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Abstract—A bicategory of concurrent games, where
nondeterministic strategies are formalized as certain maps
of event structures, was introduced recently. This paper studies
an extension of concurrent games by winning conditions,
specifying players’ objectives. The introduction of winning
conditions raises the question of whether such games are
determined, that is, if one of the players has a winning strategy.
This paper gives a positive answer to this question when the
games are well-founded and satisfy a structural property,
race-freedom, which prevents one player from interfering with
the moves available to the other. Uncovering the conditions
under which concurrent games with winning conditions are
determined opens up the possibility of further applications of
concurrent games in areas such as logic and verification, where
both winning conditions and determinacy are most needed. A
concurrent-game semantics for predicate calculus is provided as
an illustration.
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I. INTRODUCTION

The games that have arisen in mathematical logic [3] have
typically been games between two players (we call them
Player and Opponent), trying to achieve complementary goals.
The goals are given by winning conditions, specifying which
sets of plays lead to a win for one player or the other.
Games have a long history in logic and philosophy but in
the last few decades have become invaluable in computer
science as a tool to express and solve complex problems,
both in the formal semantics of computational processes and
in algorithmic questions. Solutions to a great many problems
can be naturally phrased in terms of the existence of a winning
strategy for one of the two players.

Not surprisingly, such reductions to games with winning
conditions generally rely on the existence of winning strategies
for one or other player—on the fact that the games are
determined. For traditional games this is usually the case since
the winning conditions obtained most often form Borel sets,
and as shown in Martin’s seminal result [9] Borel games are
determined; the problem being represented by the game then
has a solution (although the solution might not be computable).

Logic games are usually played on graphs, the nodes of
which determine whether it is the turn of Player or Opponent,
and of a very sequential nature. This feature makes traditional
two-player games an unnatural model in some contexts, for
instance, when dealing with distributed and concurrent sys-
tems. As a result, in the last decade, a number of games
models where the two players can interact concurrently have

been proposed. In this paper we study the model developed in
[12], a notion of concurrent game based on event structures.
Event structures are the concurrency analogue of trees; just as
transition systems, an “interleaving” model, unfold to trees so
do Petri nets, a “concurrent” model, unfold to event structures.
In this model, games are represented by event structures
with polarities, and a strategy on a game 𝐴 is a (certain)
polarity-preserving map of event structures 𝜎 ∶ 𝑆 → 𝐴. In
[12] concurrent games and strategies were shown to form
a bicategory, the aim to establish a new, alternative basis
for the semantics of programming languages. Albeit general,
the games model introduced in [12] was not equipped with
the means to express players’ objectives, a feature needed to
model several algorithmic problems in areas such as logic and
verification. In order to overcome this limitation this paper
extends the framework of concurrent games, based on event
structures, with winning conditions. As concurrent games on
event structures encompass traditional approaches of games
and generalize them by allowing the players to interact in a
highly distributed fashion, we expect this games model to be
a fruitful framework, for instance, well adapted to the formal
study of concurrent and distributed systems.

Following in the steps of Martin, our first goal is to provide
classes of concurrent games that are determined. As we will
see, the high level of concurrency present in our framework
makes the problem very subtle, even for finite games. The
paper contains three main technical contributions: firstly, we
extend the results of [12] by giving a very general bicate-
gory of concurrent games with winning conditions and non-
deterministic winning strategies. Secondly, for well-founded
games (i.e. when all configurations are finite), we characterise
determined games as those which satisfy a property called
race-freedom, which prevents one player from interfering
with the moves available to the other. Thirdly, in order to
illustrate the use of concurrent games with winning conditions,
we show how to give a concurrent-game interpretation of
first-order predicate logic consistent with Tarski’s semantics.
Our interpretation exploits the additional mathematical space
surrounding concurrent games and provides techniques to
effectively build and deconstruct nondeterministic winning
strategies in a compositional manner.

Related work: Concurrent games and determinacy prob-
lems have been studied elsewhere, though separately in most
cases. Melliès et al. [2], [10], [11] have done extensive work
on concurrent games on asynchronous transition systems;
however, determinacy issues were not addressed. Concurrent



games on graphs [4], [5] have also been studied to solve
verification problems for open systems; such games are unde-
termined in the general case and as a consequence stochastic
strategies are used. Of the several treatments of winning
conditions in game semantics, initiated in [1], ours is close
to Hyland’s [7], which it can be seen as generalizing directly.
Finally, concurrent games on partial orders were developed in
[6]; in this case a determinacy result is given when restricted
to regular winning conditions and very simple game boards.

The paper is structured as follows: Sections II-IV give an
introduction to event structures and the bicategory of concur-
rent games and nondeterministic strategies. Section V contains
the extension of the concurrent games model with winning
conditions as well as a study of some of its properties. Then,
in Sections VI and VII, the proof of determinacy is presented.
Finally, in Section VIII, the concurrent-game semantics for
predicate calculus is described.

More detailed proofs may be found in [14], though the
determinacy proof in [14] has been improved by the proof
sketched here.

II. EVENT STRUCTURES

An event structure comprises (𝐸,Con,≤), consisting of a
set 𝐸, of events which are partially ordered by ≤, the causal
dependency relation, and a nonempty consistency relation Con
consisting of finite subsets of 𝐸, which satisfy

{𝑒′ ∣ 𝑒′ ≤ 𝑒} is finite for all 𝑒 ∈ 𝐸,

{𝑒} ∈ Con for all 𝑒 ∈ 𝐸,

𝑌 ⊆𝑋 ∈ Con �⇒ 𝑌 ∈ Con, and

𝑋 ∈ Con & 𝑒 ≤ 𝑒′ ∈𝑋 �⇒ 𝑋 ∪ {𝑒} ∈ Con.

The configurations, C∞(𝐸), of an event structure 𝐸 consist
of those subsets 𝑥 ⊆ 𝐸 which are

Consistent: ∀𝑋 ⊆ 𝑥. 𝑋 is finite ⇒𝑋 ∈ Con , and
Down-closed: ∀𝑒, 𝑒′. 𝑒′ ≤ 𝑒 ∈ 𝑥 �⇒ 𝑒′ ∈ 𝑥.

Often we shall be concerned with just the finite configurations
of an event structure. We write C(𝐸) for the finite configura-
tions of an event structure 𝐸.

Two events which are both consistent and incomparable
w.r.t. causal dependency in an event structure are regarded
as concurrent. In games the relation of immediate dependency
𝑒 � 𝑒′, meaning 𝑒 and 𝑒′ are distinct with 𝑒 ≤ 𝑒′ and no
event in between, will play an important role. For 𝑋 ⊆ 𝐸 we
write [𝑋] for {𝑒 ∈ 𝐸 ∣ ∃𝑒′ ∈𝑋. 𝑒 ≤ 𝑒′}, the down-closure of
𝑋; note if 𝑋 ∈ Con, then [𝑋] ∈ Con is a configuration.

Notation 1. Let 𝐸 be an event structure. We use 𝑥−⊂𝑦 to mean
𝑦 covers 𝑥 in C∞(𝐸), i.e. 𝑥 ⊂ 𝑦 in C∞(𝐸) with nothing in
between, and 𝑥

𝑒
−�⊂𝑦 to mean 𝑥∪{𝑒} = 𝑦 for 𝑥, 𝑦 ∈C∞(𝐸) and

event 𝑒 ∉ 𝑥. We use 𝑥
𝑒

−�⊂ , expressing that event 𝑒 is enabled
at configuration 𝑥, when 𝑥

𝑒
−�⊂𝑦 for some 𝑦.

A. Maps of event structures

Let 𝐸 and 𝐸′ be event structures. A (partial) map of event
structures 𝑓 ∶ 𝐸 ⇀ 𝐸′ is a partial function on events 𝑓 ∶ 𝐸 ⇀

𝐸′ such that for all 𝑥 ∈ C(𝐸) its direct image 𝑓𝑥 ∈ C(𝐸′) and

𝑒1, 𝑒2 ∈ 𝑥 & 𝑓(𝑒1) = 𝑓(𝑒2) (with both defined) �⇒ 𝑒1 = 𝑒2.

The map expresses how the occurrence of an event 𝑒 in
𝐸 induces the coincident occurrence of the event 𝑓(𝑒) in
𝐸′ whenever it is defined. Partial maps of event structures
compose as partial functions, with identity maps given by
identity functions. We will say the map is total if the function
𝑓 is total. Notice that for a total map 𝑓 the condition on maps
now says it is locally injective, in the sense that w.r.t. any
configuration 𝑥 of the domain the restriction of 𝑓 to a function
from 𝑥 is injective; the restriction of 𝑓 to a function from 𝑥
to 𝑓𝑥 is thus bijective. A total map of event structures which
preserves causal dependency is called rigid.

B. Process operations

1) Products: The category of event structures with partial
maps has products 𝐴 × 𝐵 with projections Π1 to 𝐴 and Π2

to 𝐵. The effect is to introduce arbitrary synchronisations
between events of 𝐴 and events of 𝐵 in the manner of process
algebra.

2) Restriction: The restriction of an event structure 𝐸 to
a subset of events 𝑅, written 𝐸 ↾ 𝑅, is the event structure
with events 𝐸′ = {𝑒 ∈ 𝐸 ∣ [𝑒] ⊆ 𝑅} and causal dependency
and consistency induced by 𝐸.

3) Synchronized compositions and pullbacks: Synchronized
compositions play a central role in process algebra, with such
seminal work as Milner’s CCS and Hoare’s CSP. Synchronized
compositions of event structures 𝐴 and 𝐵 are obtained as
restrictions 𝐴 ×𝐵 ↾𝑅. We obtain pullbacks as a special case.
Let 𝑓 ∶ 𝐴 → 𝐶 and 𝑔 ∶ 𝐵 → 𝐶 be maps of event structures.
Defining 𝑃 to be

𝐴 ×𝐵 ↾ {𝑝 ∈ 𝐴 ×𝐵 ∣ 𝑓Π1(𝑝) = 𝑔Π2(𝑝) with both defined}

we obtain a pullback square

𝑃
Π1

����
��

��
� �� Π2

���
��

��
��

𝐴

𝑓 ���
��

��
��

𝐵

𝑔
����

��
��

�

𝐶

in the category of event structures. When 𝑓 and 𝑔 are total the
same construction gives the pullback in the category of event
structures with total maps.

4) Projection: Let (𝐸,≤,Con) be an event structure. Let
𝑉 ⊆ 𝐸 be a subset of ‘visible’ events. Define the projection
of 𝐸 on 𝑉 , to be 𝐸↓𝑉 =def (𝑉,≤𝑉 ,Con𝑉 ), where 𝑣 ≤𝑉

𝑣′ iff 𝑣 ≤ 𝑣′ & 𝑣, 𝑣′ ∈ 𝑉 and𝑋 ∈ Con𝑉 iff 𝑋 ∈ Con &𝑋 ⊆ 𝑉 .
5) Prefixes and sums: The prefix of an event structure 𝐴,

written ●.𝐴, comprises the event structure in which all the
events of 𝐴 are made to causally depend on an event ●. The
category of event structures has sums given as coproducts;
a coproduct ∑𝑖∈𝐼 𝐸𝑖 is obtained as the disjoint juxtaposition
of an indexed collection of event structures, making events



in distinct components inconsistent. In Section VIII we shall
use prefixed sums ∑𝑖∈𝐼 ●.𝐴𝑖 in games for modelling first-order
logical quantifiers.

III. EVENT STRUCTURES WITH POLARITY

Both a game and a strategy in a game are to be represented
by event structures with polarity, which comprise (𝐸,pol)
where 𝐸 is an event structure with a polarity function pol ∶
𝐸 → {+,−} ascribing a polarity + (Player) or − (Opponent) to
its events. The events correspond to (occurrences of) moves.
Maps of event structures with polarity are maps of event
structures which preserve polarities.

A. Basic operations

1) Dual: The dual, 𝐸⊥, of an event structure with polarity
𝐸 comprises the same underlying event structure 𝐸 but with
a reversal of polarities.

2) Simple parallel composition: This operation juxtaposes
two event structures with polarity. Let (𝐴,≤𝐴,Con𝐴,pol𝐴)
and (𝐵,≤𝐵 ,Con𝐵 ,pol𝐵) be event structures with polarity.
The events of 𝐴∥𝐵 are ({1}×𝐴)∪({2}×𝐵), their polarities
unchanged, with the causal dependency relation given by
(1, 𝑎) ≤ (1, 𝑎′) iff 𝑎 ≤𝐴 𝑎

′ and (2, 𝑏) ≤ (2, 𝑏′) iff 𝑏 ≤𝐵 𝑏
′; a

subset of events 𝐶 is consistent in 𝐴∥𝐵 iff {𝑎 ∣ (1, 𝑎) ∈ 𝐶} ∈
Con𝐴 and {𝑏 ∣ (2, 𝑏) ∈ 𝐶} ∈ Con𝐵 . The empty event structure
with polarity, written ∅, is the unit w.r.t. ∥.

IV. CONCURRENT STRATEGIES

A. Pre-strategies

Let 𝐴 be an event structure with polarity, thought of as
a game; its events stand for the possible occurrences of
moves of Player and Opponent and its causal dependency and
consistency relations the constraints imposed by the game. A
pre-strategy represents a nondeterministic play of the game—
all its moves are moves allowed by the game and obey the
constraints of the game; the concept will later be refined to
that of strategy (and winning strategy in Section V). A pre-
strategy in 𝐴 is defined to be a total map 𝜎 ∶ 𝑆 → 𝐴 from an
event structure with polarity 𝑆. Two pre-strategies 𝜎 ∶ 𝑆 → 𝐴
and 𝜏 ∶ 𝑇 → 𝐴 in 𝐴 will be essentially the same when they
are isomorphic, i.e. there is an isomorphism 𝜃 ∶ 𝑆 ≅ 𝑇 such
that 𝜎 = 𝜏𝜃; then we write 𝜎 ≅ 𝜏 .

Let 𝐴 and 𝐵 be event structures with polarity. Following
Joyal [8], a pre-strategy from 𝐴 to 𝐵 is a pre-strategy in 𝐴⊥∥𝐵,
so a total map 𝜎 ∶ 𝑆 → 𝐴⊥∥𝐵. It thus determines a span

𝑆
𝜎1

����
��

��
�� 𝜎2

���
��

��
��

�

𝐴⊥ 𝐵 ,

of event structures with polarity where 𝜎1, 𝜎2 are partial
maps. In fact, a pre-strategy from 𝐴 to 𝐵 corresponds to
such spans where for all 𝑠 ∈ 𝑆 either, but not both, 𝜎1(𝑠)
or 𝜎2(𝑠) is defined. Two pre-strategies from 𝐴 to 𝐵 will
be isomorphic when they are isomorphic as pre-strategies in
𝐴⊥∥𝐵, or equivalently are isomorphic as spans. We write

𝜎 ∶ 𝐴 + ��𝐵 to express that 𝜎 is a pre-strategy from 𝐴 to
𝐵. Note that a pre-strategy 𝜎 in a game 𝐴, e.g. 𝜎 ∶ 𝑆 → 𝐴,
coincides with a pre-strategy from the empty game ∅ to the
game 𝐴, i.e. 𝜎 ∶ ∅ + ��𝐴.

B. Composing pre-strategies

We can present the composition of pre-strategies via pull-
backs.1 Given two pre-strategies 𝜎 ∶ 𝑆 → 𝐴⊥∥𝐵 and 𝜏 ∶
𝑇 → 𝐵⊥∥𝐶, ignoring polarities we can consider the maps
on the underlying event structures, viz. 𝜎 ∶ 𝑆 → 𝐴∥𝐵 and
𝜏 ∶ 𝑇 → 𝐵∥𝐶. Viewed this way we can form the pullback in
the category of event structures as shown below

𝑃

Π1

�����
���

���
� �� Π2

����
���

���
��

𝑆∥𝐶

𝜎∥id𝐶 ���
���

��
��

� 𝐴∥𝑇

id𝐴∥𝜏��									

𝐴∥𝐵∥𝐶

		
𝐴∥𝐶 ,

where the map 𝐴∥𝐵∥𝐶 → 𝐴∥𝐶 is undefined on 𝐵 and acts
as identity on 𝐴 and 𝐶. Note there are three kinds of events
𝑝 ∈ 𝑃 : synchronizations between events of 𝑆 and 𝑇 , where
𝜎2Π1(𝑝) = 𝜏1Π2(𝑝) ∈ 𝐵; asynchronous occurrences of events
in 𝑆, where 𝜎1Π1(𝑝) ∈ 𝐴; asynchronous occurrences of events
in 𝑇 , where 𝜏2Π2(𝑝) ∈ 𝐶. The partial map from 𝑃 to 𝐴∥𝐶
given by the diagram above (either way round the pullback
square) factors as the composition of the partial map 𝑃 → 𝑃 ↓
𝑉 , where 𝑉 is the set of events of 𝑃 at which the map 𝑃 →
𝐴∥𝐶 is defined, and a total map 𝑃 ↓ 𝑉 → 𝐴∥𝐶. The resulting
total map gives us the composition 𝜏⊙𝜎 ∶ 𝑃 ↓ 𝑉 → 𝐴⊥∥𝐶
once we reinstate polarities.

C. Concurrent copy-cat

Identities w.r.t. composition are given by copy-cat strategies.
Let 𝐴 be an event structure with polarity. The copy-cat strategy
from 𝐴 to 𝐴 is an instance of a pre-strategy, so a total map
𝛾𝐴 ∶ CC𝐴 → 𝐴⊥∥𝐴. It describes a concurrent strategy based
on the idea that Player moves, of +ve polarity, always copy
previous corresponding moves of Opponent, of −ve polarity.

For 𝑐 ∈ 𝐴⊥∥𝐴 we use 𝑐 to mean the corresponding copy of 𝑐,
of opposite polarity, in the alternative component. Define CC𝐴

to comprise the event structure with polarity 𝐴⊥∥𝐴 together
with the extra causal dependencies generated by 𝑐 ≤CC𝐴

𝑐 for
all events 𝑐 with pol𝐴⊥∥𝐴(𝑐) = +. The copy-cat pre-strategy
𝛾𝐴 ∶ 𝐴 + ��𝐴 is defined to be the map 𝛾𝐴 ∶ CC𝐴 → 𝐴⊥∥𝐴
where 𝛾𝐴 is the identity on the common set of events.

1The construction here gives the same result as that via synchronized
composition in [12]—we are grateful to Nathan Bowler for this observation.
Notice the analogy with the composition of relations 𝑆 ⊆ 𝐴×𝐵, 𝑇 ⊆ 𝐵 ×𝐶
which can be defined as 𝑇 ○ 𝑆 = (𝑆 × 𝐶 ∩ 𝐴 × 𝑇 ) ↓ 𝐴 × 𝐶, the image of
triples 𝑆 ×𝐶 ∩ 𝐴 × 𝑇 under the projection of 𝐴 ×𝐵 ×𝐶 to 𝐴 ×𝐶.



D. Strategies

The main result of [12], presented summarily here, is that
two conditions on pre-strategies, receptivity and innocence,
are necessary and sufficient for copy-cat to behave as identity
w.r.t. the composition of pre-strategies. Receptivity ensures
an openness to all possible moves of Opponent. Innocence
restricts the behaviour of Player; Player may only introduce
new relations of immediate causality of the form ⊖ � ⊕
beyond those imposed by the game.

Receptivity. A pre-strategy 𝜎 is receptive iff
𝜎𝑥

𝑎
−�⊂ & pol𝐴(𝑎) = − ⇒ ∃!𝑠 ∈ 𝑆. 𝑥

𝑠
−�⊂ & 𝜎(𝑠) = 𝑎 .

Innocence. A pre-strategy 𝜎 is innocent when it is both
+-innocent: if 𝑠� 𝑠′ & pol(𝑠) = + then 𝜎(𝑠) � 𝜎(𝑠′), and
−-innocent: if 𝑠� 𝑠′ & pol(𝑠′) = − then 𝜎(𝑠) � 𝜎(𝑠′).

Theorem 2 (from [12]). Let 𝜎 ∶ 𝐴 + ��𝐵 be pre-strategy.
Copy-cat behaves as identity w.r.t. composition, i.e. 𝜎○𝛾𝐴 ≅ 𝜎
and 𝛾𝐵 ○𝜎 ≅ 𝜎, iff 𝜎 is receptive and innocent. Copy-cat pre-
strategies 𝛾𝐴 ∶ 𝐴 + ��𝐴 are receptive and innocent.

E. The bicategory of concurrent games and strategies

Theorem 2 motivated the definition of a strategy as a
pre-strategy which is receptive and innocent. In fact, we
obtain a bicategory, Games, in which the objects are event
structures with polarity—the games, the arrows from 𝐴 to 𝐵
are strategies 𝜎 ∶ 𝐴 + ��𝐵 and the 2-cells are maps of spans.
The vertical composition of 2-cells is the usual composition
of maps of spans. Horizontal composition is given by the
composition of strategies ⊙ (which extends to a functor on
2-cells via the universality of pullback).

A strategy 𝜎 ∶ 𝐴 + ��𝐵 corresponds to a dual strategy 𝜎⊥ ∶
𝐵⊥ + ��𝐴⊥. This duality arises from the correspondence be-
tween pre-strategies 𝜎 ∶ 𝑆 → 𝐴⊥∥𝐵 and 𝜎⊥ ∶ 𝑆 → (𝐵⊥)⊥∥𝐴⊥.
The dual of copy-cat, 𝛾⊥𝐴, is isomorphic to the copy-cat of the
dual, 𝛾𝐴⊥ , for 𝐴 an event structure with polarity. The dual of
a composition of pre-strategies (𝜏⊙𝜎)⊥ is isomorphic to the
composition 𝜎⊥⊙𝜏⊥.

F. The subcategory of deterministic strategies

Say an event structure with polarity𝑆 is deterministic iff

∀𝑋 ⊆fin 𝑆. Neg[𝑋] ∈ Con𝑆 �⇒ 𝑋 ∈ Con𝑆 ,

where Neg[𝑋] =def {𝑠′ ∈ 𝑆 ∣ pol(𝑠′) = − & ∃𝑠 ∈𝑋. 𝑠′ ≤ 𝑠}.
In other words, 𝑆 is deterministic iff any finite set of moves
is consistent when it causally depends only on a consistent set
of opponent moves. Say a strategy 𝜎 ∶ 𝑆 → 𝐴 is deterministic
if 𝑆 is deterministic.

Lemma 3. An event structure with polarity𝑆 is deterministic
iff for all 𝑠, 𝑠′ ∈ 𝑆,𝑥 ∈ C(𝑆),

𝑥
𝑠

−�⊂ & 𝑥
𝑠′

−�⊂ & pol(𝑠) = + �⇒ 𝑥 ∪ {𝑠, 𝑠′} ∈ C(𝑆) .

A copy-cat strategy 𝛾𝐴 can fail to be deterministic. How-
ever, 𝛾𝐴 is deterministic iff immediate conflict in 𝐴 respects

polarity, or equivalently that there is no immediate conflict
between +ve and −ve events, a condition we call ‘race-free.’

Lemma 4. Let 𝐴 be an event structure with polarity. The copy-
cat strategy 𝛾𝐴 is deterministic iff for all 𝑥 ∈ C(𝐴), 𝑎, 𝑎′ ∈ 𝐴,

𝑥
𝑎

−�⊂ & 𝑥
𝑎′

−�⊂ & pol(𝑎) ≠ pol(𝑎′)

�⇒ 𝑥 ∪ {𝑎, 𝑎′} ∈ C(𝐴) .
(Race − free)

Lemma 5. The composition of deterministic strategies is
deterministic.

Lemma 6. A deterministic strategy 𝜎 ∶ 𝑆 → 𝐴 is injective
on configurations (equivalently, 𝜎 is mono in the category of
event structures with polarity).

We obtain a sub-bicategory DGames of Games by
restricting objects to race-free games and strategies to be-
ing deterministic. Via Lemma 6, deterministic strategies in
a game correspond to certain subfamilies of configurations
of the game. A characterisation of those subfamilies which
correspond to deterministic strategies [12] shows them to co-
incide with the receptive ingenuous strategies of Mimram and
Melliès [11]. Via the presentation of deterministic strategies as
families DGames is equivalent to an order-enriched category.

Melliès programme of “asynchronous games” arose from
his earlier work with Abramsky where deterministic concur-
rent strategies were represented essentially by partial closure
operators on the domain of configurations of an event struc-
ture [2]. For us, a deterministic strategy 𝜎 ∶ 𝑆 → 𝐴 determines
a closure operator 𝜑 on C∞(𝑆): for 𝑥 ∈ C∞(𝑆),

𝜑(𝑥) = 𝑥 ∪ {𝑠 ∈ 𝑆 ∣ pol(𝑠) = + & Neg[{𝑠}] ⊆ 𝑥} .

Because C∞(𝑆) forms a subfamily C∞(𝐴), a deterministic
strategy does indeed give rise to a partial closure operator
on C∞(𝐴). (Strictly speaking, instead of working with partial
closure operators, Abramsky and Melliès worked with closure
operators on domains C∞(𝐴)⊺, extended with a top element
⊺, with every configuration of 𝐴 unreachable according to the
strategy being sent to ⊺.)

V. WINNING STRATEGIES

A game with winning conditions comprises 𝐺 = (𝐴,𝑊 )
where 𝐴 is an event structure with polarity and 𝑊 ⊆ C∞(𝐴)
consists of the winning configurations for Player. We define
the losing conditions to be 𝐿 =def C∞(𝐴)∖𝑊 . Clearly a game
with winning conditions is fully defined once we specify either
its winning or losing conditions.

A strategy in 𝐺 is a strategy in 𝐴. A strategy in 𝐺 is
regarded as winning if it always prescribes Player moves to
end up in a winning configuration, no matter what the activity
or inactivity of Opponent. Formally, a strategy 𝜎 ∶ 𝑆 → 𝐴
in 𝐺 is winning (for Player) if 𝜎𝑥 ∈ 𝑊 for all +-maximal
configurations 𝑥 ∈ C∞(𝑆)—a configuration 𝑥 is +-maximal if
whenever 𝑥

𝑠
−�⊂ then the event 𝑠 has −ve polarity.

Clearly, we can equivalently say a strategy 𝜎 ∶ 𝑆 → 𝐴 in
𝐺 is winning if it always prescribes Player moves to avoid
ending up in a losing configuration; a strategy 𝜎 ∶ 𝑆 → 𝐴



in 𝐺 is winning if 𝜎𝑥 ∉ 𝐿 for all +-maximal configurations
𝑥 ∈ C∞(𝑆). Any achievable position 𝑧 ∈ C∞(𝑆) of the game
can be extended to a +-maximal, so winning, configuration (via
Zorn’s Lemma). So a strategy prescribes Player moves to reach
a winning configuration whatever state of play is achieved
following the strategy.

Note that for a game 𝐴, if winning conditions 𝑊 = C∞(𝐴),
i.e. every configuration is winning, then any strategy in 𝐴
is a winning strategy. Also note that in the special case of
a deterministic strategy 𝜎 ∶ 𝑆 → 𝐴 in 𝐺, it is winning iff
𝜎𝜑(𝑥) ∈𝑊 for all 𝑥 ∈ C∞(𝑆), where 𝜑 is the closure operator
𝜑 ∶ C∞(𝑆) → C∞(𝑆) determined by 𝜎—see Section IV-F.

We can also understand a strategy as winning for Player
if when played against any counter-strategy of Opponent, the
final result is a win for Player. Suppose 𝜎 ∶ 𝑆 → 𝐴 is a strategy
in a game with winning conditions (𝐴,𝑊 ). A counter-strategy
is strategy of Opponent, so a strategy 𝜏 ∶ 𝑇 → 𝐴⊥ in the
dual game. We can view 𝜎 as a strategy 𝜎 ∶ ∅ + ��𝐴 and 𝜏
as a strategy 𝜏 ∶ 𝐴 + ��∅. Their composition 𝜏⊙𝜎 ∶ ∅ + ��∅
is not in itself so informative. Rather it is the status of the
configurations in C∞(𝐴) their full interaction induces which
decides which of Player or Opponent wins. Ignoring polarities,
we have total maps of event structures 𝜎 ∶ 𝑆 → 𝐴 and 𝜏 ∶ 𝑇 →
𝐴. Form their pullback,
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to obtain the event structure 𝑃 resulting from the interaction
of 𝜎 and 𝜏 . Because 𝜎 or 𝜏 may be nondeterministic there
can be more than one maximal configuration 𝑧 in C∞(𝑃 ). A
maximal configuration 𝑧 in C∞(𝑃 ) images to a configuration
𝜎Π1𝑧 = 𝜏Π2𝑧 in C∞(𝐴). Define the set of results of the
interaction of 𝜎 and 𝜏 to be

⟨𝜎, 𝜏⟩ =def {𝜎Π1𝑧 ∣ 𝑧 is maximal in C∞(𝑃 )} .

We shall show the strategy 𝜎 is winning for Player iff all the
results of the interaction ⟨𝜎, 𝜏⟩ lie within 𝑊 , for any counter-
strategy 𝜏 ∶ 𝑇 → 𝐴⊥ of Opponent.

It will be convenient to have facts about +-maximality in
the broader context of the composition of arbitrary strategies.

Lemma 7. Let 𝜎 ∶ 𝑆 → 𝐴⊥∥𝐵 and 𝜏 ∶ 𝑇 → 𝐵⊥∥𝐶 be receptive
pre-strategies. Let 𝑃 be the pullback of 𝜎∥id𝐶 and id𝐴∥𝜏—see
Section IV-B. Then,

𝑧 ∈ C∞(𝑃 ) is +-maximal iff

Π1𝑧 ∈ C∞(𝑆) is +-maximal & Π2𝑧 ∈ C∞(𝑇 ) is +-maximal.

Proof sketch. A convention is being adopted. Refer to
Section IV-B. A synchronization event in 𝑃 is regarded as not
having a polarity; otherwise, an event of 𝑃 adopts the polarity

of its image in 𝐴⊥ or 𝐶. A configuration 𝑧 ∈ C∞(𝑃 ) is +-
maximal if whenever 𝑧

𝑝
−�⊂ then 𝑝 has −ve polarity. If 𝑧 is not

+-maximal, 𝑧
𝑝

−�⊂ where either 𝑝 is +ve or a synchronisation.

In either case, Π1𝑧
Π1(𝑝)
−�⊂ or Π2𝑧

Π2(𝑝)
−�⊂ , ensuring Π1𝑧 or Π2𝑧

is not +-maximal. Conversely, if e.g. Π1𝑧 is not +-maximal,
Π1𝑧

𝑠
−�⊂ with 𝑠 +ve. Either 𝜎1(𝑠) ∈ 𝐴⊥ when there is a +ve

𝑝 ∈ 𝑃 with Π1(𝑝) = 𝑠, associated with the asynchronous
occurrence of 𝑠, or 𝜎2(𝑠) ∈ 𝐵 when by receptivity of 𝜏 there
is a synchronization 𝑝 ∈ 𝑃 with Π1(𝑝) = 𝑠 and 𝑧

𝑝
−�⊂ . ◻

Lemma 8. Let 𝜎 ∶ 𝑆 → 𝐴 be a strategy in a game (𝐴,𝑊 ).
The strategy 𝜎 is winning for Player iff ⟨𝜎, 𝜏⟩ ⊆ 𝑊 for all
(deterministic) strategies 𝜏 ∶ 𝑇 → 𝐴⊥.

Proof. “Only if”: Suppose 𝜎 is winning, i.e. 𝜎𝑥 ∈𝑊 for all
+-maximal 𝑥 ∈ C∞(𝑆). Let 𝜏 ∶ 𝑇 → 𝐴⊥ be a strategy. As a
special case of Lemma 7,

𝑥 ∈ C∞(𝑃 ) is +-maximal

iff

Π1𝑥 ∈ C∞(𝑆) is +-maximal & Π2𝑥 ∈ C∞(𝑇 ) is +-maximal.

Letting 𝑥 be maximal in C∞(𝑃 ) it is certainly +-maximal,
whence Π1𝑥 is +-maximal in C∞(𝑆). It follows that 𝜎Π1𝑥 ∈
𝑊 as 𝜎 is winning. Hence ⟨𝜎, 𝜏⟩ ⊆𝑊 .
“If”: Assume ⟨𝜎, 𝜏⟩ ⊆ 𝑊 for all strategies 𝜏 ∶ 𝑇 → 𝐴⊥.
Suppose 𝑥 is +-maximal in C∞(𝑆). Define 𝑇 to be the event
structure given as the restriction

𝑇 =def 𝐴
⊥ ↾ 𝜎𝑥 ∪ {𝑎 ∈ 𝐴⊥ ∣ pol𝐴⊥ = −} .

The pre-strategy 𝜏 ∶ 𝑇 → 𝐴⊥ defined to be the inclusion map
𝑇 ↪ 𝐴⊥ can be checked to be receptive and innocent, so a
strategy. (In fact, 𝜏 is a deterministic strategy as all its +ve
events lie within the configuration 𝜎𝑥.) One way to describe
a pullback of 𝜏 along 𝜎 is as the “inverse image” 𝑃 =def

𝑆 ↾ {𝑠 ∈ 𝑆 ∣ 𝜎(𝑠) ∈ 𝑇}:
𝑃��

����
��
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From the definition of 𝑇 and 𝑃 we see 𝑥 ∈ C∞(𝑃 ); and
moreover that 𝑥 is maximal in C∞(𝑃 ) as 𝑥 is +-maximal
in C∞(𝑆). Hence 𝜎𝑥 ∈ ⟨𝜎, 𝜏⟩ ensuring 𝜎𝑥 ∈ 𝑊 , as required.
The proof is unaffected if we restrict to deterministic counter-
strategies 𝜏 ∶ 𝑇 → 𝐴⊥. ◻

Corollary 9. There are the following four equivalent ways to
say that a strategy 𝜎 ∶ 𝑆 → 𝐴 is winning in (𝐴,𝑊 )—we write
𝐿 for the losing configurations C∞(𝐴) ∖𝑊 :

1) 𝜎𝑥 ∈𝑊 for all +-maximal configurations 𝑥 ∈C∞(𝑆), i.e.
the strategy prescribes Player moves to reach a winning
configuration, no matter what the activity or inactivity
of Opponent;



2) 𝜎𝑥 ∉ 𝐿 for all +-maximal configurations 𝑥 ∈ C∞(𝑆), i.e.
the strategy prescribes Player moves to avoid ending up
in a losing configuration, no matter what the activity or
inactivity of Opponent;

3) ⟨𝜎, 𝜏⟩ ⊆ 𝑊 for all strategies 𝜏 ∶ 𝑇 → 𝐴⊥, i.e. all plays
against counter-strategies of the Opponent result in a
win for Player;

4) ⟨𝜎, 𝜏⟩ ⊆ 𝑊 for all deterministic strategies 𝜏 ∶ 𝑇 → 𝐴⊥,
i.e. all plays against deterministic counter-strategies of
the Opponent result in a win for Player.

Example 10. Not all games with winning conditions have
winning strategies. Consider the game 𝐴 consisting of one
Player move ⊕ and one Opponent move ⊖ inconsistent with
each other, with {{⊕}} as its winning conditions. This game
has no winning strategy; any strategy 𝜎 ∶ 𝑆 → 𝐴, being
receptive, will have an event 𝑠 ∈ 𝑆 with 𝜎(𝑠) = ⊖, and so
the losing {𝑠} as a +-maximal configuration.

A. Operations

1) Dual: There is an obvious dual of a game with winning
conditions 𝐺 = (𝐴,𝑊𝐺):

𝐺⊥ =def (𝐴⊥, C∞(𝐴) ∖𝑊𝐺) ,

reversing the role of Player and Opponent, and consequently
that of winning and losing conditions.

2) Parallel composition: The parallel composition of two
games with winning conditions 𝐺 = (𝐴,𝑊𝐺), 𝐻 = (𝐵,𝑊𝐻)
is

𝐺`𝐻 =def (𝐴∥𝐵, 𝑊𝐺∥C∞(𝐵) ∪ C∞(𝐴)∥𝑊𝐻)

where 𝑋∥𝑌 = {{1} × 𝑥 ∪ {2} × 𝑦 ∣ 𝑥 ∈𝑋 & 𝑦 ∈ 𝑌 } when 𝑋
and 𝑌 are subsets of configurations. In other words, for 𝑥 ∈
C∞(𝐴∥𝐵),

𝑥 ∈𝑊𝐺`𝐻 iff 𝑥1 ∈𝑊𝐺 or 𝑥2 ∈𝑊𝐻 ,

where 𝑥1 = {𝑎 ∣ (1, 𝑎) ∈ 𝑥} and 𝑥2 = {𝑏 ∣ (2, 𝑏) ∈ 𝑥}. To win
in 𝐺`𝐻 is to win in either game. Its losing conditions are
𝐿𝐴∥𝐿𝐵—to lose is to lose in both games 𝐺 and 𝐻 . The unit
of ` is (∅,∅).

3) Tensor: Defining 𝐺⊗𝐻 =def (𝐺⊥ `𝐻⊥)⊥ we obtain a
game where to win is to win in both games 𝐺 and 𝐻—so to
lose is to lose in either game. More explicitly,

(𝐴,𝑊𝐴) ⊗ (𝐵,𝑊𝐵) =def (𝐴∥𝐵, 𝑊𝐴∥𝑊𝐵) .

The unit of ⊗ is (∅,{∅}).
4) Function space: With 𝐺 ⊸ 𝐻 =def 𝐺

⊥ `𝐻 a win in
𝐺⊸𝐻 is a win in 𝐻 conditional on a win in 𝐺.

Proposition 11. Let 𝐺 = (𝐴,𝑊𝐺) and 𝐻 = (𝐵,𝑊𝐻) be
games with winning conditions. Write 𝑊𝐺⊸𝐻 for the winning
conditions of 𝐺 ⊸ 𝐻 , so 𝐺 ⊸ 𝐻 = (𝐴⊥∥𝐵,𝑊𝐺⊸𝐻). For
𝑥 ∈ C∞(𝐴⊥∥𝐵),

𝑥 ∈𝑊𝐺⊸𝐻 iff 𝑥1 ∈𝑊𝐺 �⇒ 𝑥2 ∈𝑊𝐻 .

B. The bicategory of winning strategies

We can again follow Joyal and define strategies between
games now with winning conditions: a (winning) strategy
from 𝐺, a game with winning conditions, to another 𝐻 is
a (winning) strategy in 𝐺 ⊸ 𝐻 = 𝐺⊥ ` 𝐻 . We compose
strategies as before. We first show that the composition of
winning strategies is winning.

Lemma 12. Let 𝜎 be a winning strategy in 𝐺⊸𝐻 and 𝜏 be
a winning strategy in 𝐻 ⊸ 𝐾. Their composition 𝜏⊙𝜎 is a
winning strategy in 𝐺⊸𝐾.

Proof. Suppose 𝑥 ∈ C∞(𝑇⊙𝑆) is +-maximal. The event
structure 𝑇⊙𝑆 is obtained as the projection of the pullback 𝑃
to the set of ‘visible’ events 𝑉 . Hence the down-closure [𝑥] in
𝑃 forms a configuration [𝑥] ∈ C∞(𝑃 ). By Zorn’s Lemma we
can extend [𝑥] to a maximal configuration 𝑧 ⊇ [𝑥] in C∞(𝑃 )
with the property that all events of 𝑧∖[𝑥] are synchronizations.
Then, 𝑧 will be +-maximal in C∞(𝑃 ) with

𝜎1Π1𝑧 = 𝜎1Π1[𝑥] & 𝜏2Π2𝑧 = 𝜏2Π2[𝑥] . (1)

By Lemma 7,

Π1𝑧 is +-maximal in 𝑆 & Π2𝑧 is +-maximal in 𝑇 .

As 𝜎 and 𝜏 are winning,

𝜎Π1𝑧 ∈𝑊𝐺⊸𝐻 & 𝜏Π2𝑧 ∈𝑊𝐻⊸𝐾 .

Now 𝜎Π1𝑧 ∈𝑊𝐺⊸𝐻 expresses that

𝜎1Π1𝑧 ∈𝑊𝐺 �⇒ 𝜎2Π1𝑧 ∈𝑊𝐻 (2)

and 𝜏Π2𝑧 ∈𝑊𝐻⊸𝐾 that

𝜏1Π2𝑧 ∈𝑊𝐻 �⇒ 𝜏2Π2𝑧 ∈𝑊𝐾 , (3)

by Proposition 11. But 𝜎2Π1𝑧 = 𝜏1Π2𝑧, so (2) and (3) yield

𝜎1Π1𝑧 ∈𝑊𝐺 �⇒ 𝜏2Π2𝑧 ∈𝑊𝐾 .

By (1),

𝜎1Π1[𝑥] ∈𝑊𝐺 �⇒ 𝜏2Π2[𝑥] ∈𝑊𝐾 ,

i.e. from the definition of 𝜏⊙𝜎,

(𝜏⊙𝜎)1 𝑥 ∈𝑊𝐺 �⇒ (𝜏⊙𝜎)2 𝑥 ∈𝑊𝐾

in the span of the composition 𝜏⊙𝜎. Hence 𝑥 ∈ 𝑊𝐺⊸𝐾 , as
required to show 𝜏⊙𝜎 is winning. ◻

Example 13. For a general game with winning conditions
(𝐴,𝑊 ) the copy-cat strategy 𝛾𝐴 ∶ CC𝐴 → 𝐴∥𝐴⊥ need not
be winning. Let 𝐴 be as in Example 10. The event structure
CC𝐴 is:

𝐴⊥ ⊖� ⊕ 𝐴

⊕� ⊖

To see that 𝛾𝐴 ∶ CC𝐴 → 𝐴∥𝐴⊥ is not winning consider the
configuration 𝑥 consisting of the two −ve events in CC𝐴.
Then 𝑥 is +-maximal as any +ve event is inconsistent with 𝑥.
However, 𝑥1 ∈𝑊 while 𝑥2 ∉𝑊 , failing the winning condition
of (𝐴,𝑊 ) ⊸ (𝐴,𝑊 ).



Each event structure with polarity𝐴 possesses a ‘Scott order’
on its configurations C∞(𝐴):

𝑥′ ⊑ 𝑥 iff 𝑥′ ⊇− 𝑥 ∩ 𝑥′ ⊆+ 𝑥 .

Above we use the special inclusions

𝑥 ⊆− 𝑦 iff 𝑥 ⊆ 𝑦 & pol𝐴(𝑦 ∖ 𝑥) ⊆ {−} , and

𝑥 ⊆+ 𝑦 iff 𝑥 ⊆ 𝑦 & pol𝐴(𝑦 ∖ 𝑥) ⊆ {+}

for 𝑥, 𝑦 ∈ C∞(𝐴). The Scott order is indeed a partial order,
in which there are two ways to increase in the order: adjoin
more ‘output’ in the form of +ve events, or use less ‘input’ in
the form of −ve events.

A necessary and sufficient condition for copy-cat to be
winning w.r.t. a game (𝐴,𝑊 ):

if 𝑥′ ⊑ 𝑥 & 𝑥′ is +-maximal & 𝑥 is −-maximal,

then 𝑥 ∈𝑊 �⇒ 𝑥′ ∈𝑊, for all 𝑥,𝑥′ ∈ C∞(𝐴) .
(Cwins)

Lemma 14. Let (𝐴,𝑊 ) be a game with winning conditions.
The copy-cat strategy 𝛾𝐴 ∶ CC𝐴 → 𝐴⊥∥𝐴 is winning iff (𝐴,𝑊 )
satisfies (Cwins).

Race-freedom, seen earlier in Lemma 4, is a robust condi-
tion sufficient to ensure that copy-cat is a winning strategy for
all choices of winning conditions.

Proposition 15. Let 𝐴 be an event structure with polarity.
Copy-cat is a winning strategy for all games (𝐴,𝑊 ) with
winning conditions 𝑊 iff 𝐴 is race-free.

We can now refine the bicategory of strategies Games to
the bicategory WGames with objects games with winning
conditions 𝐺,𝐻,⋯ satisfying (Cwins) and arrows winning
strategies 𝐺 + ��𝐻; 2-cells, their vertical and horizontal com-
position is as before. Its restriction to deterministic strategies
yields a bicategory WDGames equivalent to a simpler order-
enriched category.

VI. ON DETERMINED GAMES

In this section, we define and make some observations
on determinacy for concurrent games. In particular we show
that games that are not race-free (see Lemma 4) are not
necessarily determined, and that race-free games need not have
a deterministic winning strategy.

A game with winning conditions 𝐺 is said to be determined
when either Player or Opponent has a winning strategy. Not
all games are determined, for instance the game (𝐴,𝑊 ) in
Example 10 is not determined. Note that in such an example
the game is not race-free (see Lemma 4), so it is reasonable to
assume race-freedom in a characterisation of determinacy. We
are now going to prove a first direction of this equivalence: that
whenever an event structure with polarity 𝐴 is not race-free,
there is a set𝑊 of winning configurations such that (𝐴,𝑊 ) is
undetermined. This uses the following notion of reachability:

Notation 16. Let 𝜎 ∶ 𝑆 → 𝐴 be a strategy. We say 𝑦 ∈ C∞(𝐴)
is 𝜎-reachable iff 𝑦 = 𝜎𝑥 for some 𝑥 ∈ C∞(𝑆). Let 𝑦′ ⊆
𝑦 in C∞(𝐴). Say 𝑦′ is −-maximal in 𝑦 iff 𝑦

−
−�⊂𝑦′′ implies

𝑦′′ /⊆ 𝑦, where 𝑦
−

−�⊂𝑦′′ means 𝑦
𝑒

−�⊂𝑦′′ for some event 𝑒 with
𝑝𝑜𝑙(𝑒) = −. Similarly, say 𝑦′ is +-maximal in 𝑦 iff 𝑦

+
−�⊂𝑦′′

implies 𝑦′′ /⊆ 𝑦, with the obvious interpretation of
+

−�⊂ .

Lemma 17. Let (𝐴,𝑊 ) be a game with winning conditions.
Let 𝑦 ∈ C(𝐴). Suppose

∀𝑦′ ∈ C(𝐴).

𝑦′ ⊆ 𝑦 & 𝑦′ is −-maximal in 𝑦 & not +-maximal in 𝑦

�⇒

{𝑦′′ ∈ C(𝐴) ∣ 𝑦′ ⊆+ 𝑦′′ & (𝑦′′ ∖ 𝑦′) ∩ 𝑦 = ∅} ∩𝑊 = ∅ .

Then 𝑦 is 𝜎-reachable in all winning strategies 𝜎.

Lemma 18. If 𝐴, an event structure with polarity, is not race-
free, then there are winning conditions 𝑊 for which the game
(𝐴,𝑊 ) is not determined.

Proof sketch. If 𝐴 is not race-free there is 𝑦 ∈ C(𝐴) such

that 𝑦
𝑎

−�⊂𝑦1 and 𝑦
𝑎′

−�⊂𝑦2 and pol(𝑎) = − & pol(𝑎′) = + and
𝑦 ∪ {𝑎, 𝑎′} /∈ C(𝐴). Let 𝑊 be defined by the following rules:

(i) for 𝑦′′ with 𝑦1 ⊆+ 𝑦′′, assign 𝑦′′ ∉𝑊 ;
(ii) for 𝑦′′ with 𝑦2 ⊆− 𝑦′′, assign 𝑦′′ ∈𝑊 ;

(iii) for 𝑦′′ with 𝑦′ ⊆+ 𝑦′′ and (𝑦′′ ∖ 𝑦′) ∩ 𝑦 = ∅, for some
sub-configuration 𝑦′ of 𝑦 with 𝑦′ −-maximal and not +-
maximal in 𝑦, assign 𝑦′′ ∉𝑊 ;

(iv) for 𝑦′′ with 𝑦′ ⊆− 𝑦′′ and (𝑦′′ ∖ 𝑦′) ∩ 𝑦 = ∅, for some
sub-configuration 𝑦′ of 𝑦 with 𝑦′ +-maximal and not −-
maximal in 𝑦, assign 𝑦′′ ∈𝑊 ;

(v) assign arbitrarily in all other cases.

The assignment is well-defined and complete. Moreover, 𝑦
is reachable for any winning strategy, either for Player or
Opponent. W.r.t. any winning strategy for Player 𝑦1 must be
reachable, by receptivity, but by construction this entails there
is +-maximal configuration of the strategy whose image in 𝐴
is losing. Similarly, Opponent has no winning strategy. ◻

It is tempting to believe that a nondeterministic winning
strategy always has a winning deterministic sub-strategy. How-
ever, this is not so, as the following example shows.

Example 19. A winning strategy need not have a winning
deterministic sub-strategy. Consider the game (𝐴,𝑊 ) where
𝐴 consists of two −ve events 1,2 and one +ve event 3 all
consistent with each other and

𝑊 = {∅,{1,3},{2,3},{1,2,3}}.

Let 𝑆 be the event structure

⊕ ������ ⊕

⊖

�

�

⊖

�

�

and 𝜎 ∶ 𝑆 → 𝐴 the only possible total map of event structures
with polarity. Then 𝜎 is a winning strategy for 𝐴. However,
𝐴 has no deterministic winning strategy: as we have seen in
Section IV-F, any deterministic strategy on 𝐴 yields a (partial)
closure operator 𝜑 on C∞(𝐴). Moreover, this closure operator



is necessarily stable, i.e. 𝜑(𝑥1∩𝑥2) = 𝜑(𝑥1)∩𝜑(𝑥2) for 𝑥1, 𝑥2
within its domain of definition. If 𝜑 comes from a winning
strategy, we must have 𝜑({1}) = {1,3} and 𝜑({2}) = {2,3},
and therefore 𝜑(∅) = {3}. But {3} is a +-maximal losing
configuration, so the deterministic strategy 𝜑 cannot come
from any winning strategy.

Therefore, 𝜎 is a winning strategy for which there is no
deterministic sub-strategy. ◻

The above example shows that determinacy does not hold
if we restrict to deterministic strategies. Note that some of
the previous approaches to concurrent games [2], [11] were
restricted to deterministic strategies, hence by the example
above could not enjoy determinacy. In our setting, the ability
to handle nondeterminism permits a determinacy result.

The following example shows that for games where con-
figurations can have infinitely many events, race-freedom is
not sufficient to ensure determinacy. It also shows that the
existence of a winning receptive pre-strategy does not imply
that there is a winning strategy.

Example 20. Consider the infinite game 𝐴 comprising the
event structure with polarity

⊖ ⊕
 ��⊕  ��⊕  ��⋯  ��⊕  ��⋯

where Player wins iff
(i) Player plays all ⊕ moves and Opponent does nothing, or
(ii) Player plays finitely many ⊕ moves and Opponent plays.
In this case there is a winning pre-strategy for Player. Infor-
mally, this is to continue playing moves until Opponent moves,
then stop. Formally, it is described by the event structure with
polarity𝑆
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with pre-strategy the unique total map to 𝐴. The pre-strategy
is receptive and winning in the sense that its +-maximal
configurations image to winning configurations in 𝐴. It follows
that there is no winning strategy for Opponent (if 𝜎 is a
winning receptive pre-strategy then ⟨𝜎, 𝜏⟩ will be a subset of
winning configurations, exactly as in the proof of Lemma 8,
so must result in a loss for 𝜏 , which cannot be winning). Nor
is there a winning strategy for Player. Suppose 𝜎 ∶ 𝑆 → 𝐴 was
a winning strategy for Player; for 𝜎 to win against the empty
strategy there must be 𝑥 ∈ 𝑆 such that 𝜎𝑥 comprises all +ve
events of 𝐴. But now, using receptivity and −-innocence, there
must be 𝑠 ∈ 𝑆 such that 𝜎(𝑠) = ⊖ with 𝑥∪{𝑠} ∈ C∞(𝑆) losing
and +-maximal—a contradiction. ◻

VII. DETERMINACY FOR WELL-FOUNDED GAMES

Definition 21. A game 𝐴 is well-founded if every configura-
tion in C∞(𝐴) is finite.

It is shown that any well-founded, race-free concurrent
game is determined.

Definition 22. Let 𝐴 be an event structure with polarity. Let
𝑊 ⊆ C∞(𝐴). Let 𝑦 ∈ C∞(𝐴). Define 𝐴/𝑦 to be the event
structure with polarity comprising events

{𝑎 ∈ 𝐴 ∖ 𝑦 ∣ 𝑦 ∪ [𝑎]𝐴 ∈ C∞(𝐴)} ,

also called 𝐴/𝑦, with consistency relation

𝑋 ∈ Con𝐴/𝑦 iff 𝑋 ⊆fin 𝐴/𝑦 & 𝑦 ∪ [𝑋]𝐴 ∈ C∞(𝐴) ,

and causal dependency the restriction of that on 𝐴. Define
𝑊 /𝑦 ⊆ C∞(𝐴/𝑦) by

𝑧 ∈𝑊 /𝑦 iff 𝑧 ∈ C∞(𝐴/𝑦) & 𝑦 ∪ 𝑧 ∈𝑊 .

Finally, define (𝐴,𝑊 )/𝑦 =def (𝐴/𝑦,𝑊 /𝑦).

Proposition 23. Let 𝐴 be an event structure with polarity and
𝑦 ∈ C∞(𝐴). Then,

𝑧 ∈ C∞(𝐴/𝑦) iff 𝑧 ⊆ 𝐴/𝑦 & 𝑦 ∪ 𝑧 ∈ C∞(𝐴) .

Definition 24. The value 𝑣(𝑥) of 𝑥 ∈ C∞(𝐴) is defined as +
if Player has a winning strategy in 𝐴/𝑥, as − if Opponent has
a winning strategy in 𝐴/𝑥, and as 0 otherwise.

Lemma 25. Suppose 𝐴 is race-free. If 𝑥 ∈ C∞(𝐴) such that
𝑥

𝑎
−�⊂ with pol(𝑎) = + and 𝑣(𝑥 ∪ {𝑎}) = +, then 𝑣(𝑥) = +.

Proof sketch. Given a winning strategy 𝜎 ∶ 𝑆 → 𝐴/(𝑥 ∪
{𝑎}), we build a new strategy ext𝑎𝜎 ∶ 𝑆′ → 𝐴/𝑥 by adding
a new minimal Player event 𝑠 in 𝑆, mapped to 𝑎 by ext𝑎𝜎.
Here, the fact that 𝐴 is race-free is used in a crucial way
to prove that ext𝑎𝜎 is receptive. It is winning because all
+-maximal configurations of 𝑆′ contain 𝑠, therefore they are
in bijection with +-maximal configurations of 𝑆 and map to
winning configurations of 𝐴/𝑥. ◻

The case of negative extensions requires us to introduce the
following lemma, proved by taking an adequate quotient.

Lemma 26. If 𝜎 ∶ 𝑆 → 𝐴 is innocent and weakly receptive,
i.e. for all 𝑥 ∈ C(𝑆) such that 𝜎𝑥

𝑎
−�⊂ with pol(𝑎) = − there

is at least one 𝑠 ∈ 𝑆 such that 𝑥
𝑠

−�⊂ and 𝜎(𝑠) = 𝑎, then there
is a strategy 𝜎′ ∶ 𝑆′ → 𝐴 and a rigid map of event structures
ℎ ∶ 𝑆 → 𝑆′ surjective on configurations such that 𝜎 = 𝜎′ ○ ℎ.

Recall from Section II that a rigid map of event structures
is a map which preserves causal dependency.

Lemma 27. If 𝑥 ∈ C(𝐴) is such that 𝑥 ∈𝑊𝐴 and that for all
𝑒 ∈ 𝐴 such that pol(𝑒) = − and 𝑥

𝑒
−�⊂ we have 𝑣(𝑥∪{𝑒}) = +,

then 𝑣(𝑥) = +.

Proof sketch. Take the family (𝑒𝑖)𝑖∈𝐼 of negative extensions of
𝑥, i.e. events in 𝐴 such that pol(𝑒𝑖) = − and 𝑥

𝑒𝑖
−�⊂ . For each 𝑖 ∈

𝐼 , 𝑣(𝑥∪{𝑒𝑖}) = + so there exists a winning strategy 𝜎𝑖 ∶ 𝑆𝑖 →
𝐴/(𝑥∪{𝑒𝑖}). The proof relies on the construction of a strategy
case𝑖∈𝐼𝜎𝑖 ∶ 𝑆′ → 𝐴/𝑥, which picks 𝑖 ∈ 𝐼 nondeterministically
and plays according to 𝜎𝑖.

For each 𝑖 ∈ 𝐼 , we first define the event structure with
polarity ⊖𝑖 ⋉𝑆𝑖 as the maximum prefixing of a new event ⊖𝑖

with an event structure with polarity 𝑆𝑖 allowed by innocence,



i.e. ⊖𝑖 ≤ 𝑠 iff pol(𝑠) = + or pol(𝑠) = − and 𝑒𝑖 ≤𝐴 𝜎𝑖(𝑠). Then
we define 𝑆 = Σ𝑖∈𝐼 ⊖𝑖 ⋉𝑆𝑖, with all events in the 𝑖-th copy
conflicting with all events in the 𝑗-th copy if 𝑖 ≠ 𝑗. We define
𝜎 ∶ 𝑆 → 𝐴/𝑥 by:

𝜎(⊖𝑖) = 𝑒𝑖

𝜎((𝑖, 𝑠)) = 𝜎𝑖(𝑠)

One can show that it is a winning innocent pre-strategy. It is
not necessarily receptive since many negative minimal events
in Σ𝑖∈𝐼 ⊖𝑖 ⋉𝑆𝑖 may be mapped by 𝜎 to the same negative
minimal event in 𝐴/𝑥. However it is weakly receptive, hence
by Lemma 27 we get a strategy 𝜎′ ∶ 𝑆′ → 𝐴 and a map
ℎ ∶ 𝑆 → 𝑆′ surjective on configurations. Then, case𝑖∈𝐼𝜎𝑖 = 𝜎′

is winning. Indeed if 𝑦′ ∈ C(𝑆′) is +-maximal there must be
𝑦 ∈ C(𝑆) such that ℎ(𝑦) = 𝑦′. Moreover, 𝑦 is +-maximal as
well since ℎ preserves polarity, thus 𝜎′(𝑦′) = 𝜎(𝑦) ∈ 𝑊𝐴/𝑥

and case𝑖∈𝐼𝜎𝑖 is a winning strategy, so 𝑣(𝑥) = +. ◻

Theorem 28. Let 𝐴 be a well-founded game. Then 𝐴 is race-
free iff (𝐴,𝑊 ) is determined for all winning conditions 𝑊 .

Proof. We have already proved in Lemma 18 that if (𝐴,𝑊 ) is
determined for all winning conditions 𝑊 , then 𝐴 is race-free.
Suppose that 𝐴 is race-free, and let 𝑊 ⊆ C(𝐴) be arbitrary
winning conditions on 𝐴. Let 𝑥 ∈ C(𝐴) be maximal such that
𝑣(𝑥) = 0. If there exists 𝑎 ∈ 𝐴 such that pol(𝑎) = + and
𝑥

𝑎
−�⊂ and 𝑣(𝑥 ∪ {𝑎}) = +, then 𝑣(𝑥) = + by Lemma 25,

a contradiction. By the same argument on 𝐴⊥/𝑥 if there is
𝑎 ∈ 𝐴 such that pol(𝑎) = − and 𝑥

𝑎
−�⊂ and 𝑣(𝑥 ∪ {𝑎}) = −,

then 𝑣(𝑥) = − by Lemma 25. If 𝑥 ∈𝑊𝐴, then let (𝑒𝑖)𝑖∈𝐼 be the
family of negative extensions of 𝑥. By the reasoning above,
for all 𝑖 ∈ 𝐼 we have 𝑣(𝑥 ∪ {𝑒𝑖}) = +, therefore 𝑣(𝑥) = + by
Lemma 27, a contradiction. Similarly, if 𝑥 /∈𝑊𝐴, then 𝑥 ∈𝑊𝐴⊥

and an application of Lemma 27 on 𝐴⊥ shows that 𝑣(𝑥) = −,
a contradiction. Therefore, there is no such maximal 𝑥. Since
𝐴 is well-founded, this implies that all configurations of 𝐴
have non-zero value, so 𝐴 is determined. ◻

VIII. EXAMPLE

We now apply the tools developed in the previous sections
of this paper to give an interpretation of first-order predicate
logic. Although similar in spirit to the usual games interpreta-
tion of first-order logic, our construction differs technically by
exploiting the extra space allowed by concurrency. In partic-
ular only quantifiers add new events and logical connectives
are modelled in a concurrent way by variants of the parallel
composition operation.

The syntax for predicate calculus: formulae are given by

𝜙,𝜓,⋯ ∶∶= 𝑅(𝑥1,⋯, 𝑥𝑘) ∣ 𝜙 ∧ 𝜓 ∣ 𝜙 ∨ 𝜓 ∣ ¬𝜙 ∣ ∃𝑥. 𝜙 ∣ ∀𝑥. 𝜙

where 𝑅 ranges over basic relation symbols of a fixed arity
and 𝑥,𝑥1, 𝑥2,⋯, 𝑥𝑘 over variables.

A model 𝑀 for the predicate calculus comprises a non-
empty universe of values 𝑉𝑀 and an interpretation for each of
the relation symbols as a relation of appropriate arity on 𝑉𝑀 .
Following Tarski we can then define by structural induction

the truth of a formula of predicate logic w.r.t. an assignment of
values in 𝑉𝑀 to the variables of the formula. We write 𝜌 ⊧𝑀 𝜙
iff formula 𝜙 is true in 𝑀 w.r.t. environment 𝜌; we take an
environment to be a function from variables to values.

W.r.t. a model 𝑀 and an environment 𝜌, we can denote
a formula 𝜙 by �𝜙�𝑀𝜌, a concurrent game with winning
conditions, so that 𝜌 ⊧𝑀 𝜙 iff the game �𝜙�𝑀𝜌 has a winning
strategy.

The denotation as a game is defined by structural induction:

�𝑅(𝑥1,⋯, 𝑥𝑘)�𝑀𝜌 =
⎧⎪⎪
⎨
⎪⎪⎩

(∅,{∅}) if 𝜌 ⊧𝑀 𝑅(𝑥1,⋯, 𝑥𝑘) ,

(∅,∅) otherwise.

�𝜙 ∧ 𝜓�𝑀𝜌 = �𝜙�𝑀𝜌⊗ �𝜓�𝑀𝜌

�𝜙 ∨ 𝜓�𝑀𝜌 = �𝜙�𝑀𝜌` �𝜓�𝑀𝜌

�¬𝜙�𝑀𝜌 = (�𝜙�𝑀𝜌)
⊥

�∃𝑥. 𝜙�𝑀𝜌 = ⊕
𝑣∈𝑉𝑀

�𝜙�𝑀𝜌[𝑣/𝑥]

�∀𝑥. 𝜙�𝑀𝜌 = ⊖
𝑣∈𝑉𝑀

�𝜙�𝑀𝜌[𝑣/𝑥] .

We use 𝜌[𝑣/𝑥] to mean the environment 𝜌 updated to assign
value 𝑣 to variable 𝑥. The game (∅,{∅}), the unit w.r.t. ⊗,
is the game used to denote true and the game (∅,{∅}), the
unit w.r.t. `, to denote false. Denotations of conjunctions
and disjunctions are denoted by the operations of ⊗ and
` on games, while negations denote dual games. Universal
and existential quantifiers denote prefixed sums of games,
operations which we now describe.

The game ⊕𝑣∈𝑉 (𝐴𝑣,𝑊𝑣) has underlying event structure
with polarity the sum (=coproduct) ∑𝑣∈𝑉 ⊕.𝐴𝑣 where the
winning conditions of a component are those configurations
𝑥 ∈ C∞(⊕.𝐴) of the form {⊕} ∪ 𝑦 for some 𝑦 ∈ 𝑊 . In
∑𝑣∈𝑉 ⊕.𝐴𝑣 a configuration is winning iff it is the image of
a winning configuration in a component under the injection
to the sum. Note in particular that the empty configuration of
⊕𝑣∈𝑉 𝐺𝑣 is not winning—Player must make a move in order
to win. The game ⊖𝑣∈𝑉 𝐺𝑣 is defined dually, as (⊕𝑣∈𝑉 𝐺

⊥
𝑣)
⊥.

In this game the empty configuration is winning but Opponent
gets to make the first move. Writing 𝐺𝑣 = (𝐴𝑣,𝑊𝑣), the
underlying event structure of ⊖𝑣∈𝑉 𝐺𝑣 is the sum ∑𝑣∈𝑉 ⊖.𝐴𝑣

with a configuration winning iff it is empty or the image
under the injection of a winning configuration in a prefixed
component.

It is easy to check by structural induction that:

Proposition 29. For any formula 𝜙 the game �𝜙�𝑀𝜌 is well-
founded and race-free, so a determined game by the result of
the last section.

The following facts are useful for building strategies.

Proposition 30.
(i) If 𝜎 ∶ 𝑆 → 𝐴 is a strategy in 𝐴 and 𝜏 ∶ 𝑇 → 𝐵 is a

strategy in 𝐵, then 𝜎∥𝜏 ∶ 𝑆∥𝑇 → 𝐴∥𝐵 is a strategy in
𝐴∥𝐵.

(ii) If 𝜎 ∶ 𝑆 → 𝑇 is a strategy in 𝑇 and 𝜏 ∶ 𝑇 → 𝐵 is a
strategy in 𝐵, then their composition as maps of event
structures with polarity 𝜏𝜎 ∶ 𝑆 → 𝐵 is a strategy in 𝐵.



There are ‘projection’ strategies from a tensor product of
games to its components:

Proposition 31. Let 𝐺 = (𝐴,𝑊𝐺) and 𝐻 = (𝐵,𝑊𝐻) be
race-free games with winning conditions. The map of event
structures with polarity

id𝐴⊥∥𝛾𝐵 ∶ 𝐴⊥∥CC𝐵 → 𝐴⊥∥𝐵⊥∥𝐵

is a winning strategy 𝑝𝐻 ∶ 𝐺 ⊗𝐻 + ��𝐻 . The map of event
structures with polarity

id𝐵⊥∥𝛾𝐴 ∶ 𝐵⊥∥CC𝐴 → 𝐵⊥∥𝐴⊥∥𝐴 ≅ 𝐴⊥∥𝐵⊥∥𝐴

is a winning strategy 𝑝𝐺 ∶ 𝐺⊗𝐻 + ��𝐺.

The following lemma is used to build and deconstruct
strategies in prefixed sums of games. The lemma concerns the
more basic prefixed sums of event structures. These are built
as coproducts ∑𝑖∈𝐼 ●.𝐵𝑖 of event structures ●.𝐵𝑖 in which an
event ● is prefixed to 𝐵𝑖, making all the events in 𝐵𝑖 causally
depend on ●.

Lemma 32. Suppose 𝑓 ∶ 𝐴 → ∑𝑖∈𝐼 ●.𝐵𝑖 is a total map of
event structures, with codomain a prefixed sum. Then, 𝐴 is
isomorphic to a prefixed sum, 𝐴 ≅ ∑𝑗∈𝐽 ●.𝐴𝑗 , and there is
a function 𝑟 ∶ 𝐽 → 𝐼 and total maps of event structures 𝑓𝑗 ∶
𝐴𝑗 → 𝐵𝑟(𝑗) for which the following diagram commutes.

∑𝑗∈𝐽 ●.𝐴𝑗 ≅

[●.𝑓𝑗]𝑗∈𝐽

		

𝐴

𝑓��		
		

		
		

		

∑𝑖∈𝐼 ●.𝐵𝑖

With the help of Propositions 30 and 31 and Lemma 32
we can build and deconstruct strategies to establish the
next lemma, and the main theorem of this section. Theorem
34 follows by a straightforward structural induction using
Lemma 33.

Lemma 33. Let 𝐺,𝐻,𝐺𝑣 , where 𝑣 ∈ 𝑉 , be race-free games
with winning conditions. Then,

(i) 𝐺⊗𝐻 has a winning strategy iff 𝐺 has a winning strategy
and 𝐻 has a winning strategy.

(ii) ⊕𝑣∈𝑉 𝐺𝑣 has a winning strategy iff 𝐺𝑣 has a winning
strategy for some 𝑣 ∈ 𝑉 .

(iii) ⊖𝑣∈𝑉 𝐺𝑣 has a winning strategy iff 𝐺𝑣 has a winning
strategy for all 𝑣 ∈ 𝑉 .

If in addition 𝐺 and 𝐻 are determined,

(iv) 𝐺`𝐻 has a winning strategy iff 𝐺 has a winning strategy
or 𝐻 has a winning strategy.

Theorem 34. For all formulae 𝜙 and environments 𝜌, 𝜌 ⊧𝑀 𝜙
iff the game �𝜙�𝑀𝜌 has a winning strategy.

IX. CONCLUSION AND FURTHER WORK

For games one of the most fundamental mathematical
questions is that of determinacy. This paper shows that to give
a positive answer—even for well-founded (race-free) games—
one has to consider nondeterministic (winning) strategies. In

particular nondeterministic strategies are needed to faithfully
represent parallel disjunctive behaviour, one of the reasons
why our concurrent interpretation of predicate calculus is
possible. Nondeterministic winning strategies are indeed com-
putationally more powerful than deterministic ones.

In contrast, it may come as a surprise that if a strategy
is not winning, then it can always be beaten by a deter-
ministic counter-strategy. This fact is relevant from the point
of view of verification since a deterministic strategy on a
game corresponds to a subfamily of configurations of the
game: whenever a game 𝐴 is finite, the process of effectively
checking whether a strategy 𝜎 ∶ 𝑆 → 𝐴 is winning can be
performed by inspecting the results of playing 𝜎 against all
possible deterministic counter-strategies 𝜏 ∶ 𝑇 → 𝐴⊥, and these
are bounded within subfamilies of configurations of 𝐴⊥. Hence
a basic decidability theorem for finite games, which is needed
to solve verification problems, follows from the results here.

There are several ways of extending the work on concurrent
games with winning conditions: stochastic behaviour, perhaps
with the use of probabilistic event structures [13], so as to de-
fine profiles of mixed strategies and Nash equilibria; imperfect
information as the key concept for reasoning, more faithfully,
about real-life distributed systems; and determinacy results for
games with infinite behaviour so that more complex winning
conditions can be handled, e.g. Büchi or parity conditions.
These extensions are within the focus of our current research.
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