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Abstract

The Winograd Schema Challenge is an alternative to the Tur-
ing Test that may provide a more meaningful measure of ma-
chine intelligence. It poses a set of coreference resolution
problems that cannot be solved without human-like reason-
ing. In this paper, we take the view that the solution to such
problems lies in establishing discourse coherence. Specifi-
cally, we examine two types of rhetorical relations that can be
used to establish discourse coherence: positive and negative
correlation. We introduce a framework for reasoning about
correlation between sentences, and show how this framework
can be used to justify solutions to some Winograd Schema
problems.

1 Introduction

The Winograd Schema Challenge, introduced by Levesque,
Davis, and Morgenstern (2012), is an alternative to the Tur-
ing Test that may provide a more meaningful measure of
machine intelligence. Nuance Communications, Inc. has an-
nounced an annual competition based on this task.

The test involves coreference resolution problems of a
particular kind. The main part of a Winograd Schema is
a sentence containing a pronoun, for instance:

The city councilmen refused the demonstrators a permit
because they feared violence.

In addition, two definite noun phrases, called “answers,” are
given; in the example above, the answers are the city coun-
cilmen and the demonstrators. The goal is to determine
which answer provides the most natural resolution for the
pronoun. For instance, the natural response to the question
Who feared violence? is given by the first answer, the city
councilmen.

A Winograd Schema specifies also a “special word” that
occurs in the sentence and an “alternate word.” Replacing
the former by the latter changes the resolution of the pro-
noun. In the example above, the special word is feared
and the alternate word is advocated. Thus every schema
represents a pair of coreference resolution problems that
are almost identical but have different answers. Levesque,
Davis, and Morgenstern proposed to assemble a set of Wino-
grad Schemas that are “Google-proof,” in the sense that
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the statistical properties alone of the special word and its
alternate would not justify changing the answer when the
words are exchanged. To succeed in solving problems of
this kind a program would have to use relevant background
knowledge—it would have to “think.”

In this paper we study several examples of Winograd
Schemas from a list compiled by Ernest Davis.! In the tradi-
tion of (Hobbs 1979) and (Kehler et al. 2008), we treat coref-
erence resolution as a by-product of a general process of es-
tablishing discourse coherence: a resolution for a pronoun
is acceptable if it makes the discourse “coherent.” From this
perspective, understanding coherence is the key to corefer-
ence resolution and, in particular, to the Winograd Schema
Challenge.

A study of Davis’s list shows that in many cases the coher-
ence of the solution can be explained by correlation between
two clauses formed when the correct answer is substituted
for the pronoun. For instance, the phrase

the city councilmen refused the demonstrators a permit
is positively correlated with
the city councilmen feared violence

in the sense that either one of them would cause the hearer
to view the other as more plausible than before. Similarly,
that phrase is correlated with

the demonstrators advocated violence.

The term “correlation” usually refers to correlation be-
tween random variables as defined in probability theory.
In this paper, we concentrate on the “doxastic” aspect of
correlation—on its effect on a person’s beliefs, as in the ex-
amples above.

As another example, consider the sentence from Schema 3
on Davis’s list:

Joan made sure to thank Susan for all the help she had
given.

Who had given help? The coherence of the answer Susan
can be explained by correlation between the phrases

Joan made sure to thank Susan
"http://www.cs.nyu.edu/faculty/davise/

papers/WS.html. The example above is Schema 1 on Davis’s
list.



and
Susan had given help.

These phrases are correlated in the sense that either one
would cause the hearer to view the other as more plausible.

In this paper we propose a deductive system for deriving
formulas expressing correlation, the “correlation calculus,”
and show how this system can be used to justify the answers
to several examples from Davis’s collection. We conjecture
that the correlation calculus, in combination with appropri-
ate axioms, can be used to justify solutions to many Wino-
grad Schemas. Obtaining such axioms is a major problem,
of course, and is an important avenue of future work (Sec-
tion 5).

The probabilistic definition of correlation does not seem
directly applicable to the examples above: it is not clear how
to understand the probability of city councilmen refusing
demonstrators a permit, or the probability of Joan thanking
Susan. Nevertheless, our correlation calculus turned out to
be closely related to correlation in the sense of probability
theory: an event A is correlated with an event B if the con-
ditional probability P(A|B) is greater than the probability
P(A). We show that this idea leads to a mathematically
precise semantics for correlation formulas. The correlation
calculus is sound with respect to this semantics, and this fact
is useful as a technical tool for proving properties of the cor-
relation calculus.

Consider now Schema 20 with the special word because
replaced by the alternate word although:

Pete envies Martin although he is very successful.

Who is very successful? The coherence of the answer
Pete can be explained by “negative correlation” between the
phrases

Pete envies Martin
and
Pete is very successful

—the former is correlated with the negation of the latter. The
idea of positive correlation is often relevant when the given
sentence contains the discourse connective because, as in
the example with city councilmen. The discourse connective
although in a sentence points to negative correlation.

We annotated the first 100 Winograd Schema sentences
from Davis’s list. Out of these 100 sentences, 64 exhibit
positive correlation and 8 exhibit negative correlation. Thus
the analysis that we develop in this paper may be applied to
72 Winograd Schema sentences out of 100 annotated exam-
ples.

Our use of positive and negative correlation is in the spirit
of Asher and Lascarides (2003), who propose to establish
the coherence of a discourse with respect to a rhetorical re-
lation which connects the discourse parts. Whereas we dis-
tinguish between positive and negative correlation, they dis-
tinguish between several classes of rhetorical relation: elab-
oration, explanation, contrast, and others.

2 Correlation Calculus

2.1 Correlation Formulas

We begin with a signature in the sense of first-order logic.
A correlation formula is an expression of the form F' & G,
where I’ and G are first-order formulas. Informally speak-
ing, if F' and G are sentences, that is, have no free variables,
then F' @ G expresses that (natural language texts corre-
sponding to) F and G are correlated.> Free variables in a
correlation formula are, informally speaking, understood as
metavariables for arbitrary ground terms.

The expression F' S G is shorthand for F' & —G.

2.2 Inference Rules
We now introduce the inference rules of the correlation cal-
culus: implication, replacement, symmetry, negation, and
substitution. The conclusion of each rule is a correlation
formula. Both first-order sentences and correlation formulas
can be used as premises.
The implication rule says that if a formula F' implies a
formula G then F and G are correlated:
Y(F — G)
FoG -~
(The symbol V denotes universal closure.) The two replace-
ment rules allow us to replace one side of a correlation for-
mula with an equivalent formula:
V(F-G) FoH
GoH ’
Y(F < G) HoF
HoG ’
The symmetry rule expresses that @ is symmetric:?
FadG
GoF’
According to the negation rule, the negations of two corre-
lated formulas are correlated as well:
FoG
—F D —\G ’
The substitution rule allows us to substitute terms for free
variables:
Faed

Foo Go
for any substitution # of terms for variables.*
A derivation from a set I' consisting of first-order sen-
tences and correlation formulas is a list C1, . . ., C,, such that

e if C; is a first-order sentence then it is entailed by I', and

o if C; is a correlation formula then it belongs to I" or can
be derived from one or two of the formulas that precede it
in the list by one of the rules of the correlation calculus.

A correlation formula C'is derivable from T if there exists a
derivation from I' with C as the last formula.

2See Section 2.4 for a more precise formulation.

3In the presence of the symmetry rule, any one of the replace-
ment rules can be dropped.

“Here F6 stands for the result of applying  to all free variables
in F, with bound variables renamed if necessary to avoid quantifier
capture.



2.3 Examples of Derivations

The formula F' & F' is derivable from the empty set of for-
mulas:

1. V(F— F)
2. Fo&F

The formula P(a) @ 3xP(x) is derivable from the empty
set of formulas:
1. P(a) — JzP(x)
2. P(a)®3JzP(x)
The formula P(a) @ V2 P(z) is derivable from the empty
set of formulas:
1. VzP(xz) — P(a)
2. VaP(z) ® P(a)
3. P(a)®VzP(x)

The formula G © F is derivable from F' © G:

logically valid
by implication rule.

logically valid
by implication rule.

logically valid
by implication rule
by symmetry rule.

1. Fe-G

2. -GaF by symmetry rule

3. -G -F by negation rule

4. V(-G < G) logically valid

5. G®-F by replacement rule.

2.4 The Case of Complete Information

Recall that a formula F' @ G without free variables is meant
to express that F' and G are correlated in the sense that the
message I’ would cause the hearer to view G as more plau-
sible, and the message GG would cause the hearer to view F’
as more plausible. The correlation calculus is expected to
have the property that whenever F' @ G is derivable from the
set of facts known to the hearer, F' and G are correlated.

This is not always true, however. If the hearer knows with
certainty whether F' is true or false then no message can
make F' more plausible. Consequently, if one of the for-
mulas F', =F belongs to I' then we would like F' & G not
to be derivable from I' (and similarly if G or =G belongs
to I'). The actual situation is exactly opposite. For any first-
order formulas f‘ and G, the correlation formula F' @ G is
derivable from VF':

1. VF

2. V(G- F) entailed by 1

3. GaF by implication rule
4. Fad by symmetry rule.

It is derivable from V—F as well:

1. V-F
2. Y(F—G) entailed by 1
3. Fadq by implication rule.

To take into account these observations, we modify the
interpretation of @ to treat the case of complete information
in a special way. A correlation formula ' & G without free
variables will be interpreted to mean that

F is correlated with G
or
at least one of F', G, —F, =G is known to be true.

In Section 4 we give a mathematically precise definition
of a probabilistic counterpart of this extended interpretation
of & and prove the soundness of the correlation calculus rel-
ative to this probabilistic semantics.

3 Justifying Solutions
to Winograd Schema Problems

To justify the correctness of a proposed solution to a Wino-
grad Schema problem we encode the solution as a correla-
tion formula in which discourse referents are represented by
object constants. We then show how this correlation for-
mula can be derived from assumptions of two kinds: ground
atoms expressing the presuppositions of the discourse refer-
ents and formulas expressing relevant facts from common-
sense knowledge.

3.1 The Trophy and the Suitcase
Consider the sentence from Schema 2 on Davis’s list:

The trophy doesn'’t fit into the brown suitcase because
it’s too small.

What is too small?

We will justify the correctness of the answer the suitcase
as follows. The phrase the trophy doesn’t fit into the brown
suitcase can be represented by the sentence —fir_into(T, S),
with the presuppositions

1. trophy(T)
2. suitcase(S)
3. brown(S).
The phrase the suitcase is too small can be represented by
the sentence small(S). We will show that the correlation
formula
—fit_into(T, S) & small(S) (1)

can be derived in the correlation calculus from the presuppo-
sitions 1-3 in combination with the following commonsense
facts, which are assumed to be known to the hearer:

4. Vx(suitcase(x) — physical_object(x))
5. Va(physical object(x) — (small(x) < —large(z)))
6. fit_into(x, y) @ large(y).

The derivation continues as follows:

7. —large(S) <« small(S) entailed by 2, 4, and 5

8. fit_into(T, S) @ large(S) by substitution from 6

9. ~fit_into(T, S) @ —large(S)
10. —fit_into(T, S) & small(S)

In Axiom 6 above, x and y are, intuitively, physical ob-
jects, and moreover y is a container. Our formulation may
seem too strong because it does not incorporate these as-
sumptions about the values of = and y. Note, however, that
when x and y are not objects of appropriate types, the cor-
responding instance of Axiom 6 holds because at least one
of the conditions fir_into(x, y), large(y) is known to be false
(see Section 2.4).

The derivability of (1) shows that

by negation rule
by replacement rule.



—fit_into(T, S) is correlated with small(S)
or
at least one of fit_into(T, S), small(S)
is known to be true or false.

Since the formulas fit_into(T, S) and small(S) are not known
to be true or false, we can conclude that the sentences
—fit_into(T, S) and small(S) are indeed correlated.

Consider now the same example with the special word
small replaced by the alternate word big:

The trophy doesn'’t fit into the brown suitcase because
it’s too big.
What is too big? The correctness of the answer the trophy
can be justified in a similar way, with Axiom 6 replaced by
the axiom
fit_into(x,y) ® small(x).

3.2 Lifting the Son
Consider schema 8 from Davis’s list:

The man couldn’t lift his son because he was so weak.

Who was so weak? We will justify the answer the man by
deriving the formula

—can(M, lift(S)) & weak(M)
from the presuppositions

1. man(M)
2. son(S)

and the commonsense facts
3. Va(man(x) — person(z))
4. Va(person(x) — (strong(z) « —weak(z)))
5. can(z,y) ® strong(x).

The derivation continues:

6. ~strong(M) — weak(M) entailed by 1, 3, 4

7. can(M, lift(S)) @ strong(M) by substitution from 5
8. —can(M, lift(S)) @ —strong(M) by negation

9. =can(M, lift(S)) © weak(M) by replacement.

Consider now the same example with the special word
weak replaced by the alternate word heavy:

The man couldn’t lift his son because he was so heavy.

Who was so heavy? The answer the son can be justified by
deriving the formula

—can(M, lift(S)) & heavy(S)
from the commonsense axiom
can(z, lifi(y)) © heavy(y),
which is shorthand for

can(z, lift(y)) & —heavy(y)

(see Section 2.1).

3.3 The Sculpture on the Shelf
Take now the sentence from Schema 13:

The sculpture rolled off the shelf because it wasn’t an-
chored.

What wasn’t anchored? We will justify the answer the sculp-
ture by showing that the correlation formula

roll_off (Sc, Sh) ® —anchored(Sc)
can be derived from the presuppositions
1. shelf (Sh)
2. sculpture(Sc)
and the commonsense facts
3. Va(shelf (x) — surface(x))
4. Y (sculpture(x) — physical_object(x))
5. Yay(physical object(x) Asurface(y) Aanchored(x) —
—roll_off (z,y)).

The derivation continues:

6. roll_off (S¢, Sh) — —anchored(Sc)
7. roll_off (Se, Sh) @ —anchored(Sc)

entailed by 1-5
by implication.

Consider the same example with the special word an-
chored replaced by the alternate word level:

The sculpture rolled off the shelf because it wasn’t level.
What wasn’t level? The answer the shelf can be justified by
deriving the formula

roll_off (Se¢, Sh) © level(Sh)
from axioms 14 and the additional commonsense fact
Vay(physical_object(x) N surface(y) A level(y) —
—roll_off (x,y)).

4 A Probabilistic Semantics
of Correlation Formulas

In this section we assume that the underlying signature is
finite and contains at least one object constant but no func-
tion symbols of arity greater than zero. Under these assump-
tions, 5the set I of Herbrand interpretations of the signature is
finite.

4.1 Worldviews and Satisfaction

A worldview is a discrete probability distribution over I (a
function assigning a value in [0, 1] to each interpretation, so
that the sum over I is 1). Every first-order sentence defines
an event—the set of its models—so we may talk about its
probability with respect to a worldview D:

P(F)= Y D).

Iel: IEF

3Since our formalization of the Lifting the Son example uses
the function symbol /ift, it is not covered by these semantics.



Similarly, we can talk about the probability of a set I" of
first-order sentences with respect to D:

> D).

Iel: I=T

P(r) =

A correlation sentence is a correlation formula with no
free variables. Satisfaction is defined as follows: for any
worldview D,

(1) D satisfies a first-order sentence F' if
P(F) =1,
(ii) D satisfies a correlation sentence F' @ G if the inequality
P(FAG) > P(F)P(G)
holds, or D satisfies at least one of the sentences
F,-F,G,-G,

(iii) D satisfies a correlation formula F'® G with free variables
if D satisfies F'0 @ G0 for every substitution § that maps
the free variables to object constants,

(iv) D satisfies a set consisting of correlation formulas and
first-order sentences if it satisfies all elements of the set.

Case (i) of the definition above is a generalization of the
usual definition of satisfaction for first-order sentences: for
any worldview D that assigns probability 1 to an interpreta-
tion I, D satisfies a formula F' if and only if [ satisfies F'.

Furthermore, if a worldview satisfies a set I" of first-
order sentences then P(I') = 1. Indeed, the set of in-
terpretations satisfying I' is the intersection of the events
{I€l:IE=F}forall FinI. The probability of each
of these events is 1, and there are finitely many of them.

In the case when P(G) > 0, the inequality in clause (ii)
of the definition of satisfaction can be rewritten in terms of
conditional probabilities; D satisfies F' & G if

P(F|G) > P(F).

Let C be a correlation formula or first-order sentence. A
set I' of first-order sentences and correlation formulas en-
tails C' if every worldview that satisfies I" satisfies C'. In
the special case when C and all elements of I" are first-order
sentences, this definition is equivalent to the usual definition
in first-order logic. Indeed, it is clear that if every worldview
satisfying I satisfies C then every interpretation satisfying I
satisfies C. In the other direction, assume that every inter-
pretation satisfying I" satisfies C. Then P(C) > P(T"). If a
worldview D satisfies I" then P(I") = 1, so that P(C') = 1.
Thus I" entails C' in the sense of the definition above.

4.2 Soundness of the Correlation Calculus
Consider an inference rule such that in its instances
C, - C,
Cn+1
C1,...,Cpqq are either correlation formulas or first-order

sentences. Such a rule is sound if for each of its instances (2)
Ch+1 isentailed by C1, ..., C),.

@

Soundness Theorem. All rules of the correlation calculus
are sound.

Corollary. If C is derivable from T in the correlation cal-
culus then T entails C.

As an example of the use of the probabilistic semantics,
consider a first-order signature allowing only two distinct
ground atoms p, g. We will show that the correlation for-
mula p ® q is not derivable from the empty set. Consider
the worldview that assigns the same value % to each of the
4 interpretations of this signature. This worldview does not

satisfy p @ ¢, because

PlpAq) = P(p)- P(q)
Indeed, P(p A q) = + and P(p) = P(q) = 3.

4.3 Proof of the Soundness Theorem

The implication rule. Consider first an instance of the impli-
cation rule where F' and (G are sentences:

F—-G

FoG’
If either P(F) = 0 or P(G) = 1 then the fact that D sat-
isfies the conclusion is immediate. Otherwise, let D be a

worldview that satisfies the premise. Then for any interpre-
tation I to which D assigns nonzero probability,

I)ZF—)G.

So for any such interpretation, if / = F' then I |= G. Con-
sequently,

P(FAG)=P(F).
On the other hand, since P(F) > 0 and P(G) < 1,
P(F) > P(F)P(G).
Consequently
P(FANG)> P(F)P(G),

so that D satisfies the conclusion.
Consider now an instance of the implication rule in which
F and G may contain free variables:

Y(F — G)
FoG

Let D be a worldview that satisfies the premise. We need
to show that for any substitution # that maps the free vari-
ables to object constants, D satisfies F'0 @& G6. Consider the
following instance of the implication rule:

Fo — Go

FOo GO’
Since D satisfies the premise of (3), it satisfies the premise

of (4). Since (4) is covered by the special case discussed
earlier, it follows that D satisfies F'0 @ G6.

3)

“4)

The replacement rule. Consider first an instance of the re-
placement rule where F, G, H are sentences:
F— G FeH
GoH




Let D be a worldview that satisfies both premises. Since D
satisfies the first premise, it assigns probability O to interpre-
tations satisfying /' A =G and to interpretations satisfying
—F A G. Consequently,

P(F) = P(F AG) + P(F A-G)
=P(FAG)
=P(FAG)+ P(=F AG)
= P(G),
so that
P(F) = P(Q). (%)
Similarly,
P(FANH)=P(GABH). 6)

Since D satisfies the second premise, two cases are possible:
P(FANH)> P(F)P(H)

or one of the probabilities P(F'), P(H) is 0 or 1. In the first

case, by (5) and (6),

P(GANH)=P(FANH)> P(F)P(H)=P(G)P(H).
In the second case, in view of (5), one of the probabilities
P(G),P(H)is0or 1. In either case, D satisfies the conclu-
sion.

The general case follows as in the proof for the implica-
tion rule. The proof for the other replacement rule is analo-

gous.
The soundness of the symmetry rule is obvious.

The negation rule. Consider first an instance of the negation
rule where F', GG are sentences:
FoG
-F -G
Let D be a worldview satisfying the premise, so that either
P(FAG) > P(F)P(Q)
or one of the probabilities P(F'), P(G) is 0 or 1. In the first
case,
P(-F A-G)=P(—(FVG))

=1-P(FVG)
=1-—P(F)—-P(G)+ P(FAQG)
>1—-P(F)—-P(G)+ P(F)P(G)
— (1- P(F))(1 - P(G))
— P(-F)P(-G),
so D satisfies the conclusion. In the second case, one of the
probabilities P(—F"), P(—G) is 0 or 1, and consequently D
satisfies the conclusion.

The general case follows as above.

The substitution rule. Consider an instance of the substitu-

tion rule
Fad

Foo GO’
and let D be a worldview satisfying the premise. For any
substitution #’ that maps the free variables of F'§, Gf to ob-
ject constants, D satisfies

(FO)0' @ (GO)'

because (F0)0' = F(00'), (GO = G(00").

4.4 An Unsound Inference Rule
An inference rule that may look plausible is the transitivity

rule
Fed GoH

FoH '
However, it is unsound. Indeed, consider a signature with
two distinct ground atoms p, g, and the following instance
of the transitivity rule:

pdpVy pVaqgdq

pDyq
The two premises are both entailed by the empty set, as they
are derivable by applying the implication rule and symmetry
rule to the tautologies

p—(pVa),
q—(pVa).
However, we have already shown that p&q is not entailed by

the empty set, so the premises do not entail the conclusion
and the transitivity rule is unsound.

5 Future Work

Our approach to reasoning about correlation relies on the
availability of axioms expressing relevant commonsense
knowledge. The axioms used in Section 3 are manually tai-
lored to handle examples from Davis’s list, and we would
like to enerate such axioms automatically.

This difficult task can benefit from existing work on for-
malizing commonsense knowledge (Davis 1990; Mueller
2006). It may be possible to extract useful axioms
from existing lexical and commonsense knowledge bases,
such as WORDNET (Fellbaum 1998), FRAMENET (Baker,
Fillmore, and Lowe 1998), VERBNET (Kipper-Schuler
2005), PROPBANK (Palmer, Gildea, and Kingsbury 2005),
CONCEPTNET (Liu and Singh 2004), KNEXT (Schubert
2002), and the OPENCYC® project. For example, the axiom

Vx(suitcase(x) — physical_object(x))

used in Section 3.1 is supported by the knowledge available
in the WORDNET database stating that a suitcase is a hy-
ponym of a physical object.

The automation of reasoning in the correlation calculus is
another issue that will need to be studied.

Some commonsense facts expressed in Section 3 by first-
order sentences can be best formalized as defaults. The for-
mula

Vay(level(y) — —roll_off (x,y))

is an example: an earthquake can cause a sculpture to roll
off a shelf even when the shelf is level. Developing a non-
monotonic approach to reasoning about correlation that will
make this possible is another avenue for future work.

While we demonstrated the correlation calculus on prob-
lems in the Winograd Schema Challenge, it is possible that
the approach can be expanded to other tasks relying on dis-
course coherence. Examples may include general corefer-
ence resolution (Kehler et al. 2008), temporal anaphora reso-
lution (Lascarides and Asher 1993), and lexical disambigua-
tion (Asher and Lascarides 1995).

®http://www.opencyc.org/doc



6 Related Work

The Winograd Schema Challenge is a particular restricted
form of coreference resolution. There is an extensive body
of work on this topic (Poesio, Ponzetto, and Versley 2010;
Ng 2010). The CoNLL-2011 shared task was devoted to
coreference resolution, and eighteen systems participated.
The OntoNotes (Hovy et al. 2006) data was used to assess
(and sometimes develop) these systems. OntoNotes consists
of various genres of non-handcrafted text, as well as annota-
tions of coreference. However, Winograd Schema problems
turn out to be difficult for state-of-the-art coreference sys-
tems. For example, the top ranked Stanford system at the
CoNLL-2011 shared task (Lee et al. 2011) made a mistake
on 50% of the Winograd Schema problems that we experi-
mented with. The other top-ranked systems performed sim-
ilarly.

Rahman and Ng (2012) address coreference resolu-
tion problems like those in the Winograd Schema Chal-
lenge using a ranking-based machine learning approach.
Schiiller (2014) relates the Winograd Schema Challenge to
relevance theory. Schiiller’s approach is closer to our own in
that its focus is knowledge representation.

7 Conclusion

In this paper, we introduced and studied a calculus for de-
riving correlation formulas, and showed how it can be used
to justify correct answers to some Winograd Schema ques-
tions. Designing the correlation calculus is only a small
step towards meeting the Winograd Schema Challenge, be-
cause it sidesteps the difficult problem of generating axioms
expressing the relevant commonsense and lexical informa-
tion, including facts about discourse coherence. However,
the correlation calculus is a stand-alone contribution to the
study of discourse coherence, and may have implications for
other computational linguistics tasks that rely on coherence.
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