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In drug addiction, cues previously associated with drug use can produce craving and

frequently trigger the resumption of drug taking in individuals vulnerable to relapse.

Environmental stimuli associated with drugs or natural reinforcers can become reliably

conditioned to increase behavior that was previously reinforced. In preclinical models of

addiction, these cues enhance both drug self-administration and reinstatement of drug

seeking. In this review, we will dissociate the roles of conditioned stimuli as reinforcers

from their modulatory or discriminative functions in producing drug-seeking behavior. As

well, we will examine possible differences in neurobiological encoding underlying these

functional differences. Specifically, we will discuss how models of drug addiction and

relapse should more systematically evaluate these different types of stimuli to better

understand the neurobiology underlying craving and relapse. In this way, behavioral and

pharmacotherapeutic interventions may be better tailored to promote drug use cessation

outcomes and long-term abstinence.

Keywords: discriminative stimulus, conditioned stimulus, relapse, neurobiology, reinstatement, addiction

INTRODUCTION

Relapse triggered by cues associated with drugs of abuse is a hallmark of addiction and is a primary
contributor to impeding success in maintaining abstinence. Discrete and contextual stimuli
associated with previous drug use can initiate craving in individuals with substance dependence,
potentially leading to subsequent relapse (Childress et al., 1993). In fact, it has been hypothesized
that compulsive drug use could be a form of automatized behavior that is stereotyped, challenging
to regulate, occurs separate from awareness, and is bound to stimuli associated with the drug
(Tiffany and Carter, 1998). Individuals become sensitive to environmental stimuli that acquire
motivational salience through repeated pairings with primary reinforcers, such as the presentation
of food or drug (Bouton et al., 1993; O’Brien, 2003; Kalivas and Volkow, 2005; Weiss, 2010).
Animal studies have established that these cues enhance drug self-administration, illustrating the
importance of cues in maintaining drug use (Caggiula et al., 2001; Schenk and Partridge, 2001).
These environmental stimuli become conditioned with the primary reinforcing effects of abused
drugs, as can discriminative stimuli that predict drug presentation, both of which consistently
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produce drug seeking in animal models of cue-induced relapse
(See, 2002; Shaham et al., 2003; Crombag et al., 2008; Bossert
et al., 2013). Interestingly, cocaine-related stimuli (presented
non-contingently) can evoke drug conditioned responses in
cocaine-dependent humans (Ehrman et al., 1992).

Contingent, discrete environmental cues associated with
drugs of abuse can produce increases in behavior previously
reinforced by the drug when presented to an animal under
conditions of abstinence. Additionally, physical environments
contain a constellation of stimuli that can become occasion
setters (OSs) and modulate the response-eliciting efficacy of
discrete Pavlovian conditioned stimuli paired with drug self-
administration (Gerber and Stretch, 1975). Likewise, these cues
can serve a discriminatory function that predicts the availability
of a drug of abuse upon the completion of a particular emitted
response (Weiss et al., 2001). In addition to these salient,
motivating cues or contexts, reinstatement of drug seeking
(typically defined as increased responding on a previously
drug-paired operandum following extinction) can be produced
following presentation of other stimuli, including footshock or
pharmacological stressors such as yohimbine (Erb et al., 1996;
Buczek et al., 1999; Shaham et al., 2000) or priming injections of
the previously self-administered drug (Gerber and Stretch, 1975).

Although the above preclinical models are frequently used
to examine the neurobiology of drug relapse, it is important to
critically examine their predictive validity (Epstein et al., 2006). It
has been proposed that the process involved in behavioral change
is unstable, thus lapse and relapse are likely (Bouton, 2014). From
a learning perspective, changing behavior (i.e., inhibiting relapse)
can be difficult since learning a new behavior does not erase
the old behavior that is dependent on the context in which it is
learned (Bouton, 2014; Bouton and Todd, 2014). Thus, lapse and
relapse are especially probable if extinction of the drug-related
behavior does not occur in the context in which drugs were
taken. With that caveat, the reinstatement model of drug relapse
has been widely used to examine the neurobiology underpinning
lapse and relapse, and has been used to characterize potential
vulnerabilities in the propensity to relapse (Knackstedt and
Kalivas, 2009; Robinson et al., 2014).

In this review, we will examine the neurobiology underlying
the process of encoding drug-related cues and how these
cues might be encoded differentially depending on how they
modulate behavior. As well, we will explore the neurobehavioral
mechanisms underlying differential stimulus control of cues in
motivated behaviors. Finally, we will discuss the importance of
systematically examining and describing different types of cues
in the discovery of neurobiological underpinnings of motivated
behavior.

Role of Cues in Drug-Seeking Behavior
Stimuli that are consistently paired with reward or reinforcers
can come to influence reward-related behavior on their own,
including drugs of abuse. These stimulus-reward relations are
most obvious in Pavlovian paradigms, where a stimulus reliably
predicts the occurrence of a food or drug reward. In addition
to Pavlovian control, stimuli can also serve a discriminative
or modulatory function, informing the organism as to the

availability of a reward. Specifically, these stimuli inform an
organism when a particular action will result in a specific
reward (i.e., discriminative stimulus; SD; (Shahan, 2010), or
when a specific stimulus will reliably predict a particular
reward (occasion setter; OS; Holland, 1998); these modulatory
relationships can also come to guide reward-related behavior
on their own. Intriguingly, it appears that the neurobehavioral
mechanisms engaged by a stimulus are dependent upon
what function it serves (reinforcing or modulatory; Willuhn
et al., 2010; Beckmann and Chow, 2015). Thus, understanding
the role of stimulus-reward relationships in substance abuse
and other reward-associated pathologies first requires an
understanding of the neurobehavioral mechanisms involved in
the different functional relationships between reward-associated
stimuli and behavior. Above all, the dissociation of the
neurobehavioral mechanisms underlying differential stimulus
control might reveal novel, more-specific neurobehavioral targets
to treat reward-associated pathologies, especially substance use
disorders.

Control of Drug Seeking by Contingent Pavlovian

Conditioned Stimuli
When an initially neutral stimulus is contiguously and
consistently paired with a primary reward, like food or an
abused drug, that stimulus can come to elicit responses on its
own that are related to the primary reward it has been paired
with, becoming a conditioned stimulus (CS). In preclinical
models, one way experimenters utilize this process to study the
role of stimulus control in drug-related behavior is to pair a
neutral stimulus with an intravenous infusion of a drug of abuse;
this is typically done by presenting the stimulus simultaneously
with the drug infusion following an operant response (e.g., lever
press). The repeated pairing with the primary (rewarding) effects
of the drug transforms the stimulus into a drug-associated CS
that can maintain the lever press alone.

Behavioral control via a CS is typically exhibited by response
contingent CS-induced reinstatement of lever pressing following
some extended period of extinction. Specifically, following the
training period, the experimenter places the animal under
extinction conditions, where lever presses no longer lead to
the drug infusion or the associated CS. Over time, lever
press behavior will decrease under extinction conditions. The
experimenter will then present the CS alone following each lever
press during reinstatement test sessions. The control of lever
pressing via the CS is exhibited by the once extinguished operant
response (lever press) being reinstated through the response
contingent presentation of the drug-associated CS alone. It
should also be noted that “incubation of craving” is another
model in which contingent CSs maintain lever pressing alone. In
this model, the animal undergoes forced abstinence for a period
of time. When placed back into the drug-associated context (i.e.,
operant chamber), animals will emit lever presses under control
of a contingent CS alone. Generally speaking, the amount of
emitted lever pressing increases as more time elapses in forced
abstinence (Conrad et al., 2008), hence the “incubation” of CS
efficacy to maintain operant lever presses alone.
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Importantly, the presentation of the CS alone during a
reinstatement test session is contingent upon the previously
trained lever-press behavior. Thus, from a behavioral perspective,
the mechanism responsible for the reinstatement of the
previously extinguished lever pressing is the conditioned
reinforcing effects of the drug-associated CS. Through the
repeated pairings between the CS and drug during self-
administration, the CS comes to acquire reinforcing properties
capable of maintaining lever pressing on its own. Although, it is
important to note that these properties are short-lived without
maintaining the drug-CS association. In typical contingent
cue-induced reinstatement paradigms, lack of reconditioning
to the CS results in an extinction of CS-related conditioned
reinforcement with repeated reinstatement test sessions.

The conditioned reinforcing efficacy of drug-associated CSs is
the most commonly used method for studying stimulus control
of drug-seeking behavior (Bossert et al., 2013) in preclinical
models and has demonstrated to be an effective method of
study for many drug classes, including stimulants (Gipson et al.,
2013a; Parsegian and See, 2014) and opiates (Bossert et al., 2005).
Additionally, as stated above, the CS model has been extended
to study long-term control of drug-associated stimuli following
long periods of forced abstinence. Specifically, these studies have
shown that the drug-associated CS can maintain greater rates of
discrete cue-reinforced responding following longer periods of
forced abstinence (Tran-Nguyen et al., 1998; Pickens et al., 2011).
However, because of its contingent nature, it is not likely tomodel
all types of stimulus control that individuals with substance use
disorders are subjected to, as substance abusers are often exposed
to drug-associated cues through non-contingent means.

Control of Drug Seeking by Non-contingent Stimuli
Non-contingent stimuli often take on a modulatory function,
as opposed to the reinforcing function assumed by discrete
Pavlovian CSs; they can serve to either inform the organismwhen
a Pavlovian CS will effectively predict a future reward or when
a particular action will result in a specific consequence. Despite
the modulatory nature of these cues, they can have powerful
control over drug seeking. First, it has been shown that context
can serve as an OS, modulating the reinforcing efficacy of a
drug-associated CS (Crombag and Shaham, 2002; Crombag et al.,
2008). Following training of self-administration with a drug-CS
relationship within a particular context (A), animals are then
placed into a different context and responses then lead only to the
CS alone (B). After responses for the CS alone have extinguished,
animals are then placed back into the original training context
(A), where responses again are followed only by the CS alone.
This return to the original training context (A) after extinction
in a different context (B) results in the renewal of responding for
the CS.

Additionally it has been shown that environmental context
can serve as a discriminative stimulus (SD). Specifically, the
context in which an individual is placed can differentially signal
the availability of drug following a particular operant response
(Fuchs et al., 2007, 2008; Crombag et al., 2008; Lasseter et al.,
2009, 2010, 2011, 2014; Ramirez et al., 2009). Following self-
administration within a specific context (A), animals are then

placed into a separate context (B) where responses result in
no consequences. Following extinction of responding in the
extinction context (B), animals are then returned to the original
training context (A), where responding once again has no
consequences. However, return to the original training context
alone increases drug seeking responses. An SD can also signal
duration of access to drug self-administration and intake patterns
can be brought under discriminative control. Specifically, the
extended access model of self-administration (Ahmed and Koob,
1999), which is used to investigate a potential dysregulation of
drug intake relevant to addiction in humans, has recently been
found to be subject to stimulus control (Beckmann et al., 2012).

In addition to context, discrete SDs have been used to study
stimulus control of drug seeking, where specific stimuli can be
used to signal the availability of drug, the non-availability of
drug, or the availability of a non-drug reinforcer (e.g., food;
Weissenborn et al., 1995; Weiss et al., 2000, 2001, 2003; Stairs
et al., 2010; McCuddy et al., 2014), all upon a specific operant
response. This approach relies on the use of a multiple schedule,
where changes in response-outcome contingency are split into
components that are differentially signaled by a specific stimulus
change throughout training. For example, left lever presses may
lead to cocaine, but only in components coupled with the
presence of a particular visual stimulus (e.g., left lever light),
while right lever presses during this component are without
consequence. Conversely, in the presence of a different stimulus
(e.g., right lever light) during alternate components, right lever
presses lead to food, while left lever presses within the alternate
component are without consequence. Components typically
alternate for fixed periods of time either within or across each
training session. Following extinction of responses to either
lever in the absence of either SD, non-contingent re-exposure
to the previously trained SDs alone will specifically increase the
response associated with that SD.

As discussed above, both CSs used as conditioned reinforcers
and non-contingent exposure to SDs can reinstate drug-seeking
behavior, although it appears they do so through different
neurobehavioral processes. For instance, while contingent
presentation of a drug-paired CS can reinstate drug seeking
and produce alterations in accumbens synaptic plasticity, non-
contingent presentation of the same CS does not (Grimm et al.,
2000; Gipson et al., 2013a). These data support that reinstatement
of drug seeking via CSs is operant and reinforced by the
drug-paired CS. Contingent access to cocaine-associated SDs
is much less robust than CSs, thus illustrating an important
mechanistic difference between control of drug seeking through
CSs and SDs (Di Ciano and Everitt, 2003). Notably, there
are individual differences among rats in incentive salience
attributed to discrete conditioned cues vs. non-contingent
discriminative cues (Saunders and Robinson, 2010; Saunders
et al., 2014). Specifically, discrete cocaine-associated cues increase
drug seeking in rats that attribute motivational value to a discrete
food cue, an effect that is absent in rats that do not attribute
incentive salience to the food cue (Saunders and Robinson, 2010).
Conversely, non-contingent SDs are less robust in renewing
extinguished drug seeking in rats that attribute motivational
value to a discrete food cue (Saunders et al., 2014). Taken
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together, these findings highlight the mechanistic differences
between these varying stimulus modalities. Below we provide
a detailed discussion of literature that suggests different neural
mechanisms may underlie these distinct behavioral processes.

Neurobiological Differences in Encoding
Conditioned vs. Discriminative Cues
Associated with Natural and Drug Rewards
Understanding the neural mechanisms underlying stimulus
control over drug-seeking behavior is critical to our
understanding of drug addiction and relapse as a pathological
disease state and developing effective treatment strategies
to promote drug abstinence. In this section, we will first
describe neuroadaptations within dopaminergic (DAergic) and
glutamatergic systems found to underlie different types of cue-
induced motivated behavior (from the current literature when
possible). We will then describe drug-induced perturbations to
other cellular and molecular mechanisms that are differentially
expressed between conditioned and discriminative stimuli.
Finally, we will highlight what future research is needed to
examine novel targets that may underlie different types of
cue-triggered motivated behavior, which may prove to be
potentially effective pharmacotherapeutic avenues to improve
drug use cessation outcomes. Tables 1, 2 provide a summary of
neurobiological mechanisms underlying CS- and SD-induced
reinstatement (respectively) across drug classes.

Dopamine Modulates Drug-Induced Plasticity and

Drug Seeking in a Cue-Specific Manner
Cues that are conditionally paired with rewarding stimuli can
alter patterns of neuronal activity, cell morphology, synaptic
plasticity, and signal transduction. For instance, it is well known
that natural reward-predicting CSs elicit responses in midbrain
dopamine (DA) neurons such that neurons encode reward
value and response pattern shifts from the occurrence of the
reward itself to the CS associated with the reward (Waelti
et al., 2001). Conditional and discriminative stimuli recruit
distinct neurobiological mechanisms, where activation of certain
neuronal subpopulations such as in the nucleus accumbens
shell (NAshell) and core (NAcore) subcompartments, sustains
motivated behavior that is dependent on stimulus function
(Pezze et al., 2001; Ito et al., 2004; Kobayashi and Schultz, 2014).

The NAcore is composedmainly of GABAergic medium spiny
neurons (MSNs), accounting for 90–95% of the neuronal cell
types within the striatum (Hedreen, 1981; Bolam, 1984; Chang
and Kitai, 1985; Meredith, 1999). MSNs are typically segregated
into one of two distinguishable populations, as they express
either DA D1- or D2-like receptors (Gerfen et al., 1990; Gerfen
and Surmeier, 2011). DA released from ventral tegmental area
(VTA) efferents into the NA binds to these G-protein coupled
receptors (GPCRs) on MSNs (Gerfen et al., 1987; Jimenez-
Castellanos and Graybiel, 1987; Davidson and Stamford, 1993;
Sesack et al., 2003). Although historically it was thought that
D1 and D2-expressing MSNs were exclusively part of the direct
and indirect basal ganglia pathways (Gerfen et al., 1990) and
that manipulation of D1 or D2 MSNs specifically illustrates

pathway specificity (Bock et al., 2013; MacAskill et al., 2014),
recent studies have shown that this subdivision of cell type is
not synonymous with these distinct pathways in projections
of the NA (Smith et al., 2013; Kupchik et al., 2015; Kupchik
and Kalivas, 2017). DAergic neurons in the VTA respond
during conditioned behavior (Ljungberg et al., 1992) and, as
described in detail below, conditioned and discriminative cues
incorporate distinct DAergic mechanisms to modulate drug-
induced neurobehavioral plasticity. Specifically, a vast body
of literature has evaluated dopaminergic neuromodulation of
drug-seeking behavior. Figures 1, 2 provide a non-exhaustive
depiction of differential and overlapping glutamatergic and
DAergic circuits found to be important in the induction of
motivated drug seeking behavior by both types of cues. It should
be noted that some projections may be involved in both types
of motivated behavior, however these studies may not have been
conducted yet to show overlapping (or differential) involvement.

Dopaminergic signaling in CS-induced reinstatement of drug

seeking
A rich body of literature has shown that after repeated pairings
of a stimulus with an appetitive reward, DA neurons in the pars
compacta of the substantia nigra and VTA respond phasically to
CSs rather than to the reward itself and are dependent on event
unpredictability (Schultz et al., 1997; Hollerman and Schultz,
1998; Schultz, 1998). GPCRs are modulatory and historically
have been thought to deliver general neuromodulation with
relatively slow time resolution. Given the possible dichotomous
role of neuromodulatory DA signaling in delivering both
fast and slow-timed information to other systems (Schultz
et al., 1997), it is likely that extracellular DA release during
relapse delivers precisely timed information to specific structures
altering the neural environment in a modulatory manner and
impacting behavioral output. For example, DA signaling could
deliver precise information to impact rapid, transient plasticity
associated with drug seeking (described in detail below).

Recent studies have begun to further elucidate the role of
NAcore DA release in the reinstatement of drug seeking as
well as in the neurobiological changes that occur within the
NAcore during reinstatement. For instance, Spencer et al. (2016)
reported that re-administration of cocaine, which increases
extracellular DA (Willuhn et al., 2010), reversed the rapid,
transient plasticity associated with CS-induced cocaine seeking
(involvement of rapid, transient glutamatergic plasticity during
drug seeking is described in more detail below). Additionally,
antagonism of VTA D1 (Alleweireldt et al., 2002) and D2

receptors has been shown to inhibit both reinstated cocaine
seeking as well as rapid synaptic plasticity in the NAcore
(Shen et al., 2014a). Another recent study discovered a positive
correlation between prelimbic (PL)-NAcore pathway activation
and CS-induced cocaine reinstatement (McGlinchey et al.,
2016). This projection was found to be DA-dependent, where
pharmacological inhibition of DA signaling in the PL attenuated
discrete CS-induced cocaine reinstatement but not sucrose
seeking in drug-naïve animals. This DAergic neuromodulation
of prefrontal glutamate release into the NA is also supported by
a previous study that found that DA efflux was only increased
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TABLE 1 | Summary of neurobiological mechanisms underlying CS-induced reinstatement across drug classes.

Experimental manipulation Cocaine Nicotine Heroin Alcohol References

Selective inactivation (baclofen +

muscimol, tetrodotoxin,

chemogenetics, or optogenetics)

NAcore↓,

NAshell–,

vHPC↓, PL↓,

IL–, AC↓,

BLA↓,

LS→HPC↓,

dAI↓

GI↓ NAcore↓,

PL↓, IL↓,

CeA↓, BLA↓,

SN↓, VP↓

NAcore↓,

NAshell–,

PL↓, BLA↓

McLaughlin and See, 2003; Fuchs et al., 2004;

Rogers and See, 2007; Rogers et al., 2008;

Chaudhri et al., 2010, 2013; Forget et al.,

2010; Gipson et al., 2013a; Stefanik and

Kalivas, 2013; Cosme et al., 2015; Stefanik

et al., 2016; Keistler et al., 2017; McGlinchey

and Aston-Jones, 2017

D1 receptor antagonism Systemic↓ Systemic↓ NAcore↓,

NAshell–, PL↓

Alleweireldt et al., 2002; Bossert et al., 2007;

See, 2009; Liu et al., 2010

D1 receptor agonism Systemic↓,

NAshell↑

Systemic↓* Alleweireldt et al., 2002; Schmidt et al., 2006;

Yue et al., 2014*

D2 receptor antagonism Systemic↓ Systemic↓ Systemic↓* Cervo et al., 2003; Liu et al., 2010; Yue et al.,

2014*

D2 receptor agonism NAshell↑ Systemic↓ Schmidt et al., 2006; Di Clemente et al., 2012

Restoration of EAAT-2/GLT-1 NAcore↓ NAcore↓ NAcore↓ Knackstedt et al., 2010; Trantham-Davidson

et al., 2012; Shen et al., 2014b; Reissner et al.,

2015

mGluR2/3 agonism Systemic↓,

NAcore↓

Systemic↓‡ Systemic↓ Systemic↓ Bossert et al., 2005; Moran et al., 2005; Peters

and Kalivas, 2006; Zhao et al., 2006; Liechti

et al., 2007‡; Smith et al., 2017

mGluR1/5 antagonism Systemic↓,

NAcore↓,

dSTR–

Systemic↓ BLA↓,

NAcore↓,

Systemic↓

Bespalov et al., 2005; Adams et al., 2008;

Schroeder et al., 2008; Kumaresan et al.,

2009; Sinclair et al., 2012; Wang et al., 2013;

Knackstedt et al., 2014; Smith et al., 2017

mGluR1/5 agonism NAcore↑ Wang et al., 2013

GluN2A antagonism NAcore↓ Gipson et al., 2013b

GlunN2B antagonism Systemic↓ Systemic↓ Shen et al., 2011; Gipson et al., 2013b

AMPAR antagonism NAcore↓,

Systemic↓

Systemic↓ Bäckström and Hyytiä, 2004, 2006, 2007

MMP inhibition NAcore↓ NAcore↓ NAcore↓ Smith et al., 2014

nNOS inhibition NAcore↓ Smith et al., 2017

ECS activation Systemic↑ Systemic↑ Systemic↑ De Vries et al., 2001, 2003; Gamaleddin et al.,

2012

ECS inhibition Systemic↓ Systemic↓ Systemic↓ Systemic↓ De Vries et al., 2001, 2003; De Vries and

Schoffelmeer, 2005; Economidou et al., 2006;

Ward et al., 2009

When the experimental manipulation is applied either systemically or within a specific brain region, “↓” denotes decreased reinstatement, “↑” denotes increased reinstatement and “–”

denotes no observed effect. “→” denotes a projecting pathway. Only studies employing extinction training prior to cue reinstatement are included here. *Result of combined D1 agonism

and D2 antagonism with L-Stepholidine,
‡
Also inhibited cue-induced food seeking. AC, anterior commissure; dAI, dorsal agranular insular area; BLA, basolateral amygdala; CeA, central

amygdala; HPC, hippocampus; GI, granular insular cortex; IL, infralimbic cortex; LS, lateral septum; NAcore, nucleus accumbens core; NAshell, nucleus accumbens shell; PL, prelimbic

cortex; SN, substantia nigra; vHPC, ventral hippocampus; VP, ventral pallidum.

in the dorsomedial prefrontal cortex (dmPFC) and not in the
NA during CS-induced, methamphetamine-induced, and CS +

methamphetamine-induced reinstatement (Parsegian and See,
2014). Taken together, these results highlight the possibility that
extracellular DA release may suppress NAcore glutamatergic
plasticity associated with discrete CS-induced drug seeking. As
well, these data further support the role of DA in modulating
glutamatergic signaling during motivated behavior.

DAergic signaling may also serve to encode prediction
errors to adjust reward-seeking behavior in response to new
environmental contingencies (Hollerman and Schultz, 1998;
Schultz, 1998). Fast-scan cyclic voltammetry (FSCV) studies,
which use electrodes that emit fast, alternating electrical currents
that rapidly oxidize and reduce an electroactive molecule
of interest to monitor rapid fluctuations in extracellular

levels, have shown that DA release can change rapidly
and transiently in response to distinct conditioned stimuli
that predict changes in reward. For instance, it has been
demonstrated that a discrete CS that is paired with delayed
cocaine availability is associated with blunted DA levels,
which are then rapidly elevated when a discrete cue paired
with immediate cocaine delivery is presented (Wheeler et al.,
2011). Another study utilizing FSCV found that DA was
released in the NA transiently in response to a discrete
auditory cue paired with a food reward during appetitive
Pavlovian conditioning. Extinction training significantly reduced
DA release in response to the cue but was reinstated after
two non-contingent presentations of the reward (Sunsay
and Rebec, 2014). There is also evidence to suggest that
mesolimbic DA signals are transduced differentially following
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TABLE 2 | Summary of neurobiological mechanisms underlying SD-induced reinstatement across drug classes.

Experimental manipulation Cocaine Nicotine Heroin Alcohol References

Selective inactivation (baclofen +

muscimol, tetrodotoxin,

chemogenetics, or optogenetics)

OFC→BLA ↓,

LS→HPC↓,

dHPC→LS ↓,

vHPC→LS–,

BLA +

dHPC↓, BLA

+ dmPFC↓,

AI↓, SSJ–,

AC↓

EC→dDGub↓,

vHPC→IL↓,

vSub↓,

vSub→NAshell,

vmPFC→

NAshell↓#

VP → VTA↓,

VP → STN↓,

BLA↓, PL↓,

LH↓

Fuchs et al., 2007; Marchant et al., 2009;

Bossert et al., 2012, 2016; Chaudhri et al.,

2013; Torregrossa et al., 2013; Bossert and

Stern, 2014; Lasseter et al., 2014; Prasad

and McNally, 2016; Arguello et al., 2017;

Ge et al., 2017; McGlinchey and

Aston-Jones, 2017; Palombo et al., 2017;

Wang N. et al., 2017

D1 receptor antagonism Systemic↓, NAcore–,

NAshell↓,

dlSTR↓,

dmSTR–,

vmPFC→

NAshell↓#

Systemic↓,

NAcore↓,

NAshell↓

Crombag et al., 2002; Liu and Weiss, 2002;

Bossert et al., 2007, 2009, 2012; Chaudhri

et al., 2009; Lasseter et al., 2014; Sciascia

et al., 2014

D1 receptor agonism OFC↑ NAcore↓,

NAshell↓

Chaudhri et al., 2009; Lasseter et al., 2014

D2 receptor antagonism Systemic↓ Systemic↓ Crombag et al., 2002; Liu and Weiss, 2002

D2 receptor agonism

Restoration of EAAT-2/GLT-1

mGluR2/3 agonism Systemic↓, Systemic↓,

NAshell↓,

VTA↓

Baptista et al., 2004; Bossert et al., 2004,

2006; Cannella et al., 2013

mGluR1/5 antagonism Systemic↓‡,

NAcore↓,

NAshell–,

vCPu–

Martin-Fardon et al., 2009; Xie et al., 2012

mGluR1/5 agonism

GluN2A antagonism

GlunN2B antagonism

AMPAR antagonism NAcore↓,

NAshell↓,

vCPu–

BLA↓,

NAshell–

Millan and McNally, 2011; Xie et al., 2012;

Sciascia et al., 2015

MMP inhibition

nNOS inhibition Systemic↓ Liu and Weiss, 2004

ECS activation

ECS inhibition Systemic↓ Diergaarde et al., 2008

When the experimental manipulation is applied either systemically or within a specific brain region, “↓” denotes decreased reinstatement, “↑” denotes increased reinstatement and “–“

denotes no observed effect. “→” denotes a projecting pathway. Only studies employing extinction training prior to cue reinstatement are included here. Bolded references indicate

the use of contextual SDs. #Result of combined D1 antagonist in NAshell and B/M inactivation of vmPFC.
‡
Also inhibited cue-induced food seeking. AC, anterior commissure; Aid,

agranular insular area; BLA, basolateral amygdala; CeA, central amygdala; vCPu, ventral caudate putamen; dDGub, upper blade of dentate gyrus; EC, entorhinal cortex; dHPC, dorsal

hippocampus; vHPC, ventral hippocampus; GI, granular insular cortex; IL, infralimbic cortex; LH, lateral hypothalamus; LS, lateral septum; NAcore, nucleus accumbens core; NAshell,

nucleus accumbens shell; OFC, orbitofrontal cortex; PL, prelimbic cortex; dmPFC, dorsomedial prefrontal cortex; vmPFC, ventromedial prefrontal cortex; SSJ, somatosensory cortext;

SN, substantia nigra; STN, subthalamic nucleus; dSTR, dorsal striatum; dlSTR, dorsolateral striatum; dmSTR, dorsomedial striatum; vSub, ventral subiculum; VP, ventral pallidum.

the presentation of a reward-paired cue and directly following
a goal-directed behavior (e.g., a lever press). For instance,
one study found that DA-mediated neuronal responses to
conditioned cues associated with intracranial stimulation of the
VTA specifically recruited D2-expressing neurons in the NA,
whereas DA-mediated responses that were temporally proximal
to lever presses involved both D1- and D2-expressing neurons
(Owesson-White et al., 2016). These studies demonstrate that
DA neurotransmission and signal transduction can change
rapidly and transiently in response to drug-associated CSs and
following goal-directed behavior to modulate future reward-
seeking behavior.

Research investigating the dichotomous functional roles of
the NAcore and NAshell indicates that DA input into these
two sub-regions depends on behavioral and environmental
conditions. For example, non-contingent presentation of a
discrete conditioned stimulus (i.e., a light) that was previously
paired with an infusion of cocaine selectively increased DA into
the NAcore, while DA levels were elevated in both the NAcore
andNAshell following intravenous cocaine self-administration in
rats (Ito et al., 2000). As mentioned previously, non-contingent
exposure to drug-paired CSs does not sufficiently reinstate
drug seeking or produce changes in synaptic plasticity within
the NA. As such, the neuromodulatory influence of DA on
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FIGURE 1 | Dopamine-glutamate circuitry underlying CS-induced reinstatement of drug seeking. VTA dopamine (DA) input into the NAcore mediates CS-induced

reinstatement. DA input into the PFC may also modulate rapid, transient glutamatergic plasticity in the NAcore in response to drug-associated CSs and mediates drug

seeking behavior. DA input into the BLA may alter excitatory inputs into the NAcore and reciprocal BLA-PFC signaling. As well, DA input into the vHPC has been

implicated in CS-induced reinstatement of drug seeking, and glutamatergic projections from the vHPC to the VTA may be an indirect pathway through which the HPC

modulates dopaminergic input into other brain regions.

FIGURE 2 | Dopamine-glutamate circuitry underlying SD-induced reinstatement of drug seeking. VTA dopamine (DA) input into the NAcore and NAshell mediates

SD-induced reinstatement. DA input into the BLA and PFC have also been implicated in SD-induced reinstatement of drug seeking. Projections from the PFC to the

NAshell have been implicated in SD-induced reinstatement; however, it is not known if PFC projections to the NAcore play a specific role in SD-induced reinstatement.

Likewise, it is unclear if projections from the BLA directly to the NA play a role in SD-induced reinstatement akin to CS-induced reinstatement. The dHPC receives

converging input from the BLA and VTA and has been implicated in SD-induced reinstatement. Similar to CS-induced reinstatement, the vHPC communicates

bidirectionally with the VTA and may modulate dopaminergic input into the NA, PFC, and BLA. As well, glutamatergic projections from the PVT to the NAshell have

also been shown to be involved in SD-induced drug seeking. Dotted lines indicate unknown effects of specific projecting pathways.

neurobehavioral plasticity in response to drug-paired cues may
be dependent on the contingency between the operant response
and the CS together, as opposed to the CS itself. Specifically,
the CS-induced surge of DA may essentially reinforce the
behavioral response. Similar to the disparate roles of the NAcore
and NAshell in CS-induced reinstatement, D1- and D2-type
MSNs also appear to have distinct functional roles in mediating
drug seeking. For instance, one recent study found that loss

of GABAergic plasticity in D2-type (but not D1-type) MSNs
projecting to the ventral pallidum (VP) potentiates CS-induced
reinstatement of cocaine seeking (Heinsbroek et al., 2017). As
well, we recently discovered that D1(+) rather than D1(–) MSNs
mediate rapid, transient synaptic plasticity during CS-induced
cocaine seeking within the NAcore (Bobadilla et al., 2017).
Together, these studies highlight the differential roles of D1- vs.
D2-type MSN signaling in CS-induced drug seeking.
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Dopaminergic signaling in SD-induced reinstatement of drug

seeking
Although DA has been shown to be important in SD-induced
drug seeking behavior (e.g., alcohol, Sciascia et al., 2014;
Marchant and Kaganovsky, 2015; cocaine, Lasseter et al.,
2014; heroin, Bossert et al., 2009), it remains unclear if DA
impacts rapid synaptic plasticity associated with SD-induced drug
seeking. The only study to date examining rapid plasticity in SD-
induced drug seeking did not examine DAergic modulation of
this neural event (Stankeviciute et al., 2014). Unlike CS-induced
reinstatement, studies utilizing SD-induced reinstatement of drug
seeking following extinction training demonstrate that both the
NAcore and NAshell are involved in SD-induced drug seeking
(Fuchs et al., 2004, 2008; Chaudhri et al., 2009). However,
one study has demonstrated that antagonism of D1 receptors
in the NAshell, but not the NAcore, is sufficient to attenuate
SD-induced reinstatement of heroin seeking (Bossert et al.,
2007). While research on this topic is limited, it appears SD-
induced drug seeking may not employ the same degree of DA
receptor specificity as CS-induced reinstatement. Nevertheless,
antagonism of DA receptors in the dorsal prefrontal cortex
(dPFC), which receives DA input from the VTA and sends
excitatory glutamatergic projections to the NA, was shown to
inhibit cocaine-primed reinstatement, while DA release into the
NAcore and ventral pallidum (VP) were not causally associated
with drug-primed reinstatement (McFarland and Kalivas, 2001).
Considering prefrontal glutamate release into the NA is required
for cocaine-primed reinstatement of drug seeking (McFarland
et al., 2003), it may be that DAergic stimulation of Gs-coupled D1

receptors in the PFC is necessary for activation of glutamatergic
projections to the NA, a mechanism which may extend to SD-
induced drug seeking (Sciascia et al., 2014).

Dopaminergic projections to other neural structures involved

in CS- and SD-induced drug seeking
Beyond the NA, the functional roles of the amygdala (AMY) and
the hippocampus (HPC) in reward seeking are a subject
of intense study, as both regions communicate either
directly or indirectly with the VTA and project to the NA.
Importantly, previous studies have revealed their role in
mediating cue-triggered behavioral responses. For instance, it
has been demonstrated that selective inactivation of the dorsal
hippocampus (dHPC), the basolateral amygdala (BLA), and the
dmPFC abolishes contextual SD-induced cocaine reinstatement,
whereas inactivation of the dHPC did not alter discrete CS-
or drug-induced reinstatement (Fuchs et al., 2005). However,
context by nature is a complex spatial array of stimuli, and
thus use of a punctate stimulus could uncover differential
involvement of various sub-regions of the HPC. Other studies
suggest that the ventral hippocampus (vHPC) may also be
involved in SD-induced (Lasseter et al., 2010) as well as CS- and
drug-induced reinstatement (Rogers and See, 2007). The HPC-
VTA loop has been characterized by several studies (see Lisman
and Grace, 2005, for review) and is thought to contribute to
long-term potentiation (LTP) and changes in synaptic plasticity
required for learning and memory in goal-directed tasks (Wise,
2004). One study found that stimulation of the vHPC increased

VTA DA neuron activity and NA DA levels, suggesting a
neuromodulatory role of the vHPC on DAergic input into the
NA (Legault et al., 2000). Curiously, another study found that
vHPC activation increased DA levels in the NAshell and that
dHPC activation had an inhibitory effect on extracellular DA
levels in the NAcore (Peleg-Raibstein and Feldon, 2006), which
might suggest that the NAcore is not involved in HPC-mediated
activation of VTA DA release in SD-induced reinstatement.

In addition to the HPC, the BLA receives significant DAergic
input and appears to be especially involved in mediating CS-
induced reinstatement (Weiss et al., 2000; See et al., 2001; Kantak
et al., 2002). Specifically, both D1- and D2-like receptors in
the BLA appear to be involved in the formation of cocaine-CS
associations that are required for CS-induced reinstatement of
cocaine seeking (Berglind et al., 2006). As well, the BLA and
PFC form strong reciprocal connections that have been shown
to regulate contextual SD-induced reinstatement of cocaine
seeking (Lasseter et al., 2011). As it appears, the functional
heterogeneity of brain regions such as the NA, AMY, and HPC
may be demonstrated with distinct cues that recruit specific
and potentially differential neural pathways to promote the
acquisition and maintenance of reward seeking as well as relapse
vulnerability.

Glutamatergic Plasticity Mediates Drug Seeking and

Relapse Vulnerability
Dysregulations in glutamate neurotransmission between key
brain regions along the mesocorticolimbic pathway have been
found to underlie the chronic, compulsive, relapsing use of
drugs that characterizes addiction. Several studies have elucidated
key glutamatergic pathways along the reward circuit that
are recruited differentially depending on the type of relapse
model being utilized. Projections from the PFC (prelimbic and
infralimbic cortex; PL and IL, respectively), AMY, HPC, and
thalamus (THAL) innervate the NAshell (Groenewegen et al.,
1999). Importantly, projections from the BLA to the PL as
well as the BLA to dHPC have been implicated in the neural
circuit underlying contextual SD-induced cocaine seeking (Fuchs
et al., 2007). The paraventricular thalamus (PVT) is important
in contextual SD-induced drug seeking (James et al., 2011), and
its projection to the NAshell is important in contextual SD-
induced alcohol seeking (using decarbonated beer) (Hamlin et al.,
2009). Additionally, glutamatergic projections from the PL to
NAcore have been found to be involved in CS-induced cocaine
reinstatement (Gipson et al., 2013a; Stefanik et al., 2016), whereas
ventromedial PFC (vmPFC, encompassing the IL; Peters et al.,
2013) to NAshell has been implicated in contextual SD-induced
heroin seeking (Bossert et al., 2012). Recently, glutamatergic
projections from the BLA to the NAcore has been found to be
important in CS-induced cocaine seeking (Stefanik and Kalivas,
2013).

Glial glutamate transport critically mediates CS-induced

reinstatement of drug seeking
Research investigating dysregulations in the molecular
mechanisms driving glutamate signaling after chronic
exposure to drugs of abuse has revealed that these aberrant
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neuroadaptations are dependent upon behavioral and
environmental conditions. The glial glutamate transporter
(GLT-1/EAAT-2), which is responsible for regulating >90%
of extracellular levels of glutamate, is one key neural substrate
that has been implicated in drug relapse. In addition, the
sodium-independent cystine-glutamate exchanger, system
xc- (also referred to by its catalytic subunit xCT), works
synergistically with GLT-1 to provide glutamatergic tone on
presynaptic mGluR2/3 autoreceptors to limit presynaptic release
of glutamate (Moran et al., 2005; Kalivas, 2009). Particularly,
GLT-1 function and expression has been shown to modulate
the expression of CS-induced reinstatement. For example, one
study demonstrated that the β-lactam antibiotic ceftriaxone
attenuated CS-induced cocaine reinstatement and increased
GLT-1 in the NAcore, but not the NAshell (Fischer et al., 2013).
Ceftriaxone has been found to up-regulate xCT in addition to
GLT-1 (Knackstedt et al., 2009, 2010; Alhaddad et al., 2014),
restore basal levels of extracellular glutamate following cocaine
self-administration (Trantham-Davidson et al., 2012), and is
considered a potential therapeutic target for attenuating relapse
in humans (Reissner and Kalivas, 2010). Similar studies have
also shown that up-regulation of GLT-1 in the NA is associated
with decreased CS-induced reinstatement (Sari et al., 2009;
Knackstedt et al., 2010; Sondheimer and Knackstedt, 2011).

Akin to ceftriaxone, the cysteine prodrug N-acetylcysteine
(NAC) is associated with an up-regulation of both xCT and GLT-
1 (Knackstedt et al., 2010) and has previously been shown to
inhibit cocaine-primed reinstatement (Baker et al., 2003; Moran
et al., 2005) as well as both CS- and heroin-induced drug seeking
(Zhou and Kalivas, 2008), CS-induced cocaine seeking (Reissner
et al., 2015), and CS-induced nicotine seeking (Ramirez-
Niño et al., 2013). It was recently discovered that chronic
NAC treatment inhibits CS-induced cocaine reinstatement
through a GLT-1-dependent mechanism, where inhibition of
xCT expression did not block NAC’s attenuating effect on
reinstatement (Reissner et al., 2015). While NAC is believed to
drive system xc- and depotentiate glutamatergic afferents in the
NA, the pharmacotherapeutic potential and clinical relevance
of specifically driving system xc- remains somewhat unclear.
Although one study found that NAC-mediated attenuation of
cocaine primed-reinstatement was reversed when system xc- was
pharmacologically inhibited (Kau et al., 2008), it is still unclear
whether driving system xc- is a prerequisite for NAC-mediated
attenuation of CS-induced relapse and if this effect is drug-
specific. Likely, there are other mechanisms underlying NAC’s
therapeutic potential that have yet to be fully elucidated.

Glial glutamate transport in SD-induced reinstatement of

drug seeking
As mentioned above, up-regulation of GLT-1 in the NAcore but
not the NAshell is associated with a decrease in CS-induced
reinstatement of cocaine seeking (Fischer et al., 2013). One
recent study that examined GLT-1 expression and glutamate
efflux after a period of forced abstinence found that although
ceftriaxone up-regulated GLT-1 and attenuated drug seeking,
glutamate efflux was not reduced during cocaine seeking induced
by drug context (LaCrosse et al., 2016). Thus, despite showing

similar ameliorations to dysregulated glutamatergic signaling
and subsequent behavior as described in (Trantham-Davidson
et al., 2012) (which utilized a cocaine-induced reinstatement
model), failure of ceftriaxone to inhibit glutamate efflux in this
study potentially highlights a differential role of glial glutamate
transport between different models of reinstated/renewed drug
seeking. The role of glial-glutamate transport in SD-induced
reinstatement of drug seeking is poorly understood and more
research is needed to fully characterize the functional differences
in glutamate efflux during reinstatement between drug-paired
CSs and SDs.

Dendritic morphology and physiology at glutamatergic

synapses alters in response to drug-associated CSs
Acute and chronic exposure to drugs of abuse is associated
with changes in synaptic structure and function that increase
sensitivity to drug-associated cues. Early studies using Golgi-
cox staining to examine dendritic morphology in the PFC
and NA revealed that repeated exposure to psychostimulants
(Robinson and Kolb, 1997; Brown and Kolb, 2001) as well
as morphine (Robinson and Kolb, 1999) is associated with
alterations in dendritic complexity and increases in spine
density. More recently, it has been demonstrated that nicotine
self-administration and extinction training is associated with
enduring increases in basal spine head diameter, increases in
AMPA to NMDA excitatory post-synaptic currents (EPSCs),
an increase in AMPA (GluA1), and NMDA (GluN2A and
GluN2B) receptor subunit expression, and a decrease in GLT-1
expression within theNA (Gipson et al., 2013b). In this study, CS-
induced reinstatement was also associated with rapid, transient
plasticity, such as increases in extracellular glutamate, dendritic
spine diameter, and AMPA to NMDA ratios within 15min of
cue exposure. Similar changes in transient synaptic plasticity
have also been observed following CS-induced cocaine seeking,
which requires glutamatergic input from the PL (Gipson et al.,
2013a). Interestingly, another study examining the role of GluA1
AMPA receptor subunits in cocaine seeking found that targeted
deletion of GRIA1 (i.e., the gene that encodes GluA1 AMPAR
subunits) in mice was not associated with changes in cocaine
self-administration or discrete CS-induced reinstatement (Mead
et al., 2006).

Both acute and chronic cocaine exposure has been linked to
increases in GluA2-lacking, calcium permeable AMPA receptors
(CP-AMPARs), which is thought to underlie “incubated” CS-
induced reinstatement of drug seeking (Conrad et al., 2008;Wolf,
2010). Additionally, early withdrawal from cocaine is associated
with the presence of “silent synapses” between the BLA and
NAcore, which are often characterized by the expression of
stable NMDA receptors (NMDARs) and labile AMPARs that
are inserted into the membrane after prolonged withdrawal (Lee
et al., 2013). Incubation of drug craving is generally characterized
by time-dependent increases in drug seeking and corticostriatal
activity following an extended period of withdrawal (Tran-
Nguyen et al., 1998; Pickens et al., 2011). However, incubation
of drug craving is often measured as an increase in drug seeking
in response to discrete conditioned cues in the same context
in which the drug was initially administered. Importantly,
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it is unknown how SDs impact incubation of drug seeking
behavior. Thus, understanding the differential role of SD-induced
alterations in synaptic structure and function is necessary to
fully elucidate the neurobiological underpinnings of complex
drug-associated stimulus interactions.

In addition to studies utilizing CS-models, a necessary
consideration must be made regarding drug-induced
reinstatement models, as some of the neuroadaptations
described herein between CS- and SD-models have also
been observed similarly or differentially in drug-induced
reinstatement paradigms. Acute cocaine exposure is associated
with an increase in dendritic spine density and synaptic plasticity
in the VTA (Sarti et al., 2007). In addition to changes in spine
density, it has been demonstrated that withdrawal from chronic,
non-contingent cocaine exposure induces changes in spine head
diameter in the NAcore, as well as rapid alterations in dendritic
morphology in response to a cocaine challenge similar to those
observed in CS-induced reinstatement models (Shen et al.,
2009). Another study examining AMPA to NMDA ratio and
spine head diameter in the NAcore following cocaine-primed
reinstatement found that inhibition of the PL potentiated AMPA
to NMDA currents and spine head diameter, while inhibition of
the VTA or administration of D1/D2 antagonists inhibited such
changes (Shen et al., 2014a). Intriguingly, inhibition of the PL was
still associated with a decrease in cocaine-primed reinstatement
of drug seeking. This poses an interesting contrast to what has
been observed previously in a CS-induced reinstatement model
of cocaine seeking (Gipson et al., 2013a).

SD-induced alterations in dendritic structure and function at

glutamatergic synapses
While the role of CP-AMPARs in SD-induced reinstatement
has not been fully characterized, recent evidence suggests
that a reduction in GluA1 expression in the NA may be
associated with a decrease in contextual SD-induced cocaine
seeking (LaCrosse et al., 2016). Given these findings, it
appears that changes in dendritic spine structure, AMPA to
NMDA ratios, and AMPAR expression in the NA may not
be unconditionally linked to all forms of reinstated drug
seeking. Rather, it appears that reinstatement may depend
on stimulus function-specific neural mechanisms. While these
changes in dendritic spine morphology and physiology have
been examined extensively in discrete conditioned cue- and
drug-induced reinstatement, very few studies have attempted
to elucidate whether discriminative cues elicit similar cellular
responses. However, one recent study demonstrated that re-
exposure to a cocaine-associated environment renewed cocaine
seeking following extinction training in a separate environment
and produced similar alterations in dendritic spine head diameter
as in the previously mentioned studies that utilized non-
contingent cocaine injections or conditioned cues (Stankeviciute
et al., 2014). Taken together, certain alterations in synaptic
potentiation and dendritic spine morphology may serve as a
common neurobiological mechanism underlying drug seeking
across drug types and environmental conditions (Scofield et al.,
2016). However, more work will need to be conducted to more
clearly define the underlying cellular and molecular mechanisms
that drive alterations in dendritic morphology and physiology

across different behavioral conditions and in response to different
cue types.

Future Neurobiological Targets Underlying Motivated

Behavior

Brain- and glial cell line-derived neurotrophic factors
In addition to DAergic and glutamatergic signaling, drug-
induced alterations in synaptic plasticity and signal transduction
along the mesocorticolimbic pathway are mediated by
neurotrophic factors, neuropeptides, extracellular matrix
substrates, and other signaling molecules. Brain-derived
neurotrophic factor (BDNF) is one neurotrophic factor that has
been extensively studied and is known to produce enduring
neuroadaptations in response to drugs of abuse. For instance,
BDNF increases progressively over time in response to cocaine
(but not sucrose) withdrawal in the NA, VTA, and AMY, which is
also thought to underlie incubation of drug craving as described
previously (Grimm et al., 2003). The mPFC is the primary
source of striatal BDNF and has been demonstrated to mediate
cocaine seeking such that acute administration of BDNF into
the mPFC produces time-dependent attenuation of CS-induced
cocaine seeking following self-administration with no effect
on food-seeking behavior (Berglind et al., 2007, 2009). As well,
BDNF expression and its effects on drug seeking appears to be
dependent on withdrawal, where elevated levels in the NAcore
and NAshell following extended cocaine self-administration are
detectable on withdrawal day (WD) 45 and WD90, respectively
(Li et al., 2013). Similar to BDNF, glial cell line-derived
neurotrophic factor (GDNF) expression in the VTA is associated
with time-dependent increases in CS-induced cocaine seeking
following a period of withdrawal (Ghitza et al., 2010). As well,
heroin self-administration and withdrawal is associated with
time-dependent increases in GDNF mRNA (but not protein
levels) in the VTA and NA, and exogenous administration of
GDNF into the NA is associated with increased CS-induced
heroin seeking (Airavaara et al., 2011). Administration of
GDNF into the VTA is also associated with an increase in
extinction responding following cocaine self-administration (Lu
et al., 2009). Considering the effects of BDNF and GDNF are
drug-specific, brain region-specific, and time-dependent, it is
unlikely that a systemic pharmacotherapeutic targeting some
aspect of BDNF or GDNF signal transduction would be clinically
efficacious (Ghitza et al., 2010). Regardless, understanding the
heterogeneous profile of expression of neuromodulators such
as BDNF and GDNF is necessary to more clearly elucidate
differential neural mechanisms governing drug seeking.

Neuropeptides
Neuropeptides originating from the lateral hypothalamus (LH)
such as orexin (i.e., hypocretin) and melanin-concentrating
hormone (MCH) have long since been implicated in regulating
feeding behavior (DiLeone et al., 2003) and may also drive drug
seeking. For instance, MCH signaling from the LH to the NA
may underlie the rewarding aspects of feeding (Saper et al.,
2002) and MCH signaling has also been shown to sensitize
animals to the rewarding effects of psychostimulants (Cabeza
de Vaca et al., 2002). A recent study found that the LH has
glutamatergic and GABAergic projections that innervate both
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dopaminergic and GABAergic neurons in the VTA (Nieh et al.,
2015). The LH also sends glutamatergic projections to the lateral
habenula (LHb), which projects to VTA/rostromedial tegmental
nucleus (RMTg, or tail of the VTA, tVTA; Jhou et al., 2009;
Kaufling et al., 2009) GABAergic neurons that are capable of
inhibiting VTA dopaminergic neurons (Poller et al., 2013).
Electrical stimulation of the LHb is associated with decreases
in both cocaine self-administration and extinction responding
(Friedman et al., 2010) and also mediates the aversive effects
of nicotine (Fowler and Kenny, 2014). Conversely, exposure to
discrete heroin CSs and reinstated heroin seeking is associated
with an increase in c-Fos expression in the medial portion of
the LHb (Zhang et al., 2005). Currently, there is little evidence
that clearly distinguishes the role of the LHb in CS- vs. SD-
induced reinstatement. Similar to MCH, orexin neurons in the
LH project to multiple corticolimbic structures (Peyron et al.,
1998) and have been implicated in mediating reward-seeking
behavior (Aston-Jones et al., 2010). Antagonism of OxR1 (but not
OxR2) inhibits CS-induced cocaine reinstatement (Smith et al.,
2009) and also attenuates SD-induced cocaine seeking following
both forced abstinence and extinction (Smith et al., 2010). Given
such findings, it appears that orexin signaling may mediate both
CS- and SD-driven reinstatement of drug seeking. In addition
to MCH and orexin signaling, endogenous opioid peptides
such as dynorphin have also been implicated in reward seeking
(described in further detail below). It appears that neuropeptides
may have a significant neuromodulatory role in controlling
reward seeking and motivated behavior. Although, future studies
will need to further elucidate whether the mechanisms driving
these systems are conserved across drug classes and behavioral
conditions.

Matrix metalloproteinases
Recently, neurobiological activity within the extracellular matrix
(ECM), hypothesized to be the fourth component of the
tetrapartite synapse (Smith et al., 2015), has become increasingly
implicated in mediating structural plasticity that occurs in
response to chronic exposure to drugs of abuse. Matrix
metalloproteinases (MMPs), which are a family of zinc-
containing endopeptidases, remodel the ECM and have been
shown to mediate synaptogenesis, synaptic plasticity, and LTP
(Ethell and Ethell, 2007). For example, studies have shownMMPs
(particularly MMP-9) to be involved in dendritic remodeling
of the dentate gyrus in response to kainate (KA)-induced
excitotoxicity (Szklarczyk et al., 2002; Jourquin et al., 2003).
In particular, systemic administration of KA is associated with
increased expression of MMP-9 in the dentate gyrus of the
HPC (Szklarczyk et al., 2002). Conversely, acute exposure to
ethanol impairs spatial memory and is associated with decreased
MMP-9 (but not MMP-2) activity in the HPC and PFC (Wright
et al., 2003). Alterations in the expression and activity of MMPs
within the mPFC as well as the NA have been implicated in
drug seeking, where extinction of heroin self-administration is
associated with a downregulation of MMPs in these regions. This
neuroadaptation was partially restored following re-exposure to
heroin-associated cues and acute pre-treatment with a broad-
spectrum MMP inhibitor attenuated CS-induced reinstatement

(Van den Oever et al., 2010). MMP activity has been shown to
underlie changes in constitutive potentiation of glutamatergic
synapses in the NAcore as well as changes in transient synaptic
potentiation in response to conditioned stimuli paired with
cocaine, nicotine, and heroin (Smith et al., 2014). Disruptions in
MMP function and expression following both acute and chronic
exposure to drugs appears to be conserved across drug classes
and behavioral conditions. In fact, it has been suggested that
these changes in MMPs might reflect a functional adaptation that
resembles early developmental conditions in the brain (Smith
et al., 2015), where the high expression of MMP-2 and MMP-
9 during early development is significantly reduced over time
(Ayoub et al., 2005). Given these findings, MMPs may be a
potential therapeutic target for the treatment of substance use
disorders. Nevertheless, the functional role of MMPs between
CS- and SD-induced drug seeking is still unclear and more
research is needed to elucidate whether MMP activity and its
effects on drug seeking and synaptic plasticity is drug- and/or
brain-region-specific between these two types of drug-associated
stimuli.

Nitric oxide and endocannabinoids
Retrograde messengers such as nitric oxide (NO) and
endocannabinoids (eCBs) are involved in critical signaling
systems that mediate rapid changes in synaptic structure and
function (see Regehr et al., 2009, for review). For example,
inhibition of nitric oxide synthase (NOS) is associated with
impairments in learning and memory, such as in spatial memory
tasks (Estall et al., 1993; Yamada et al., 1995) as well as in
olfactory memory tasks (Böhme et al., 1993). Recently, it has
been suggested that long-term memories (such as drug-cue
associations) can become labile upon retrieval and undergo
re-consolidation processes that are susceptible to disruption
(Hu and Schacher, 2015). In one study examining NO and the
motivational properties of cocaine, inhibition of neuronal nitric
oxide synthase (nNOS) activity was associated with decreased
cocaine self-administration, extinction, and cocaine-primed
reinstatement (although acquisition was unaffected) (Orsini
et al., 2002). Smith, Scofield, Heinsbroek, Gipson and colleagues
have recently shown that a small population of nNOS-expressing
interneurons in the NAcore mediates glutamatergic plasticity
of MSNs in response to cocaine-paired CSs and that this
process is an mGluR5-dependent mechanism (Smith et al.,
2017). In this study, pharmacological activation of mGluR5 as
well as activation of designer Gq-coupled receptors on nNOS
interneurons was associated with activation of nNOS in the
absence of drug-associated CSs. Additionally, the degree of
inactivation of nNOS interneurons was positively correlated
with CS-induced reinstatement, and chemogenetic stimulation
of nNOS interneurons was associated with an increase in MMP
activity and AMPA currents in MSNs, both of which are known
to drive CS-induced reinstatement (Smith et al., 2017). This
study is the first to demonstrate that a small population of
nNOS-expressing interneurons in the NA is capable of mediating
transient plasticity induced by drug-associated cues. Considering
nNOS activity is associated with increased drug seeking in CS-,
SD-, and drug-prime models of reinstatement, NO signaling
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may constitute a neurobiological mechanism underlying relapse
vulnerability.

Endocannabinoids comprise a family of endogenous
retrograde messengers that are involved in a variety of
physiological processes, such as pain-sensation, mood, hunger,
learning, and memory (Aizpurua-Olaizola et al., 2017). The
endocannabinoid system (ECS) also underlies the psychoactive
effects of cannabis. The ECS mediates long-term depression
(LTD) of synapses in regions such as the NA and HPC (Robbe
et al., 2002; Chevaleyre and Castillo, 2003; Gerdeman and
Lovinger, 2003) and dysregulations in this signaling system may
underlie compulsive drug seeking. The cannabinoid receptor
type 1 (CB1), which binds exogenous compounds such as
1

9-tetrahydrocannabinol (THC, the psychoactive constituent
of cannabis) as well as endogenous cannabinoids such as
anandamide and 2-arachidonoylglycerol (2-AG), has been
shown to mediate both CS- and cocaine-induced reinstatement
of drug seeking (De Vries et al., 2001). Similarly, CB1 receptors
also mediate nicotine self-administration, where systemic
antagonism of CB1 receptors following prolonged nicotine
withdrawal decreased CS-induced nicotine seeking (Cohen
et al., 2005). While these studies seem to suggest that blockade
of CB1 receptors may suppress CS-induced drug seeking, one
recent study found that inhibition of fatty-acid-amide-hydrolase
(FAAH), the enzyme that degrades anandamide, decreased
CS-induced nicotine reinstatement (which was reversed by
administering a CB1 antagonist) (Forget et al., 2016). Therefore,
induction and suppression of different aspects of the ECS may
produce varying effects on drug-seeking behavior. It must be
noted as well that alterations in the ECS have been shown to
have long-lasting, transgenerational effects on cannabinoid, DA,
and glutamate receptor genes along the mesolimbic pathway,
where parental exposure to THC is associated with increased
heroin seeking and decreased levels of GluN1 and GluN2B in
the subsequent generation (Szutorisz et al., 2014). Whether
this prenatal exposure can induce a heightened sensitivity to
drug-associated cues later in life has yet to be fully elucidated.
The ECS remains a putative target for treating substance
abuse; however, our current understanding of the molecular
mechanisms driving its effects on motivated behavior is still
inadequate.

Neuronal ensembles and cue-induced reinstatement of drug

seeking
Neuronal ensembles represent a subpopulation of functionally
interconnected neurons that are collectively involved in specific
computations. This concept was first developed by Donald
Hebb in The Organization of Behavior (Hebb, 1949), where he
postulated that neuronal cells could functionally assemble into
“closed systems” and participate in various computations. Early
work investigating neuronal ensembles in the NA found that cues
associated with drug delivery produce activation of corticolimbic
nuclei that converge onto and activate neuronal ensembles
in the NA (Pennartz et al., 1994). More precisely, targeted
inactivation of cocaine-activated neurons in the NA blocked
locomotor sensitization specific to the cocaine context (Koya
et al., 2009). Recent studies have examined this phenomenon

in reinstatement paradigms, particularly in context-induced
reinstatement of drug seeking. For example, Cruz et al. (2014)
found that inactivation of NAshell but not NAcore neurons
that were activated by a cocaine-associated context attenuated
cocaine seeking behavior. Similarly, ensembles in the vmPFC
are activated by a heroin-associated context and inhibition
of these neurons attenuates context-induced (i.e., SD-induced)
reinstatement of heroin seeking (Bossert et al., 2011). Neuronal
ensembles in the OFC encoding heroin cues have also been
shown to mediate cue-induced renewal of heroin seeking after a
period of abstinence (Fanous et al., 2012). Interestingly, neurons
encoding drug-cue associations are largely distinct from those
encoding associations with natural rewards such as food (Carelli
et al., 2000) and convergent lines of evidence seem to suggest
that only a small proportion of cells (about 2–5%) encode cocaine
memories (Mattson et al., 2008; Koya et al., 2009; Cameron and
Carelli, 2012; Cruz et al., 2013). Recently, it has been suggested
that rapid, transient synaptic potentiation of MSNs, which drives
CS-induced drug-seeking behavior (Gipson et al., 2013a), may
functionally expand the original ensemble due to glutamate
spillover (Bobadilla et al., 2017). The underlying mechanism
postulated here involves dysregulation of glutamate homeostasis
following chronic drug exposure (Kalivas, 2009), which increases
extrasynaptic levels of glutamate during reinstatement (Gipson
et al., 2013a) and consequently activates NO and MMPs in an
mGluR5-dependent manner. As described above, NO and MMP
signaling mediate cue-triggered drug seeking and associated
synaptic plasticity. As Bobadilla et al. (2017) describe, this
transient “potentiation wave” may recruit additional neurons
that reside adjacent to the neuronal ensemble as a consequence
of this transient glutamate spillover, thus producing a robust
behavioral response. In fact, 18% of the total recorded neurons in
(Gipson et al., 2013a) expressed AMPA-to-NMDA (A/N) ratios
that were at least two standard deviations above the mean A/N
for cue-induced cocaine reinstatement. This contrasts with cue-
induced sucrose seeking, where only 6% of the total recorded
neurons expressed A/N ratios that were at least two standard
deviations above the mean (Bobadilla et al., 2017). These
findings potentially illustrate transient recruitment of additional
neurons to the primary engram due to increased extracellular
glutamate. We recommend that future studies examine this
process further across drugs of abuse and between both CS- and
SD-induced reinstatement paradigms to elucidate the cellular and
molecular mechanisms that underlie the formation, persistence,
and modulation of neuronal ensembles.

Other neurobiological targets involved in motivated behavior
Cue-type specificity is an important caveat underlying the
neurobehavioral adaptations induced by drugs of abuse. Thus,
future research investigating alternative neurobiological targets
aimed at promoting drug abstinence and reducing relapse must
take this into consideration. While not the primary focus of
this review, the serotonin (5-HT) and norepinephrine (NE)
neurotransmitter systems have also been extensively studied
and are critically involved in both CS- and SD-induced
drug seeking. For instance, the 5-HT2A antagonist M100907
has been demonstrated to attenuate CS-induced cocaine
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reinstatement following extinction training (Nic Dhonnchadha
et al., 2009). Intra-vmPFC injections of M100907 have also
been demonstrated to inhibit CS-induced cocaine reinstatement
(Pockros et al., 2011). Conversely, stimulation of 5-HT2C with
the agonist Ro60-0175 inhibits both CS- and SD-induced drug
seeking (Burbassi and Cervo, 2008; Fletcher et al., 2008). In
addition to 5-HT, NE receptors (particularly the α2 receptor) have
also been demonstrated in rodents to mediate both drug- and
CS-induced reinstatement, although these findings are mixed in
nonhuman primates (for review, see Zaniewska et al., 2015).

One recent study examining the role of voltage-gated calcium
channels (VGCC) in the NA found that selective antagonism of
the α2δ-1 VGCC subunit with gabapentin attenuated cocaine-
primed (but not CS-induced) reinstatement following cocaine
self-administration, where cocaine infusions were paired with
discrete light and tone cues (Spencer et al., 2014). As mentioned
previously, certain neuropeptide systems may be potential
neurobiological targets aimed at reducing drug seeking. For
example, selective activation of the kappa opioid receptor
(KOR) by dynorphin along the mesolimbic pathway inhibits
VTA and NA DA release (Margolis et al., 2003). Recent
evidence suggests that the dynorphin/KOR system maintains
drug seeking since both ethanol (Walker and Koob, 2008) and
nicotine self-administration (Galeote et al., 2009) depend on
dynorphin/KOR signaling. Corticotropin-releasing factor (CRF)
is another neuropeptide that has been implicated in drug seeking,
particularly in stress-induced reinstatement of drug seeking,
where a footshock can serve as discrete conditioned stimulus
that reinstates drug seeking (Koob and Le Moal, 2005). While
manipulating these neuropeptide systems may be efficacious in
attenuating drug seeking, it is not entirely clear what specific role
these substrates play in CS- vs. SD-induced drug seeking.

Another potential neurobiological target is the molecular
clock. Many studies have implicated circadian rhythms as
important mediators of drug seeking (Falcón and McClung,
2009). As such, manipulating transcriptional regulators of this
system may be effective in suppressing drug seeking. Indeed,
diurnal and circadian patterns of behavior are heavily reliant on
environmental stimuli (e.g., zeitgebers), so careful consideration
should be taken regarding how particular cue types impact
this molecular system. Recently, sex differences in both clinical
and pre-clinical settings have been observed in the training,
maintenance, withdrawal, and relapse of drug use (Becker and
Koob, 2016). Notably, gonadal hormones appear to play a
significant role in motivated behavior and may be a potential
neurobiological target in the treatment of substance abuse. For
instance, one study found that cocaine-seeking following an
extended period of withdrawal was enhanced during estrus in
female rats relative to non-estrus females or males (Kerstetter
et al., 2008). However, how these hormones specifically impact
sensitivity to conditioned or discriminative drug-associated cues
has yet to be determined.

DISCUSSION

Much preclinical research has used contingent CSs as
conditioned reinforcers to produce drug seeking behavior (See,

2002), and the construct validity of this reinstatement model
must be taken as a caveat to interpreting the translational reach
of the neurobehavioral mechanisms underlying this motivated
behavior (Epstein et al., 2006). The contingent CS-induced
reinstatement model, however, has led to pharmacotherapeutic
developments that have shown some translational relevance in
reducing drug relapse and craving in human clinical studies
across different drug classes (Mardikian et al., 2007; Knackstedt
et al., 2009; Gray et al., 2010; Berk et al., 2013; McClure
et al., 2014, 2015). Preclinically, similar neuroadaptations
in glutamatergic signaling within the mesocorticolimbic
pathway have been reported with different drugs of abuse
including nicotine, cocaine, and heroin (LaLumiere and Kalivas,
2008; Shen et al., 2011; Gipson et al., 2013a,b; Scofield et al.,
2016). However, an appreciable amount of neurobiological
heterogeneity exists even within contingent CS-induced drug
seeking, where corticothalamic and corticostriatal neuronal
projections from the PFC have opposing functional roles in
controlling reward-seeking behavior (Otis et al., 2017).

Compared to the contingent CS-induced reinstatement
model, the neurobehavioral mechanisms that underlie drug
seeking induced by non-contingent SDs or OSs is sorely
understudied. Additionally, what we do know about these
stimuli has been derived from models using context as the
SD. These non-contingent modulatory stimuli occur often in
the lives of substance abusers and can lead to increased drug
craving and relapse in humans (Childress et al., 1993). Clinical
study regarding the effects of drug cues is almost exclusively
done with models that utilize non-contingent presentation of
drug-associated stimuli, including stimulus-induced craving and
attentional bias (Sinha and Li, 2007; Field and Cox, 2008).
Thus, using similar methods in preclinical models, like OS- and
SD-induced drug seeking, may help to identify more clinically
relevant neurobehavioral mechanisms underlying substance use
disorders. Likewise, increased use of contingent CS models in
human clinical studies may help to validate existing preclinical
models. Together these approaches may aid in forging a better
bridge between clinical and preclinical research on cue effects in
substance abuse, helping to identify future therapeutics.

As mentioned above, a potential caveat of previous models of
cue effects in drug seeking is the lack of specificity. Most prior
research using either contingent CSs or non-contingent SDs to
study cue effects on drug seeking has been done in isolation
of other reinforcers. If an attempt to demonstrate specificity
of either treatment effects or stimulus effects is made, it is
typically done through a separate group of drug-naïve animals
trained to respond solely for a natural reinforcer, like food.
However, chronic exposure to drugs of abuse results in dramatic
changes within the brain, affecting reward, learning, memory,
and decision-making processes, and how a reward-associated
stimulus interacts with a drug-naïve system is very different
than in a drug-exposed system (Hyman et al., 2006). Thus, it
is important for future research to dissociate drug-associated
neurobehavioral processes from those associated with natural
reinforcers within a system that has been chronically exposed
to drugs of abuse to better aid in the future discovery of more
specific behavioral and pharmacological therapies for substance
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use disorders. Toward this goal, there have been a few attempts
to utilize preclinical models that allow for direct comparison
of stimulus control of drug seeking by drug-associated cues vs.
control of food seeking by food-associated cues within animals
chronically exposed to drugs of abuse (Weiss et al., 2003; Kearns
andWeiss, 2007;Weiss et al., 2007; Lombas et al., 2008;McCuddy
et al., 2014). Although these models demonstrate clearly specific
control of drug and food seeking by their associated stimuli,
the neurobehavioral mechanisms that underlie this differential
control are unknown. Only one study to date has evaluated
multimodal reinstatement, illustrating specific stimulus control
over food and drug taking within an animal (Batten and
Beckmann, 2017). Future research into the neurobehavioral
processes that govern differential stimulus control of seeking
drug vs. natural reinforcers will help in identifying more specific
neurobehavioral targets for future therapies to treat reward-
related pathologies.

It is important to note that studies examining the
neurobiological mechanisms underlying contextual SDs in
comparison to CSs don’t consider that contextual stimuli are
spatially-variable, multimodal stimuli and may incorporate
multiple sensory systems and themselves engage distinct neural
circuits (e.g., hippocampal nuclei) that may not be specifically
related to their function as SDs within the context-induced
drug seeking procedure. Thus, future studies should employ
a single stimulus (e.g., a light) to serve as both a contingent
conditioned reinforcer as well as a non-contingent SD in order
to dissociate the neurobehavioral processes underlying the
functional differences between these two types of stimuli.

CONCLUSIONS

We propose that the models discussed herein are useful
in determining the differential neurobiological substrates
underlying various types of motivated behavior and that care
should be taken to better dissociate the roles of different types
of cues in models of relapse. As we have attempted to highlight
in this review, there is a tendency in the substance use disorder
literature (both clinical and preclinical) to posit the stimulus
control of drug-associated behavior as the product of a single,
unitary Pavlovian process. However, stimulus-induced drug
seeking and associated craving, as highlighted herein, can
manifest through various neurobehavioral mechanisms that
recruit differential neural circuitry, including conditioned
reinforcement and modulatory effects on both operant and
Pavlovian relations via SDs and OSs, respectively. Thus, stimulus-
induced drug seeking and relapse is not a unitary process and
it is imperative to pay closer attention to the functional role of
drug-associated stimuli during the development of behavioral
and pharmaceutical interventions. Contingent CS models

of reinstatement have yielded important and informative
results that have led to translationally valuable advances in
the development of pharmacotherapeutics to reduce relapse
vulnerability. Regardless, our knowledge of their modulatory
counterparts (e.g., SD and OS) is comparatively infinitesimal.
Thus, there is much room for improvement as relapse rates
remain high and pharmacotherapeutic advancements that have
emerged from these preclinical models have somewhat checkered
success in the clinic (Knackstedt et al., 2009; LaRowe et al., 2013;
McClure et al., 2014). Future research should attempt to directly
dissociate the neurobehavioral mechanisms underlying the
stimulus control of drug seeking associated with CS, SD, and OS
models, as behavioral and pharmacotherapeutic development for
intervention of drug relapse may be improved by systematically
examining these functionally distinct paths to drug seeking. As
highlighted throughout this review, SD reinstatement models
of drug relapse almost exclusively utilize contextual cues as the
SD. Thus, future research should employ discrete (as opposed
to contextual) discriminative cues to further elucidate the
neurobehavioral mechanisms underlying these distinct stimuli.
Moreover, polydrug abuse is a typical feature of substance use
disorders, where abuse of multiple drugs can hinder successful
treatment outcomes (Wang L. et al., 2017). Specifically, primary
drug use, which is defined as the main substance reported at
the time of admission into a treatment program (Mattson et al.,
2017), is modulated by use of secondary substances. No studies to
date have thoroughly examined how primary drug cues influence
secondary drug seeking and vice versa. Such research would
reveal novel insights into how complex drug-cue associations
modulate drug seeking behavior in individuals who engage in
polydrug use. Finally, future research should also incorporate
stimulus control of alternative sources of reinforcement, such
as in a multiple schedule, to better isolate drug-associated
stimulus control in models of chronic drug exposure. There
are numerous and varied roads to relapse. Therefore, both
behavioral and pharmacotherapeutic interventions must be
tailored to the individual to promote better drug cessation
outcomes.
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