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THE WORD AND GEODESIC PROBLEMS

IN FREE SOLVABLE GROUPS

A. MYASNIKOV, V. ROMAN’KOV, A. USHAKOV, AND A. VERSHIK

Abstract. We study the computational complexity of the Word Problem
(WP) in free solvable groups Sr,d, where r ≥ 2 is the rank and d ≥ 2 is the
solvability class of the group. It is known that the Magnus embedding of Sr,d

into matrices provides a polynomial time decision algorithm for WP in a fixed
group Sr,d. Unfortunately, the degree of the polynomial grows together with
d, so the uniform algorithm is not polynomial in d. In this paper we show
that WP has time complexity O(rn log2 n) in Sr,2, and O(n3rd) in Sr,d for
d ≥ 3. However, it turns out, that a seemingly close problem of computing
the geodesic length of elements in Sr,2 is NP -complete. We prove also that
one can compute Fox derivatives of elements from Sr,d in time O(n3rd); in
particular, one can use efficiently the Magnus embedding in computations
with free solvable groups. Our approach is based on such classical tools as the
Magnus embedding and Fox calculus, as well as on relatively new geometric
ideas; in particular, we establish a direct link between Fox derivatives and
geometric flows on Cayley graphs.
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1. Introduction

In this paper we study the computational complexity of several algorithmic prob-
lems related to the Word Problem (WP) in free solvable groups. Let Sr,d be a free
solvable group of rank r ≥ 2 and of solvability class d ≥ 2. We present here a uni-
form decision algorithm that solves WP in time O(rn log2 n) in the free metabelian
group Sr,2 (also denoted by Mr), and O(n3rd) in the free solvable group Sr,d for
d ≥ 3, where n is the length of the input word. In particular, this algorithm is
at most cubic in n and linear in r and d for all free solvable groups Sr,d. Notice,
that in all previously known polynomial time decision algorithms for WP in Sr,d,
the degree of the polynomial grows together with d. In fact, we prove more; we
show that one can compute Fox derivatives of elements from Sr,d in time O(n3rd).
This allows one to use efficiently the Magnus embedding in computations with free
solvable groups. On the other hand, we describe geodesics in Sr,d and show that
a seemingly close problem of finding the geodesic length of a given element from
Sr,2 is surprisingly hard; it is NP-complete. Our approach is based on such classi-
cal tools as the Magnus embedding and Fox calculus, as well as, on relatively new
(in group theory) geometric ideas from [13] and [54]. In particular, we establish a
direct link between Fox derivatives and geometric flows on Cayley graphs.

The study of algorithmic problems in free solvable groups can be traced to the
work [37] of Magnus, who in 1939 introduced an embedding (now called the Mag-
nus embedding) of an arbitrary group of the type F/N ′ into a matrix group of a
particular type with coefficients in the group ring of F/N (see Section 2.2 below).
Since WP in free abelian groups is decidable in polynomial time, by induction, this
embedding immediately gives a polynomial time decision algorithm for a fixed free
solvable group Sr,d. However the degree of the polynomial here grows together with
d.

In the 1950s, R. Fox introduced his free differential calculus and made the
Magnus embedding much more transparent [21, 22, 23, 24] (see also Section 2.3).
Namely, besides other things, he showed that an element w ∈ F belongs to N ′ =
[N,N ] if and only if all partial derivatives of w are equal to 0 in the integer group
ring of F/N . This reduces WP in F/N ′ directly to the word problem in F/N .
In particular, it solves, by induction, WP in Sr,d. Again, the decision algorithm
is polynomial in a fixed group Sr,d, but the degree of the polynomial grows with
d, which is not a surprise since the partial derivatives of w describe precisely the
image of w under the Magnus embedding.

A few years later P. Hall proved the finiteness of all subdirect indecomposable
finitely generated abelian-by-nilpotent groups. This implies that all finitely gen-
erated abelian-by-nilpotent, in particular, metabelian, groups are residually finite.
About the same time, Gruenberg extended this result to arbitrary free solvable
groups [28]. Now one can solve WP in Sr,d in the following way. Given w ∈ Sr,d, as
a word in the fixed set of generators, one can start two processes in parallel. The
first one enumerates effectively all consequences of the defining relations of Sr,d in
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Fr (which is possible since the group is recursively presented) until the word w
occurs, and the second one enumerates all homomorphisms from Sr,d into all fi-
nite symmetric groups Sn (checking if a given r-tuple of elements in Sn generates a
solvable group of class d) until it finds one where the image of w is nontrivial. How-
ever, computer experiments show that the algorithm described above is extremely
inefficient (though its complexity is unknown).

Another shot at WP in metabelian groups comes from their linear representa-
tions. V. Remeslennikov proved in [46] that a finitely generated metabelian group
(under some restrictions) is embeddable into GL(n,R) for a suitable n and a suit-
able ring R = K1 × . . . ×Kn which is a finite direct product of fields Ki. In [55],
see also [56], B. Wehrfritz generalized this result to arbitrary finitely generated
metabelian groups G. It follows that G is embeddable into a finite direct prod-
uct of linear groups. Since WP in linear groups is polynomial time decidable, this
implies that WP in G is polynomial time decidable. Notice that it is unclear if
there is a uniform polynomial time decision algorithm for WP in arbitrary finitely
generated metabelian groups.

In comparison, observe that there are finitely presented solvable groups of class
3 with undecidable WP. In [35] O. Kharlampovich constructed the first example
of such a group by reducing the halting problem for the universal Minski machine
to WP of the group. There are several results which clarify the boundary between
decidability and undecidability of the word problems in solvable groups; we refer
to a survey [36] for details.

Our approach to WP in free solvable groups is based on the Fox Theorem men-
tioned above. Using binary tree search techniques and associative arrays we are
able to compute Fox’s derivatives of elements w of a free solvable group Sr,d in
time O(n3d), where n = |w|. The significance of this result goes beyond WP for
these groups; it gives a fast algorithm to compute images of elements under the
Magnus embedding. This opens up an opportunity to solve effectively other algo-
rithmic problems in groups Sr,d using the classical techniques developed for wreath
products of groups.

In the second half of the paper, Section 4, we study algorithmic problems on
geodesics in free metabelian groups. Let G be a group with a finite set of generators
X = {x1, . . . , xr} and μ : F (X) → G the canonical epimorphism. For a word w in
the alphabet X±1 by |w| we denote the length of w. The geodesic length lX(g) of
an element g ∈ G relative to X is defined by

lX(g) = min{|w| | w ∈ F (X), wμ = g}.

We write, sometimes, lX(w) instead of lX(wμ). A word w ∈ F (X) is called geodesic
in G relative to X if |w| = lX(w). We are interested here in the following two
algorithmic search problems in G.

The Geodesic Problem (GP): Given a word w ∈ F (X), find a word u ∈ F (X)
which is geodesic in G such that wμ = uμ.

The Geodesic Length Problem (GLP): Given a word w ∈ F (X), find lX(w).

Though GLP seems easier than GP, in practice, to solve GLP one usually solves
GP first, and only then computes the geodesic length. It is an interesting question
if there exists a group G and a finite set X of generators for G relative to which
GP is strictly harder than GLP.
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As is customary in complexity theory, one can modify the search problem GLP
to get the corresponding bounded decision problem (that requires only answers
“yes” or “no”):

The Bounded Geodesic Length Problem (BGLP): Let G be a group with a
finite generating set X. Given a word w ∈ F (X) and a natural number k, determine
if lX(w) ≤ k.

In Section 4.1 we compare in detail the algorithmic “hardness” of the problems
WP, BGLP, GLP, and GP in a given group G. Here we would like only to mention
that in the list of the problems above each one is Turing reducible in polynomial
time to the next one in the list, and GP is Turing reducible to WP in exponential
time (see definitions in Section 4.1).

Among general facts on computational complexity of geodesics notice that if G
has a polynomial growth, i.e., there is a polynomial p(n) such that for each n ∈ N

cardinality of the ball Bn of radius n in the Cayley graph Γ(G,X) is at most p(n),
then one can easily construct this ball Bn in polynomial time with an oracle for WP
in G. If, in addition, such a group G has WP decidable in polynomial time, then
all the problems above have polynomial time complexity with respect to any finite
generating set of G (since the growth and WP stay polynomial for any finite set
of generators). Now, by Gromov’s theorem [26], groups of polynomial growth are
virtually nilpotent, hence linear, so they have WP decidable in polynomial time. It
follows that all Geodesic Problems are polynomial time decidable in groups of poly-
nomial growth (finitely generated virtually nilpotent groups). On the other hand,
there are many groups of exponential growth where GP is decidable in polynomial
time, for example, hyperbolic groups [16] or metabelian Baumslag-Solitar groups
BS(1, n) = 〈a, t | t−1at = an〉, n ≥ 2 (see [15] and Section 4.1 for comments).

In general, if WP in G is decidable in polynomial time, then BGLP is in the class
NP; i.e., it is decidable in polynomial time by a nondeterministic Turing machine.

It might happen though that BGLP in a group G is as hard as any in the class
NP; i.e., it is NP-complete. The simplest example of this type is due to Parry, who
showed in [45] that BGLP is NP-complete in the metabelian group Z2wr(Z×Z) (the
wreath product of Z2 and Z × Z). Correspondingly, the search problems GP and
GLP are NP-hard, which means, precisely, that some (any) NP-complete problem
is Turing reducible to them in polynomial time.

Our viewpoint on geodesics in free solvable groups is based on geometric ideas
from the following two papers. In 1993, Droms, Lewin, and Servatius introduced a
new geometric approach to study WP and GLP in groups of type F/N ′ via paths
in the Cayley graph of F/N [13].

In 2004, Vershik and Dobrynin studied the algebraic structure of solvable groups,
using the homology of related Cayley graphs [54]. This approach was outlined
earlier in the papers [52, 53], where possible applications to random walks on
metabelian groups have been discussed. In the papers [52, 53] (see also [54]) a
new robust presentation of a free metabelian group Sr,2 was introduced as an ex-
tension of Zr by the integer first homology group of the lattice Z

r (viewed as a
one-dimensional complex) with a distinguished 2-cocycle. Similar presentations of
other metabelian and solvable groups laid out foundations of a new approach to
algorithmic problems in solvable groups.

It seems that these ideas are still underdeveloped in the group-theoretic context,
despite their obvious potential. Meanwhile, in semigroup theory, similar geometric

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE WORD AND GEODESIC PROBLEMS IN FREE SOLVABLE GROUPS 4659

techniques have been widely used to deal with free objects in semidirect products
of varieties. One can find an explicit exposition of these techniques in the papers
due to Almeida [1] and Almeida and Weil [2], while in [49, 4, 5, 3], Auinger, Rhodes
and Steinberg use similar machinery on a regular basis. Earlier, similar methods,
though sometimes implicitly, were used in inverse semigroup theory; we refer here
to papers [43, 38, 39, 9].

In group theory most of the results in this area relied on various forms of the
Magnus embedding and Fox derivatives. The role that the Magnus embeddings play
in varieties of groups was clarified by Shmel′kin [50]. In [40] Matthews proved that
the conjugacy problem (CP) in free metabelian groups is decidable, and Kargapolov
and Remeslennikov generalized this to free solvable groups Sr,d [33]. A few years
later Remeslennikov and Sokolov described precisely the image of F/N ′ under the
Magnus embedding and showed that CP is residually finite in Sr,d [48]. We refer
to a survey [47] on algorithmic problems in solvable groups.

In Sections 2.4 and 2.5 we study elements of groups of the type F/N ′ via flows
on the Cayley graph Γ of F/N . It turns out that the flow generated by a word
w ∈ F on the graph Γ directly corresponds to the Fox derivatives of w in the
group ring ZF/N . This simple observation links together the techniques developed
in group theory for the Magnus embeddings with the extensive geometric and the
graph-theoretic machinery for flows. Indeed, the set of geometric circulations (flows
where the Kirchhoff law holds for all vertices, including the source and the sink)
forms a group which is naturally isomorphic to the first homology group H1(Γ,Z) of
Γ. In this context the geometric circulations on Γ represent precisely the 1-cycles
of Γ (viewed as a 1-complex). The classical result in homology theory describes
H1(Γ,Z) as the abelianization of the fundamental group π1(Γ), which, in this case,
is isomorphic to the free group N . Putting all these together one has another
geometric proof of the Fox theorem, as well as the description of the kernel of the
Magnus embedding.

In Section 2.7 we describe geodesics in groups F/N ′ as Euler tours in some
finite subgraphs of Γ generated by the supports of the flows of the elements of
F/N ′ on Γ. The description is geometric, explicit, and it gives a natural way
to compute the geodesic length of elements. In this part geometric ideas seem
unavoidable. However, this simplicity becomes treacherous when one is concerned
with the efficiency of computations.

We prove that BGLP (relative to the standard basis) is NP-complete even in
Sr,2. Consequently, the problems GP and GLP are NP-hard in Sr,2. To show this
we construct a polynomial-time reduction of the Rectilinear Steiner Tree Problem
(RSTP), which is NP-complete, to BGLP in Sr,2. The necessary information on
RSTP is outlined in Section 4.3, and the proof of the main theorem is in Section
4.4. Notice that in [13], GLP was claimed to be polynomial time decidable in
arbitrary finitely generated free solvable groups, but the argument turned out to
be fallacious.

In the second half of the 20th century, free solvable groups, as well as solvable
wreath products of groups and finitely generated metabelian groups, were intensely
studied, but mostly from the viewpoint of combinatorial group theory.

Now they stand at the heart of research in various areas of algebra. On the
one hand, the rejuvenated interest in these groups stems from random walks on
groups and cohomology theory. For example, wreath products of abelian groups
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give exciting examples and counterexamples to several conjectures on the numeri-
cal characteristics of random walks. It seems that the main reasons that facilitate
research here come from some paradoxical properties of the groups themselves: all
these groups are amenable (as solvable groups), but they have exponential growth
and may have nontrivial Poisson boundary [32], etc. These groups, contrary to, say,
free nilpotent groups, may have irreducible unitary representations with nontrivial
cohomology. Some numerical characteristics of these groups are very intriguing, giv-
ing new exciting examples in quantitative group theory. For example, metabelian
“lamplighter” groups have intermediate growth of the drift, positive entropy, etc.
These groups were intensively studied recently (see papers [32, 17] and the bibliog-
raphy in the latter).

On the other hand, metabelian groups are currently at the focus of very active
research in geometric group theory. In 1983, Gromov proposed a program for
studying finitely generated groups as geometric objects [27]. One of the principal
directions of this program is the classification of finitely generated groups up to
quasi-isometry. It follows from Gromov’s result on groups with polynomial growth
[26] that a group quasi-isometric to a nilpotent group is virtually nilpotent. In
the case of solvable groups the situation is much less known. Erschler showed in
[17] that a group quasi-isometric to a solvable group may be not virtually solvable.
Thus, the class of virtually solvable groups is not closed under quasi-isometry. On
the other hand there are interesting classes of solvable nonpolycyclic groups that
are quasi-isometrically rigid, for example, solvable Baumslag-Solitar groups (Farb
and Mosher [19, 20]). We refer to the papers [42] and [18] for some recent results
in this area.

It seems timely to try to extend the results of this paper to the classes of solv-
able groups mentioned above. There are many interesting open questions concern-
ing computational complexity of algorithmic problems in these classes of solvable
groups; we discuss some of them in Section 5.

All polynomial time algorithms presented in this work are implemented and
available at [11].

2. Preliminaries

2.1. The Word Problem. Let F = Fr = F (X) be a free group with a basis
X = {x1, . . . , xr}. A subset R ⊆ F defines a presentation P = 〈X | R〉 of a
group G = F/N , where N = ncl(R) is the normal closure of R in F . If R is
finite (recursively enumerable), then the presentation is called finite (recursively
enumerable).

We say that the Word Problem WP for P is decidable if the normal closure N is
a decidable subset of F (X), i.e., if there exists an algorithm A to decide whether
a given word w ∈ F (X) belongs to N or not. The time function TA : F (X) → N

of the algorithm A is defined as the number of steps required for A to halt on an
input w ∈ F (X). We say that the Word Problem for P is decidable in polynomial
time if there exists a decision algorithm A, as above, and constants c, k ∈ N such
that

TA(w) ≤ c|w|k
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for every w ∈ F (X) (here |w| is the length of the word w). In this case we say that
the time complexity of WP for P is O(nk).

2.2. Free solvable groups and the Magnus embedding. For a free group
F = F (X) of rank r, denote by F (1) = F ′ = [F, F ] the derived subgroup of
F , and by F (d) = [F (d−1), F (d−1)] the d-th derived subgroup of F , d ≥ 2. The

quotient group Ar = Fr/F
′
r is a free abelian group of rank r, Mr = Fr/F

(2)
r is a free

metabelian group of rank r, and Sr,d = Fr/F
(d)
r is a free solvable group of rank r

and class d. In the sequel we usually identify the set X with its canonical images
in Ar,Mr and Sr,d.

One of the most powerful approaches to the study of free solvable groups is
via the Magnus embedding. To explain we need to introduce some notation. Let
G = F/N and let ZG be the group ring of G with integer coefficients. By μ : F → G
we denote the canonical factorization epimorphism, as well as its linear extension to
μ : ZF → ZG. Let T be a free (left) ZG-module of rank r with a basis {t1, . . . , tr}.
Then the set of matrices

M(G) =

(
G T
0 1

)
=

{(
g t
0 1

)
| g ∈ G, t ∈ T

}

forms a group with respect to the matrix multiplication. It is easy to see that the
group M(G) is a discrete wreath product M(G) = ArwrG of the free abelian group
Ar and the group G.

Theorem 2.1 ([37]). The homomorphism φ : F → M(G) defined by

xi
φ	→

(
xμ
i ti

0 1

)
, i = 1, . . . , r,

satisfies kerφ = N ′. Therefore, φ induces a monomorphism

φ : F/N ′ ↪→ M(F/N).

The monomorphism φ is now called the Magnus embedding. The Magnus em-
bedding allows one to solve WP in the group F/N ′ if WP in G = F/N is decidable.
Indeed, observe that

x−1
i

φ	→
(

(x−1
i )μ (−x−1

i )μti
0 1

)
, i = 1, . . . , r.

Now, if for i = 1, . . . , r and ε = ±1 we define the value

δ(xε
i ) =

{
1, if ε = 1;
(−x−1

i )μ, if ε = −1;

then given a word w = xε1
i1
. . . xεn

in
∈ F (X) one can compute its image φ(w) in

M(G) as follows:

φ(w) = φ(xε1
i1
) . . . φ(xεn

in
)

=

(
μ(xε1

i1
) δ(xε1

i1
)ti1

0 1

)
· . . . ·

(
μ(xεn

in
) δ(xεn

in
)tin

0 1

)

=

⎛
⎜⎝ μ(xε1

i1
. . . xεn

in
)

n∑
j=1

(xε1
i1
. . . x

εj−1

ij−1
)μδ(x

εj
ij
)tij

0 1

⎞
⎟⎠
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and then, using a decision algorithm for WP in G, check if the resulting matrix
φ(w) is the identity matrix or not. To estimate the complexity of such an algorithm,
notice first that the coefficients from ZG that occur in the upper-right corner of the
matrix φ(w) have O(|w|) summands. Secondly, to check whether or not an element
h = m1v1 + . . .+mkvk ∈ ZG, where mi ∈ Z and vi ∈ G are given as words in the
generators X from G, is trivial in ZG it requires O(k2) comparisons of the type
vi = vj? in G. This gives an estimate for the time function T ′ of WP in F/N ′ via
the time function T for WP in F/N :

T ′(n) = O(rn2T (n)),

where n = |w|. Since WP in Ar can be decided in linear time, the estimate
above shows that the complexity of WP in Mr is O(rn3). Moreover, induction
on the solvability class d gives a polynomial estimate O(rd−1n2d−1) for WP in
the free solvable group Sr,d. Thus, the Magnus embedding gives a straightforward
polynomial time (in r and n) decision algorithm for WP in Sr,d, but the degree of
the polynomial grows with d. In particular, this algorithm is not polynomial as a
uniform algorithm on the whole class of free solvable groups.

2.3. Free Fox derivatives. Let F = Fr(X) be a free group of rank r with a
basis X = {x1, ..., xr}. The trivial group homomorphism F → 1 extends to a ring
homomorphism ε : ZF → Z1 
 Z. The kernel of ε is called the fundamental ideal
ΔF of ZF ; it is a free (left) ZF -module freely generated by elements x1 − 1, . . . ,
xr − 1.

In [21, 22, 23, 24], R. Fox introduced and gave a thorough account of the free
differential calculus in the group ring ZF . Here we recall some notions and results,
referring to the books [10, 6, 29] for details.

A map D : ZF → ZF is called a derivation if it satisfies the following conditions:

(D1) D(u+ v) = D(u) +D(v);
(D2) D(uv) = D(u)vε+uD(v), where ε is the ring homomorphism defined above.

For every xi ∈ X there is a unique derivation, the so-called free partial derivative
∂/∂xi, such that ∂xj/∂xi = δij , where δij is the Kronecker delta. It turns out that
for every u ∈ ZF ,

(1) u− uε =
∂u

∂x1
(x1 − 1) + ...+

∂u

∂xr
(xr − 1).

Since ΔF is a free ZF -module, the equality (1) gives another definition of the partial
derivatives.

Condition (D2) implies the following useful formulas, that allow one to compute
easily partial derivatives of elements of ZF :

(2)
∂

∂xi
(uv) =

∂

∂xi
u+ u

∂

∂xi
v, for any u, v ∈ F

and

(3)
∂

∂xi
(u−1) = −u−1 ∂

∂xi
u, for any u ∈ F.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE WORD AND GEODESIC PROBLEMS IN FREE SOLVABLE GROUPS 4663

Therefore,

(4)
∂

∂xi
(x−1

j ) = −δi,jx
−1
j ,

and, hence, for a word w = xε1
i1
. . . xεn

in
∈ F (X) one has

∂w

∂xi
=

n∑
j=1

xε1
i1
. . . x

εj−1

ij−1
(∂x

εj
ij
/∂xi)

=
∑

1≤j≤n, ij=i, εj=1

xε1
i1
. . . x

εj−1

ij−1
−

∑
1≤j≤n, ij=i, εj=−1

xε1
i1
. . . x

εj
ij
.

(5)

The following result is one of the principal technical tools in this area; it follows
easily from the Magnus embedding theorem, but in the current form it is due to
Fox [21, 22, 23, 24].

Theorem (Fox). Let N be a normal subgroup of F and μ : F → F/N the canonical
epimorphism. Then for every u ∈ F the following equivalence holds:

∀i (∂u/∂xi)
μ = 0 ⇐⇒ u ∈ [N,N ].

In particular, for N = F (d) the standard epimorphism μ : F → Sd = F/F (d)

gives rise to a ring homomorphism μ : ZF → ZSd such that

(6) F (d+1) = {u ∈ F | (∂u/∂xi)
μ = 0 for i = 1, . . . , r}.

Composition of ∂/∂xi with μ gives an induced partial derivative ∂μ/∂xi : ZF →
ZSd, which we often denote again by ∂/∂xi omitting μ (when it is clear from the
context).

The partial derivatives ∂μ/∂xi are useful when computing images under the
Magnus embedding. Indeed, by induction on the length of w ∈ F it is easy to show
that the image of w under the Magnus embedding φ : F/N ′ → M(F/N) can be
written as follows:

wφ =

⎛
⎜⎝ wμ

r∑
i=1

∂μw/∂xi · ti

0 1

⎞
⎟⎠ .

This shows that the faithfulness of the Magnus embedding is, in fact, equivalent to
the Fox theorem above.

2.4. Flows on F/N . In this section we relate flow networks on the Cayley graph
of F/N to the elements of F/N ′.

Let X = {x1, . . . , xr} be a finite alphabet. An X-labeled directed graph Γ (or
X-digraph) is a pair of sets (V,E), where the set V is called the vertex set and the
set E ⊆ V ×V ×X is called the edge set. An element e = (v1, v2, x) ∈ E designates
an edge with the origin v1 (also denoted by o(e)), the terminus v2 (also denoted by
t(e)), labeled by x. If for e ∈ E we have o(e) = t(e), then we say that e is a loop.
The graph Γ can be finite or infinite.

Example 2.2. The Cayley graph Γ(G,X) of the group G = F/N is an X-digraph.

Given an X-digraph Γ, we can make Γ into a directed graph labeled by the
alphabet X±1 = X ∪X−1. Namely, for each edge e = (v1, v2, x) of Γ we introduce
a formal inverse e−1 = (v2, v1, x

−1). For the new edges e−1 we set (e−1)−1 = e.

The new graph, endowed with this additional structure, is denoted by Γ̂. In fact in
many instances we abuse notation by disregarding the difference between Γ and Γ̂.
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Remark 2.3. If X is a generating set of G such that X ∩X−1 = ∅, then Γ̂(G,X) is
the Cayley graph Γ(G,X±1) of G relative to the generating set X±1.

The edges of Γ̂ inherited from Γ are called positively oriented or positive. The
formal inverses of positive edges in Γ̂ are called negatively oriented or negative. The
edge set of Γ̂ splits in a disjoint union E(Γ̂) = E+(Γ)�E−(Γ) of the sets of positive
and negative edges.

The use of Γ̂ allows us to define the notion of a path in Γ. Namely, a path p in Γ
is a sequence of edges p = e1, . . . , ek where each ei is an edge of Γ̂ and the origin of
each ei (for i > 1) is the terminus of ei−1. In this situation we say that the origin
o(p) of p is o(e1) and the terminus t(p) is t(ek). The length |p| of this path is set
to be k. Also, such a path p has a naturally defined label ν(p) = ν(e1) . . . ν(ek).
Thus ν(p) is a word in the alphabet Σ = X ∪ X−1. Note that it is possible that
ν(p) contains subwords of the form aa−1 or a−1a for some a ∈ X. If v is a vertex
of Γ, we will consider the sequence p = v to be a path with o(p) = t(p) = v, |p| = 0
and ν(p) = 1 (the empty word).

In general, one can consider labels in an arbitrary inverse semigroup; the con-
struction above applies to this case as well. In particular, we will consider directed
graphs with labels in Z. We also consider digraphs with no labels at all (to unify
terminology, we view them sometimes as labeled in the trivial semigroup {1}); the
construction above still applies.

Let Γ = (V,E) be an X-digraph with two distinguished vertices s (called the
source) and t (called the sink) from V . Recall that a flow (more precisely Z-flow)
on Γ is a function f : E → Z such that

(F) for all v ∈ V − {s, t} the equality
∑

o(e)=v

f(e)−
∑

t(e)=v

f(e) = 0 holds.

The number f∗(v) =
∑

o(e)=v

f(e) −
∑

t(e)=v

f(e) is called the net flow at v ∈ V . The

condition (F) is often referred to as the Kirchhoff law (see, for example, [7, 12]) or
the conservation law [8].

For the digraph Γ̂ the definition above can be formulated in the following equiv-
alent way, which is the standard one in flow networks:

(F1) f(e) = −f(e−1) for any e ∈ E;

(F2)
∑

o(e)=v

f(e) = 0 for all v ∈ V − {s, t}.

Here the net flow at v is equal to f∗(v) =
∑

o(e)=v

f(e).

Usually a flow network comes equipped with a capacity function c : E → N, in
which case a flow f has to satisfy the capacity restriction

(F3) f(e) ≤ c(e) for all e ∈ E.

In the sequel we do not make much use of the capacity function (it occurs in an
obvious way), so in most cases we consider flows on graphs Γ satisfying the Kirchhoff

law (F) (or, equivalently, on graphs Γ̂ satisfying (F1) and (F2)).
A flow f is called a circulation if (F) holds for all vertices from V (including the

source s and the sink t).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE WORD AND GEODESIC PROBLEMS IN FREE SOLVABLE GROUPS 4665

Example 2.4. Let Γ = Γ(G,X) be the Cayley graph of G = F/N relative to the
generating set X. The constant function f : E(Γ) → {1} defines a circulation on Γ,
since for every vertex g ∈ V (Γ) and every label x ∈ X there is precisely one edge
(gx−1, g) with label x incoming into g and precisely one edge (g, gx) with the label
x leaving g.

An important class of flows on Γ = Γ(G,X) comes from paths in Γ. A path p in
Γ defines an integer-valued function πp : E(Γ) → Z, such that for an edge e, π(e)
is the algebraic sum (with respect to the orientation) of the number of times the
path p traverses e, i.e., each traversal of e in the positive direction adds +1, and in
the negative direction adds −1. It is obvious that πP is a flow on Γ with the source
o(p) (the initial vertex of p) and the sink t(p) (the terminal vertex of p). Notice
that πp also satisfies the following conditions:

(F4) either πp is a circulation (iff p is a closed path), or f∗(s) = 1, f∗(t) = −1;
(F5) πp has finite support, i.e, the set supp(π) = {e ∈ E | π(e) �= 0} is finite.

We say that a flow π on Γ is geometric if it satisfies conditions (F4) and (F5).
It is easy to see that the set C(Γ) of all circulations on Γ forms an abelian group

with respect to the operations (here f, g ∈ C(Γ)):
• (f + g)(e) = f(e) + g(e),
• (−f)(e) = −f(e).

Meanwhile, the set GC(Γ) of all geometric circulations is a subgroup of C(Γ). On
the other hand, the sum f + g of two geometric flows gives a geometric flow only if
the sink of f is equal to the source of g, or either f or g (or both) is a circulation.
In fact, the set GF(Γ) of all geometric flows is a groupoid.

Let Π(Γ) be the fundamental groupoid of paths in Γ. Then the map σ : Π(Γ) →
GF(Γ) defined for p ∈ Π(Γ) by σ(p) = πp is a morphism in the category of
groupoids; i.e., the following holds (here p, q ∈ Π(Γ)):

• πpq = πp + πq, if pq is defined in Π(Γ),
• πp−1 = −πp.

Now we will show that every geometric flow π on Γ can be realized as a path
flow πp for a suitable path p.

Lemma 2.5. Let π be a geometric flow on Γ. Then there exists a path p in Γ such
that π = πp.

Proof. Let π be a geometric flow on Γ with the source s and the sink t. Denote by
Γπ the subgraph of Γ generated by supp(π)∪ {s, t}. Suppose Q is a subgraph of Γ
such that Δ = Γπ ∪Q is a connected graph (every two vertices are connected by a

path in Γ̂). Clearly, π induces a flow on Δ. Now we construct another X-digraph
Δ∗ by adding new edges to Δ in the following manner. For every edge e ∈ E(Δ)
with |π(e)| > 1 we add extra |π(e)|−1 new edges e(1), . . . , e|π(e)|−1 from o(e) to t(e)
if π(e) > 0 and from t(e) to o(e) if π(e) < 0. We label the new edges by the same
label if π(e) > 0, and by its inverse, otherwise. If π(e) = 0, then we add a new edge
e−1 from t(e) to o(e) with the inverse label. In the case |π(e)| = 1 we do not add
any new edges. Notice that every vertex in V (Δ∗)−{s, t} has even directed degree
(the number of incoming edges is equal to the number of outgoing edges). There
are two cases to consider.
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Case 1. Suppose π is a circulation. Then every vertex in Δ∗ has even directed
degree. Therefore, the digraph Δ∗ has an Euler tour p∗, i.e., a closed path at s
that traverses every edge in Δ∗ precisely once. Let φ : Δ∗ → Δ̂ be the morphism
of X-digraphs that maps all the new edges e(1), . . . , e|π(e)|−1 to their original edge
e. Clearly, the image p = φ(p∗) is a path in Δ̂ such that πp = π.

Case 2. Suppose π is not a circulation. Let q be a path in Δ∗ from s to t. Then
π′ = π − πq is a circulation. Hence by Case 1 there exists a path p in Γ such that
π′ = πp. Therefore, πpq = πp + πq = π′ + πq = π, as required. �

2.5. Geometric interpretation of Fox derivatives. In this section we give a
geometric interpretation of Fox derivatives.

Let G = F/N , μ : F → F/N be the canonical epimorphism, and let Γ =
Γ(G,X) be the Cayley graph of G with respect to the generating set X. A word
w ∈ F (X) determines a unique path pw in Γ labeled by w which starts at 1 (the
vertex corresponding to the identity of G). As we mentioned in Section 2.4 the
path pw defines a geometric flow πpw

on Γ, which we denote by πw.

Lemma 2.6. Let w ∈ F = F (X). Then for any g ∈ F/N and x ∈ X the value
of πw on the edge e = (g, gx) is equal to the coefficient in front of g in the Fox
derivative (∂w/∂x)μ ∈ ZG, i.e.,

(∂w/∂x)μ =
∑

g∈G,x∈X

πw(g, gx)g.

Proof. The proof follows by induction on the length of w from formulas (5). �

Figure 1 is an example for F = F ({x1, x2}) and N = F ′. The nonzero values of
πw are shown as weights on the edges (zero weights are omitted).
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Figure 1. The values of πw for w = x2x1x2x1x2x
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the (x1, x2)-grid. In this case ∂w/∂x1 = −1 + x2 − x1x
3
2 + x1x

2
2

and ∂w/∂x2 = 1− x1 + x2
2x

2
2 − x1x

2
2.

The following theorem has been proven in [13, 54] using a homological argument
similar to the one in Proposition 2.9. Here we give a short independent proof based
on the Fox theorem.

Theorem 2.7 ([13, 54]). Let N be a normal subgroup of F and ∼N an equivalence
relation on F defined by

u ∼N v ⇐⇒ πu = πv.

Then F/N ′ = F/ ∼N .
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Proof. Let u, v ∈ F . Suppose u = v in F/N ′. Then uv−1 ∈ N ′; hence by the Fox
theorem ∂μ(uv−1)/∂x = 0 for every x ∈ X (here by ∂μ/∂x we denote the canonical
image of ∂/∂x in the group ring Z(F/N)). It follows from (3) and (2) that

(7)
∂

∂x
(uv−1) =

∂u

∂x
− uv−1 ∂v

∂x
.

Hence in Z(F/N),

0 =
∂μ

∂x
(uv−1) =

∂μu

∂x
− ∂μv

∂x
,

so, by Lemma 2.6 πu = πv, as claimed.
To show the converse, notice first that πu = πv implies that u = v in F/N .

Indeed, it can be seen from the definition of π but also follows from (1) and Lemma
2.6 since in this case

(uμ − vμ)− (u− v)ε =
∑
x∈X

∂μ

∂x
(u− v) · (x− 1) = 0,

which implies uμ = vμ. Now by (7),

∂μ

∂x
(uv−1) =

∂μu

∂x
− ∂μv

∂x
= 0,

and, hence, by the Fox theorem, uv−1 ∈ N ′. �
Remark 2.8. Theorem 2.7 relates the algebraic and geometric points of view on
derivatives. One can prove this theorem (see Section 2.6) using a pure topological
argument. Then the Fox theorem, as well as the Magnus embedding, come along
as easy corollaries.

2.6. Geometric circulations and the first homology group of Γ. We describe
here geometric circulations on Γ = Γ(G,X) in a pure topological manner. For all
required notions and results on homology of simplicial complexes we refer to [31]
or [51].

In this section we view Γ as an infinite 1-complex.

Proposition 2.9. Let G = F/N , Γ = Γ(G,X), and σ : π1(Γ) → GC(Γ) be a map
defined by σ(p) = πp for p ∈ π1(Γ) . Then:

• σ is an epimorphism of groups;
• every geometric circulation on Γ defines a 1-cycle on Γ;
• H1(Γ,Z) 
 GC(Γ);
• π1(Γ) 
 N and kerσ = N ′.

Proof. It was mentioned already in Section 2.4 that the map p → πp is a morphism
from the fundamental groupoid Π(Γ) of paths in Γ into the groupoid of geometric
flows GF(Γ). Hence, the restriction of this map onto the fundamental group π1(Γ)
of Γ gives a homomorphism of groups. We have seen in Lemma 2.5 that σ is onto.
This proves the first statement.

To see 2), observe first that a geometric circulation f : E(Γ) → Z, viewed as a
formal sum

∑
e∈E(Γ) f(e)e, gives precisely a 1-chain in Γ (see, for example, [31]).

Moreover, by definition, the net flow f∗(v) at the vertex v ∈ V (Γ) is the coefficient
in front of v in the boundary ∂f of f . Therefore, ∂f = 0, so f is a 1-cycle.

3) follows easily from 2). Indeed, Γ is 1-complex, so there are no non-trivial
1-boundaries in Γ. In this event, H1(Γ,Z) is isomorphic to the group GC(Γ) of
1-cycles, as claimed.
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4) It is a classical result that the kernel of σ : π1(Γ) → H1(Γ,Z) is equal to
the derived subgroup of π1(Γ) (see [31]). To prove 4) it suffices to notice that
π1(Γ) 
 N , which is easy. �

Remark 2.10. Proposition 2.9 gives a simple geometric proof of Theorem 2.7, that
relates the algebraic and geometric points of view on derivatives. Now one can
derive the Fox theorem from the geometric argument above and then obtain the
description of the kernel of the Magnus embedding as an easy corollary.

2.7. Geodesics in F/N ′. Let G = F/N and μ : F (X) → G be the canonical
epimorphism. In this section we describe geodesics of elements of the group H =
F/N ′ relative to the set of generators Xμ.

It is convenient to view the free group F = F (X) as the set of all freely reduced
words in the alphabet X±1 = X ∪X−1 with the obvious multiplication.

To describe geodesics in H (relative to X) of a given word w ∈ F we need a
construction from Lemma 2.5. Recall that pw is the path in the Cayley graph
Γ = Γ(G,X) from 1 to wμ with the label w, and πw is the induced geometric flow
on Γ with the source 1 and the sink wμ. By Γw we denote the subgraph of Γ
generated by supp(πw) ∪ {1, wμ}. Suppose Q is a finite subgraph of Γ such that
Δ = Γw ∪ Q is a connected graph and Q has the least number of edges among all
such subgraphs. It follows from minimality of Q that every connected component
of Q is a tree. Moreover, if in the graph Δ = Γw ∪Q one collapses every connected
component Γw to a point, then the resulting graph is a tree. We refer to Q as a
minimal forest for w. In general, there could be several minimal forests for w.

Similarly as in the proof of Lemma 2.5, we construct a finite X-digraph Δ∗ by
replicating every edge e ∈ E(Δ) with ||πw(e)| − 1| new edges in such a way that
every vertex in V (Δ∗)− {1, wμ} has even directed degree, and the map that sends
every replica of an edge e back to e (or e−1 depending on the orientation) is a

morphism of X-labeled digraphs φ : Δ∗ → Δ̂. There are two cases.

Case I. Suppose that pw is a closed path in Γ, i.e., w ∈ N . In this case every vertex
in Δ∗ has even degree, so Δ∗ has an Euler tour, say p∗Q at 1. Denote by pQ the

image φ(p∗Q) of p
∗
Q under φ. It follows from the construction (see Lemma 2.5) that

pQ is a closed path at 1 in Γ such that πw = πpQ
. Therefore, if wpQ

∈ F is the
label of pQ, then by Theorem 2.7, w = wpQ

in H. Moreover, since pQ is an Euler
tour in Δ∗, its length, hence the length of wpQ

, is equal to

(8) |pQ| =
∑

e∈supp(pw)

|πw(e)|+ 2|E(Q)|.

Case II. Suppose that pw is not a closed path in Γ, i.e., w �∈ N . By induction
on |w| it is easy to show that the vertices 1 and wμ belong to the same connected
component of Γw. Again, there exists an Euler tour p∗Q in the graph Δ∗ which

starts at the source and ends at the sink. Clearly, πpQ
satisfies the equality (8). If

u is the label of the path πpQ
, then πu = πpQ

= πw and u is a geodesic word for w.

Now, with the construction in place, we are ready to characterize geodesics in
H of elements from N .
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Theorem 2.11. Let H = F/N ′ and w ∈ F . Then the following hold:

• if Q is a minimal forest for w, then wpQ
is a geodesic for w and

lX(w) =
∑

e∈supp(pw)

πw(e) + 2|E(Q)|;

• every geodesic word for w is equal (in F ) to a word wpQ
for a suitable

minimal forest Q and an Euler path p∗Q.

Proof. Let u ∈ F be a geodesic word for wμ in H. Observe that Δ = supp(πu)∪pu
is a connected subgraph of Γ and

|pu| ≥
∑

e∈supp(pu)

πu(e) + 2|E(Δ− supp(πu))|.

Now, by Theorem 2.7, the equality u = w in H implies πu = πw. In particular,
supp(πu) = supp(πw). Hence

(9) |pu| ≥
∑

e∈supp(pw)

πw(e) + 2|E(Δ− supp(πw))|.

Since u is geodesic for w the number |Δ − supp(πw)| is the minimal possible, so
Q = Δ− supp(πw) is a minimal forest for w. In fact, the equation (9) shows that
the converse is also true. This proves the theorem. �

The discussion above shows that GP is easy in F/N ′ provided one can solve the
following problem efficiently.

Minimal Forest Problem (MFP): Given a finite set of connected finite sub-
graphs Γ1, . . . ,Γs in Γ find a finite subgraph Q of Γ such that Γ1 ∪ . . . ∪ Γs ∪Q is
connected and Q has a minimal possible number of edges.

Proposition 2.12. GP in F/N ′ (relative to X) is linear time reducible to MFP
for Γ(F/N,X).

Proof. This follows from the discussion above. Indeed, given a word w ∈ F one can
in linear time compute the flow πw and find the connected components Γ1, . . . ,Γs

of supp(πw) ∪ {o(pw), t(pw)} in Γ = Γ(F/N,X). Then, solving MFP for these
components, one gets the subgraph Q which makes the graph Γ1 ∪ . . . ∪ Γs ∪ Q
connected. Obviously, it takes linear time to find an Euler path in the graph Δ,
hence to find a geodesic for w. �

3. The Word Problem in free solvable groups

In this section we present fast algorithms to compute Fox derivatives of elements
of a free group F in the group ring ZSr,d of a free solvable group Sr,d. As an
immediate application, we obtain a decision algorithm for WP in a free metabelian
group Mr with time complexity O(rn log2 n) and a decision algorithm for WP in
Sr,d, d ≥ 3, with time complexity O(rdn3). These are significant improvements in
comparison with the known decision algorithms discussed in the Introduction and
Section 2.2. As another application we get a fast algorithm to compute images of
elements from Sr,d under the Magnus embedding, which opens up an opportunity
to efficiently use the classical techniques developed for wreath products.
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3.1. The Word Problem in free metabelian groups. In this section we com-
pute Fox derivatives of elements of F in the group ring Z(F/F ′). Then we apply
this to WP in free metabelian groups.

Let X = {x1, . . . , xr}, F = Fr = F (X), M = Mr = F/F (2), A = Ar = F/F ′,
and μ : F → A be the canonical epimorphism. All Fox derivatives in this section
are computed in the ring ZA.

Let w ∈ F . Then

∂μw

∂xi
=

∑
a∈A

ma,ia, ma,i ∈ Z.

One can encode all the derivatives ∂μw/∂xi in one mapping Mw : A×{1, . . . , r} →
Z, where Mw(a, i) = ma,i. Let

supp(Mw) = {(a, i) | Mw(a, i) �= 0},

and let Sw be the restriction of Mw onto supp(Mw). To compute Fox derivatives
of w we construct a sequence of finite maps S0 = ∅, S1, . . . , Sn = Sw, as we read w.
On each step k we either extend the domain Dom(Sk) of Sk or change the value
of Sk on some element from Dom(Sk). To do this we need a data structure which
allows one to do the following operations efficiently:

• for a given (a, i) determine if (a, i) ∈ Dom(Sk) or not;
• add (a, i) to Dom(Sk) if (a, i) �∈ Dom(Sk) and define Sk(a, i) = q for some
q ∈ Z;

• change the value of Sk on (a, i) if (a, i) ∈ Dom(Sk).

Every element a ∈ A can be written uniquely in the form a = x
δ1(a)
1 . . . x

δr(a)
r , where

δi(a) ∈ Z, so one may use the r-tuple of coordinates δ(a) = (δ1(a), . . . , δr(a)) to
represent a. It follows from the formula (5) for partial derivatives that for every
(a, i) ∈ Dom(Sw) the components δj(a) of δ(a) satisfy the inequality |δj(a)| ≤
|w|, as well as the values of Sw and, hence, |Sw(a, i)| ≤ |w|. Therefore, it takes
�log2(|w|+1)� bits to encode one coordinate δj(a) (one extra bit to encode the sign
+ or −), r�log2(|w|+1)� bits to encode δ(a), and at most r�log2(|w|+1)�+�log2 r�
bits to encode (a, i). We denote the binary word encoding (a, i) by (a, i)∗.

Thus every function Sk can be uniquely represented by a directed {0, 1}-labeled
binary tree Tk with the root ε and with leaves labeled by integers such that (a, i) ∈
Dom(Sk) if and only if there exists a path in Tk from the root ε to a leaf labeled
by the code of (a, i) and such that the leaf of this path is labeled precisely by the
integer Sk(a, i). Notice that the height of Tk is equal to r�log2(|w|+1)�+ �log2 r�.
Such a tree is visualized schematically in Figure 2.

Remark 3.1. It is clear that one can perform every operation mentioned above on
this data structure in at most r�log2(|w|+ 1)�+ �log2 r� elementary steps.

We use this data structure to design the following algorithm for computing Sw.

Algorithm 3.2 (Computing Fox derivatives in F/F ′).
Input. r ∈ N and w = xε1

i1
. . . xεn

in
∈ F (X), where ij ∈ {1, . . . , r} and εj = ±1.
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Figure 2. The tree Tk representing the function Sk.

Output. Sw.
Computations.

A. Set S = ∅ and δ(a) = (0, . . . , 0) ∈ Z
r.

B. For j = 1, . . . , n do:
(1) if εj = 1, then

∗ check if there is a path (from the root to a leaf) labeled by (δ(a),
ij)

∗ in S;
∗ if such a path does not exist in S, then create it, add it to S,
and put 1 as the corresponding value at the new leaf;

∗ if such a path exists in S, then add 1 to the value at its leaf;
∗ add εj to the ijth coordinate of δ(a);

(2) if εj = −1, then
∗ add εj to the ijth coordinate of δ(a);
∗ check if there is a path (from the root to a leaf) labeled by (δ(a),
ij)

∗ in S;
∗ if such a path does not exist in S, then create it, add it to S,
and put −1 at the corresponding leaf;

∗ if such a path exists in S, then subtract 1 from the value at its
leaf.

C. Output Sn.

Theorem 3.3. Given r ∈ N and w ∈ F , Algorithm 3.2 computes all partial deriva-
tives of w in ZA (the mapping Sw) in time O(r|w| log2 |w|).

Proof. Using the formula (5) for partial derivatives it is easy to check that given
w ∈ F , Algorithm 3.2, indeed, computes the mapping Sw. To verify the complexity
estimates observe first that Algorithm 3.2 performs exactly |w| iterations at step
[B]. Each iteration requires O(r�log2(|w|+1)�) elementary steps (see Remark 3.1),
so altogether one has O(r|w|log2|w|) as the time complexity estimate for Algorithm
3.2, as claimed. �

Algorithm 3.4 (Word Problem in free metabelian groups).
Input. r ∈ N and w ∈ F .
Output. True if w represents the identity in Mr and False otherwise.
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Computations.

• Apply Algorithm 3.2 to compute Sw.
• Check, looking at the values assigned to leaves of Sw, if all Fox derivatives
∂w/∂xi, i = 1, . . . , r are equal to 0 or not.

• If all the derivatives are 0, then output True. If there is a nonzero deriva-
tive, then output False.

Theorem 3.5. Algorithm 3.4 solves the Word Problem in a free metabelian group
Mr in time O(r|w| log2 |w|).

Proof. This follows from Theorem 3.3 and the Fox theorem (see Section 2.3). �

3.2. The Word Problem in free solvable groups. In this section we present
an algorithm to compute all Fox derivatives of a word w ∈ F in the group ring
ZSr,d−1, d ≥ 2 in time O(rd|w|3). This gives a decision algorithm for WP in Sr,d

within time complexity O(rd|n|3).
Let X = {x1, . . . , xr}, F = Fr = F (X), S = Sr,d = F/F (d), d ≥ 3, and

μ : F → Sr,d−1 be the canonical epimorphism. All Fox derivatives in this section
are computed in the ring ZSr,d−1.

In Section 3.1 we used a unique representation of elements a ∈ Ar by their
coordinate vectors δ(a) to compute Fox derivatives in nearly linear time. Now we
do not have such normal forms of elements of Sr,d, d ≥ 2, so our computations
are slightly different; however, the general strategy is quite similar. To speed up
computations we use some data structures based on efficient partitioning techniques.

In general, let G be a group generated by X and let D be a finite subset of F (X).
A G-partition of D is a partition of D into a union of disjoint nonempty subsets Di

such that for any u, v ∈ D, u = v in G if and only if they belong to some subset Di.
Clearly, the G-partition of D is unique. Observe that if a group H is a quotient of
G, then the G-partition of D is the same or finer than the H-partition of D.

If the set D is ordered, say D = {w0, . . . , wn}, then the G-partition of D can be
represented by a function P : {0, . . . , n} → {0, . . . , n} where P (j) = i if and only
if wi = wj in G and i is the smallest with such a property. Given the G-partition
P of D one can arrange this data in such a way that it takes linear time (in the
size of j) to compute P (j). In particular, given i, j one can check in linear time if
wi = wj in G. Also, for a given word w ∈ D one can find in linear time an index i
such that w = wi. These are the two main subroutines concerning partitions of D.

Let w = xε1
i1
. . . xεn

in
, where ij ∈ {1, . . . , r} and εj = ±1. Put

(10) Dw = {ε, xε1
i1
, xε1

i1
xε2
i2
, . . . , xε1

i1
. . . xεn

in
} ⊂ F (Xr).

We order the set Dw as follows: w0 = ε, . . . , wn = w. Now, to check whether or
not the derivative ∂w/∂xi is trivial in ZSr,d−1 one has to determine which pairs
(wi, wj) of elements from Dw represent the same element in Sr,d−1 and then cancel
out wi with wj in ∂w/∂xi if they have opposite signs.

The goal of Algorithm 3.10 below is to compute the Sr,d-partition for Dw. This
is performed in a sequence of iterations. The algorithm starts out by computing
the Ar-partition of Dw. On the second iteration the algorithm computes the Mr-
partition ofDw. On the third step it computes the Sr,3-partition ofDw. It continues
this way until it computes the Sr,d-partition of Dw.

To explain how the algorithm works, assume that the Sr,d−1-partition of Dw is
given by the partition function Pd−1 described above. Notice that the Sr,d-partition
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of Dw is the same or finer than the Sr,d−1-partition of Dw, since Sr,d−1 is a quotient
of Sr,d. This shows that to construct the Sr,d-partition Pd of Dw one has only to
compare elements from Dw which are equal in Sr,d−1. Suppose that ws, wt ∈ Dw,
s < t and ws = wt in Sr,d−1. To check if ws = wt in Sr,d we compare all their
Fox derivatives in ZSr,d−1, so for every k = 1, . . . , r we compute the following
differences:

∂ws/∂xk − ∂wt/∂xk

=
∑

1≤j≤s, ij=k, εj=1

xε1
i1
. . . x

εj−1

ij−1
−

∑
1≤j≤s, ij=k, εj=−1

xε1
i1
. . . x

εj
ij

−
∑

1≤j≤t, ij=k, εj=1

xε1
i1
. . . x

εj−1

ij−1
+

∑
1≤j≤t, ij=k, εj=−1

xε1
i1
. . . x

εj
ij

= −
∑

s+1≤j≤t, ij=k, εj=1

xε1
i1
. . . x

εj−1

ij−1
+

∑
s+1≤j≤t, ij=k, εj=−1

xε1
i1
. . . x

εj
ij

= −
∑

s+1≤j≤t, ij=k, εj=1

wj−1 +
∑

s+1≤j≤t, ij=k, εj=−1

wj .(11)

Clearly, given w and s, as above one can compute the formal expression (11) in
time O(|w|). To check if (11), viewed as an element in ZSr,d−1, is equal to 0
it suffices to represent it in the standard group ring form

∑
g∈Sr,d−1

mg (where

m ∈ Z) and verify if all coefficients in this representation are zeros. Now we
describe a particular procedure, termed the Collecting Similar Terms Algorithm,
which gives the standard group ring form for (11). Given (11) one can compute in
time O(|w|) the following sum:

(12) −
∑

s+1≤j≤t, ij=k, εj=1

wP (j−1) +
∑

s+1≤j≤t, ij=k, εj=−1

wP (j).

Observe now that two summands wp and wq in (12) are equal in Sr,d−1 if and only
if p = q. It is easy to see that it takes time O(|w|) to collect similar terms in (12),
i.e., to compute the coefficients in the standard group ring presentation of (12).

It follows that ∂ws/∂xk = ∂wt/∂xk in ZSr,d−1 if and only if all the coefficients
in the standard group ring form of (12) are equal to 0. The argument above shows
that one can check whether or not ∂ws/∂xk = ∂wt/∂xk in ZSr,d−1 in time O(|w|).
Since we need to compare all partial derivatives ∂/∂xk, k = 1, . . . , r, of the elements
ws and wt, it takes altogether O(r|w|) time to verify if ws = wt in Sr,d−1.

The routine above allows one to construct effectively the Sr,d-partition Pd of Dw

when given the Sr,d−1-partition Pd−1. A more formal description of the algorithm
is given below.

Algorithm 3.6 (Computing the Sr,d-partition of Dw).
Input. Positive integers r ≥ 2, d ≥ 2, and a word w ∈ F (X).
Output. The Sr,d-partition function Pd for the set Dw.
Initialization. Compute the set Dw and form the initial (trivial) F -partition P0

of Dw, so P0(i) = i for every i ∈ {0, . . . , n}.
Computations.

A. Compute the A-partition P1 of Dw.
B. For c = 2, . . . , d do:
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1) For each 0 ≤ s < t ≤ n such that ws = wt in Sr,c−1 check whether or
not ws = wt in Sr,c.

2) Form the Sr,c-partition Pd of Dw.
C. Output Pd.

Lemma 3.7. Given integers r, d ≥ 2 and w ∈ F , Algorithm 3.6 computes the
Sr,d-partition (the function Pd) of Dw in time O(dr|w|3).

Proof. Algorithm 3.6 makes precisely d iterations c = 1, . . . , d by consequently
computing the Sr,c-partitions of Dw. After the Sr,c−1-partition of Dw is computed,
the algorithm computes the Sr,c-partition of Dw by comparing elements ws, wt ∈
Dw in Sr,c. It requires at most |w|(|w| + 1)/2 such checks, and, as was explained
above, every such check can be done in time O(r|w|). Altogether one needs O(r|w|3)
steps to construct the function Pc on the iteration c. Since the algorithm makes
altogether d iterations it takes it O(dr|w|3) time to produce Pd, as claimed. �

Now we are in a position to show two applications of Algorithm 3.6. The first
one is concerned with computing Fox derivatives in ZSr,d.

Algorithm 3.8 (Computing Fox derivatives).
Input. Positive integers r ≥ 2, d ≥ 2, a word w ∈ F (X), and a number k ∈
{1, . . . , r}.
Output. The standard group ring presentation of the Fox derivative ∂w/∂xk in
ZSr,d.
Computations.

A. Compute, using formals (5), the Fox derivative ∂w/∂xk in ZF .
B. Compute, using Algorithm 3.6, the Sr,d-partition of Dw.
C. Compute, using the Collecting Similar Terms Algorithm, the standard group

ring form of ∂w/∂xk in ZSr,d

D. Output ∂w/∂xk computed in [C].

Lemma 3.9. Given integers r, d ≥ 2, a word w ∈ F , and a number k ∈ {1, . . . , r},
Algorithm 3.8 computes the standard group ring presentation of the Fox derivative
∂w/∂xk in ZSr,d in time O(dr|w|3).

Proof. The proof follows from Lemma 3.7. �

The second application of Algorithm 3.6 is to WP in Sr,d.

Algorithm 3.10 (WP in Sr,d).
Input. Positive integers r ≥ 2, d ≥ 2, and a word w ∈ F (X).
Output. True if w = 1 in Sr,d and False otherwise.
Computations.

A. Compute the set Dw.
B. Using Algorithm 3.6, compute the Sr,d-partition Pd of Dw.
C. If Pd(0) = Pd(n), i.e., 1 = w in Sr,d, then output True. Otherwise output

False.

Theorem 3.11. Algorithm 3.10 solves the Word Problem in a free solvable group
Sr,d in time O(dr|w|3).

Proof. This follows immediately from Lemma 3.7. �
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4. Geodesics in free metabelian groups

In this section we discuss the computational hardness of different variations of
geodesic problems and prove the main result about NP-completeness of BGLP in
free metabelian groups.

4.1. Algorithmic problems with geodesics in groups. Let G be a group with
a finite set of generators X = {x1, . . . , xr} and let μ : F (X) → G be the canonical
epimorphism. In this section we view the free group F (X) as the set of all freely
reduced words in the alphabet X±1 = X ∪X−1 with the obvious multiplication.

For a word w in the alphabet X±1 by |w| we denote the length of w. The
geodesic length of an element g ∈ G relative to X, denoted by lX(g), is the length
of a shortest word w ∈ F (X) representing g, i.e.,

lX(g) = min{|w| | w ∈ F (X), wμ = g}.
To simplify notation we write, sometimes, lX(w) instead of lX(wμ). A word w ∈
F (X) is called geodesic in G relative to X if |w| = lX(w).

We are interested here in the following algorithmic search problem in a given
group G described as above.

The Geodesic Problem (GP): Given a word w ∈ F (X), find a geodesic (in G)
word w̃ ∈ F (X) such that wμ = w̃μ.

One can consider the following variation of GP.

The Geodesic Length Problem (GLP): Given a word w ∈ F (X), find lX(w).

Though GLP seems easier than GP (since a solution to GP gives, in linear time,
a solution to GLP), in practice, to solve GP one usually solves GP first, and only
then computes the geodesic length.

As is customary in complexity theory, one can modify the search problem GLP
to get the corresponding bounded decision problem:

The Bounded Geodesic Length Problem (BGLP): Let G be a group with a
finite generating set X. Given a word w ∈ F (X) and a natural number k, determine
if lX(w) ≤ k.

It is instructive to compare the algorithmic “hardness” of the problems above
and the Word Problem (WP). Clearly, if one of them is decidable, then all of them
are decidable. To see the difference we need to recall a few definitions. Let A and
B be algorithmic problems with input sets IA and IB. Then A is termed Turing
reducible to B in polynomial time if there exists an algorithm A with an oracle for
B (which can be viewed as a “subroutine” of A that for a given input e ∈ IB in one
step returns the answer for B on e) that solves A in polynomial time. Similarly, one
can define Turing reducibility in exponential time. In these cases we write A �T,p B
or, correspondingly, A �T,exp B.

Again, it is not hard to see that WP �T,p BGLP �T,p GLP �T,p GP . More-
over, since (by brute force algorithm) GP �T,exp WP , it follows that all these
problems are Turing reducible to each other in exponential time. Moreover, if G
has polynomial growth, i.e., if there is a polynomial p(n) such that for each n ∈ N

the cardinality of the ball Bn of radius n in the Cayley graph Γ(G,X) is at most
p(n), then one can easily construct this ball Bn in polynomial time with an oracle
for the WP in G (see, for example, [13] for details). It follows that if a group with
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polynomial growth has WP decidable in polynomial time, then all the problems
above have polynomial time complexity with respect to any finite generating set
(since the growth and WP stay polynomial for any finite set of generators). Ob-
serve now, that by Gromov’s theorem [26], finitely generated groups of polynomial
growth are virtually nilpotent. It is also known that the latter have WP decidable
in polynomial time (nilpotent finitely generated groups are linear). These two facts
together imply that the Geodesic Problem is polynomial time decidable in finitely
generated virtually nilpotent groups.

On the other hand, there are many groups of exponential growth where GP is de-
cidable in polynomial time, for example, hyperbolic groups [16]. Among metabelian
groups, the Baumslag-Solitar group BS(1, 2) = 〈a, t | t−1at = a2〉 has exponential
growth (it is solvable but not polycyclic, and the claim follows from the Milnor
theorem [41]) and GP in BS(1, 2) is decidable in polynomial time (see [15]).

In general, if WP in G is polynomially decidable, then BGLP is in the class
NP, i.e., it is decidable in polynomial time by a nondeterministic Turing machine.
Indeed, if lX(w) ≤ k, then there is a word u ∈ F (X) of length at most k which is
equal to w in G; this u is a “witness” of polynomial size which allows one to verify in
polynomial time that lX(w) ≤ k (just checking that u = w in G). In this case GLP
is Turing reducible in polynomial time to an NP problem, but we cannot claim the
same for GP. Observe that BGLP is in NP for any finitely generated metabelian
group, since they have WP decidable in polynomial time (see the Introduction).

It might happen though that WP in a group G is polynomial time decidable, but
BGLP in G is as hard as any problem in the class NP, i.e., it is NP-complete. Recall
(in the notation above) that a decision problem B is NP-complete if it is in NP
and for any decision problem A from NP there is a computable in polynomial time
function f : IA → IB (Karp reduction, or a polynomial reduction), such that A is
true on x ∈ IA if and only if B is true on f(x). The simplest example of this type
is due to Parry, who showed in [45] that BGLP is NP-complete in the metabelian
group Z2wr(Z×Z) (the wreath product of Z2 and Z×Z). In this event, the search
problems GP and GLP are called NP-hard; this means precisely that some (any)
NP-complete problem is Turing reducible to them in polynomial time.

It would be very interesting to classify finitely generated metabelian groups with
respect to computational hardness of their GP or GLP problems. In the next
section we clarify the situation with free metabelian groups. Some remaining open
problems are discussed in Section 5.

It was claimed in [13] that in free solvable groups of finite rank, GLP is decid-
able in polynomial time. Unfortunately, in this particular case their argument is
fallacious. Our main result of this section is the following theorem.

Theorem 4.1 (Main Theorem). Let Mr be a free metabelian group Mr of finite
rank r ≥ 2. Then BGLP in Mr (relative to the standard basis) is NP-complete.

Proof. The proof of this result consists of two parts. Firstly, in Section 4.2 (Corol-
lary 4.5) we show that it suffices to prove that BGLP is NP-complete in M2.
Secondly, in Section 4.4 (Theorem 4.11) we give a proof that BGLP is, indeed,
NP-complete in M2. �

This immediately implies the following results.

Corollary 4.2. The search problems GP and GLP are NP-hard in nonabelian Mr

(relative to the standard basis).
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To prove the Main Theorem we reduce the problem to the case r = 2 and then
show that BGLP inM2 is NP-complete. To see the latter we construct a polynomial
reduction of the Rectilinear Steiner Tree Problem to BGLP in Mr.

4.2. Reduction to M2. Let V be a variety of groups. For groups A,B ∈ V we
denote by A ∗V B the free product of A and B relative to V . In particular, if
A = 〈X | R〉 and B = 〈Y | S〉 are presentations of A and B in V , then A ∗V B =
〈X ∪ Y | R ∪ S〉 is a presentation of A ∗V B in V . As usual, A ∗V B satisfies
the canonical universal property: any two homomorphisms A → C,B → C into a
group C ∈ V extend to a unique homomorphism A ∗V B → C (we refer to [44] for
details). It follows that if FV(X ∪ Y ) is a free group in V with basis X ∪ Y , then
FV(X ∪ Y ) = FV(X) ∗V FV(Y ).

The following lemma claims that free V-factors of a group G are isometrically
embedded into G.

Lemma 4.3. Let A,B ∈ V with finite generating sets X and Y . Then in the group
A∗V B no geodesic word (relative to X∪Y ) for an element from A contains a letter
from Y . In particular, for any word w ∈ F (X) its geodesic length in A (relative to
X) is equal to the geodesic length in A ∗V B (relative to X ∪ Y ).

Proof. Let w ∈ F (X) be a geodesic word in A relative to X. Suppose that u ∈
F (X ∪ Y ) is a geodesic word in G = A ∗V B (relative to X ∪ Y ) that defines the
same element as w. The identical map A → A and the trivial map B → 1 give
rise to a homomorphism φ : G → A. This φ, when applied to u, just “erases” all
letters from Y . It follows that if u contains a letter from Y , then |uφ| < |u| ≤ |w|,
a contradiction with the assumption that w is geodesic in A relative to X (since
w = uφ in A). �

Corollary 4.4. In the notation above, each of the problems GP, GLP, BGLP in
A (relative to X) is polynomial time reducible to the problem of the same type in
A ∗V B (relative to X ∪ Y ).

Notice that Mn+m = Mn ∗A2
Mm, where A2 is the variety of all metabelian

groups. Since WP is in P for groups from M, Corollary 4.4 implies the following
result.

Corollary 4.5. If BGLP is NP-complete in M2, then it is NP-complete in Mr, r ≥
2, relative to the standard bases.

Remark 4.6. Corollary 4.5 easily generalizes to free groups in an arbitrary variety,
provided they have WP decidable in polynomial time.

4.3. Rectilinear Steiner Tree Problem. The Steiner Tree Problem (STP),
which was originally introduced by Gauss, is one of the initial twenty-one NP-
complete problems that appeared in Karp’s list [34]. We need the following recti-
linear variation of STP.

Let R2 be the Euclidean plane and Γ the integer grid canonically embedded into
R

2 (all vertices from Z
2 together with all the horizontal and vertical lines connecting

them). If A is a finite subset of Z2, then a rectilinear Steiner tree (RST) for A is a
subgraph T of Γ such that A ∪ T is connected in Γ. By s(T ) (size of T ) we denote
the number of edges in T . An RST for A is optimal if it has the smallest possible
size among all RST for A; we denote such RST by TA. Observe that a given A
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may have several different optimal RST, but their size is the same; we denote it by
s(A).

Notice that, in general, TA for A is not a spanning tree for A in Γ; it may
contain some vertices from Z

2 which are not in A (so-called, Steiner points). The
Rectilinear Steiner Tree Problem (RSTP) asks, for a given finite A ⊆ Z

2 and k ∈ N,
to decide if there exists some TA for A with s(TA) < k. It is known that RSTP is
NP-complete [25].

4.4. NP-completeness of BGLP in M2. Now we construct a polynomial reduc-
tion of RSTP to GLDP in M2 relative to the standard basis X = {x, y}.

With each point (s, t) ∈ Z
2 we associate a word

ws,t = xs
1x

t
2 · (x2x1x

−1
2 x−1

1 ) · x−t
2 x−s

1

in F (x, y). Similarly, with a set of points A = {(s1, t1), . . . , (sn, tn)} ⊂ Z
2, ordered

in an arbitrary way, we associate a word

wA =

n∏
i=1

wsi,ti .

Observe that the word ws,t, as well as wA, belongs to F ′ = [F, F ], so in M2 they
define elements from M ′

2. In particular, the path pwA
is a closed path in the grid

Γ = Z
2, which is viewed as the Cayley graph of the abelianization F/F ′.

For A ⊂ Z
2, (p, q) ∈ Z

2, and m ∈ Z we put

• A+ (p, q) = {(s+ p, t+ q) | (s, t) ∈ A},
• mA = {(ms,mt) | (s, t) ∈ A}.

1

0

2

-1

3

4

10 2-1 3

1

1

-1

-1

10 2-1 3

-11

1

-1

10 2-1 3

-11

1

-1-11

1

-1

-11

1

-1

1

0

2

-1

3

4

1

0

2

-1

3

4

x1

x2

x1

x2

x1

x2

Figure 3. Flows on Z
2 defined by words w0,0, w2,1, and w{(−1,2),(1,−1),(2,3)}.

The following result is due to Hanan [30].

Theorem 4.7 ([30, Theorem 4]). Let A = {(x1, y1), . . . , (xn, yn)} be a finite sub-
set of Z × Z. There exists some TA for A with the set of Steiner points Q =
{(a1, b1), . . . , (aq, bq)} such that {a1, . . . , aq} ⊆ {x1, . . . , xn} and {b1, . . . , bq} ⊆
{y1, . . . , yn}.

Corollary 4.8. Let A be a finite subset of Z× Z. Then

(1) s(A+ (b, c)) = s(A) for any (b, c) ∈ Z
2;

(2) ms(A) = s(mA) for any m ∈ N.

Proof. The first statement is obvious because the parallel shift (x, y) → (x, y)+(b, c)
is an isomorphism of the Cayley graph Γ (in particular, an isometry).
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To prove the second statement, notice first that s(mA) ≤ ms(A). Indeed,
stretching TA by the factor of m along all horizontal and vertical lines gives some
RST for mA, hence the claim.

On the other hand, s(A) ≤ s(mA)/m. To see this, observe that by Theorem 4.7
there exists R = TmA which lies inside the grid mZ×mZ. Since the coordinates of
all vertices in R are multiples of k, one can shrink R by the factor of m, in such a
way that the image of R becomes an RST for A. Clearly, the size of the image is
equal to s(TmA)/m, hence the result. �

Proposition 4.9. Let A be a finite subset of Z2, (b, c) ∈ A, and n = |A|. Put
A∗ = 10n(A− (b, c)). Then lX(wA∗) ∈ [20ns(A), 20ns(A) + 4n].

Proof. Let u be a geodesic word for wA∗ relative to the basis X. Since wA∗ ∈ F ′

the paths pu and pwA∗ are closed paths in Γ = Z
2 (viewed as the Cayley graph of

M2/M
′
2). Hence u and wA∗ determine the same circulations πu = πAw∗ on Γ. As

described in Section 2.7, the flow πu is associated with the subgraph Γu generated
in Γ by supp(πu) ∪ {(0, 0)}. It follows from the construction of the word wA∗ that
the connected components of Γu are precisely the 1× 1 squares in Γ, whose lower-
left corners are located at the points from A∗. Notice that (0, 0) ∈ A− (b, c); hence
(0, 0) ∈ A∗. Now, if Q is a minimal forest for u (a subgraph of Γ of minimal size
that makes the graph Γu ∪Q connected in Γ), then by Theorem 2.11,

(13) |u| = lX(wA∗) =
∑

e∈supp(pu)

πu(e) + 2|E(Q)| = 4n+ 2|E(Q)|.

Observe that an optimal RST TA∗ for A∗ also makes the graph Γu ∪ Q connected
in Γ; hence |E(Q)| ≤ s(A∗). Therefore, lX(wA∗) ≤ 20ns(A) + 4n.

On the other hand assume that |u| = lX(wA∗) < 20ns(A). Hence, from (13),
there exists a minimal forest Q for A∗ such that 2|E(Q)| < 20ns(A)−4n. Since ev-
ery connected component has precisely 4 edges and there are n such components, it
follows that there is an RST for A∗ of size strictly less than 10ns(A), a contradiction
with Corollary 4.8. This proves the proposition. �

Corollary 4.10. Let A be a finite subset of Z2 and k ∈ N. In the notation above,

s(A) < k ⇐⇒ lX(wA∗) < 20nk + 4n.

In particular, this gives a polynomial reduction of RSTP to BGLP in M2 relative
to X.

Proof. Indeed, if s(A) < k, then by Proposition 4.9 lX(wA∗) ≤ 20ns(A) + 4n <
20nk + 4n. On the other hand, suppose s(A) ≥ k, say s(A) = k + l for some
positive l ∈ N. Then, again by Proposition 4.9, lX(wA∗) ≥ 20ns(A) = 20n(k+ l) >
20nk + 4n, as required. �

Theorem 4.11. GLDP in a free metabelian group M2 is NP-complete.

Proof. Corollary 4.10 gives a polynomial reduction of RSTP in Z
2 to BGLP in M2.

Therefore BGLP in M2 is NP-hard. Meanwhile, as was mentioned above, BGLP
for M2 is in NP, since WP in M2 is polynomial. �
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5. Open problems

Denote by M the class of all finitely generated metabelian groups.

Problem 5.1. Describe groups in M with GP in P. In particular, the following
partial questions are of interest here:

• Are there any groups in M with GP not in P?
• Do polycyclic groups from M have GP in P?
• When do wreath products of two f.g. abelian groups have GP in P?

Notice, since WP is in P for groups from M, it follows that GLP is at most in
NP (Turing reducible in P time to BGLP which is in NP). This makes the following
problem very interesting.

Problem 5.2. Classify groups in M with NP-complete BGLP. In particular, the
following partial questions are of interest:

• Do polycyclic groups from M have GLP in P?
• Is it true that a wreath product AwrB of finitely generated abelian groups
has NP-complete BGLP if A �= 1 and the torsion-free rank of B is at least
2?

Clearly, GLP is polynomial time reducible to GP. On the other hand, it is not
clear if there are finitely presented (or finitely generated) groups where GP is not
polynomial time reducible to GLP. It would be interesting to clarify the situation
in the class M. To this end we post the following.

Problem 5.3. Are there groups in M where GP is not polynomial time reducible
to GLP?
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