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Abstract The Wilson–Cowan model of interacting neurons
(1973) is one of the most influential papers published in Bio-
logical Cybernetics (Kybernetik). This paper and a compan-
ion paper published in 1972 have been cited over 1000 times.
Rather than focus on the microscopic properties of neurons,
Wilson and Cowan analyzed the collective properties of large
numbers of neurons using methods from statistical mechan-
ics, based on the mean-field approach. New experimental
techniques to measure neuronal activity at the level of large
populations are now available to test these models, including
optical recording of brain activity with intrinsic signals and
voltage sensitive dyes, and new methods for analyzing EEG
and MEG. These measurement techniques have revealed pat-
terns of coherent activity that span centimetres of tissue in
the cerebral cortex. Here the underlying ideas are reviewed
in a historic context.

The Wilson–Cowan (1972; 1973) model is a set of differ-
ential equations that describe the time evolution of the mean
level of activity of populations of neurons, using the now
familiar nonlinear sigmoidal function to represent the inter-
actions between the populations. This mean-field approach
has been used to address many problems in computational
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neuroscience (Sejnowski 1976a; Amit and Brunel 1997;
Brunel 2000; Latham et al. 2000; Hertz et al. 2004; Renart et
al. 2007). The Wilson–Cowan model has also been the start-
ing point for many extensions. The special case with sym-
metric connectivity allowed an energy function to be defined
and was analyzed by Hopfield (1982) and Hopfield and Tank
(1986). They showed that the point attractors in this model
could be used to store content-addressable memories and
that constraint satisfaction problems could also be solved
with these equations. Continuum extensions have also been
proposed (van Hemmen 2004), where the differences with
excitable media are analyzed.

Another important special case is the “balanced” network,
in which the excitatory and inhibitory inputs on average
cancel (Shadlen and Newsome 1998; Haider et al. 2006;
Renart et al. 2007). In the balanced condition, fluctuations
can drive the neuron to fire, thereby producing an irreg-
ular firing patterns. Equations governing the second-order
correlations and covariances have been proposed and used to
study balanced networks (Sejnowski 1976b; van Vreeswijk
and Sompolinsky 1996, 1998; Moreno-Bote and Parga 2006;
Soula and Chow 2007; El Boustani and Destexhe 2009). Sim-
ilar approaches were also proposed for networks of binary
neuron models (Hinton and Sejnowski 1983; Ackley et al.
1985; Ohira and Cowan 1993; Ginzburg and Sompolinsky
1994). A field-theoretic approach that generalizes the mean-
field equations is also under way (Buice et al. 2009).

Other extensions include more complex intrinsic prop-
erties of neurons such as spike-frequency adaptation and
bursting. In the simplest case, it is possible to obtain a sec-
ond-order mean-field model by using a discretized time frame
(Soula and Chow 2007), or in continuous-time (El Boustani
and Destexhe 2009). The core of this approach is the “trans-
fer function”, which relates the output of the neuron (firing
rate and its variance) to its inputs (mean rate and variance of
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excitatory and inhibitory inputs). Transfer functions can be
estimated analytically using the Fokker–Planck approach
(Tuckwell 1988; Abbott and van Vreeswijk 1993; Brunel
and Sergi 1998; Brunel 2000; Fourcaud and Brunel 2002).
However, such results apply only to continuous-time descrip-
tions, and exact solutions are possible only for current-based
models, which are not realistic and cannot take into account
properties of neurons obtained from conductance measure-
ments in vivo. More realistic transfer functions can be
obtained from approximations (Kuhn et al. 2004) or numer-
ical estimates (Kumar et al. 2008; Soula and Chow 2007).
It should also be possible to estimate the transfer function
directly from real cortical neurons in vitro using a dynamic-
clamp with injection of different combinations of conduc-
tance-based excitatory and inhibitory synaptic inputs (Bal
and Destexhe, work in progress).

The derivation of the Wilson–Cowan model depended on
taking the “thermodynamic limit” (in which the number of
neurons approaches infinity), but finite-size effects in sys-
tems with a finite number of neurons can be important. This
results in intermediate “mesoscopic” models that may be
appropriate for modelling intermediate spatial scales, such
as the number of neurons covered by a camera pixel in opti-
cal imaging, which ranges from hundreds to thousand of neu-
rons (Brunel 2000; Renart et al. 2007; Soula and Chow 2007;
El Boustani and Destexhe 2009). The extension of this app-
roach to the spatial domain is a challenge for future studies.

To conclude, we have listed here just a few of the many
theoretical developments that the Wilson–Cowan model has
inspired. As experimental advances in recording from large
populations of neurons are refined it will be possible to test
the predictions of these models. Multi-scale models are now
being developed that will integrate macroscopic models at
large spatial scales with models at the microscopic scale,
such as the Hodgkin–Huxley biophysical models of single
neurons.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

Abbott LF, van Vreeswijk C (1993) Asynchronous states in networks
of pulse-coupled oscillators. Phys Rev E 48:1483–1490

Ackley DH, Hinton GE, Sejnowski TJ (1985) A learning algorithm for
Boltzmann machines. Cogn Sci 9:147–169

Amit DJ, Brunel N (1997) Model of global spontaneous activity and
local structured activity during delay periods in the cerebral cor-
tex. Cereb Cortex 7:237–252

Buice M, Cowan JD, Chow CC (2009) Generalized activity equations
for neural networks. Neural Comput (in press)

Brunel N (2000) Dynamics of sparsely connected networks of excit-
atory and inhibitory spiking neurons. J Comput Neurosci 8:183–
208

Brunel N, Sergi S (1998) Firing frequency of leaky integrate-and-fire
neurons with synaptic currents dynamics. J Theor Biol 195:87–95

El Boustani S, Destexhe A (2009) A master equation formalism for
macroscopic modelling of asynchronous irregular activity states.
Neural Comput 21:46–100

Fourcaud N, Brunel N (2002) Dynamics of the firing probability of
noisy integrate-and-fire neurons. Neural Comput 14:2057–2110

Ginzburg I, Sompolinsky H (1994) Theory of correlations in stochastic
neural networks. Phys Rev 50:3171–3191

Haider B, Duque A, Hasenstaub AR, McCormick DA (2006) Neocorti-
cal network activity in vivo is generated through a dynamic balance
of excitation and inhibition. J Neurosci 26:4535–4545

van Hemmen JL (2004) Continuum limit of discrete neuronal struc-
tures: Is cortical tissue an “excitable” medium?. Biol Cybern
91:347–358

Hertz J, Lerchner A, Ahmadi M (2004) Mean field methods for cortical
network dynamics. In: Érdi P et al (eds) Computational neurosci-
ence: cortical dynamics. Springer, Berlin, pp 71–89

Hinton GE, Sejnowski TJ (1983) Optimal perceptual inference. In: Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition (CVPR). IEEE Computer Society, Washington DC,
pp 448–453

Hopfield JJ (1982) Neural networks and physical systems with emer-
gent collective computational abilities. Proc Natl Acad Sci
79:2554–2558

Hopfield JJ, Tank DW (1986) Computing with neural circuits: a model.
Science 233:625–633

Kuhn A, Aertsen A, Rotter S (2004) Neuronal integration of synaptic
input in the fluctuation-driven regime. J Neurosci 24:2345–2356

Kumar A, Schrader S, Aertsen A, Rotter S (2008) The high-conduc-
tance state of cortical networks. Neural Comput 20:1–43

Latham PE, Richmond BJ, Nelson PG, Nirenberg S (2000) Intrinsic
dynamics in neuronal networks. I. Theory. J Neurophysiol 83:808–
827

Moreno-Bote R, Parga N (2006) Auto- and crosscorrelograms for the
spike response of leaky integrate-and-fire neurons with slow syn-
apses. Phys Rev Lett 96:028101

Ohira T, Cowan JD (1993) Master-equation approach to stochastic neu-
rodynamics. Phys Rev E 48:2259–2266

Renart A, Moreno-Bote R, Wang XJ, Parga N (2007) Mean-driven and
fluctuation-driven persistent activity in recurrent networks. Neural
Comput 19:1–46

Sejnowski TJ (1976a) On global properties of neuronal interaction. Biol
Cybern 22:85–95

Sejnowski TJ (1976b) On the stochastic dynamics of neuronal interac-
tion. Biol Cybern 22:203–211

Shadlen MN, Newsome WT (1998) The variable discharge of cortical
neurons: implications for connectivity, computation, and informa-
tion coding. J Neurosci 18:3870–3896

Soula H, Chow CC (2007) Stochastic dynamics of a finite-size spiking
neural network. Neural Comput 19:3262–3292

Tuckwell HC (1988) Introduction to theoretical neurobiology.
Cambridge University Press, Cambridge

van Vreeswijk C, Sompolinsky H (1996) Chaos in neuronal net-
works with balanced excitatory and inhibitory activity. Science
274:1724–1726

van Vreeswijk C, Sompolinsky H (1998) Chaotic balanced state in a
model of cortical circuits. Neural Comput 10:1321–1371

Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in
localized populations of model neurons. Biophys J 12:1–24

Wilson HR, Cowan JD (1973) A mathematical theory of the functional
dynamics of nervous tissue. Kybernetik 13:55–80

123


	Abstract

