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Abstract

Introduced transinfections of the inherited bacteriaWolbachia can inhibit transmission of

viruses by Aedesmosquitoes, and in Ae. aegypti are now being deployed for dengue control

in a number of countries. Only threeWolbachia strains from the large number that exist in

nature have to date been introduced and characterized in this species. Here novel Ae.

aegypti transinfections were generated using the wAlbA andwAu strains. In its native Ae.

albopictus, wAlbA is maintained at lower density than the co-infecting wAlbB, but following

transfer to Ae. aegypti the relative strain density was reversed, illustrating the strain-specific

nature ofWolbachia-host co-adaptation in determining density. ThewAu strain also reached

high densities in Ae. aegypti, and provided highly efficient transmission blocking of dengue

and Zika viruses. Both wAu and wAlbA were less susceptible than wMel to density reduc-

tion/incomplete maternal transmission resulting from elevated larval rearing temperatures.

Although wAu does not induce cytoplasmic incompatibility (CI), it was stably combined with

a CI-inducing strain as a superinfection, and this would facilitate its spread into wild popula-

tions.Wolbachia wAu provides a very promising new option for arbovirus control, particu-

larly for deployment in hot tropical climates.

Author summary

Mosquito-borne viral diseases represent an increasing threat to human and animal health

globally. The mosquito species Aedes aegypti, a primary vector of the most significant

human arboviral infections including the dengue, Zika and Chikungunya viruses, is highly

invasive and is almost ubiquitous in tropical urban areas. Mosquito control remains the

main approach for preventing and controlling outbreaks. A novel control strategy that is

currently being trialed in several countries utilizes Ae. aegyptimosquitoes artificially

infected with a bacterial symbiont known asWolbachia pipientis. Although many insect

species harbor nativeWolbachia infections, Ae. aegypti is naturally uninfected.Wolbachia
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lives within host cells and is passed-on from mother to offspring, and can block virus

transmission; once released it can invade and persist in host populations. Here we present

the infection and assessment of two novelWolbachia strains in Ae. aegypti. We show that

one of the strains, wAu, provides particularly strong blocking of dengue and Zika virus

transmission and offers greater stability at higher temperatures when compared to wMel

—currently the most widely used strain for field releases. These results suggest that wAu is

promising option for arbovirus control, especially in hot climates.

Introduction

The mosquito Aedes aegypti (Linneaus) is the most important vector of human arboviruses.

Although native to Africa it now has a broad distribution throughout the tropics and subtrop-

ics and is peridomestic, often laying its eggs in man-made water containers, and displaying a

strong preference for feeding on humans. Attempts to reduce the global incidence of dengue

fever and stem the spread of recent chikungunya, Zika and yellow fever virus outbreaks have

focused on Ae. aegypti control [1, 2], which has proven challenging. An emerging vector con-

trol strategy utilizes mosquitoes artificially transinfected with virus-blocking strains of the

alpha-proteobacteriumWolbachia pipientis [3].Wolbachia are obligate intracellular endosym-

bionts naturally found infecting a wide range of terrestrial arthropods. The natural abundance

ofWolbachia can be partly attributed to its capacity to spread through naïve populations by

manipulating host reproduction. Although several forms of reproductive manipulation are

found across different arthropod species, the only form observed in mosquitoes is a type of

crossing sterility known as cytoplasmic incompatibility (CI).Wolbachia modifies the sperm of

infected males [4], which results in the generation of non-viable progeny when mated to unin-

fected females. Infected females, in contrast, ‘rescue’ this sperm modification, producing viable

progeny and resulting in a relative fitness advantage that can drive and maintainWolbachia at

high population infection frequencies [5].

While Ae. aegypti is not a naturalWolbachia host, stable transinfections with the wAlbB

strain from Aedes albopictus and wMelPop/wMel strains from Drosophila melanogaster have

been generated in the laboratory using embryonic microinjection, with the resulting lines

showing reductions in vectorial capacity for a number of arboviruses and other pathogens [6–

11]. Ae. aegypti transinfected with wMel have significantly reduced vector competence for den-

gue virus [7, 12], yellow fever virus [10], chikungunya [10] and Zika [13] viruses in laboratory

challenges. However, mosquito challenges with patient-derived dengue infected blood have

indicated that wMel-mediated blocking is incomplete, and modelling predicts that wMel

would be insufficient to achieve complete control in some settings [14]. Field trials aimed at

spreadingWolbachia in Ae. aegypti for dengue control have to date focused primarily on wMel

[15, 16].

Different strains ofWolbachia reach varying intracellular densities and display divergent

tropism within host tissues; the magnitude of the pathogen inhibition effect shows a positive

correlation withWolbachia intracellular density in several species [17–19]. The wMelPop

strain reaches very high densities in Ae. aegypti, which probably contributes to an almost com-

plete blocking of dengue virus transmission [6, 12]. However, wMelPop imposes significant

costs on a variety of traits including reduced longevity, fecundity and egg survival in quies-

cence [20–23]. These negative fitness effects have made the introduction of wMelPop into wild

host populations problematic, despite the presence of strong uni-directional CI—recent field

trials in Vietnam and Australia failed to achieve population replacement using this strain [24].

WolbachiawAu is efficient virus transmission blocker
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Recently several studies have reported the influence of a variety of factors onWolbachia

intracellular density. Larval rearing temperature in particular has a significant impact on the

densities of wMel and the over-replicating wMelPop strain in Ae. aegypti [25, 26]: exposure of

larvae to diurnal rearing temperatures cycling between 27–37˚C resulted in dramatic reduc-

tions in totalWolbachia density, and rates of maternal transmission—ultimately leading to the

loss of the wMel and wMelPop infections when the high temperature regimes were maintained

for more than one generation [26]. In addition to environmental factors, a genetic basis to

density determination has been postulated based on duplications of a set of eight genes in the

wMelPop genome, with copy number reported to correlate with wMelPop density in Drosoph-

ila melanogaster [27]. However, further studies failed to find a straightforward causal role for

copy number inWolbachia density regulation [28], but see [29] and [30].

So far, only a few of the vast repertoire of naturally-occurringWolbachia strains have been

introduced into Ae. aegypti. It is important to create and characterize further transinfections in

this species since they might provide improved characteristics such as viral blocking under

particular environmental conditions, especially in hot climates [3], and offer insights into the

regulation of intracellular density and its role in inducing pathogen inhibition and effects on

host fitness. Limitations are imposed by the technical demands of embryo cytoplasmic transfer

by microinjection and the need for robust lab colonies of the insects to be used as the source of

Wolbachia. While wAlbA and wAlbB are naturally found superinfecting Ae. albopictus, wAlbA

is maintained at around 10% of the density of wAlbB [31] and only wAlbB established itself fol-

lowing previous embryo cytoplasm transfers from Ae. albopictus into Ae. aegypti [32]. Strain

wAu does not induce CI in its native host Drosophila simulans [33], but confers a notably high

degree of protection from pathogenic viruses of Drosophila [34, 35]. We therefore aimed to

generate and characterize Ae. aegypti lines containing wAlbA and wAu for a variety of traits

relevant to transmission-blocking and population-replacement potential, in comparison with

the previously reported wAlbB and wMel transinfections.

Results

Strain generation and transmission

Using embryonic cytoplasmic transfer and taking advantage of incomplete maternal inheri-

tance we generatedWolbachia transinfected lines carrying strains wAlbA, wAlbB, wMel, and

wAu in the same host background of Ae. aegypti. Each of theWolbachia strains apart from

wAu was capable of inducing full unidirectional cytoplasmic incompatibility with wild-type

mosquitoes, and therefore showed population replacement potential. wAu produced no

detectable CI (Table 1), consistent with observations in its native host (Drosophila simulans)

Table 1. Crosses betweenWolbachia-infected lines.

Female line

wAlbA wAlbB wMel wAu wt

Male line wAlbA 89.2 (1541) 0 (774) 0 (644) 0 (499) 0 (488)

wAlbB 0 (663) 89.4 (954) 0 (821) 0 (663) 0 (1321)

wMel 0 (1254) 0 (667) 90.4 (416) 0 (451) 0 (974)

wAu 91.4 (680) 75.3 (237) 92.7 (402) 92.4 (637) 91.4 (810)

wt 83.7 (771) 79.4 (527) 87.6 (669) 87.6 (296) 87.3 (225)

Eggs are from a single-cage cross of 20 males and 20 females. Females were blood-fed and individualized for oviposition. Numbers show percentage hatch rates with

total numbers of eggs counted in parentheses.

https://doi.org/10.1371/journal.ppat.1006815.t001
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[33] and providing further evidence that it is genetically incapable of generating CI, as opposed

to a strain-specific suppression of the phenotype in its native host.Wolbachia-infected lines

were crossed to determine the crossing types between strains. For lines that induced unidirec-

tional CI with wild-type mosquitoes, no hatching of the resulting eggs was observed, in other

words between-strain crosses resulted in complete bidirectional CI.

Rates ofWolbachia maternal inheritance were determined by PCR of progeny from com-

patible crosses between wild-type males and infected females. All lines showed complete

(100%) maternal transmission of all strains in 200 progeny assessed. Since wAu does not

induce CI, its maintenance in the wAu line is facilitated by high rates of maternal inheritance,

and it is hypothesized to produce positive host fitness effects under some conditions based on

increases in its frequency in native D. simulans host populations [36]. To assess its stability in

Ae. aegypti populations, 200 individuals from the wAu colony were randomly selected and

tested for the presence ofWolbachia at the fourth, seventh, and tenth generations post initial

establishment. Colonies of this line had been maintained at relatively high numbers (>2,000

individuals per generation from G4) with no direct selection for wAu infection from G1

onwards. All individuals tested positive at each generation, indicating that wAu is maternally

transmitted at very high fidelity under these laboratory conditions.

Wolbachia intracellular density and tropism. TotalWolbachia density in each line was

monitored over the initial post-transinfection generations by qPCR. Once densities were stable

(after five generations for each line) a time-course study was performed to monitor total densi-

ties in females over the first 15 days post adult eclosion (Fig 1A). Although all lines showed

increasingWolbachia density with adult age, there was significant variation in the total densi-

ties of the individualWolbachia strains.

Although wAlbA reaches only modest densities in its native host Ae. albopictus, it showed

the highest overall density of all the strains assessed at the majority of time-points in Ae.

Fig 1. Wolbachia densities and tropism in Aedesmosquitoes. (A) TotalWolbachia densities were measured by qPCR in wAlbA,
wAlbB, wAu, and wMel carrying Aedes aegypti females at varying time points post adult eclosion. Each box represents 10 biological
replicates, with pools of 5 females per replicate. The centre of a box plot shows medianWolbachia density, edges show upper and lower
quartiles, and whiskers indicate upper and lower extremes. (B) TotalWolbachia densities in dissected tissues measured by qPCR. Each
bar represents the average density of 5 biological replicates. For each of the tissue-specific replicates 5 biological replicates of 5 sets of
salivary glands, 5 midguts, or 5 ovary pairs were assessed. Error bars show SD. Statistical analyses were performed using a two-tailed
Student’s t-test.

https://doi.org/10.1371/journal.ppat.1006815.g001
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aegypti.wAu also reached comparatively high densities (no significant difference with wAlbA

at all time points, p>0.01, t-test), several fold higher than that of the other native Drosophila

strain, wMel. wAlbB showed the lowest totalWolbachia density of the strains at all time points.

It is highly likely thatWolbachia tissue distribution plays a key role in determining levels of

pathogen inhibition since this phenotype has been reported to be cell-autonomous rather than

systemic [6]. TotalWolbachia densities were therefore assessed in dissected ovary, midgut and

salivary gland tissues (Fig 1B). In ovarian tissue wAu and wAlbA reached similarly high densi-

ties (p = 0.192, t-test) with wAlbB showing the lowest density. In midguts all strains showed

relatively low densities compared to the other tissues assessed; in salivary glands wAlbA

showed the highest density while wMel and wAlbB reached relatively low density.

Virus inhibition. To provide an initial indication of the virus blocking potential of the dif-

ferentWolbachia single-infection lines in Ae. aegypti, the titres of Semliki Forest Virus (SFV),

an arbovirus model system, were assessed in whole adult females following intrathoracic

microinjection and a ten-day incubation period (Fig 2A). wAu was more effective in reducing

viral load than wMel and wAlbB, although all three strains resulted in significantly reduced

viral loads compared to wild-type (p<0.01, 1-way ANOVA with Dunnett’s). It is notable that

the highest density strain (wAlbA) was not the most efficient virus blocker, producing no

detectable differences in levels of SFV compared with wild-type mosquitoes (p>0.3, 1-way

ANOVA with Dunnett’s)

To further assess levels of virus transmission blocking, females of the wild-type, wAu, wMel

and wAlbB lines were orally challenged with either a DENV or ZIKV-infected blood meal.

Engorged 5-day old females were allowed to incubate virus for 12 days, at which point salivary

glands and abdomens were dissected and the presence of viral RNA was quantified by reverse-

transcriptase quantitative PCR. Additionally, saliva was collected prior to dissection for the

ZIKV infected females, and levels of infectious virus were quantified by fluorescent focus assay

(FFA).

For DENV, significant differences in rates of replication and dissemination were observed

across the differentWolbachia lines. Females of the wAu, wAlbB, wMel and wild-type lines

contained salivary glands positive for DENV RNA, at rates of 0%, 26.3%, 36.8% and 41.2%,

respectively (Fig 2B). This represents a significant reduction in infection rate of the wAu infec-

tion compared to wild-type, and for wAu compared to the wAlbB and wMel lines. In abdomen

tissue, infection rates were 22%, 47.4%, 31.6% and 58.8% in the wAu, wAlbB, wMel and wild-

type lines, respectively, and were significantly different between the wAu and wild-type lines

(Fig 2C).

All of theWolbachia infected lines showed significant decreases in ZIKV transmission in

saliva compared to wild-type: the wAlbB and wAu lines completely blocked infectious virus

transmission, while 6.3% of the wMel saliva samples were positive, compared to 39% of the

wild-type (Fig 2D). Similarly, the wAlbB and wAu females contained no detectable ZIKV in

salivary gland tissue, while 12.5% and 50% of the wMel and wild-type were positive, respec-

tively, representing a significant decrease for the wAu and wAlbB infected lines compared to

wild-type (S1 Fig). In abdomen tissue 27.7%, 37.5% and 72.2% were ZIKV positive in the

wAlbB, wMel and wild-type lines, respectively, while none of the wAu abdomens were positive

for ZIKV RNA (Fig 2E).

Effects of high temperature onWolbachia density. Recent reports have shown that

exposure of larvae to higher rearing temperatures can significantly affect the density ofWolba-

chia in adults [25, 26], leading to reduced rates of maternal transmission [26]. As Ae. aegypti

larvae are often found in bodies of water experiencing day-time heating, temperature suscepti-

bility could potentially limit the invasive capacity of aWolbachia strain, as well as its ability to

inhibit virus transmission. Interestingly, comparisons of the densities of wAlbB and wMel in

WolbachiawAu is efficient virus transmission blocker
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Ae. aegypti found that the latter was particularly susceptible to cyclical heat treatment, while

wAlbB was more resilient [26].

The densities and maternal transmission rates ofWolbachia in the wAlbA, wAlbB, wMel

and wAu lines were examined in adults following exposure of larvae to a rearing temperature

regime fluctuating between 27˚C and 37˚C (12hr:12hr). Consistent with previously published

results [25, 26], fluctuating heat regimes during larval rearing resulted in reductions inWolba-

chia density in emerging adult males and females. Although significant decreases in density

were observed for all strains under heat treatment (p<0.05 for each comparison, t-test) (Fig

3A), the effect was most dramatic for wMel, with a drop in averageWolbachia levels in females

to 0.017 ± 0.015 (mean ± SD)Wolbachia/host cell, an infection density 0.49% that of newly

emerged wMel controls raised at a constant 27˚C. wAu, another native Drosophila strain,

Fig 2. Virus inhibition inWolbachia-infected Aedes aegypti lines. (A) Semliki Forest virus (SFV) genome copies per host cell following thoracic injection
intoWolbachia-infected lines and wild-type Ae. aegypti. Females were left for 10 days prior to total RNA extraction and virus quantification by qPCR.
Levels of target RNA sequences were normalized against the RPS17 house-keeping gene. 17, 16, 18, 17 and 17 females were PCR’d for the wAlbA, wMel,
wAu, wAlbB and wt, respectively. Statistical analysis was performed using a one-way ANOVAwith a Dunnett’s post-hoc test. Dengue-2 (DENV) (B and C)
and Zika (ZIKV) (D and E) viruses were orally administered to 5-day old females. After an incubation period of 12 days, females were salivated (Zika only)
and salivary glands and abdomens dissected. Viral RNA in salivary glands (SG) and abdomens were quantified by reverse-transcriptase qPCR, with viral
RNA levels normalized to host RNA using the RpS17 house-keeping gene. A value of zero for normalized virus levels, indicates no amplification for virus
cDNA in that sample. Zika viral titers in saliva were quantified by fluorescent focus assay with results show focus forming units (FFU). Proportions
underneath each graph indicate the infection rate for a given strain. Statistical analyses for panels B, C, D and E were performed using a one-tailed Fisher’s
exact test comparing rates of virus-positive to virus-negative samples. Black lines indicate median of non-zero values.

https://doi.org/10.1371/journal.ppat.1006815.g002
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proved to be more resilient to high temperature treatment than wMel, retaining an infection

density of 4.6 ± 1.31 (mean ± SD)Wolbachia/host cell in emerging females, 4.47% that of wAu

controls. The two native mosquito strains tested, wAlbA and wAlbB, proved to be the most

resilient to high temperature fluctuation, retaining infection densities of 4.9 ± 4.4 (mean ± SD)

and 0.2 ± 0.06 (mean ± SD)Wolbachia/host cell in females, representing 10.72% and 32.12%

that of controls, respectively. Strain-specific reductions inWolbachia density were found to be

similar in males and females (Fig 3A).

Despite the reductions in density, the females in all lines displayed complete transmission

to progeny (Fig 3B). The effects of two consecutive generations of larval temperature treatment

on infection rates was also examined. Females having undergone larval heat treatment were

crossed with wild-type males to avoid the effects of CI, and the resulting progeny were also

reared under fluctuating high temperature to pupation, at which point infection status was

assessed by PCR. We found that each strain contained uninfected individuals, although rates

varied widely betweenWolbachia strains (Fig 3B). The wMel line showed an almost complete

loss of detectable infection, with only 2% of individuals PCR positive forWolbachia; infection

rates were 58%, 66% and 82% for the wAlbB, wAlbA and wAu strains, respectively. These

results are consistent with previous findings showing complete loss of wMel and wMelPop

infections in Ae. aegypti following two generations of heat cycling [26].

Wolbachia strains and host fitness. Another important factor when assessing the com-

parative utility ofWolbachia strains for disease control is their effect on host fitness [37]. The

dynamics of cytoplasmic incompatibility, where reproductive advantage afforded toWolba-

chia-infected females is frequency-dependent, dictate that invasion cannot occur untilWolba-

chia frequency has exceeded a threshold level, and this threshold is in part determined by the

effects of the bacteria on host fitness. We assessed important fitness parameters previously

shown to be influenced byWolbachia infection: longevity (Fig 4A), fecundity (Fig 4B) and egg

hatch following a period of desiccated quiescence (Fig 4C).

Fig 3. High temperature results in reducedWolbachia densities and maternal leakage. (A) Larvae from the wAlbA,
wAlbB,wAu, and wMel strains were reared at constant 27˚C (C) or with temperature fluctuating between 27–37˚C
(12hours:12hours) (H) and assessed forWolbachia density by qPCR upon adult emergence. Each point represents a
pool of 3 adult mosquitoes. The centre of a box plot shows medianWolbachia density, edges show upper and lower
quartiles, and whiskers indicate upper and lower extremes. Statistical analyses were performed using a two-tailed
Student’s t-test. (B) Females reared under larval temperature cycling conditions were allowed to recover upon
emergence at a constant 27˚C and were crossed to wild-type males with infection rates in resulting progeny assessed (1
Gen). Females reared under heat treatment were mated with wild-type males, and resulting progeny were also reared
under high temperature conditions—resulting in two consecutive generations of high temperature treatment.
Infection rates were then assessed in the pupae resulting from the second round of larval heating (2 Gen). Error bars
show binomial 95% confidence intervals.

https://doi.org/10.1371/journal.ppat.1006815.g003
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Fig 4. Fitness assessment ofWolbachia-infected and wild-type Ae. aegypti. (A) Survival of adult females ofWolbachia -infected lines. Curves
show percentage survival with shaded areas indicating 95% confidence intervals from 4 replicate cages for each line each containing a starting
number of 25 adult females. (B) Fecundity of females fromWolbachia -infected lines and wild-type over the first gonotrophic cycle. 20 females
were individualized for oviposition. Bars show average egg number per female. Error bars show SD. (C) Percentage hatch rates of eggs from
Wolbachia -infected lines and wild-type mosquitoes after 5, 10, 20, 35 and 50 days of desiccated quiescence. For each time-point the number of
eggs assessed varied from 200–500. Shaded areas around lines indicate 95% confidence intervals.

https://doi.org/10.1371/journal.ppat.1006815.g004
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Out of all the lines tested, wMel was the onlyWolbachia strain that did not cause a signifi-

cant reduction in adult female longevity compared to uninfected wild-type in these laboratory-

cage experiments (p>0.1). wAlbB caused a slight but significant reduction in the longevity of

females. The wAu and wAlbA infected lines resulted in the most significant reductions in

female longevity, consistent with the hypothesis that the higher densityWolbachia strains

cause the highest fitness costs (p<0.001). Similar trends in longevity were observed in males

(S2 Fig).

No influence of any of theWolbachia strains on female fecundity was detected when com-

pared to wild-type hatch rates (p = 0.91, 1-way ANOVA with Dunnett’s) (Fig 4B), with all

strains producing approximately 90 eggs per female on average. A strain-dependent effect on

the ability of eggs to survive in desiccated quiescence was observed. The wild-type, wMel and

wAlbB lines showed no significant reductions in egg hatch rates after 50-days of quiescence

compared with their respective 5-day hatch rate (p>0.4 for each comparison, t-test). However,

the wAu and wAlbA containing lines showed reductions in egg survival with time over this

period. The effect was strongest in the wAlbA line, with hatch rates dropping to 50% after

approximately 13 days of desiccated quiescence. The hatch rate of the wAu infected line

dropped to 50% after approximately 18 days.

A wAu—wAlbB superinfection causes uni-directional CI. The wAu strain was able to

successfully establish itself in wild populations of Drosophila simulans without inducing CI

[36]. Given that densities and associated fitness costs in Ae. aegypti are likely to be lower in

wild mosquitoes than in the lab, and that its maternal transmission fidelity is very high, it is

possible that wAu could maintain itself in field Ae. aegypti following introduction. Alterna-

tively, it could be driven into an uninfected population by combining wAu with aWolbachia

strain capable of causing unidirectional CI. As a proof-of-concept, we created a wAu superin-

fection using the wAlbB strain as the ‘driver’, since wAlbB combines unidirectional CI with

temperature stability and relatively strong viral inhibition. A superinfected line was generated

by transferring cytoplasm from wAu-carrying Ae. aegypti embryos to embryos carrying

wAlbB. As expected, the wAuwAlbB line produced full unidirectional CI when crossed with

wild-type mosquitoes (Fig 5A). Analysis of adult females showed that the wAuwAlbB line pos-

sesses very similar over-all densities to the wAu single-infection (Fig 5B). Moreover, a compar-

ison of the wAu, wAlbB and wAuwAlbB lines revealed that the presence of wAlbB did not

significantly reduce the density of wAu in wAuwAlbB ovaries (Fig 5C) (p>0.1, t-test), suggest-

ing that wAlbB will not affect the maternal transmission rate of wAu in the superinfected line,

and no reductions in wAu density were found in the midgut or salivary gland tissues of the

wAuwAlbB line compared to the wAu-only line (S3 Fig), strongly suggesting that wAuwAlbB

will display a similar virus blocking and fitness profile to the wAu-only line. However, wAlbB

ovary density was significantly reduced in the presence of wAu (Fig 5C) (p<0.03, t-test),

although this does not appear to impact the capacity of wAlbB to rescue CI (Fig 5A). The infec-

tions in the wAu and wAlbB single and superinfected lines were visualized by whole-mount

fluorescence in situ hybridization, using separate wAu (green) and wAlbB-specific (red) probes

(Fig 5D). The images obtained show that wAu is present in a greater number of ovarian cells

and occupies a greater volume within the cells compared with wAlbB, which is notably more

restricted in its distribution.

Discussion

In light of the failure to establish wMelPop in wild populations [24], and with the finding that

wMel densities are unstable under high temperature treatments [25, 26], it is important to

investigate the properties of additionalWolbachia strains in Ae. aegypti. The novel lines

WolbachiawAu is efficient virus transmission blocker
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generated here highlight the variability in phenotypic effects caused by differentWolbachia

strains in a common host background, and emphasizes the difficulties in making reliable pre-

dictions of phenotype based solely on observations of the strain in single host species.

The high level of virus inhibition by wAu observed here is consistent with results obtained

in Drosophila species. A comprehensive assessment ofWolbachia-mediated antiviral protec-

tion, comparing Drosophila C virus (DCV) and Flock House virus (FHV) inhibition by 19

Wolbachia strains in same background of D. simulans, found that wAu caused the strongest

blocking of both viruses, greater than both wMel and a higher density wMel variant, wMelCS

[38]. Similar observations of stronger blocking of DCV and FHV by wAu relative to wMelCS

have also been made in D.melanogaster [34]. Although wAu produces some costs to host fit-

ness, these were modest compared to the wMelPop strain. In previous experiments carried out

by McMeniman and colleagues [23], the median longevity of wMelPop-infected females was

Fig 5. Generation of a wAu – wAlbB superinfection. (A) Crosses between wAuwAlbB and wild-type lines. Eggs are from crosses of 20 males and 20
females. Numbers show percentage hatch rates with total numbers of eggs counted in parentheses. (B) TotalWolbachia densities measured by qPCR in
wAlbB,wAu, and wAuwAlbB carrying Aedes aegypti females at ten days post adult eclosion. Each bar represents 10 biological replicates, with pools of 5
females per replicate. Error bars show SD. (C) wAu and wAlbB strain-specific densities in the ovaries of wAlbB, wAuwAlbB, and wAu carrying Ae.
aegypti. Each bar represents the average densities from 5 biological replicates each containing ovaries of 10 adult females. Error bars show SD. Statistical
analysis was performed using a one-way ANOVA. (D) Fluorescent in situ hybridization showing distributions of wAu (green) and wAlbB (red) in
ovaries of the wAu, wAlbB, wAuwAlbB and wild-type (wt) lines. For all images ovaries were treated with both red and green probes. A no-probe control
showing some green auto-fluorescence in wild-type ovaries is shown in S4 Fig. Blue stain is DAPI.

https://doi.org/10.1371/journal.ppat.1006815.g005
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found to be approximately 26 days, compared to 62 days for wild-type controls. The wAu line

produced median female longevity of 40 days, compared to 60 days for wild-type controls.

It was surprising to find significantly higher densities of wAlbA than wAlbB in Ae. aegypti,

given that wAlbA is maintained at much lower densities than wAlbB in its native host Ae. albo-

pictus [31], and is strongly suggestive of the presence of host factors/interactions determining

Wolbachia density in a strain-specific fashion, rather than simple differences in replication

rates betweenWolbachia strains. The influence of host factors has been previously suggested,

when densities of wMelPop were found to vary significantly between the native host D.mela-

nogaster and the closely related Drosophila simulans [39]. Studies comparing wMel with the

high-density variant wMelPop have correlated duplications of a region of eight genes with

increases inWolbachia density in the native host Drosophila melanogaster [27, 29, 30]. How-

ever, this region is completely deleted in other wMelPop sub-strains [40]. Moreover, wAu

lacks this locus [34], but reaches higher densities than wMel and provides greater pathogen

protection in D. simulans [35]. The apparent strain-specific nature ofWolbachia density con-

trol is encouraging in terms of maximizing the long-term effectiveness ofWolbachia-based

strategies for virus control. Even if meanWolbachia density reduction occurs over time due to

selection on the host, and thus amelioration of virus transmission-blocking, other strains

could subsequently be introduced to restore high density and thus the effectiveness of disease

control.

We show that the effects of high temperature on density can vary dramatically between

Wolbachia strains, and confirm previous studies showing that wMel is particularly susceptible

to maternal leakage over consecutive generations of heating. The upper temperature used here

is high but realistic for larvae in tropical regions [41]. ChoosingWolbachia strains that show

the greatest density stability of natural environments where releases take place should therefore

be a key concern when considering the suitability of strains in a given location. Higher temper-

ature conditions may result in lowerWolbachia densities in the field, which could cause

reduced pathogen inhibition. However lower densities also correlate with lower fitness costs;

high temperatures may therefore also result in improved fitness characteristics and population

spread capacity. Likewise, in hot tropical regions without a marked dry season, reduced

embryo hatch after quiescence may have little impact on spread dynamics. The direct compari-

son ofWolbachia strains presented here also highlights the utility of wAlbB, which combines

similar levels of virus blocking to wMel, with greater temperature stability—suggesting it may

be more effective at spreading and blocking virus transmission in very hot climates.

The demonstration of a stable superinfected line carrying wAu and wAlbB demonstrates

one of several possible methods by which wAu could be spread through populations. When

used in combination with a ‘driver’ strain, there is always the risk that a decoupling of the

strains may occur over time in the field, although the rate at which this would occur is difficult

to predict, and may vary between environmental conditions and thus locations. Further exper-

iments can explore different strain combinations with wAu to maximize co-transmission sta-

bility under field-approximating conditions, but the driver strain should also reduce or block

virus transmission in case wAu is lost, as is the case for wAlbB. The combination of twoWolba-

chia strains was previously reported in Ae. aegypti, where wAlbB was stably combined with

wMel, resulting in a superinfected strain that showed unidirectional CI with wt, wAlbB-only

and wMel-only lines [12]. Interestingly the superinfected line showed increased levels of path-

ogen inhibition compared to the constituent strains.

The recent discovery in wMel that at least two of the genes required for CI induction form

an operon located in an integrated WO prophage region [42, 43], which is notably absent in

the wAu genome [44], opens the intriguing possibility that wAu could be converted into a

CI-inducing stain following integration of a suitable WO phage element. Crossing-type
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conversion has been previously reported inNasonia wasps, whereby an incompatibility pheno-

type was transferred between different strains following innoculation with a 0.23μm pore-

filtred pupal homogenate [45]. Overall fitness benefits are also possible under some field con-

ditions, perhaps including protection from harmful viruses, as hypothesized for wAu in its

native host Drosophila simulans—where it is capable of spreading and maintaining high popu-

lation infection frequencies [36]. Little is known about the frequency of natural entomopatho-

gens to which wAu could provide protection in Ae. aegypti.wAu could also potentially be

spread through a mosquito population by applying suitable selection pressures such as bacte-

rial, fungal or viral entomopathogens;Wolbachia wMelPop has for example been shown to

provides resistance to several such agents [46]. In addion to the applied potential of wAu, the

differences in virus inhbiiton between wAu and wAlbA, despite reaching similar densities in

Ae. aegypti, provide excellent in vivo systems for comparative studies to better understand the

mechanistic basis of the phenotype.

Methods

Mosquito strains and rearing

The Ae. aegyptiwild-type line used was colonized from Selangor State, Malaysia in the 1960s.

All mosquito colonies were maintained at 27˚C and 70% relative humidity with a 12-hour

light/dark cycle. Larvae were fed tropical fish pellets (Tetramin, Tetra, Melle, Germany) and

adults were given access to a sucrose meal ad libitum. Blood meals were provided using a

Hemotek artificial blood-feeding system (Hemotek, UK) using defribrinated sheep blood

(TCS Biosciences, UK). Eggs were collected by providing damp filter-paper (Grade 1 filter

paper, Whatman plc, GE healthcare, UK) for oviposition. Eggs were desiccated for 5–10 days

prior to hatching in water containing 1g/L bovine liver powder (MP Biomedicals, Santa Ana,

California, USA).

Generation ofWolbachia-infected lines

wMel, wAlbA and wAlbB Ae. aegypti lines were generated by transferring cytoplasm from

superinfected Ae. albopictus (origin Indonesia) embryos carrying wMel, wAlbA and wAlbB to

wild-type Ae. aegypti embryos. Microinjections were performed using methods described pre-

viously [17]. Female G0 survivors were back-crossed to wild-type males, blood-fed and sepa-

rated individually for oviposition. G0 females were analysed forWolbachia infection by strain

specific PCR (see primer table in Supporting Information for sequences) and eggs fromWol-

bachia negative G0 females were discarded. Eggs of positive females were hatched and G1’s

were assessed forWolbachia G0-G1 germ-line transmission. Injections from the superinfected

Ae. albopictus line initially resulted in the generation of a triple-infected Ae. aegypti line (wMel-

wAlbAwAlbB), which showed unstable maternal inheritance ofWolbachia strains. Individual-

izing the progeny of triple infected females resulted in the isolation and establishment of the

wAlbA-only, wAlbB-only and wMel-only lines. The wAu line was generated as above, but

involved transfer of cytoplasm from wAu infected Drosophila simulans embryos (origin Aus-

tralia). The wAuwAlbB line was generated as above but involved the transfer of cytoplasm

from the wAu-infected Ae. aegypti line into embryos of the wAlbB-infected line.

Maternal inheritance and CI

To assess rates of maternal inheritance, females from eachWolbachia transinfected line were

crossed to wild-type males in pools of 20 males and 20 females. A blood-meal was provided

and females were individualised for oviposition. The resulting eggs were hatched and DNA
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from a selection of 10 of these (200 assessed for each line in total) was extracted at the pupal

stage and a PCR forWolbachia was performed.

Rates of CI induction and rescue both with wild-type mosquitoes and between infected

lines were assessed by crossing 20 males and 20 females of each line. A blood-meal was pro-

vided and females were individualised for oviposition. Eggs were collected on damp filter

paper, which was subsequently desiccated for 5 days at 27˚C and 70% relative humidity. Eggs

were counted and hatched in water containing 1g/L bovine liver powder. Larvae were counted

at the L2-L3 stage to provide hatch rates. Females with no egg hatch were dissected to check

spermathecae for successful mating. Unmated females were excluded from hatch rate

evaluations.

Wolbachia strain-specific PCR and density qPCR

For PCR analysis, genomic DNA was extracted from mosquitoes using the Livak method [47].

For primer sequences see primer table in supporting information. For measurements ofWol-

bachia density by qPCR, genomic DNA was extracted from mosquitoes using phenol/chloro-

form. Unless stated otherwise, mosquitoes used in density experiments were adults 5-days post

pupal eclosion. gDNA was diluted to 100ng/μl using a NanoDrop spectrophotometer (Thermo

Scientific, Waltham, Massachusetts, USA). A BioRad CFX-96 real-time PCR detection system

was used (Bio Rad, Hercules, California, USA) with 2 x SYBR-Green mastermix (Biotool,

Houston, Texas, USA). TotalWolbachia density was analysed by absolute quantification

against a dilution curve of a vector containing single copies of the homothorax (HTH) gene

andWolbachia surface protein (wsp).

To specifically quantify the wAlbA, wAlbB, wAu, and wMel strains, the following primers

were used: wAlbA–(QAdir1 and QArev2); wAlbB–(183F and QBrev2); wAu–(wAuF and

wAuR); wMel–(qMel-F and qMel-R). All were normalized against HTH copies. The following

program was used to run the qPCRs: 95˚C for 5mins, 40x cycles of 95˚C for 15sec and 60˚C

for 30sec, followed by a melt-curve analysis. Primer sequences can be found in S1 Table.

Fluorescent in situ hybridization

Ovaries were dissected from 5-day old adult females in a drop of PBS buffer, and were immedi-

ately transferred to a tube containing Carnoy’s fixative (chloroform:ethanol:acetic acid, 6:3:1)

and fixed at 4˚C overnight. Samples were then rinsed in PBS and transferred to a 6% hydrogen

peroxide in ethanol solution for 72 hours at 4˚C. Samples were then incubated in a hybridiza-

tion solution containing: 50% formamide, 25% 20xSSC, 0.2% (w/v) Dextran Sulphate, 2.5%

Herring Sperm DNA, 1% (w/v) tRNA, 0.015% (w/v) DTT, 1% Denhardt’s solution, and

100ng/ml of each probe. Probe sequences were as follows: wAu (green) 5’-ACCTGTGTGAAA

CCCGGACGAAC-(Alexa flour 488)-3’; wAlbB (Red) 5’-TAGGCTTGCGCACCTTGCAGC-

(Cyanine3)-3’. Samples were left to hybridize overnight in a dark-damp box at 37˚C. Samples

were washed twice in a solution containing: 5% 20xSSC, 0.015% (w/v) DTT, and twice in a

solution of 2.5% SSC, 0.015% (w/v) DTT in dH2O, with each wash performed at 55˚C for 20

minutes. Samples were then placed on a slide containing a drop of VECTASHIELD Antifade

Mounting Medium with DAPI (Vector Laboratories, California, USA) and were visualized

immediately using a Zeiss LSM 880 confocal microscope (Zeiss, Oberkochen, Germany). Both

the red and green probes were added to the hybridization solution to produce the images of

wAlbB, wAu, wAuwAlbB and wild-type ovaries.
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Thoracic injection of SFV

Twenty 5-day old female mosquitoes of eachWolbachia-infected line and wild-type were

injected with the respective virus in the thorax using a pulled glass capillary and a Nanoject II

(Drummond Scientific, Pennsylvania, USA) hand-held microinjector. Injected mosquitoes

were immediately transferred to an incubator set at 27˚C and a 12-hour light/dark cycle for

recovery. SFV injected females were left for ten days prior to RNA extraction and virus quanti-

fication by qRT-PCR. RNA was extracted using TRI Reagent (Sigma-Aldrich, Missouri, USA).

cDNA was synthesized using 1μg of total RNA and the All-In-One cDNA Synthesis SuperMix

(Biotool, Houston, Texas, USA). qRT-PCRs were performed on a 1 to 20 dilution of the

cDNAs. Virus levels were normalized to the RPS17 house-keeping gene.

Semliki Forest virus was sub-type C (catalogue number 1112041v) obtained from Public

Health England culture collections. SFV was propagated on C6/36 cells to a final injection con-

centration of 1.78x1013 FFU/ml. Primers used for viral detection were: SFV4-F and SFV4-R.

Oral infections with ZIKV and DENV

Five day-old females were fed an infectious blood-meal containing a mixture of 800μl defi-

brinated sheep blood and 400μl viral suspension supplemented with a phagostimulant (ATP)

at a final concentration of 5mM. Dengue virus was serotype 2, New Guinea C strain, obtained

from Public Health England culture collections. Zika virus was strain MP1751, obtained

from Public Health England culture collections. The final concentration of dengue virus in

the blood meal was 8.3x107 FFU/ml. The final concentration of Zika virus in the blood meal

was 1.6x108 FFU/ml. Engorged females were separated and maintained in a climactic cham-

ber at 27˚C and 75% humidity. After 12 days females were salivated by inserting the proboscis

into a capillary containing mineral oil and placing a drop of 1% pilocarpine nitrate onto the

thorax. Collected saliva was ejected into tubes containing Dulbecco’s Modified Eagle

Medium (DMEM) medium supplemented with 2% fetal bovine serum (FBS), 10-fold serially

diluted, and added to pre-seeded Vero cells for fluorescent focus assay (FFA). Primary anti-

body for dengue was the MAB8705 Anti-Dengue Virus Complex Antibody clone D3-2H2-9-

21 (Millipore, Massachusetts, USA). Primary antibody for Zika was the MAB10216 Anti-Fla-

vivirus Virus Complex Antibody clone D1-4G2-4-15 (Millipore, Massachusetts, USA).

Secondary antibody for both viruses was the Goat anti-mouse Alexa Fluor 488, A-11001

(Thermo Scientific, Waltham, Massachusetts, USA). Plates were imaged using a Typhoon

9400 plate reader (GE Healthcare, Little Chalfont, UK) and images were analysed using Ima-

geJ (NIH, USA).

Once saliva was collected, mosquito salivary glands were dissected and RNA was extracted

using the QIAamp Viral RNAMini kit (Qiagen, Hilden, Germany) according to manufactur-

ers guidelines. Abdomens were removed and placed into tubes containing RNAzol reagent

(Sigma-Aldrich, Missouri, USA). RNA was extracted according to manufacturers guidelines.

cDNA synthesis was performed using the All-In-One cDNA Synthesis SuperMix (Biotool,

Houston, Texas, USA), and qPCRs were run using NS5-F and NS5-R primer set for dengue

and the ZIKV 835 and ZIKV 911c primers for Zika virus. For Zika infected mosquitoes, the

numbers of samples analysed were 22, 21, 16 and 18 for wAlbB, wAu, wMel and wild-type,

respectively. For dengue infected mosquitoes the numbers of samples analysed were 19, 18, 19

and 17 for wAlbB, wAu, wMel and wild-type, respectively. Levels of target cDNA sequences

were normalized against the RpS17 house-keeping gene using the Pfaffl method. Primer

sequences can be found in S1 Table.
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Wolbachia response to temperature fluctuations

Eggs of the wAlbA, wAlbB, wAu and wMel strains were hatched under either constant 27˚C

(control) or 27–37˚C at a 12:12hr cycle (heat-stressed) in a Panasonic MLR-352-H Plant

Growth Chamber incubator (Panasonic, Osaka, Japan) and corresponding light and dark pho-

toperiods (light during 37˚C). Immediately upon hatching, larvae were picked and placed into

trays containing 1L of water and larval food at a density of 50 larvae per tray (three replicate

trays per strain). Larvae were reared until pupation with water temperatures monitored daily

using a glass thermometer placed inside a water-filled beaker. Water in the larval trays was

replaced every 2 days to reduce bacterial growth. A selection of adults was removed upon

emergence and split into two groups with a batch of approximately 15 (pooled into 5 repeats

each containing 3 pooled adults) analysed by qPCR forWolbachia density using the WSP and

HTH primer sets. The remaining adults were set up in cages maintained at a constant 27˚C

and allowed to recover for 7 days. These were also split into two groups with a sub-set analysed

by qPCR forWolbachia density, and the remainder (five females from each line) mated to

wild-type males and blood-fed at day 5-post emergence. Eggs were collected and hatched at

constant 27˚C and reared to pupation. A selection of 10 pupae from each female were chosen

at random and assessed forWolbachia infection by PCR.

A subset of adult females emerging from heat-stressed larvae were maintained under tem-

perature cycling, mated to wild-type males, blood fed at day 5 post emergence and allowed to

oviposit. Eggs were hatched and reared to pupation under heat stress at which point a selection

of 10 pupae from each female were chosen at random and assessed forWolbachia infection by

PCR.

Adult longevity

Adult survival was assessed using groups of 50 individuals at a sex ratio of 1:1, with four repli-

cates for each line. Experiments were performed in 24.5x24.5x24.5cm insect rearing cages

inside an incubator set to 27˚C and 70% relative humidity with a 12-hour light/dark cycle.

Cages were blood-fed once a week from day 5 onwards and damp filter paper was provided for

oviposition. A sucrose meal was accessible ad libitum. Cages were checked daily for mortality.

Experiments ran for 70 days at which time approximately 10% of the wMel and wild-type

females remained alive.

Fecundity

Female fecundity was assessed by feeding 5-day old males and females ofWolbachia-infected

and wild-type mosquitoes on a hemotek feeder containing defribrinated sheep blood. 20 fully

engorged females (considered fully engorged when a female had a full abdomen and voluntar-

ily dropped off the blood source) were isolated using an aspirator. Females were placed indi-

vidually inside up-turned cups on top of a circle of filter paper. Cotton-wool soaked in a 10%

sucrose solution was made available through a hole in the cup. 3 days post-feeding the filter

paper was wetted and left overnight. The filter paper was replaced the next day and the process

was repeated for a second night. Eggs from each filter paper were counted using a clicker-

counter and a dissecting microscope.

Egg survival

Egg survival in desiccated quiescence was assessed by feeding one week oldWolbachia-

infected or wild-type females in cages and collecting eggs 3 and 4 days after feeding by placing

three separate damp filter-paper cones in each cage—each cone collected>1,000 eggs. Egg
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papers were stored at 27˚C and 70% relative humidity. At 5, 10, 20, 35 and 50-days post ovipo-

sition a section of each of the egg papers containing approximately 200–300 eggs was cut from

the original paper, the eggs counted using a clicker-counter and dissection microscope, and

hatched by placing in water containing 1g/L bovine liver powder. Hatch rates were assessed 10

days later by counting larvae using a Pasteur pipette and a clicker-counter.

Statistical analysis

All statistical analyses were performed in the RStudio interface (version 0.99.489) (RStudio

Inc., Boston, Massachusetts, USA) of the R software (version 3.4.0). Graphics were generated

using the ‘ggplot2’ package. Normality of data distributions were assessed using a Kolmo-

gorow-Smirnov Test prior to hypothesis test selection. Multiple comparisons were performed

using the ‘multcomp’ package and used the Bonferroni multiple comparisons p value correc-

tion method. Survival analyses were performed using the ‘Survival’ and ‘SurvMiner’ packages.

Survival analyses were performed using a Cox proportional hazard regression model with cage

repeats clustered as a random effect.

Primer sequences. A list of primers and primer sequences used in this manuscript can be

found in supplementary Table 1.

Supporting information

S1 Fig. Zika (ZIKV) virus genome copies per host cell in salivary gland tissues following

oral infection. Zika virus was orally administered to 5-day old females. After an incubation

period of 12 days salivary glands were dissected. Viral RNA was quantified by reverse-tran-

scriptase qPCR, with viral RNA levels normalized to host RNA using the RpS17 house-keeping

gene.

(TIF)

S2 Fig. Longevity of maleWolbachia-infected and wild-type Ae. aegypti. Survival of adult

males ofWolbachia-infected lines compared to wild-type. Curves show percentage survival

with shaded areas indicating 95% confidence intervals from 4 replicate cages for each line each

containing a starting number of 25 adult males.

(TIF)

S3 Fig. Densities of wAu and wAlbB in somatic tissues. wAu and wAlbB strain-specific den-

sities in the midguts and salivary glands of wAlbB, wAuwAlbB, and wAu carrying Ae. aegypti.

Each bar represents the average densities from 5 biological replicates each containing ovaries

of 10 adult females. Error bars show SD.

(TIF)

S4 Fig. No probe FISH control of wild-type ovaries. Fluorescent in situ hybridization image

of wild-type ovaries taken at the same time as those shown in Fig 5, but hybridization buffer

lacked FISH probes. Some green auto-fluorescence is visible.

(TIF)

S1 Table. Primer sequences. Sequences of DNA oligonucleotides used for assays described in

this manuscript.
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