma^{2} \phi\right\|_{L^{\infty}}^{4} \leq c\left\|\gamma^{2} \phi\right\|_{L^{2}}^{2}\left[\int\left(\left|\nabla^{2} \phi\right|^{2}+|H|^{4}|\phi|^{2}\right) \gamma^{4} d \mu+\Lambda^{4} \int_{[\gamma>0]}|\phi|^{2} d \mu\right] .
$$

Proof. This is Lemma 4.3 in [5], except that there a bound on the second derivatives of γ was assumed. Letting $\psi=\gamma^{2} \phi$ we apply Theorem 5.6 in [5] to obtain

$$
\begin{align*}
\|\psi\|_{L^{\infty}}^{6} & \leq c\|\psi\|_{L^{2}}^{2}\left(\|\nabla \psi\|_{L^{4}}^{4}+\|H \psi\|_{L^{4}}^{4}\right) \tag{21}\\
& \leq c\|\psi\|_{L^{2}}^{2}\left(\int \gamma^{8}|\nabla \phi|^{4} d \mu+\Lambda^{4} \int \gamma^{4}|\phi|^{4} d \mu+\int|H|^{4}|\psi|^{4} d \mu\right) .
\end{align*}
$$

The three integrals on the right are estimated as follows (starting with the third):

$$
\begin{align*}
\int|H|^{4}|\psi|^{4} d \mu & \leq\|\psi\|_{L^{\infty}}^{2} \int|H|^{4}|\phi|^{2} \gamma^{4} d \mu \tag{22}\\
\Lambda^{4} \int \gamma^{4}|\phi|^{4} d \mu & \leq\|\psi\|_{L^{\infty}}^{2} \Lambda^{4} \int_{[\gamma>0]}|\phi|^{2} d \mu \tag{23}
\end{align*}
$$

By partial integration, we infer

$$
\begin{aligned}
\int|\nabla \phi|^{2} \gamma^{2} d \mu & \leq c \int|\phi|\left|\nabla^{2} \phi\right| \gamma^{2} d \mu+c \Lambda \int|\phi||\nabla \phi| \gamma d \mu \\
& \leq \frac{c}{\Lambda^{2}} \int\left|\nabla^{2} \phi\right|^{2} \gamma^{4} d \mu+c \Lambda^{2} \int_{[\gamma>0]}|\phi|^{2} d \mu+\frac{1}{2} \int|\nabla \phi|^{2} \gamma^{2} d \mu
\end{aligned}
$$

Using again integration by parts and Cauchy-Schwarz

$$
\begin{aligned}
\int|\nabla \phi|^{4} \gamma^{8} d \mu \leq & c\left(\int|\phi||\nabla \phi|^{2}\left|\nabla^{2} \phi\right| \gamma^{8} d \mu+\Lambda \int|\phi||\nabla \phi|^{3} \gamma^{7} d \mu\right) \\
\leq & c\|\psi\|_{L^{\infty}}\left(\int|\nabla \phi|^{4} \gamma^{8} d \mu\right)^{\frac{1}{2}}\left(\int\left|\nabla^{2} \phi\right|^{2} \gamma^{4} d \mu\right)^{\frac{1}{2}} \\
& +c \Lambda\|\psi\|_{L^{\infty}}\left(\int|\nabla \phi|^{4} \gamma^{8} d \mu\right)^{\frac{1}{2}}\left(\int|\nabla \phi|^{2} \gamma^{2} d \mu\right)^{\frac{1}{2}}
\end{aligned}
$$

Combining the last two inequalities, we get

$$
\begin{equation*}
\int|\nabla \phi|^{4} \gamma^{8} d \mu \leq c\|\psi\|_{L^{\infty}}^{2}\left(\int\left|\nabla^{2} \phi\right|^{2} \gamma^{4} d \mu+c \Lambda^{4} \int_{[\gamma>0]}|\phi|^{2} d \mu\right) \tag{24}
\end{equation*}
$$

Inserting (22)-(24) into (21) proves the claim.
q.e.d.

Combining Proposition 2.6 and Lemma 2.8, where $\phi=A^{\circ}$ and γ is a cutoff function depending on extrinsic distance as in Theorem 2.7, we obtain the following "partial" curvature estimate.

Theorem 2.9 (Tracefree Curvature Estimate). Let $f: \Sigma \rightarrow \mathbb{R}^{n}$ be an immersed surface with $\Sigma_{\varrho}=f^{-1}\left(B_{\varrho}\left(x_{0}\right)\right) \subset \subset \Sigma$, and suppose that

$$
\int_{\Sigma_{\varrho}}\left|A^{\circ}\right|^{2} d \mu<\varepsilon_{0}
$$

where $\varepsilon_{0}=\varepsilon_{0}(n)>0$ is a fixed constant. Then

$$
\begin{equation*}
\left\|A^{\circ}\right\|_{L^{\infty}\left(\Sigma_{\varrho / 2}\right)}^{2} \leq c\left(\|\mathbf{W}(f)\|_{L^{2}\left(\Sigma_{\varrho}\right)}+\frac{1}{\varrho^{2}}\|A\|_{L^{2}\left(\Sigma_{\varrho}\right)}\right)\left\|A^{\circ}\right\|_{L^{2}\left(\Sigma_{\varrho}\right)} \tag{25}
\end{equation*}
$$

Assuming smallness of the full second fundamental form A, one easily adapts the arguments above to also prove the following:

Theorem 2.10 (Curvature Estimate). Let $f: \Sigma \rightarrow \mathbb{R}^{n}$ be an immersed surface, $\Sigma_{\varrho}=f^{-1}\left(B_{\varrho}\left(x_{0}\right)\right) \subset \subset \Sigma$ and suppose

$$
\int_{\Sigma_{\varrho}}|A|^{2} d \mu<\varepsilon_{0}
$$

where $\varepsilon_{0}=\varepsilon_{0}(n)$ is a fixed constant. Then

$$
\begin{equation*}
\|A\|_{L^{\infty}\left(\Sigma_{\varrho / 2}\right)}^{2} \leq c\left(\|\mathbf{W}(f)\|_{L^{2}\left(\Sigma_{\varrho}\right)}+\frac{1}{\varrho^{2}}\|A\|_{L^{2}\left(\Sigma_{\varrho}\right)}\right)\|A\|_{L^{2}\left(\Sigma_{\varrho}\right)} \tag{26}
\end{equation*}
$$

Remark 2.11. The statements of the Theorems 2.7, 2.9 and 2.10 clearly also hold with the extrinsic distance sets $\Sigma_{\varrho}\left(x_{0}\right)$ replaced by distance sets with respect to the intrinsic distance function, since only a bound on the first derivatives of the cutoff function was needed.

3. Local estimates for the flow

We now consider solutions $f: \Sigma \times[0, T) \rightarrow \mathbb{R}^{n}$ to the gradient flow for the Willmore integral,

$$
\partial_{t} f=-\mathbf{W}(f) .
$$

We abbreviate $\mathbf{W}(f)=: W$ in the following and compute first a precise
formula for the evolution of the energy density. Recall from [5]:

$$
\begin{align*}
\partial_{t}(d \mu)= & \langle H, W\rangle d \mu, \tag{27}\\
\partial_{t}^{\perp} H= & -\left(\Delta W+Q\left(A^{\circ}\right) W+\frac{1}{2} H\langle H, W\rangle\right), \tag{28}\\
\partial_{t}^{\perp} A(X, Y)= & -\nabla_{X, Y}^{2} W+\frac{1}{2} g(X, Y)\left[Q\left(A^{\circ}\right) W+\frac{1}{2} H\langle H, W\rangle\right] \tag{29}\\
& +\frac{1}{2} H\left\langle A^{\circ}(X, Y), W\right\rangle+\frac{1}{2} A^{\circ}(X, Y)\langle H, W\rangle \\
& +\frac{1}{2} R^{\perp}(X, Y) W .
\end{align*}
$$

Here we used (2.18), (2.6) and (2.3) from [5]. Furthermore, using (2.15) in [5] we infer

$$
\begin{aligned}
\partial_{t}^{\perp}\left(\frac{1}{2} g(X, Y) H\right)= & -\frac{1}{2} g(X, Y)\left(\Delta W+Q\left(A^{\circ}\right) W+\frac{1}{2} H\langle H, W\rangle\right) \\
& +\left\langle A^{\circ}(X, Y), W\right\rangle H+\frac{1}{2} g(X, Y) H\langle H, W\rangle,
\end{aligned}
$$

and subtracting this from (29) yields

$$
\begin{align*}
\partial_{t}^{\perp} A^{\circ}(X, Y)= & -S^{\circ}\left(\nabla^{2} W\right)+g(X, Y) Q\left(A^{\circ}\right) W \tag{30}\\
& +\frac{1}{2} A^{\circ}(X, Y)\langle H, W\rangle-\frac{1}{2} H\left\langle A^{\circ}(X, Y), W\right\rangle .
\end{align*}
$$

Recall that $S^{\circ}(\ldots)$ denotes the symmetric, tracefree component. We compute separately for H and A°. By (27) and (28)

$$
\begin{aligned}
\partial_{t} & \left(\frac{1}{2}|H|^{2} d \mu\right) \\
& =-\left\langle\Delta W+Q\left(A^{\circ}\right) W+\frac{1}{2} H\langle H, W\rangle, H\right\rangle d \mu+\frac{1}{2}|H|^{2}\langle H, W\rangle d \mu \\
& =-\left\langle\Delta H+Q\left(A^{\circ}\right) H, W\right\rangle d \mu+(\langle\Delta H, W\rangle-\langle H, \Delta W\rangle) d \mu \\
& =-|W|^{2} d \mu+\nabla_{e_{i}}\left(\left\langle\nabla_{e_{i}} H, W\right\rangle-\left\langle H, \nabla_{e_{i}} W\right\rangle\right) d \mu,
\end{aligned}
$$

whence

$$
\begin{equation*}
\partial_{t}\left(\frac{1}{2}|H|^{2} d \mu\right)+|W|^{2} d \mu=\left(\nabla^{*} \alpha\right) d \mu, \tag{31}
\end{equation*}
$$

where α is the 1 -form given by

$$
\begin{equation*}
\alpha(X)=\nabla_{X}\langle H, W\rangle-2\left\langle\nabla_{X} H, W\right\rangle . \tag{32}
\end{equation*}
$$

In order to compute for A°, we first have (using again (2.15) in [5]) for a g-orthonormal basis

$$
\begin{aligned}
g\left(\partial_{t} e_{i}, e_{j}\right)+g\left(e_{i}, \partial_{t} e_{j}\right) & =\partial_{t}\left(g\left(e_{i}, e_{j}\right)\right)-\left(\partial_{t} g\right)\left(e_{i}, e_{j}\right) \\
& =-2\left\langle A\left(e_{i}, e_{j}\right), W\right\rangle \\
& =-2\left\langle A^{\circ}\left(e_{i}, e_{j}\right), W\right\rangle-\delta_{i j}\langle H, W\rangle .
\end{aligned}
$$

This implies further

$$
\begin{aligned}
\left\langle A^{\circ}\right. & \left.\left(\partial_{t} e_{i}, e_{k}\right), A^{\circ}\left(e_{i}, e_{k}\right)\right\rangle \\
\quad & =g\left(\partial_{t} e_{i}, e_{j}\right)\left\langle A^{\circ}\left(e_{j}, e_{k}\right), A^{\circ}\left(e_{i}, e_{k}\right)\right\rangle \\
\quad & =-\left(\left\langle A^{\circ}\left(e_{i}, e_{j}\right), W\right\rangle+\frac{1}{2} \delta_{i j}\langle H, W\rangle\right)\left\langle A^{\circ}\left(e_{i}, e_{k}\right), A^{\circ}\left(e_{j}, e_{k}\right)\right\rangle \\
& =-\left\langle A^{\circ}\left(e_{i}, e_{k}\right)\left\langle A^{\circ}\left(e_{i}, e_{j}\right), W\right\rangle, A^{\circ}\left(e_{j}, e_{k}\right)\right\rangle-\frac{1}{2}\left|A^{\circ}\right|^{2}\langle H, W\rangle \\
& =-\left\langle\frac{1}{2} g\left(e_{j}, e_{k}\right) Q\left(A^{\circ}\right) W, A^{\circ}\left(e_{j}, e_{k}\right)\right\rangle-\frac{1}{2}\left|A^{\circ}\right|^{2}\langle H, W\rangle \\
& =-\frac{1}{2}\left|A^{\circ}\right|^{2}\langle H, W\rangle,
\end{aligned}
$$

where we used (2.5) from [5]. We use this and (30) to compute

$$
\begin{aligned}
& \partial_{t}\left(\left|A^{\circ}\right|^{2} d \mu\right) \\
&= 2\left\langle\left(\partial_{t} A^{\circ}\right)\left(e_{i}, e_{k}\right), A^{\circ}\left(e_{i}, e_{k}\right)\right\rangle d \mu \\
&+2\left\langle A^{\circ}\left(\partial_{t} e_{i}, e_{k}\right)+A^{\circ}\left(e_{i}, \partial_{t} e_{k}\right), A^{\circ}\left(e_{i}, e_{k}\right)\right\rangle d \mu+\left|A^{\circ}\right|^{2}\langle H, W\rangle d \mu \\
&=-2\left\langle\nabla^{2} W, A^{\circ}\right\rangle d \mu+\left|A^{\circ}\right|^{2}\langle H, W\rangle d \mu \\
&-\left\langle A^{\circ}\left(e_{i}, e_{k}\right), W\right\rangle\left\langle A^{\circ}\left(e_{i}, e_{k}\right), H\right\rangle d \mu \\
&-2\left|A^{\circ}\right|^{2}\langle H, W\rangle d \mu+\left|A^{\circ}\right|^{2}\langle H, W\rangle d \mu \\
&=-2\left\langle\nabla^{2} W, A^{\circ}\right\rangle d \mu-\left\langle Q\left(A^{\circ}\right) H, W\right\rangle d \mu \\
&=\left(-2 \nabla_{e_{i}}\left\langle\nabla_{e_{j}} W, A^{\circ}\left(e_{i}, e_{j}\right)\right\rangle+\left\langle\nabla_{e_{j}} W, \nabla_{e_{j}} H\right\rangle\right) d \mu \\
&-\left\langle Q\left(A^{\circ}\right) H, W\right\rangle d \mu \\
&=\left(-2 \nabla_{e_{i}}\left\langle\nabla_{e_{j}} W, A^{\circ}\left(e_{i}, e_{j}\right)\right\rangle+\nabla_{e_{i}}\left\langle W, \nabla_{e_{i}} H\right\rangle\right) d \mu \\
&-\langle W, \Delta H\rangle d \mu-\left\langle Q\left(A^{\circ}\right) H, W\right\rangle d \mu .
\end{aligned}
$$

Thus we have shown

$$
\begin{equation*}
\partial_{t}\left(\left|A^{\circ}\right|^{2} d \mu\right)+|W|^{2} d \mu=\left(\nabla^{*} \beta\right) d \mu \tag{33}
\end{equation*}
$$

where β is the 1 -form defined by

$$
\begin{equation*}
\beta(X)=2\left\langle\nabla_{e_{j}} W, A^{\circ}\left(X, e_{j}\right)\right\rangle-\left\langle\nabla_{X} H, W\right\rangle . \tag{34}
\end{equation*}
$$

Lemma 3.1. If f is a Willmore flow, then for any function η and $W=\mathbf{W}(f)$ we have:

$$
\begin{align*}
& \partial_{t} \int \frac{1}{2}|H|^{2} \eta d \mu+\int|W|^{2} \eta d \mu \tag{35}\\
& \quad=\int\left(\frac{1}{2}|H|^{2} \partial_{t} \eta-\langle H, W\rangle \Delta \eta-2\left\langle\nabla_{\operatorname{grad} \eta} H, W\right\rangle\right) d \mu
\end{align*}
$$

$$
\begin{equation*}
\partial_{t} \int\left|A^{\circ}\right|^{2} \eta d \mu+\int|W|^{2} \eta d \mu \tag{36}
\end{equation*}
$$

$$
=\int\left(\left|A^{\circ}\right|^{2} \partial_{t} \eta-2\left\langle A^{\circ}\left(e_{i}, e_{j}\right), W\right\rangle \nabla_{e_{i}, e_{j}}^{2} \eta-2\left\langle\nabla_{\operatorname{grad} \eta} H, W\right) d \mu\right.
$$

Proof. Formula (35) is immediate from (31) and (32). For (36) we compute for β as in (34):

$$
\begin{aligned}
\int \eta \nabla^{*} \beta d \mu= & \int\left(2\left\langle\nabla_{e_{j}} W, A^{\circ}\left(\operatorname{grad} \eta, e_{j}\right)\right\rangle-\left\langle\nabla_{\operatorname{grad} \eta} H, W\right\rangle\right) d \mu \\
= & -\int 2\left\langle\left(\nabla_{e_{j}} A^{\circ}\right)\left(e_{j}, \operatorname{grad} \eta\right), W\right\rangle d \mu \\
& -\int 2\left\langle A^{\circ}\left(\nabla_{e_{j}} \operatorname{grad} \eta, e_{j}\right), W\right\rangle d \mu-\int\left\langle\nabla_{\operatorname{grad} \eta} H, W\right\rangle d \mu \\
= & -\int 2 \nabla_{e_{i}, e_{j}}^{2} \eta\left\langle A^{\circ}\left(e_{i}, e_{j}\right), W\right\rangle d \mu-\int 2\left\langle\nabla_{\operatorname{grad} \eta} H, W\right\rangle d \mu
\end{aligned}
$$

which, together with (33), proves (36).
q.e.d.

In controlling the energy density in time, difficulties arise because of the dependence of $\partial_{t} \eta$ and $\nabla^{2} \eta$ on f, and since $\mathbf{W}(f)$ differs from ΔH by the term $Q\left(A^{\circ}\right) H$. For a ball $B_{\varrho}=B_{\varrho}\left(x_{0}\right) \subset \mathbb{R}^{n}$ and $f: \Sigma \rightarrow \mathbb{R}^{n}$ we adopt as in Section 2 the notation

$$
\Sigma_{\varrho}\left(x_{0}\right)=f^{-1}\left(B_{\varrho}\left(x_{0}\right)\right)
$$

and consider a cutoff function $\widetilde{\gamma} \in C_{c}^{1}\left(B_{\varrho}\right), \widetilde{\gamma} \geq 0$, such that

$$
\begin{equation*}
|D \widetilde{\gamma}| \leq \frac{c}{\varrho}, \quad\left|D^{2} \widetilde{\gamma}\right| \leq \frac{c}{\varrho^{2}} \tag{37}
\end{equation*}
$$

We put $\gamma=\widetilde{\gamma} \circ f$ and observe

$$
\begin{align*}
\nabla \gamma & =(D \widetilde{\gamma} \circ f) \cdot D f \tag{38}\\
\nabla^{2} \gamma & =\left(D^{2} \widetilde{\gamma} \circ f\right)(D f, D f)+(D \widetilde{\gamma} \circ f) \cdot A(\cdot, \cdot)
\end{align*}
$$

Lemma 3.2. If $f: \Sigma \times[0, T) \rightarrow \mathbb{R}^{n}$ is a Willmore flow and $\eta=\gamma^{4}$ for $\gamma=\widetilde{\gamma} \circ f$ with $\widetilde{\gamma}$ as in (37), then we have for $W=\mathbf{W}(f)$

$$
\begin{align*}
& \partial_{t} \int\left|A^{\circ}\right|^{2} \eta d \mu+\frac{1}{2} \int|W|^{2} \eta d \mu \tag{39}\\
& \quad \leq \frac{c}{\varrho^{2}} \int|A|^{2}\left|A^{\circ}\right|^{2} \gamma^{2} d \mu+\frac{c}{\varrho^{4}} \int_{[\gamma>0]}|A|^{2} d \mu \\
& \partial_{t} \int|A|^{2} \eta d \mu+\int|W|^{2} \eta d \mu \tag{40}\\
& \quad \leq \frac{c}{\varrho^{2}} \int|A|^{4} \gamma^{2} d \mu+\frac{c}{\varrho^{4}} \int_{[\gamma>0]}|A|^{2} d \mu
\end{align*}
$$

Proof. We estimate the terms in (36) and (35). We have

$$
\begin{aligned}
\int \gamma^{2}|\nabla H|^{2} d \mu= & -\int \gamma^{2}\langle H, \Delta H\rangle d \mu+\frac{c}{\varrho} \int \gamma|H||\nabla H| d \mu \\
\leq & -\int \gamma^{2}\langle H, W\rangle d \mu+c \int \gamma^{2}\left|A^{\circ}\right|^{2}|H|^{2} d \mu \\
& +\frac{1}{2} \int \gamma^{2}|\nabla H|^{2} d \mu+\frac{c}{\varrho^{2}} \int_{[\gamma>0]}|H|^{2} d \mu
\end{aligned}
$$

As

$$
\int|\nabla \eta||\nabla H||W| d \mu \leq \varepsilon \int|W|^{2} \eta d \mu+\frac{c(\varepsilon)}{\varrho^{2}} \int \gamma^{2}|\nabla H|^{2} d \mu
$$

we obtain by combining

$$
\begin{aligned}
-\int 2\left\langle\nabla_{\operatorname{grad} \eta} H, W\right\rangle d \mu \leq & \varepsilon \int|W|^{2} \eta d \mu+\frac{c(\varepsilon)}{\varrho^{2}} \int \gamma^{2}\left|A^{\circ}\right|^{2}|H|^{2} d \mu \\
& +\frac{c(\varepsilon)}{\varrho^{4}} \int_{[\gamma>0]}|H|^{2} d \mu
\end{aligned}
$$

Next using (38)

$$
\begin{aligned}
-\int 2\left\langle A^{\circ}\left(e_{i}, e_{j}\right), W\right\rangle \nabla_{e_{i}, e_{j}}^{2} \eta d \mu \leq & c \int\left|A^{\circ}\right||W|\left(\frac{1}{\varrho^{2}} \gamma^{2}+\frac{1}{\varrho} \gamma^{3}\left|A^{\circ}\right|\right) d \mu \\
\leq & \varepsilon \int|W|^{2} \eta d \mu+\frac{c(\varepsilon)}{\varrho^{2}} \int\left|A^{\circ}\right|^{4} \gamma^{2} d \mu \\
& +\frac{c(\varepsilon)}{\varrho^{4}} \int_{[\gamma>0]}\left|A^{\circ}\right|^{2} d \mu .
\end{aligned}
$$

Finally

$$
\begin{aligned}
\int\left|A^{\circ}\right|^{2} \partial_{t} \eta d \mu & \leq \frac{c}{\varrho} \int\left|A^{\circ}\right|^{2}|W| \gamma^{3} d \mu \\
& \leq \varepsilon \int|W|^{2} \gamma^{4} d \mu+\frac{c(\varepsilon)}{\varrho^{2}} \int\left|A^{\circ}\right|^{4} \gamma^{2} d \mu
\end{aligned}
$$

Combining the three estimates and absorbing for $\varepsilon>0$ small, we obtain (39). The estimate (40) follows analogously from (35).
q.e.d.

Lemma 3.3. Let $f: \Sigma \times[0, T) \rightarrow \mathbb{R}^{n}$ be a Willmore flow. If

$$
\begin{equation*}
\int_{\Sigma_{\varrho}\left(x_{0}\right)}\left|A^{\circ}\right|^{2} d \mu<\varepsilon_{0} \quad \text { at some time } t \in[0, T) \tag{41}
\end{equation*}
$$

then for a constant $c_{0}>0$ we have at time t

$$
\begin{align*}
& \partial_{t} \int\left|A^{\circ}\right|^{2} \gamma^{4} d \mu+c_{0} \int\left(\left|\nabla^{2} A\right|^{2}+|A|^{2}|\nabla A|^{2}+|A|^{4}\left|A^{\circ}\right|^{2}\right) \gamma^{4} d \mu \tag{42}\\
& \quad \leq \frac{c}{\varrho^{4}} \int_{\Sigma_{\varrho}\left(x_{0}\right)}|A|^{2} d \mu
\end{align*}
$$

and

$$
\begin{align*}
& \partial_{t} \int|H|^{2} \gamma^{4} d \mu+c_{0} \int\left(\left|\nabla^{2} A\right|^{2}+|A|^{2}|\nabla A|^{2}+|A|^{4}\left|A^{\circ}\right|^{2}\right) \gamma^{4} d \mu \tag{43}\\
& \quad \leq \frac{c}{\varrho^{4}} \int_{\Sigma_{\varrho}\left(x_{0}\right)}|A|^{2} d \mu
\end{align*}
$$

Proof. (42) follows by combining (39) with Proposition 2.6, after estimating

$$
\frac{c}{\varrho^{2}} \int|A|^{2}\left|A^{\circ}\right|^{2} \gamma^{2} d \mu \leq \varepsilon \int|A|^{4}\left|A^{\circ}\right|^{2} \gamma^{4} d \mu+\frac{c(\varepsilon)}{\varrho^{4}} \int_{[\gamma>0]}\left|A^{\circ}\right|^{2} d \mu
$$

For the other bound we must go back to (35), estimating the three terms on the right hand side. We have

$$
\int \frac{1}{2}|H|^{2} \partial_{t} \eta d \mu=-\int \frac{1}{2}|H|^{2} D \widetilde{\eta} \circ f \cdot\left(\Delta H+Q\left(A^{\circ}\right) H\right) d \mu
$$

By Young's inequality with 4 and $4 / 3$, we have
(44) $\frac{1}{\varrho} \int\left|A^{\circ}\right|^{2}|A|^{3} \gamma^{3} d \mu \leq \varepsilon \int\left|A^{\circ}\right|^{8 / 3}|A|^{10 / 3} \gamma^{4} d \mu+\frac{c(\varepsilon)}{\varrho^{4}} \int_{[\gamma>0]}|A|^{2} d \mu$.

Using integration by parts, we infer

$$
\begin{aligned}
\int H * H\langle & D \widetilde{\eta} \circ f, \Delta H\rangle d \mu \\
\leq & \frac{c}{\varrho} \int|H||\nabla H|^{2} \gamma^{3} d \mu+\frac{c}{\varrho^{2}} \int|H|^{2}|\nabla H| \gamma^{2} d \mu \\
\leq & \varepsilon \int|H|^{2}|\nabla H|^{2} \gamma^{4} d \mu+\frac{c(\varepsilon)}{\varrho^{2}} \int|\nabla H|^{2} \gamma^{2} d \mu \\
& +\frac{c(\varepsilon)}{\varrho^{4}} \int_{[\gamma>0]}|H|^{2} d \mu .
\end{aligned}
$$

In the proof of Lemma 3.2, we have already shown by partial integration that

$$
\begin{aligned}
\int \gamma^{2}|\nabla H|^{2} d \mu \leq & \delta \varrho^{2} \int|W|^{2} \gamma^{4} d \mu+\frac{c(\delta)}{\varrho^{2}} \int_{[\gamma>0]}|A|^{2} d \mu \\
& +\delta \varrho^{2} \int|A|^{2}\left|A^{\circ}\right|^{4} \gamma^{4} d \mu
\end{aligned}
$$

so that by combining we obtain

$$
\begin{align*}
& \int H * H\langle D \widetilde{\eta} \circ f, \Delta H\rangle d \mu \tag{45}\\
& \leq \varepsilon \int\left(|W|^{2}+|A|^{2}|\nabla A|^{2}+|A|^{2}\left|A^{\circ}\right|^{4}\right) \gamma^{4} d \mu \\
&+\frac{c(\varepsilon)}{\varrho^{4}} \int_{[\gamma>0]}|A|^{2} d \mu .
\end{align*}
$$

Thus (44) and (45) estimate the first of the three terms on the right hand side of (35). For the second we use

$$
\begin{aligned}
-\int\langle H, W\rangle & \Delta \eta d \mu \\
\leq & -\int\langle H, \Delta H\rangle\langle D \widetilde{\eta} \circ f, H\rangle d \mu+\frac{c}{\varrho^{2}} \int|H||\Delta H| \gamma^{2} d \mu \\
& +\frac{c}{\varrho} \int\left|A^{\circ}\right|^{2}|A|^{3} \gamma^{3} d \mu+\frac{c}{\varrho^{2}} \int\left|A^{\circ}\right|^{2}|A|^{2} \gamma^{2} d \mu .
\end{aligned}
$$

The first integral is estimated by (45), the third integral by (44). Furthermore

$$
\begin{aligned}
& \frac{c}{\varrho^{2}} \int|H||\Delta H| \gamma^{2} d \mu \leq \varepsilon \int\left|\nabla^{2} A\right|^{2} \gamma^{4} d \mu+\frac{c(\varepsilon)}{\varrho^{4}} \int_{[\gamma>0]}|A|^{2} d \mu \\
& \frac{c}{\varrho^{2}} \int\left|A^{\circ}\right|^{2}|A|^{2} \gamma^{2} d \mu \leq \varepsilon \int\left|A^{\circ}\right|^{4}|A|^{2} \gamma^{4} d \mu+\frac{c(\varepsilon)}{\varrho^{4}} \int_{[\gamma>0]}|A|^{2} d \mu
\end{aligned}
$$

The third integral on the right of (35) satisfies

$$
\int|\nabla \eta||\nabla H||W| d \mu \leq \varepsilon \int|W|^{2} \gamma^{4} d \mu+\frac{c(\varepsilon)}{\varrho^{2}} \int|\nabla H|^{2} \gamma^{2} d \mu
$$

and the right hand side is already estimated. Thus putting things together we have shown

$$
\begin{aligned}
& \partial_{t}\left(\int \frac{1}{2}|H|^{2} \eta d \mu\right)+\frac{3}{4} \int|W|^{2} \eta d \mu \\
& \quad \leq \varepsilon \int\left(\left|\nabla^{2} A\right|^{2}+|A|^{2}|\nabla A|^{2}+|A|^{4}\left|A^{\circ}\right|^{2}\right) \eta d \mu+\frac{c(\varepsilon)}{\varrho^{4}} \int_{[\gamma>0]}|A|^{2} d \mu
\end{aligned}
$$

Now (43) follows from Proposition 2.6.
q.e.d.

Proposition 3.4. Let $f: \Sigma \times[0, T) \rightarrow \mathbb{R}^{n}$ be a Willmore flow with $\int_{\Sigma}|A|^{2} d \mu \leq \varkappa$. There exist constants $\varepsilon_{1}=\varepsilon_{1}(n)>0$ and $c_{1}=$ $c(n) / \varkappa>0$, such that if $\varrho>0$ is chosen with
(46) $\int_{\Sigma_{\varrho}}\left|A^{\circ}\right|^{2} d \mu \leq \varepsilon<\varepsilon_{1} \quad$ at time $t=0 \quad$ for all $\Sigma_{\varrho}=\Sigma_{\varrho}\left(x_{0}\right) \subset \mathbb{R}^{n}$,
then for any time $0 \leq t<t_{1}=\min \left\{c_{1} \varrho^{4}, T\right\}$ we have

$$
\begin{align*}
\int_{\Sigma_{\varrho}}\left|A^{\circ}\right|^{2} d \mu & +\int_{0}^{t} \int_{\Sigma_{\varrho}}\left(\left|\nabla^{2} A\right|^{2}+|A|^{2}|\nabla A|^{2}+|A|^{4}\left|A^{\circ}\right|^{2}\right) d \mu d \tau \tag{47}\\
& \leq c\left(\varepsilon+\varkappa \varrho^{-4} t\right) \\
& \int_{0}^{t}\left\|A^{\circ}\right\|_{L^{\infty}\left(\Sigma_{\varrho}\right)}^{4} d \tau \leq c\left(\varepsilon+\varkappa \varrho^{-4} t\right) \tag{48}
\end{align*}
$$

Moreover, for $0<\sigma \leq \varrho$ and $\tau<\min \left\{c_{1} \sigma^{4}, T\right\}$ we then also have

$$
\begin{equation*}
\left.\int_{\Sigma_{\sigma / 2}(x)}|A|^{2} d \mu\right|_{t=\tau} \leq\left.\int_{\Sigma_{\sigma}(x)}|A|^{2} d \mu\right|_{t=0}+c \varkappa \sigma^{-4} \tau \quad \forall x \in \mathbb{R}^{n} \tag{49}
\end{equation*}
$$

Proof. Let $N=N(n)$ be the number of balls $B_{\varrho / 2} \subset \mathbb{R}^{n}$ needed to cover $B_{\varrho} \subset \mathbb{R}^{n}$ and choose $\varepsilon_{1} \leq \frac{\varepsilon_{0}}{4 N}$, where $\varepsilon_{0}>0$ is as in Lemma 3.3. Assume (41) is satisfied on $[0, t]$ for all $B_{\varrho} \subset \mathbb{R}^{n}$, and integrate (42) to obtain using (46)

$$
\begin{aligned}
& \int_{\Sigma_{\varrho / 2}}\left|A^{\circ}\right|^{2} d \mu+c_{0} \int_{0}^{t} \int_{\Sigma_{\varrho / 2}}\left(\left|\nabla^{2} A\right|^{2}+|A|^{2}|\nabla A|^{2}+|A|^{4}\left|A^{\circ}\right|^{2}\right) d \mu d s \\
& \leq \varepsilon+c \varkappa \varrho^{-4} t .
\end{aligned}
$$

Assuming $t \leq c_{1} \varrho^{4}$ where c_{1} is chosen with $0<c_{1} \leq \frac{\varepsilon_{0}}{4 N c \varkappa}$, we conclude

$$
\begin{aligned}
\int_{\Sigma_{\varrho}}\left|A^{\circ}\right|^{2} d \mu & +c_{0} \int_{0}^{t} \int_{\Sigma_{\varrho}}\left(\left|\nabla^{2} A\right|^{2}+|A|^{2}|\nabla A|^{2}+|A|^{4}\left|A^{\circ}\right|^{2}\right) d \mu d s \\
& \leq N\left(\varepsilon+c \varkappa \varrho^{-4} t\right) \\
& \leq N\left(\varepsilon_{1}+c \varkappa c_{1}\right) \\
& \leq \frac{\varepsilon_{0}}{2} .
\end{aligned}
$$

It follows that (41) holds up to time $t=t_{1}$ for all $x_{0} \in \mathbb{R}^{n}$, and (47) follows. In particular $\int_{\Sigma_{\varrho}}\left|A^{\circ}\right|^{2} d \mu \leq c\left(\varepsilon_{1}+\varkappa c_{1}\right)$, whence a covering argument with possibly smaller ε_{1}, c_{1} implies the smallness hypothesis in Theorem 2.9 for any ball $B_{2 \varrho} \subset \mathbb{R}^{n}$ and any $t \in\left[0, t_{1}\right]$. Inequality (48) now follows from combining (25) with (47), again using a covering. Finally (49) is obtained by integrating (43) and (42) on $[0, t]$. q.e.d.

We next state a version of the higher order estimates obtained in [5] which is localized in time.

Theorem 3.5 (Interior Estimates). Let $f: \Sigma \times(0, T] \rightarrow \mathbb{R}^{n}$ be a Willmore flow satisfying the condition

$$
\begin{equation*}
\sup _{0<t \leq T} \int_{\Sigma_{\varrho}(0)}|A|^{2} d \mu \leq \varepsilon<\varepsilon_{0}(n), \tag{50}
\end{equation*}
$$

where $T \leq c(n) \varrho^{4}$. Then for any $k \in \mathbb{N}_{0}$ we have at time $t \in(0, T]$ the estimates

$$
\begin{align*}
\left\|\nabla^{k} A\right\|_{L^{\infty}\left(\Sigma_{\varrho / 2}(0)\right)} & \leq c(k) \sqrt{\varepsilon} t^{-\frac{k+1}{4}} \tag{51}\\
\left\|\nabla^{k} A\right\|_{L^{2}\left(\Sigma_{\varrho / 2}(0)\right)} & \leq c(k) \sqrt{\varepsilon} t^{-\frac{k}{4}} \tag{52}
\end{align*}
$$

Proof. By scaling $f_{\varrho}(p, t)=\frac{1}{\varrho} f\left(p, \varrho^{4} t\right)$ we may assume $\varrho=1$. Using (4.13) and (4.9) from [5], see also Proposition 4.6 in [5], we obtain on $B=B_{3 / 4}(0)$ the inequalities

$$
\begin{align*}
\int_{0}^{T} \int_{\Sigma_{3 / 4}}\left(\left|\nabla^{2} A\right|^{2}+|A|^{6}\right) d \mu d t & \leq c \varepsilon \tag{53}\\
\int_{0}^{T}\|A\|_{L^{\infty}\left(\Sigma_{3 / 4}\right)}^{4} d t & \leq c \varepsilon \tag{54}
\end{align*}
$$

Fix a cutoff function $\widetilde{\gamma} \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ with $\chi_{B_{1 / 2}} \leq \widetilde{\gamma} \leq \chi_{B}$ and $\|D \widetilde{\gamma}\|_{L^{\infty}}+$ $\left\|D^{2} \widetilde{\gamma}\right\|_{L^{\infty}} \leq c$. Also define cutoff functions in time by

$$
\chi_{j}(t)= \begin{cases}0 & \text { for } t \leq(j-1) \frac{T}{m} \\ \frac{m}{T}\left(t-(j-1) \frac{T}{m}\right) & \text { in between } \\ 1 & \text { for } t \geq j \frac{T}{m}\end{cases}
$$

where $0 \leq j \leq m$ and $m \in \mathbb{N}_{0}$. Note $\chi_{0} \equiv 1$ on $[0, T], \chi_{m}(T)=1$ and

$$
\begin{equation*}
0 \leq \dot{\chi}_{j} \leq \frac{m}{T} \chi_{j-1} \tag{55}
\end{equation*}
$$

Introducing the notation $\alpha(t)=\|A\|_{L^{\infty}\left(\Sigma_{3 / 4}\right)}^{4}, E_{j}(t)=\int\left|\nabla^{2 j} A\right|^{2} \gamma^{4 j+4} d \mu$ (where $\gamma=\widetilde{\gamma} \circ f$), we have by (4.14) in [5]

$$
\frac{d}{d t} E_{j}(t)+\frac{1}{2} E_{j+1}(t) \leq c \alpha(t) E_{j}(t)+c(1+\alpha(t)) \varepsilon
$$

Letting $e_{j}(t)=\chi_{j}(t) E_{j}(t)$ this implies, using also (55),

$$
\begin{align*}
\frac{d}{d t} e_{j}(t) \leq & c \alpha(t) e_{j}(t)-\frac{1}{2} \chi_{j}(t) E_{j+1}(t) \tag{56}\\
& +c(1+\alpha(t)) \varepsilon+\frac{m}{T} \chi_{j-1}(t) E_{j}(t)
\end{align*}
$$

We now prove by induction for $0 \leq j \leq m$ and all $t \in(0, T]$ the inequality

$$
e_{j}(t)+\frac{1}{2} \int_{0}^{t} \chi_{j}(s) E_{j+1}(s) d s \leq \frac{c(m) \varepsilon}{T^{j}}
$$

For $j=0$ this follows from assumption (50) and estimate (53). Integrating (56) on $[0, T]$ yields, for $j \geq 1$,

$$
\begin{aligned}
e_{j}(t)+ & \frac{1}{2} \int_{0}^{t} \chi_{j}(s) E_{j+1}(s) d s \\
\leq & c \int_{0}^{t} \alpha(s) e_{j}(s) d s+c \varepsilon \int_{0}^{t}(1+\alpha(s)) d s \\
& +\frac{m}{T} \int_{0}^{t} \chi_{j-1}(s) E_{j}(s) d s
\end{aligned}
$$

Now since $\int_{0}^{T} \alpha(t) d t \leq c \varepsilon$ by (54), we may apply Gronwall's inequality to get

$$
\begin{aligned}
e_{j}(t)+\frac{1}{2} \int_{0}^{t} \chi_{j}(s) E_{j+1}(s) d s & \leq c \varepsilon+\frac{c m}{T} \frac{c(m) \varepsilon}{T^{j-1}} \\
& \leq \frac{c(m) \varepsilon}{T^{j}}
\end{aligned}
$$

as $T \leq c(n)$ by assumption. Thus we have at time $t=T$

$$
\int\left|\nabla^{2 m} A\right|^{2} \gamma^{4 m+4} d \mu \leq \frac{c(m) \varepsilon}{T^{m}}
$$

The estimate for $\nabla^{2 m+1} A$ follows by interpolation as in Lemma 5.1 of [5], taking $r=1, p=q=2, \alpha=1, \beta=0, s=4 m+6$ and $t=\frac{1}{s} \in\left[-\frac{1}{2}, \frac{1}{2}\right]$ there and using again $T \leq c(n)$. Renaming T into t, the L^{2}-estimate (52) is proved. Using (4.9) and (4.7) in [5], the L^{∞}-estimate (51) follows. q.e.d.

4. Construction of the blowup

In this section we rescale the Willmore flow at an assumed singularity at finite or infinite time, thereby constructing a static Willmore surface as a limit. We shall need the following local area bound due to L. Simon [8].

Lemma 4.1. Let $f: \Sigma \rightarrow \mathbb{R}^{n}$ be a properly immersed surface. Then for $0<\sigma \leq \varrho<\infty$ and $\Sigma_{\varrho}=\Sigma_{\varrho}\left(x_{0}\right)$ one has

$$
\frac{\mu\left(\Sigma_{\sigma}\right)}{\sigma^{2}} \leq c\left(\frac{\mu\left(\Sigma_{\varrho}\right)}{\varrho^{2}}+\int_{\Sigma_{\varrho}}|H|^{2} d \mu\right)
$$

In particular if Σ is compact without boundary

$$
\frac{\mu\left(\Sigma_{\sigma}\right)}{\sigma^{2}} \leq c(\mathcal{W}(f)+4 \pi \chi(\Sigma))
$$

The following compactness theorem, whose proof is omitted, is a localized version of the result of J. Langer [6].

Theorem 4.2. Let $f_{j}: \Sigma_{j} \longrightarrow \mathbb{R}^{n}$ be a sequence of proper immersions, where Σ_{j} is a two-dimensional manifold without boundary. Let

$$
\Sigma_{j}(R)=\left\{p \in \Sigma_{j}:\left|f_{j}(p)\right|<R\right\}
$$

and assume the bounds

$$
\begin{aligned}
\mu_{j}\left(\Sigma_{j}(R)\right) & \leq c(R) \quad \text { for any } R>0 \\
\left\|\nabla^{k} A_{j}\right\|_{L^{\infty}} & \leq c(k) \quad \text { for any } k \in \mathbb{N}_{0}
\end{aligned}
$$

Then there exists a proper immersion $\hat{f}: \hat{\Sigma} \rightarrow \mathbb{R}^{n}$, where $\hat{\Sigma}$ is again a two-manifold without boundary, such that after passing to a subsequence we have a representation

$$
\begin{equation*}
f_{j} \circ \varphi_{j}=\hat{f}+u_{j} \quad \text { on } \hat{\Sigma}(j)=\{p \in \hat{\Sigma}:|\hat{f}(p)|<j\} \tag{57}
\end{equation*}
$$

with the following properties:

$$
\begin{aligned}
& \varphi_{j}: \hat{\Sigma}(j) \rightarrow U_{j} \subset \Sigma_{j} \quad \text { is diffeomorphic, } \\
& \Sigma_{j}(R) \subset U_{j} \quad \text { if } j \geq j(R) \\
& u_{j} \in C^{\infty}\left(\hat{\Sigma}(j), \mathbb{R}^{n}\right) \quad \text { is normal along } \hat{f} \\
& \left\|\hat{\nabla}^{k} u_{j}\right\|_{L^{\infty}(\hat{\Sigma}(j))} \rightarrow 0 \quad \text { as } j \rightarrow \infty, \text { for any } k \in \mathbb{N}_{0}
\end{aligned}
$$

Roughly speaking, the theorem says that on any ball $B_{R}(0)$ the immersion f_{j} can be written as a normal graph $\hat{f}+u_{j}$ with small norm for j large over a limit immersion \hat{f}, after suitably reparametrizing with φ_{j}.

Now let $f: \Sigma \times[0, T) \rightarrow \mathbb{R}^{n}$ be a smooth Willmore flow defined on a closed surface Σ, where $0<T \leq \infty$. Define

$$
\varkappa(r, t)=\sup _{x \in \mathbb{R}^{n}} \int_{\Sigma_{r}(x)}|A(t)|^{2} d \mu_{t}
$$

Choose an arbitrary sequence $r_{j} \searrow 0$ and assume concentration in the sense that for all j

$$
\begin{equation*}
t_{j}=\inf \left\{t \geq 0: \varkappa\left(r_{j}, t\right)>\varepsilon_{1}\right\}<T \tag{58}
\end{equation*}
$$

where $\varepsilon_{1}=\varepsilon_{0} / c$ and ε_{0}, c are the constants from Theorem 1.2 in [5]. Clearly

$$
\int_{\Sigma_{r_{j}}(x)}\left|A\left(t_{j}\right)\right|^{2} d \mu_{t_{j}} \leq \varepsilon_{1} \quad \text { for any } x \in \mathbb{R}^{n}
$$

On the other hand, choosing an appropriate sequence of balls at times $\tau_{\nu} \searrow t_{j}$, we find a point $x_{j} \in \mathbb{R}^{n}$ satisfying

$$
\int_{f^{-1}\left(\frac{B_{r_{j}}\left(x_{j}\right)}{}\right)}\left|A\left(t_{j}\right)\right|^{2} d \mu_{t_{j}} \geq \varepsilon_{1}
$$

Now we rescale by considering

$$
\begin{gather*}
f_{j}: \Sigma \times\left[-r_{j}^{-4} t_{j}, r_{j}^{-4}\left(T-t_{j}\right)\right) \rightarrow \mathbb{R}^{n}, \\
f_{j}(p, t)=\frac{1}{r_{j}}\left(f\left(p, t_{j}+r_{j}^{4} t\right)-x_{j}\right) . \tag{59}
\end{gather*}
$$

By the above we have $\varkappa_{j}(1, t) \leq \varepsilon_{1}$ for $t \leq 0$ and

$$
\begin{equation*}
\int_{f^{-1}\left(\overline{B_{1}(0)}\right)}\left|A_{j}(0)\right|^{2} d \mu_{j} \geq \varepsilon_{1} \tag{60}
\end{equation*}
$$

Furthermore Theorem 1.2 of [5] yields $r_{j}^{-4}\left(T-t_{j}\right) \geq c_{0}$ and in fact

$$
\varkappa_{j}(1, t) \leq \varepsilon_{0} \quad \text { for } 0<t \leq c_{0} .
$$

We may now apply Theorem 3.5 on parabolic cylinders $B_{1}(x) \times(t-1, t]$ to obtain

$$
\begin{equation*}
\left\|\nabla^{k} A_{j}(t)\right\|_{L^{\infty}} \leq c(k) \quad \text { for }-r_{j}^{-4} t_{j}+1 \leq t \leq c_{0} \tag{61}
\end{equation*}
$$

Furthermore Lemma 4.1 yields

$$
\frac{\mu_{j}(t)\left(\Sigma_{R}(0)\right)}{R^{2}} \leq c\left(\mathcal{W}\left(f_{0}\right)+4 \pi \chi(\Sigma)\right)<\infty
$$

We apply Theorem 4.2 to the sequence $f_{j}=f_{j}(\cdot, 0): \Sigma \rightarrow \mathbb{R}^{n}$, thus obtaining a limit immersion $\hat{f}_{0}: \hat{\Sigma} \rightarrow \mathbb{R}^{n}$. Let $\varphi_{j}: \hat{\Sigma}(j) \rightarrow U_{j} \subset \Sigma$ be as in (57). Then the reparametrization

$$
\begin{equation*}
f_{j}\left(\varphi_{j}, \cdot\right): \hat{\Sigma}(j) \times\left[0, c_{0}\right] \rightarrow \mathbb{R}^{n} \tag{62}
\end{equation*}
$$

is a Willmore flow with initial data

$$
\begin{equation*}
f_{j}\left(\varphi_{j}, 0\right)=\hat{f}_{0}+u_{j}: \hat{\Sigma}(j) \rightarrow \mathbb{R}^{n} \tag{63}
\end{equation*}
$$

The flows (62) satisfy the curvature bounds (61) and have initial data converging locally in C^{k} to the immersion $\hat{f}_{0}: \Sigma \rightarrow \mathbb{R}^{n}$. By standard estimates for geometric evolution equations, see (4.24)-(4.28) in [5], we deduce the locally smooth convergence

$$
\begin{equation*}
f_{j}\left(\varphi_{j}, \cdot\right) \rightarrow \hat{f} \tag{64}
\end{equation*}
$$

where $\hat{f}: \hat{\Sigma} \times\left[0, c_{0}\right] \rightarrow \mathbb{R}^{n}$ is a Willmore flow with initial data f_{0}. But on the other hand we have

$$
\begin{aligned}
\int_{0}^{c_{0}} & \int_{\hat{\Sigma}(j)}\left|\mathbf{W}\left(f_{j}\left(\varphi_{j}, t\right)\right)\right|^{2} d \mu_{f_{j}\left(\varphi_{j}, \cdot\right)} d t \\
& =\int_{0}^{c_{0}} \int_{U_{j}}\left|\mathbf{W}\left(f_{j}(\cdot, t)\right)\right|^{2} d \mu_{j} d t \\
& \leq \int_{\Sigma}\left|A_{j}\left(c_{0}\right)\right|^{2} d \mu_{j}-\int_{\Sigma}\left|A_{j}(0)\right|^{2} d \mu \\
& =\int_{\Sigma}\left|A\left(t_{j}+r_{j}^{4} c_{0}\right)\right|^{2} d \mu-\int_{\Sigma}\left|A\left(t_{j}\right)\right|^{2} d \mu
\end{aligned}
$$

which converges to zero as $j \rightarrow \infty$. This implies that $\mathbf{W}(\hat{f}) \equiv 0$ which means that $\hat{f}(\cdot, t) \equiv \hat{f}_{0}$ is an immersed Willmore surface, which is independent of time. Furthermore (60) implies, because of the smooth convergence in (64),

$$
\begin{equation*}
\int_{\hat{f}^{-1}\left(\overline{B_{1}(0)}\right)}|\hat{A}|^{2} d \hat{\mu} \geq \varepsilon_{1}>0 \tag{65}
\end{equation*}
$$

Thus \hat{f} is not a union of planes.
Lemma 4.3. Let $\hat{f}: \hat{\Sigma} \longrightarrow \mathbb{R}^{n}$ be the blowup constructed above. If $\hat{\Sigma}$ contains a compact component C, then in fact $\hat{\Sigma}=C$ and Σ is diffeomorphic to C.

Proof. For j sufficiently large, $\varphi_{j}(C)$ is open and closed in Σ. Hence by connectedness of Σ we have $\Sigma=\varphi_{j}(C)$ and thus $\hat{\Sigma}=C$. q.e.d.

Theorem 4.4 (Nontriviality of the Blowup). Let $\hat{f}: \hat{\Sigma} \rightarrow \mathbb{R}^{n}$ be the blowup of a Willmore flow as constructed above. Then none of
the components of \hat{f} parametrizes a round sphere. In particular, the blowup has a component which is a nonumbilic (compact or noncompact) Willmore surface.

Proof. Otherwise, Lemma 4.3 implies that the blowup surface \hat{f} : $\hat{\Sigma} \rightarrow \mathbb{R}^{n}$ is an embedded round sphere, i.e., has no further components. It follows that, up to the diffeomorphism $\varphi_{j}: \hat{\Sigma} \rightarrow \Sigma$, the map $f_{j}(\cdot, 0)$ is C^{k}-close to a round sphere and therefore

$$
\begin{aligned}
\int_{\Sigma}\left|A^{\circ}\left(t_{j}\right)\right|^{2} d \mu & =\int_{\Sigma}\left|A_{j}^{\circ}(0)\right|^{2} d \mu_{j} \rightarrow 0 \\
\mu\left(t_{j}\right)(\Sigma) & =r_{j}^{2} \mu_{j}(0)(\Sigma) \rightarrow 0
\end{aligned}
$$

This contradicts the lower area bound which will be proved in Theorem 5.2. q.e.d.

5. Small initial energy

In this section we finally prove our main result:
Theorem 5.1 (Global Existence and Convergence for Small Initial Energy). There exists an $\varepsilon_{0}=\varepsilon_{0}(n)>0$ such that if at time $t=0$ there holds

$$
\mathcal{W}\left(f_{0}\right)=\int_{\Sigma}\left|A^{\circ}\right|^{2} d \mu<\varepsilon_{0}
$$

then the Willmore flow exists smoothly for all times and converges exponentially to a round sphere as $t \rightarrow \infty$.

We split the proof into several steps. The first step was already used in Theorem 4.4 and is of independent interest.

Theorem 5.2 (Area Estimate). Let $f: \Sigma \times[0, T) \rightarrow \mathbb{R}^{n}$ be a Willmore flow with $\mathbf{W}(f)=\int_{\Sigma}\left|A^{\circ}\right|^{2} d \mu \leq \varepsilon<\varepsilon_{1}$, where $\varepsilon_{1}=\varepsilon_{1}(n)$ is as in Proposition 3.4. Then

$$
\begin{gather*}
(1-c \varepsilon) \mu_{0}(\Sigma) \leq \mu(\Sigma) \leq(1+c \varepsilon) \mu_{0}(\Sigma) \tag{66}\\
\int_{0}^{t} \int_{\Sigma}\left(|\nabla A|^{2}+|A|^{2}\left|A^{\circ}\right|^{2}\right) d \mu d s \leq c \varepsilon \mu_{0}(\Sigma) \tag{67}
\end{gather*}
$$

Proof. We have

$$
\frac{d}{d t} \mu(\Sigma)=-\int_{\Sigma}|\nabla H|^{2} d \mu+\int_{\Sigma}\left\langle Q\left(A^{\circ}\right) H, H\right\rangle d \mu
$$

Multiplying Simons' identity (10) by A° and integrating yields (cf. Lemma 2.2):

$$
\begin{align*}
& 2 \int_{\Sigma}\left|\nabla A^{\circ}\right|^{2} d \mu+\int_{\Sigma}|H|^{2}\left|A^{\circ}\right|^{2} d \mu \tag{68}\\
& \quad=\int_{\Sigma}|\nabla H|^{2} d \mu+\int_{\Sigma} A^{\circ} * A^{\circ} * A^{\circ} * A^{\circ} d \mu
\end{align*}
$$

As $\left\langle Q\left(A^{\circ}\right) H, H\right\rangle \leq\left|A^{\circ}\right|^{2}|H|^{2}$ by (14), we obtain

$$
\begin{aligned}
\frac{d}{d t} \mu(\Sigma)+2 \int_{\Sigma}\left|\nabla A^{\circ}\right|^{2} d \mu & \leq c \int_{\Sigma}\left|A^{\circ}\right|^{4} d \mu \\
& \leq c\left\|A^{\circ}\right\|_{L^{\infty}}^{4} \mu(\Sigma)
\end{aligned}
$$

From (48) with $\varrho=\infty$ we have

$$
\int_{0}^{t}\left\|A^{\circ}\right\|_{L^{\infty}}^{4} d s \leq c \varepsilon
$$

and the Gronwall inequality yields

$$
\mu(\Sigma)+2 \int_{0}^{t} \int_{\Sigma}\left|\nabla A^{\circ}\right|^{2} d \mu d s \leq(1+c \varepsilon) \mu_{0}(\Sigma)
$$

On the other hand, by Michael-Simon

$$
\begin{aligned}
\int|\nabla H|^{2} d \mu & \leq c\left(\int\left(\left|\nabla^{2} H\right|+|H||\nabla H|\right) d \mu\right)^{2} \\
& \leq c \mu(\Sigma) \int_{\Sigma}\left(\left|\nabla^{2} H\right|^{2}+|H|^{2}|\nabla H|^{2}\right) d \mu
\end{aligned}
$$

As $\left\langle Q\left(A^{\circ}\right) H, H\right\rangle \geq 0$ we obtain

$$
\frac{d}{d t} \mu(\Sigma) \geq-c \mu(\Sigma) \int_{\Sigma}\left(\left|\nabla^{2} H\right|^{2}+|H|^{2}|\nabla H|^{2}\right) d \mu
$$

Using (47) with $\varrho=\infty$ implies the remaining inequality in (66). In particular we obtain

$$
\int_{0}^{t} \int_{\Sigma}\left|\nabla A^{\circ}\right|^{2} d \mu d s \leq c \varepsilon \mu_{0}(\Sigma)
$$

and

$$
\begin{aligned}
\int_{0}^{t} \int_{\Sigma}\left|A^{\circ}\right|^{4} d \mu d s & \leq(1+c \varepsilon) \mu_{0}(\Sigma) \int_{0}^{t}\left\|A^{\circ}\right\|_{L^{\infty}}^{4} d s \\
& \leq c \varepsilon \mu_{0}(\Sigma)
\end{aligned}
$$

Finally from (68) and Codazzi (5)

$$
\begin{aligned}
\int_{0}^{t} \int_{\Sigma}|H|^{2}\left|A^{\circ}\right|^{2} d \mu d s & \leq c \int_{0}^{t} \int_{\Sigma}\left(\left|\nabla A^{\circ}\right|^{2}+\left|A^{\circ}\right|^{4}\right) d \mu d s \\
& \leq c \varepsilon \mu_{0}(\Sigma) .
\end{aligned}
$$

This proves the theorem.
q.e.d.

Remark. The extrinsic diameter is bounded above and below by the diameter of the initial surface, cf. [8].

Lemma 5.3. Under the assumptions of Theorem 5.1 there exists a radius $r_{0}>0$ such that

$$
\int_{\Sigma_{r_{0}}(x)}|A(t)|^{2} d \mu \leq \varepsilon_{1} \quad \text { for all } x \in \mathbb{R}^{n}, t \in[0, \infty)
$$

where $\varepsilon_{1}>0$ is as in (58).
Proof. Otherwise, the blowup construction of Section 4 yields an immersed Willmore surface $\hat{f}: \hat{\Sigma} \rightarrow \mathbb{R}^{n}$ with

$$
\int_{\hat{f}^{-1}\left(\overline{B_{1}(0)}\right)}|\hat{A}|^{2} d \hat{\mu} \geq \varepsilon_{1},
$$

whereas

$$
\int_{\hat{\Sigma}}\left|\hat{A}^{\circ}\right|^{2} d \hat{\mu}<\varepsilon_{0} .
$$

By Theorem 2.7 the surface \hat{f} must be a union of embedded planes and round spheres, which however contradicts the nontriviality of the blowup, Theorem 4.4.
q.e.d.

Lemma 5.4. For any sequence $t_{j} \rightarrow \infty$ there exist $x_{j} \in \mathbb{R}^{n}$ and $\varphi_{j} \in \operatorname{Diff}(\Sigma)$ such that, after passing to a subsequence, the immersions $f\left(\varphi_{j}, t_{j}\right)-x_{j}$ converge smoothly to an embedded round sphere.

Proof. Let $x_{j}=f\left(p, t_{j}\right)$ where $p \in \Sigma$ is arbitrary. By the previous lemma and the interior curvature estimates from Theorem 3.5, we have for $t_{j} \geq 1$

$$
\begin{equation*}
\left\|\nabla^{k} A\left(\cdot, t_{j}\right)\right\|_{L^{\infty}} \leq c(k) \tag{69}
\end{equation*}
$$

Furthermore, Lemma 4.1 yields the area bound

$$
\frac{\mu\left(t_{j}\right)\left(B_{R}\left(x_{j}\right)\right)}{R^{2}} \leq c\left(\mathcal{W}\left(f\left(\cdot, t_{j}\right)\right)+4 \pi \chi(\Sigma)\right)
$$

According to Theorem 4.2, there exist a properly immersed surface \hat{f} : $\hat{\Sigma} \longrightarrow \mathbb{R}^{n}$ and diffeomorphisms $\varphi_{j}: \hat{\Sigma}(j) \longrightarrow U_{j} \subset \Sigma$, such that (after selection of a subsequence)

$$
f\left(\varphi_{j}, t_{j}\right)-x_{j} \longrightarrow \hat{f}
$$

locally in C^{k} on $\hat{\Sigma}$. On $\hat{\Sigma}(j)$ we consider the Willmore flows

$$
g_{j}(p, t)=f\left(\varphi_{j}(p), t_{j}+t\right)-x_{j} \quad\left(t \geq-t_{j}\right) .
$$

These satisfy the curvature estimates (69), and the initial data (at $t=0$) converge to \hat{f}. Arguing as in (64), we obtain that g_{j} converges locally smoothly on $\hat{\Sigma} \times[0, \infty)$ to a Willmore flow $g: \hat{\Sigma} \times[0, \infty) \rightarrow \mathbb{R}^{n}$ with initial data \hat{f}. But now

$$
\int_{0}^{1} \int_{\hat{\Sigma}(j)}\left|\mathbf{W}\left(g_{j}\right)\right|^{2} d \mu_{g_{j}} d t \leq \int_{t_{j}}^{t_{j}+1} \int_{\Sigma}|\mathbf{W}(f)|^{2} d \mu d t \rightarrow 0 \quad \text { as } j \rightarrow \infty
$$

Therefore we have $\mathbf{W}(g) \equiv 0$ which proves that \hat{f} is a Willmore surface, and Theorem 2.7 implies that \hat{f} is a union of embedded planes and round spheres. Using the upper area bound in (66) and excluding several components as in Lemma 4.3 we conclude that \hat{f} must be a round sphere, and that the subconvergence is smooth.
q.e.d.

As a consequence of the above, we obtain that

$$
\begin{equation*}
\mathcal{W}(f)=\int_{\Sigma}\left|A^{\circ}\right|^{2} d \mu \rightarrow 0 \quad \text { as } t \rightarrow \infty \tag{70}
\end{equation*}
$$

Moreover, Theorem 5.2 implies the existence of the nonzero limit

$$
\begin{equation*}
\omega=\lim _{t \rightarrow \infty} \mu(t)(\Sigma) \in(0, \infty) \tag{71}
\end{equation*}
$$

Finally we now prove exponential decay of the curvature; from this one obtains smooth convergence of f to a round sphere \hat{f} and thus Theorem 5.1 in a standard way.

Lemma 5.5. As $t \nearrow \infty$, the following asymptotic statements hold, where $\lambda>0$ is a constant:

$$
\begin{align*}
\left\|\nabla^{k} A(t)\right\|_{L^{\infty}} & \leq c_{k} e^{-\lambda t} \quad \text { for } k \geq 1 \tag{72}\\
\left\|A^{\circ}\right\|_{L^{\infty}} & \leq c_{0} e^{-\lambda t} \tag{73}
\end{align*}
$$

Proof. For ω as in (71), the previous Lemma implies that the sectional curvature and the mean curvature of $f(\cdot, t)$ satisfy

$$
\begin{aligned}
& \left\|K(\cdot, t)-\frac{4 \pi}{\omega}\right\|_{L^{\infty}} \longrightarrow 0 \\
& \left\||H|^{2}-\frac{16 \pi}{\omega}\right\|_{L^{\infty}} \longrightarrow 0 \quad \text { as } t \rightarrow \infty .
\end{aligned}
$$

In particular, we may assume after a fixed time translation that

$$
|H|^{2} \geq c>0 \quad \text { for all } t \geq 0
$$

By Lemma 3.3, we then have for all t

$$
\partial_{t} \int_{\Sigma}\left|A^{\circ}\right|^{2} d \mu+c \int_{\Sigma}\left(\left|\nabla^{2} A\right|^{2}+|\nabla A|^{2}+\left|A^{\circ}\right|^{2}\right) d \mu \leq 0,
$$

which implies

$$
\begin{equation*}
\int_{\Sigma}\left|A^{\circ}\right|^{2} d \mu+\int_{t}^{\infty} \int_{\Sigma}\left(\left|\nabla^{2} A\right|^{2}+|\nabla A|^{2}\right) d \mu d s \leq c e^{-2 \lambda t} \tag{74}
\end{equation*}
$$

for a constant $\lambda=\lambda(n)>0$. From here we easily derive exponential decay of all derivatives of A. Namely, letting $\varrho \rightarrow \infty$ in Corollary 3.4 of [5], we have for $\phi=\nabla^{m} A(m \geq 1)$

$$
\frac{d}{d t} \int|\phi|^{2} d \mu+\frac{3}{4} \int\left|\nabla^{2} \phi\right|^{2} d \mu \leq \int\left(P_{3}^{m+2}(A)+P_{5}^{m}(A)\right) * \phi d \mu .
$$

Using that A and all its derivatives remain bounded as $t \rightarrow \infty$, we can estimate

$$
\begin{aligned}
\int P_{2}^{0}(A) * \nabla^{m+2} A * \phi d \mu & \leq \varepsilon \int\left|\nabla^{2} \phi\right|^{2} d \mu+c(\varepsilon) \int\left|\nabla^{m} A\right|^{2} d \mu \\
\int\left(\hat{P}_{3}^{m+2}(A)+P_{5}^{m}(A)\right) * \phi d \mu & \leq c \sum_{j=1}^{m+1} \int\left|\nabla^{j} A\right|^{2} d \mu
\end{aligned}
$$

Here $\hat{P}_{3}^{m+2}(A)$ denotes all terms of type $P_{3}^{m+2}(A)$ that do not contain the $(m+2)$-th derivative, and of course c is not a universal constant here. We obtain

$$
\frac{d}{d t} \int|\phi|^{2} d \mu+\frac{1}{2} \int\left|\nabla^{2} \phi\right|^{2} d \mu \leq c \sum_{j=1}^{m+1} \int\left|\nabla^{j} A\right|^{2} d \mu
$$

and now by induction using (74)

$$
\left\|\nabla^{m} A\right\|_{L^{2}}^{2}+\int_{t}^{\infty}\left\|\nabla^{m+2} A\right\|_{L^{2}}^{2} d s \leq c e^{-2 \lambda t}
$$

By a Sobolev inequality, e.g., the Michael-Simon inequality, we deduce

$$
\begin{align*}
\left\|A^{\circ}\right\|_{L^{\infty}} & \leq c_{0} e^{-\lambda t} \tag{75}\\
\left\|\nabla^{k} A\right\|_{L^{\infty}} & \leq c_{k} e^{-\lambda t} \tag{76}
\end{align*}
$$

which ends the proof of Lemma 5.5 and of Theorem 5.1.
q.e.d.

References

[1] R. Bryant, A duality theorem for Willmore surfaces, J. Differential Geom. 20 (1984) 23-53.
[2] J. Escher \& G. Simonett, Moving surfaces and abstract parabolic evolution equations, Topics in Nonlinear Analysis 183-212, Progr. Nonlinear Differential Equations Appl. 35, Birkhäuser Basel, 1999.
[3] G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geom. 20 (1984) 237-266.
[4] _, The volume-preserving mean curvature flow, J. Reine Angew. Math. 382 (1987) 35-48.
[5] E. Kuwert \& R. Schätzle, Gradient flow for the Willmore functional, preprint Math. Fak. Univ. Freiburg Nr. 99-30 (1999) (to appear in Commun. Analysis Geom.).
[6] J. Langer, A compactness theorem for surfaces with L_{p}-bounded second fundamental form, Math. Ann. 270 (1985) 223-234.
[7] J.H. Michael \& L. Simon, Sobolev and mean-value inequalities on generalized submanifolds of \mathbb{R}^{n}, Commun. Pure Appl. Math. 26 (1973) 361-379.
[8] L. Simon, Existence of surfaces minimizing the Willmore functional, Commun. Analysis Geom. 1(2) (1993) 281-326.
[9] G. Simonett, The Willmore flow near spheres, preprint, 1999.
[10] J. Simons, Minimal varieties in Riemannian manifolds, Annals of Math. 88 (1968) 62-105.
[11] G. Thomsen, Grundlagen der konformen Flächentheorie, Abh. Math. Sem. Hamburg 3 (1924) 31-56.
[12] T. Toro, Surfaces with generalized second fundamental form in L^{2} are Lipschitz manifolds, J. Differential Geom. 39 (1994) 65-101.
[13] T. Willmore, Riemannian geometry (Chapter 7), Oxford University Press, New York, 1993.

Albert-Ludwigs-Universität Freiburg
Universität Bonn

[^0]: ${ }^{1}$ Note added in proof: a numerical example of a singularity was recently contributed by U. Mayer \& G. Simonett: http://www.math.utah.edu/~mayer/math /numerics.html.

