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THE WORD AND RIEMANNIAN METRICS

ON LATTICES OF SEMISIMPLE GROUPS

by ALEXANDER LUBOTZKY, SHAHAR MOZES and M. S. RAGHUNATHAN

ABSTRACT

Let G be a semisimple Lie group of rank ^ 2 and F an irreducible lattice. F has two natural metrics:
a metric inherited from a Riemannian metric on the ambient Lie group and a word metric denned with
respect to some finite set of generators. Confirming a conjecture of D. Kazhdan (cf. Gromov [Gr2]) we show
that these metrics are Lipschitz equivalent. It is shown that a cyclic subgroup of F is virtually unipotent if and
only if it has exponential growth with respect to the generators of F.

1. Introduction

Let G be a semi-simple group. By this we mean that G=n^i G^) where for

i= I,..., /, ki is a locally compact non discrete field and G; is a connected (almost) simple

A:rgroup. Denote rank G = ̂ ^ i rank^G^. Each factor G,=G,(^) has a left invariant

metric d{ obtained in the following way: If ki is archimedean then there is a Grinvariant

Riemannian metric defined on the symmetric space G^/K^ where K^ is a maximal

compact subgroup of G{ and we can lift it to obtain a left invariant Riemannian

metric on G^. Similarly if ki is non-archimedean the natural (combinatorial) metric

on the vertices of the Bruhat-Tits building associated with G,, can be lifted to a left

invariant metric di on G,. We denote </R((&), (^))=SLi ^(&? ^)? ^R ls a
 ̂

t invariant
metric on G. In this procedure d{ and rfp are not unique but rfp is determined up to

Lipschitz equivalence (coarse). We will refer to d^ as a Riemannian metric of G and

sometimes by abuse of language as the Riemannian metric of G. The metric d^ is

Lipschitz equivalent to i^i log(l + H ^ — I H z ) where each || • ||z is the norm with respect

to a fixed embedding of G^=G^) in GL^(^) for some ni. See (3.5) below.

Let r be an irreducible lattice of G, i.e., F is a discrete subgroup and F\G carries

a finite G-invariant measure. F is called a uniform lattice if F\G is compact. Assume

r is finitely generated. (This is always the case unless rank G == 1, F is non-uniform

and char(A^) > 0 for the unique 1 ̂  i^ ^ / for which G^) is not compact - cf. [Ma],

[Ve], [Ra2]5 [Lu] and the reference therein). Fixing a finite set Z of generators of F

determines a metric d^j on F — a word metric. This is the metric induced on T from

the Gayley graph X(r;2) of F with respect to E, i.e., for y, y' ^ r? ^w(Y? Y7) = ^ it ^ is

the minimal integer so that y"1 Y7 can be written as a word of length n in XUZ" 1 .

Again, a different choice of generators leads to a different word metric but any two

such metrics are Lipschitz equivalent. By abuse of notation we will refer to rfw as the
word metric of r.

The authors acknowledge support from BSF (USA-Israel) MSRI, University of Chicago, Hebrew University and
Tata Institute for some mutual visits which resulted in this collaboration.
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It is not difficult to see (see e.g. 3.2 below) and very well known that if F is

uniform in G, then rfp restricted to F is Lipschitz equivalent to d^. This is not in

general the case if F is non-uniform. For example for G=SL2(R), r=SL2(Z) and

Y= ( o ^ Y one may check that ^w(Y2, 1) grows linearly while d^f, 1)= O^ogn).

Our main result confirms a conjecture of Kazhdan (stated by Gromov in [Gr2])
asserting that for higher rank groups the situation is different.

Theorem A. — Let G be a semi-simple group and T an irreducible lattice. Then rfp restricted

to r is Lipschit^ equivalent to d^ provided rankG > 2.

By Margulis5 arithmeticity theorem ([Ma, Ghap. IX (1.11), p. 298]), F is an

S-arithmetic group in G and G is locally isomorphic to n^es CK^) where G is a

connected almost simple group defined over a global field k and S is a finite set of

places of k containing all the archimedean ones. Our proof makes an essential use

of the arithmeticity of F. It will be interesting to find a purely geometric proof of

Theorem A. We learnt recently that Margulis found a different proof of Theorem A
which is more geometric - but still uses the arithmeticity of F.

In [Gr2], Gromov proved the special case of Theorem A, when G=G(R),

r=G(Z), G is a Q-group of Q-rank one and R-rank ^ 2. Gromov studied these type

of problems in the broader context of distortion of metric spaces. In this terminology

Theorem A says that (F, d^) is undistorted in (G, rfp).

Let u G r be a unipotent element of infinite order. The entries of U
71 (embedded

in a product of metric groups) are polynomials in n and hence d^u", l)=0(logyz). By

Theorem A, we also have ^w(^? l)=0(logyz), namely, ^ can be written as a word

of length 0(log7z) using the generators of F. This in particular implies that the cyclic

group {u) has exponential growth with respect to the generators of F. An elem'ent of
r with this last property will be called a U-element of F.

Theorem B. — Let G = ]~[̂  i G^) be a semi-simple group, T an irreducible lattice in G

and Y C r. Then y is a U-element ofT if and only if the following four conditions are satisfied:

(a) For every i = 1,..., I , char (^) = 0

(b) For every i= 1,..., /, rank^.(G,) ^ 1

(c) rankG = EL i rank .̂G, ^ 2

(d) Y ^ virtually unipotent (i.e., ̂  is unipotent for some m> 0) of infinite order.

One direction of Theorem B, i.e., that lattices in rank one groups do not contain

U-elements is due to Gromov ([Gr2], see 2.18 below). The other direction is essentially

a corollary of Theorem A, but our method of proof is different: We first prove a

stronger version of Theorem B and use it to prove Theorem A.
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The paper is organized as follows: Section 2 is devoted to the definition and

examples of U-elements in various groups. We show in a constructive way how some

unipotent elements are U-elements and we also begin the proof of Theorem B. At the
end of Section 2 we reproduce Gromov's proof that the four conditions are necessary.

In Section 3 we complete the proof of Theorem B. While section 4 contains the proof
of Theorem A.

The results of this paper (for characteristic zero) were announced in [LMR]

where a complete proof was given for the special case G=SL^(R) and F=SL^(Z). The

reader is encouraged to consult [LMR] first, as it avoids some of the technicalities
which appear especially in Section 4 of the current paper.

We would like to thank G. A. Margulis and H. Abels for pointing to us that

establishing Theorems A and B in the cases of characteristic 2 or 3 requires a more
careful argument than the one we gave in an earlier version of the paper.

2. U-elements

(2.1). — Let r = (Z) be a finitely generated group generated by a finite set E. For y € F

denote by l^(y) the length of ̂  as a word in E U S~1. It is equal to the distance from y to 1 in the

Cayley graph X(F; £) of T with respect to £.

Assume henceforth that y ^ r is an element of infinite order. Consider the following

three properties of y in F:

(Ul)/^)=0(log72).

(U2) Ky) nBs(^)| grows exponentially with 72, i.e., there exists c > 1 such that for
all large enough 72, the ball of radius n around the identity in X(F; Z) contains at least

f elements from the cyclic group generated by y.

(U^liminf10^^.
log n

It is easy to see that forj= 1, 2, 3, Property U/' depends only on F and y but

not on £. We say that y € F is a Vj-element of F if it has property U/'. It is said to be

a V-elemmt of F if it has at least one of these properties.

We collect here, without proofs, some easy observations on these properties:

(2.2) Proposition. — Forj= 1, 2, 3.

(i) For every 0 =)= r e Z^ y is a Vj-element ofT if and only ifY is.

(ii) Let A be a finitely generated subgroup o f T . I f y ^ ^ i s a Vj-element of A then it is a

Vj-element of Y. If (F : A) < oo, the converse is also true.

(iii) Let r : F —> A be a homomorphism from T to a finitely generated group A. If y G F is

a Vj-element of T then r(y) is a Vj-element of A provided it has infinite order.
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(2.3) Proposition. — (Ul) ̂  (U2) =^ (U3)

It seems plausible that the three properties are not equivalent for general finitely

generated groups, but we actually do not know any example. It is more likely that the

three properties are equivalent in linear groups. It follows from Theorem 2.15 below
that this is indeed the case for arithmetic groups.

(2.4). — If V is a field, an element g G GL^(F) is called virtually unipotent if some

power of it is unipotent, i.e., if all its eigenvalues are roots of unity.

Proposition. — If y is a U-element of T then for every field F and every representation

P : F —> GLn(F), p (y) is virtually unipotent.

Proof. — If p (y) is of finite order there is nothing to prove, if not we can, using

(2.3 iii), replace F by p(F) to assume that F is a subgroup of GL^(F). As Y is finitely

generated we can assume F to be finitely generated. If \ is an eigenvalue of y of

infinite order then it belongs to some finitely generated field k containing F. By [Til,

Lemma 4.1] we can embed A; in a locally compact field k endowed with an absolute
value (0 so that co(A.) ^ 1.

By replacing y by y~ 1 it necessary, we can assume co(A.) > 1. For 8 C F C GL^(F)

let ||8||=max \6v\/\v\ where for v=(x^...,Xr) G kf\ \v\ = maxco(^). It follows that
o+^" i^n

Hrl l ^ 0)(^. Let a= max{||§||, US-1]!}. For § e F we have [|§|| ^ a
1
^. Hence we

§€£

conclude that l^(f) ^ 7zlogco(?l). Thus y does not have property (U3) and by (2.3) it is
not a U-element.

(2.5) Corollary. — A finitely generated subgroup of GL(k) where k is afield of positive

characteristic does not contain any U-element. In particular a finitely generated group having a

U'-element cannot be embedded in a linear group over a field of positive characteristic.

Since uniform lattices in semisimple Lie groups do not contain unipotent
elements we have:

(2.6) Corollary. — If Y is a uniform lattice in a semisimple Lie group then T does not

contain a U-element.

Examples. — Let Y= ( n i ) • We check whether y is a U-element in various

different groups:

(2.7). — For r=SI^{Z), y is not a U-element. Indeed, take 6= (\ °) then 62
 and

( 1 2\
y2 = [ r. , ] generate a free finite index subgroup A ofY. Thus for £={82 , y2} as a set of

generators ofA, ^(y^) =TZ. So y2
 is not a US-element of A and hence y is not a US-element ofY.
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Another way to see this is the following simple lemma:

(2.8) Lemma. — Let Y be a finitely generated group acting isometrically on a metric space X

with a metric d. Assume there exists XQ G X and c > 0 such that d^XQ, xo) > n' c for every

n C N then y is not a U-element qfr.

Proof. — Let £ be a set of generators for F, for c\ = m^x{d(axo, xo) \ a G EUE~1}

we have d^XQ^ ^o) ^ k(T) • c
i ' Hence y cannot have property U3.

Now, a free group F acts on its Cayley graph which is a tree in such a way

that every non-trivial element is hyperbolic and satisfies the hypothesis of Lemma 2.8,
hence F has no U-element.

A similar argument shows:

(2.9) Proposition. — IfT is a hyperbolic group (in the sense of Gromov) then it contains no

V-element.

Proof — By [Gri] every cyclic subgroup of F is quasi-convex which exactly

means that with F acting on its Gayley graph and y ^ F, the assumptions of (2.8) are
satisfied with XQ = 1.

Back to our y= ( ). For a square-free integer, 0 ^ d C Z, the group

SL2(Z[^/::r3]) is a non-uniform lattice in SL2(C) which is not a hyperbolic group in the

strict sense of Gromov (e.g., it contains Z x Z). It is however a special case of lattices
considered in Theorem 2.18. In particular we have:

(2.10). Y= ( r. i ) is not a V-element in SL^Z[^/
:z
d\).

On the other hand:

(2.11). Y= ( n . ) is a Ul -element ofSL^{Z[l/p])for every prime p.

Indeed, let n € N write n in base p
2 as:

n=
^

r
i=o

a
iP

2^ where r= 0(logw), and 0 < a^^ p
2
 — 1.

In "Horner expression" it is written as:

(*) n =p2 ̂ (p\a/ + ̂ _i) + ar-2) + ... + ̂ i) + ̂ o.
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L e t p = ( ^ ^ ) e r , t h e n p ( ^ OP"'^ ^) and so by (*):

r= Q ^ = P f.jf (^^-^-0..̂ ) •y30)

where ^ denotes P^P"1. This shows that y" can be written as a word of length
0(log7z) using Y and P. Hence y is a Ul-element of SL2(Z[l/j&]).

(2.12). Y= ( Q i ) is a Ul-element ofSL^[->/d\} when 2 < ^ d e Z and square free.

The proof is similar to (2.11) with one difficulty: The diagonal subgroup of

SL,2(Z[^/rf]) contains, by Dirichlet unit theorem (cf. [Ja]), an element of infinite order,

say p= ( i j , b G Z[^/3]* with \b\ > 1. This element does not normalize the

cyclic group generated by y - but rather the upper unipotent rank two free abelian
group A containing it.

Embed F into SL,2(R) x SL,2(R) by sending y G r to (y, y^ where T is the non-

trivial element of the Galois group Gal(Q(^/3)/Q). The abelian group A is now a
discrete cocompact subgroup in the two dimensional real vector space:

A subset W of a metric space (Z, d) is called a syndetic subset if there is a constant C

such that for every ^ G Z there is a w € W with rf(^, w) < G. We will show that by

using a finite subset Z' of F we can find a syndetic subset W of R2 contained in A

and such that every w € W can be expressed as a word in S' of length 0(logd{w, 0))

where d is the euclidean distance in R2. This will suffice since the discreteness of A in

R2 implies that there exists a finite subset a\, ...,^ G A such that every a € A there is

1 ^ i^ r such that a a^ € W. Hence every a (E A can be written as a word of length

0(logrf(a,0)) in E = E ' U {^i,...,^}. Since </(f, 0)= 0(7z). This will prove the desired
result.

To get the syndetic set W: fix j^o € A, let

Wi = {±2^o rft1 ^o | r, € N, 0 < r, < \b\
2
}

W2 = {±2fo rft-1 ^o | r, C N, 0 ^ r, < \b\
2
]

and W=Wi +W2 (where P2 -j/o denotes the action of P2 on j/o - this is done by a
conjugation within the group F). This is indeed a syndetic set: P acts on V with two

real eigen-values A, and ^-1 with say \K\ > 1. Let Vi(resp:V2) be the eigen-space

corresponding to ^(resp:^"1). Vi and V2 do not contain non-trivial points from A
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- the integral lattice - but Wi(resp :W2) is contained in N,(Vi)(resp :N,(V2)) - the

^-neighborhood of Vi (i.e., Nc(V^) = {y € V | dist(j/, V^) ^ c}, for some c > 0). Moreover

W^ is a syndetic subset of N(;(V^) and using "Horner expression" as in (2.11) we see

that every element w of W^ can be expressed as a word of length 0(dist(^, 0)). As

V=Vi +V2, we deduce that W=Wi +W2 is syndetic in V and also its elements can
be expressed efficiently.

More generally:

(2.13). — Let ^s be a ring of ^-integers in a number field k, i.e., S is a finite set of

valuations containing all the archimedean ones. Then y= ( j 6 SL^^s) is ^ U-element, if

and only if\S\ > 1 (i.e., if and only if^s has infinitely many units).

Note that |S[ = 1 if and only if either ^s =Z or ^s is the ring of integers in

the quadratic imaginary field Q^^/^^. (2.7) and (2.10) covered these cases. The proof

of (2.13) follows the pattern of (2.11) and (2.12) — but one remark is in order:

The action of diagonal subgroup of SL^^s) on ihe upper unipotent group

is expressed by the action of ^^ on ^s where ^s 1s embedded as a lattice in

V= riocs ^v where ky is the completion ofk with respect to v. As in (2.11) and (2.12),

we want a syndetic subset of V of elements of ^s which are efficiently generated.
There is however one difference: V decomposes into eigenspaces isomorphic to the

fields ky. ky can be either a j&-adic field, R or C.

The first two cases are treated as in (2.11) and (2.12). For the last case, a crucial
observation (implicitly in [Th]) is that for every X e C, with |^| > 1, there exists a

finite set D = { 0 , 1, 2,...,N} such that the set of sums E^o^^? ^ C D is a syndetic
set in C. Using this, (2.13) is proved in a similar way to (2.11) and (2.12). We omit

the proof as this is a special case of Theorem 3.7 below.

For the last example of this section, think of SL,2(Z) as embedded in the upper

left corner of SL^(Z).

(2.14). Y= f 1
 \} is a Ul-element ofSLk{Z)for k ̂  3.

To prove this it clearly suffices to show it for SL.3(Z). Now, y is inside a

f / 1 * *M . .
two dimensional space A= ^ | 0 1 0 j / which is acted upon via conjugation by

l \ o o i / J
another copy of

r / i o o\ ^
SL2(Z)^<{ |0 a b ) a , b , c , d ( ^ Z , ad-bc=l}.

,0 c d,
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By taking P(and P-1) in SL2(Z) with eigenvalues ^ and A-1, - with |?l| > 1, we can

get an efficiently generated syndetic subset of A. As before this makes y a Ul-element.

The next theorem, which is the main result of this section, generalizes all the
above examples.

Let G be a semi-simple group. By this we mean that G == nL i Gz(^)? where
for every i= I,...,/, k, is a local field and G, is an almost simple Argroup. Rank G

is defined as ^^ i rank^G^ where rank^G, is the dimension of the maximal A,-split

torus of Gi. An element of G is unipotent if all its components are unipotent, i.e., act as

unipotent elements on the Lie algebras associated with the Grs. A discrete subgroup
r of G is called a lattice if G/F carries a finite G-invariant measure. It is an irreducible

lattice if, for every i, the projection of F to G, = G,(^) is dense there.

(2.15) Theorem. — Let G= ]"[,= i G,(A;,) be a semi-simple group, F an irreducible lattice in

G and y € r. Then y is a U-element in F if and only if the following four conditions hold:

(a) For every i = 1,...,/, char (A,) = 0.

(b) For every i=l, ..., /„ rank .̂(G^) ^ 1.

(c) rankG=E rank .̂(G,) ^ 1

(d) Y is a virtually unipotent element of infinite order.

(2.16) Remarks.

(i) We are actually proving in the theorem that y € F is a Ul-element iff U2-
element iff US-element.

(ii) In fact, if (c) and (d) of the theorem hold then y is a U-element from which
one can easily deduce that (a) and (b) also hold.

(iii) Note that the existence of a non-trivial unipotent (or U-element) in T implies
that r is a non-uniform lattice in G.

(2.17) Proofof (2.15). — Denote by r, the projection from G to G,(A,).

Let Y ̂  r be a US-element. Assume rank (G) = 1. This means that except for one

factor, say G\{k\), all other factors are compact. The projection r\(T) is therefore still a
lattice in Gi(A:i) and Kerri DF is finite. Thus ^1(7) is a US-element there. Assume k\ is
a non-archimedean field, then r\ (F) acts discretely on the Bruhat-Tits tree T associated

with Gi(/;i). The element ri(y) is of infinite order and hence acts on T as an hyperbolic

element (cf. [Se, Proposition 24, p. 63]), i.e., there exists a vertex x G T for which

rf(ri(Y)^, x)=mn for some fixed m C N and every n G Z. By Lemma 2.8, 7-1(7), and

hence y, is not a US-element. Thus ki must be archimedean. This means that Gi(A:i)
is a simple rank one real Lie group. Theorem 2.18 below shows that in this case also

there is no U-element. We therefore conclude that rank G ^ 2. This proves (c). Now,

let J C {!,...,/}=L be the subset of indices for which Gj(kj) is compact. Then the
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projection of F to rLeL\j t^) is a lattice there and F n n^j Gj{hj) is finite. From a
well known theorem of Margulis [Ma, Theorem 4.10] we deduce that every normal

subgroup ofr is either finite or of finite index in F. Forj'Gj, Gj{ky) does not contain

unipotent element of infinite order hence by Proposition 2.4, Ker rj is of finite index,

so 7;(r) cannot be dense in Gj{kj). This proves that J = 0, i.e., (b) is proved. A similar

argument now proves also (a) using Corollary 2.5. (Note that a lattice in a higher

rank group is always finitely generated - see [Ra2] and [Ma]). (d) follows immediately
from (2.4).

Assume now (a) - (d). By Margulis arithmeticity theorem [Ma, p. 298] r is an

S-arithmetic group, i.e., there exists a number field A;, an almost simple A-group G, a

finite set S of valuations of k containing Soo - the archimedean ones, such that F is

commensurable with G(^s) where

^s = {x C k\ \x\, ̂  1 for every v f. S}.

Theorem 3.7 below (whose proof occupies Section 3) proves that every unipotent

element in such an S-arithmetic group is a Ul-element. This will complete the proof
of (2.15).

We close this section reproducing the proof of the following theorem of Gromov
[Gr2, §3.G].

(2.18) Theorem. — Let G=G(F)^ where F is a local field a/characteristic ^ero, G is a

F-rank one semi-simple group. Let F be a lattice in G and y € F. Then y is not a U-element

ofr.

Proof. — If F is non-archimedean, F has a non-abelian free subgroup F' of finite

index, F' can be realized as a lattice in SL(2,R). If F=C, G is locally isomorphic

SL(2) so that G ^ S0(3, 1)(R) locally Thus we can assume F=R. Let X=G/K be

the symmetric space associated with G, where K is a maximal compact subgroup of

G. If r is cocompact, (2.6) gives the result. So assume F is non-uniform. By [GR]

(see also [Ral]), F\X has finitely many cusps and we can choose in a F-equivariant

way disjoint open horoballs Ba in X, such that Xo = X\ U Ba is F-invariant and F\Xo

is compact. Let 3 be the path metric of Xo, i.e., for a, b € Xo, ^(a, b) is the length

of the shortest (with respect to the original metric d of X) path in Xo between a

and b. F preserves 3. Fix some XQ C Xo. For any y e F of infinite order we have

d^XQ, XQ) ^ ^/nc for some c > 0. Indeed either y is hyperbolic and the assertion follows

for c equal the minimal translation of y in X (here we get ^ nc) or y preserves one of
the horospheres, (9Ba, forming the boundary of Xo. By the Iwasawa decomposition,

G=NAK, there exists a retraction (p : Xo —^ <9Ba, geometrically we map x € Xo

to the point of intersection of 9Ba with the geodesic ray from x to the point of



14 ALEXANDER LUBOTZKY, SHAHAR MOZES, M. S. RAGHUNATHAN

infinity of the horosphere c?Boc. It follows, from the negative curvature of X that

~d(^(x), (p(j/)) <$ ̂ l(x,y) where ~d is the path metric of <9Ba. Observe that the retraction (p

is Fa-equivariant where Y^ < T is the subgroup preserving <9Ba. As y G Fa it follows

that '3(Y^o, XQ) ^_~d(^(fxo), (p(^o)) = ̂ (Y^o), <P(^o)) ^ v^' The last inequality holds
since the metric ~d induces on (a torsion free finite index subgroup of) Va via the map

foe —
> ra(p(^o) is equivalent to the word metric of Fa. Fa is a virtually nilpotent group

of class ^ 2. In such a group, for y of infinite order ^(YS ^) ^ ^/^ for some c > 0.

It follows from an obvious variant of 2.8 that y is not a U element.

(2.19) Remark. — When F is not of characteristic 0, non uniform lattices in G

are not finitely generated and hence the notion of a Vj element has no meaning.

3. Unipotent Subgroups

(3.1). — The goal of this section is to establish Theorem 3.7. This theorem

completes the proof of Theorem 2.15 above. It also plays a central role in the proof
of Theorem 4.1 below.

We start with some generalities concerning the relation between the word metric
on a group F acting on a space X and metrics on this space.

Definition. — A metric space (Y, d) is called a coarse path metric space if there exists

a constant Ko such that for every pair of points x,y € Y we have

p-i ^
d(x,y) = inf< ̂ d(xi, ^-+1) | n € N^o =^ ̂  =J^ ^ € Y, d(xi, x^) ̂  Ko \ .

1-° J

In what follows (Y, d) will be called a path space if it is a coarse path metric space and closed

balls of finite radius are compact.

The following proposition - at least in a weaker form - is part of folklore.

(3.2) Proposition. — Let A be a finitely generated group acting properly discontinuously via

isometrics on a path space (Y, d). Assume that A\Y is compact. Let d^ be a fixed left invariant

word metric on A. Letjyo e Y be such that StabA^o) = {^}. M^ can embed A in Y via the map

A —>• Ajyo. Then the pullback of the restriction of d to Ayo is Lipschik equivalent to d^.

Proof. — Let S C A be a finite symmetric set of generators. Define

Ci =max{d(jo, ayo) [ o C E}. Clearly for every ^ € A we have d<jQ, Kyo) ^ Gi^W

where ^(^) is the length of ^ with respect to the generators S. Note that ^(X) is

equivalent to d^{K, 1). Let Y= |ĵ  be a tessellation of Y by fundamental domains
^.eA

such thatj/o ^ ̂  and for every ^ G A, ?IJ^=J^. Since the action of A is properly

discontinuous and A\Y is compact any compact subset of Y is contained in the union
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of finitely many fundamental domains. Since J^ is compact it follows that any ball of

radius 2Ko in Y is contained in a translate by some a € A of the union of a fixed set of

No fundamental domains for some fixed No € N. (Ko is the constant used in the defini-

tion of a coarse path metric space). Given e =|= ^ G A, letj^i ,^25 -"^n = ̂ o be a sequence

of points in Y such that S^i ^n^z+i) ^ 2d<jQ, ̂ o) and Ko/2 ^ <^,^+i) ^ 2Ko for
0 ^ i ̂  72 — 1. (Without loss of generality d(jQ, X^o) > Ko/2). Eachj^, 0 ^ i < n belongs

to some ̂  , Qi € A. Since ^(j^_i,j^) < 2Ko it follows from the observation above that

r,=6^_i9^, 1 < i ̂  72, belongs to a fixed finite collection of elements of A. It follows that

X-=ri 7-2...^ gives a word of length < C^ d{yo, A^o) representing ^.

(3.3) It is well known that a metrizable locally compact group G carries a

left translation invariant metric d. In general (G, d) need not be a coarse path-

space. However if G is compactly generated, G does carry a metric S such that

(G, 5) is a path space. This is seen as follows: Let Q, C G be a symmetric compact

neighbourhood of e in G which generates G. An ^2-coarse path in G joining x ^ y in G

is a finite sequence g={go,g\, ...,&-i, gn) in G with go = x, gn =jy and g^gi+i € Q. Since
Q, generates G, there is a ti-coarse path joining any two points of G. For x ^ y G G,

set d^{x,jy)= mf{Eo^z <&?&+i) I g=C?o, ...,&), a ft-coarse path joining x andjy}. We
assert that closed balls of finite radius for the metric d^ are compact (that d^ is a

metric compatible with the topology is easily seen). This is seen as follows. Since d^ is

left translation invariant, we need only consider balls of finite radius around e. Let then

d^i(e, x) ^ M for some x € G. There exists a coarse ^2-path g= (go,g\, ...,&) J^mng e

and x such that

^ < & , ^ i ) ^ M + l .
0^i<n

Let a > 0 be such that the open ball of radius a around e is contained in Q.. Now we

can find a subsequence hi=gr^ 0 < i < w, of (^05 •••?&) such that the following holds:
let A^.i =^.^_i; then d{h^ h^) < a for 0 ^ i < m while for 0 ^ i < m — 1, d{hi, h^\) > a.

Evidendy then

E <^,A^)^ E ^,^)<M+1.
Of^i<m 0^i<n

It follows then that h]~ h^\ e B^;a)ft, where B^;fl) is the closed (compact) ball of

radius a with respect to the metric d around e and 0, is the closure of Q.. It follows
in particular that (m — \)a < (M + 1) so that (m — 1) ^ (M + l)/a. If we now set

N= [(M + \)/a] + 1, we see that x belongs to (B^;^)^, a compact set. Since x is

an arbitrary element of the ball of radius M in the metric d^y we see that this last

ball is compact. We thus conclude that G carries a left invariant metric such that

closed balls of finite radius are compact. Since d^(x,j)i)=d{x,jy) for x~^y € t2 one has
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da(x,y) = inf{Eo^<^ d^(xi, ^-+1) | XQ = x, Xn =y, Xi G G, ^-l^•+l C Q}. Let Ko > 0 be such

that da(\, x~^y) =d{l, x~^y) < Ko for x~^y € Q. Then since d^(x,y) ^ Eo^^o ^+1)?

for A:o = x, Xn =js ^(^5 Xi+i) < K, we see that

do.{x,y) ^ inf{ ̂  d(xi, ^-+1) | ̂ o = x, Xn =j/, ^(^z, ^+1) ^ Ko}
0^i<n

^ inf{ ̂  ^•, ^-+1) | ̂ o = x, Xn =js ^-l^•+l G a} = ̂ (x,j/)}
0^z<w

it follows that d^ is a path space metric.

(3.4). — Next we turn to show that a metric d, such that (G, d) is a path space,

is unique up to "coarse Lipschitz equivalence", i.e. suppose that d\, d^ are metrics on

G such that (G, di), i= 1, 2, are coarse path spaces. Then we claim that for any open

neighbourhood V of e in G, there is a constant C > 0 such that for x ^ V

d,{e,x)/d^e,x)<a

This is seen as follows. Let B2 be a ball for the metric d^ such that the following holds:

d^(x,jy)= inf{Eo^<n ^(&,&+i) I g={go,gi, •••?&) a B2-coarse path in G from x toj/}.
Let c > 0 be a constant such that the closure of the open ball Bf> of radius c around e

is contained in the interior of B2. Let (^o? •••)&) be a B2-coarse path from e to x such

that d^{e, x) ^ Eo^Kn ^{gi^gi+i) ~ 1- Passing to a subsequence we may assume that

ti?2(&5 gi+\) ^ c fw 0 ^ z < 72 — 1, while for 0 ^ i ^ n — I we have ^ ^+1 belongs to
—/
B^B2. By compactness and continuity there exists a constant m < 1 such that for all

^ G B2\B'2, we have d^(e, ^) > m a?i(^ z). Let A=diam^ (B'̂ ). We have

^(^^ < S^i(&.&+i)
0 !̂'<%

^ m~1 ^ </2(<?o &-+l) + ^l(&-l, gn)

0^i<n-1

< m~1 ̂  ^(<?o &-+i) + A
0 !̂<»

^ rrT^d^e, x)+m~
1 +A.

It follows that for some large enough b there exists V > 0 so that if d\(e, x) > b, then

d^(e^ x) ^ Vd\(e^ x). Using the compactness of B^(^;&)\V one concludes then that

d^e, x) ̂  Cd^e, x) for all x ^ V

proving our contention.

The uniqueness up to coarse Lipschitz equivalence leads us to denote any path

space metric on the metrizable compactly generated locally compact group by do.
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Observe that when G is discrete, it is finitely generated and our notation is consistent

with the one used for the word metric on discrete groups.

(3.5). — Consider now the case G=ni^^G^ where each Gi is the group of

^-rational points G^) of a reductive algebraic group Gi over the local field ki. Then

one sees that the product metric rii^^G, on G is a path space metric. Suppose

now that we have a realization Gi^—> SL(^) of Gi as a ^-subgroup of SL(^) so that

Gi C SL(^, K). On SL(^, A), we have a natural left-translation invariant metric S^ defined

by 6i(x,jy) log (1 + \\x~^y - 1||) where for a matrix A={A,Ji^^., ||A|| = max{|A^| |

1 ^ r, s ^ rii}, with | • | denoting the absolute value in ki. We assert that S[G is coarse

Lipschitz equivalent to do (in particular we see that § is coarse Lipschitz equivalent

to rfrfsuw A:))' ^n ^her words given a neighbourhood U of 1 in Gi there is a constant

G > 1 depending on U such that for all x € G^\U, one has

(*) C-1 log (1 + ||(x - 1)||) ^ d^(\ , ̂  C log (1 + \\(x - 1)||).

This is seen as follows. It is well known that if D is a maximal A;rsplit torus in Gi

and D=D(^), then there is a compact subgroup K C Gi such that G^=K.D.K [BT].

It is immediate from this that the problem is reduced to the case when G^=D, a

case which is checked easily —D is a direct product of copies of ^*; note also that

we have assumed that Gi C SL(^) — (*) does not for instance hold for G=GL(1)

in GL(1). One may also reformulate the inequality (*) to say that if G= II i^^ G^,

G' = rii,^ G^ are two groups with Gi C G^ reductive algebraic groups over ki and

Gi=Gi(ki) (resp. G^=G^) then do'\G is coarse Lipschitz equivalent to do. It k is
archimedean (resp. non archimedean) let X^ denote the symmetric space (resp. Bruhat-

Tits building) associated to Gi. Let 8^ denote the symmetric Riemannian (resp. the

combinatorial) metric on X^. Suppose now that ki is non-archimedean and x G X^

is any point andy: Gi —> X^ is the orbit mop f{g)=gx. If D C Gi is a maximal

diagonalizable group and x is in the apartment determined by D, it follows from the

definition of the metric on X^ that there are positive constants Gi, G2 such that

(**) Girf^, g) ^ 6i{x, gx) ^ C^di{e, g)

for all g C D with di{e, g) sufficiently large, d{ being a path space metric on Gi. Using

the decomposition G=KDK with K a compact group one sees that (**) holds (with

perhaps different Ci .Gg) for all g € Gi with di{e,g) sufficiently large. When ki is

archimedean a maximal connected diagonal group under the orbit map for a suitable

x £ X^ maps diffeomorphically onto a totally geodesic fiat space and then the metric
induced by this diffeomorphism is up to a scalar the same as the Riemannian metric

induced from G^. Thus the path space metric distance in Gi is closely related to the

distance in the Bruhat Tits building or the symmetric space as the case may be. In the
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sequel, we will always consider only left invariant metrics on G that make it a path
space.

(3.6). — Suppose now that G is as in (3.5), i.e., G= [L^? G, with G,-=G,(A,)
where for 1 ^ i ^ £, k, are local fields and G, are almost ^-simple linear algebraic

groups over k,. Let F be an irreducible lattice in G, i.e., F is a lattice such that the

image of F in G/H is not discrete for any closed non-compact normal subgroup H.

Then if Ei^ A;rrank G ^ 2, according to a theorem of Margulis [Ma, Chapter IX],

r is necessarily arithmetic. More precisely, there is a global field k, a finite set S

of valuations of k which contains all the archimedean valuations of k, an absolutely

almost simple (simply connected) algebraic group G over k and a homomorphism

/ : rLes^W —^ G such that Kernel / is compact, image of/is a closed normal

cocompact subgroup of G and/(G(^s)) and T are commensurable : here ^§ is the

ring of S integers in k and G(^s)(= G(A:) D GL(n, ^5) for some realism of G as a

A-subgroup of GL(n) for some integer n > 0). Because of this theorem, one sees that

one needs only to deal with S-arithmetic groups in absolutely almost simple groups

over global fields. We now formulate the central result of this section in the framework
of S-arithmetic groups.

(3.7) Theorem. — Let G be a connected simply connected absolutely almost simple linear

algebraic groups over a global field k. Let S be a finite set of valuations of k including all the

archimedean valuations. Let T C G{k) be an S-arithmetic subgroup and U the unipotent radical of

a (proper) k-parabolic subgroup ofG. Assume that E.es^-^ G ^ 2. Let G = fLesGW; then

dc |unr cmd dy [unr ̂  Lipschit^ equivalent.

(Note: U =t= {1} can happen only if A-rank G > 0; also for v € S, k, is the
completion of k at v).

Terminology. — Given a discrete subgroup 0 of a group G, a metric d\ on 0 and
a metric d^ on G we shall say that 0 is {d\, d^-undistorted if d\ and d^ restricted to 0
are Lipschitz equivalent.

(3.8) Corollary. — Every unipotent element of infinite order in T is a Ul -element.

Proof. — Let u € T be a unipotent element of infinite order. Then char k = 0

and u belongs to the unipotent radical of some A-parabolic subgroup of G. According

to (3.7) we then have dy(\, u") w ^(1, ^). On the other hand the matrix entries of zf

are of the form Py(n) where fy are polynomials with coefficients in k. It follows now

from (3.5) that d(\,u
n
)=0 (log n). Hence the corollary

(3.9). We fix the following notation for the rest of this section. G will be a

reductive algebraic group over k. We will always consider G as a A-subgroup of a
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fixed GL{n). ^^ will be the ring of S-integers in k and G{^^)=G D GL(n, ̂ )- The

"standard55 norm || [ |y on M(n, ky) is defined as 11^= sup{|^-|y | 1 ^ i,j<$ n} where

g € M(7z, ky) and gy are the entries of g. We fix once and for all a maximal A-split torus

T in G and denote its centralizer in G by Z(T). Then Z(T) is a reductive A-subgroup

of G whose commutator subgroup M = [Z(T), Z(T)] is a semisimple subgroup defined

over k. The group is an almost direct product T.C.M where C is a torus in Z(T)

defined and anisotropic over k. The following lemma will enable us to choose in M

a maximal torus D defined over k such that for every v G S, D contains a maximal

Ay-split torus and D is anisotropic over k.

(3.10) Lemma. — Let E be any finite set of places of k. Suppose that we are given for each

v € £ a maximal torus Dy ofM. defined over Ay. Then there is a maximal torus D over k in M

such that D is conjugate to Dy by an element M(Ay) for all v € £. Moreover D can be chosen to

be anisotropic over k.

Proof. — Let Dy = Dy(Ay) and D^ the open set of regular elements in Dy : g G D^

iff the centralizer ofgin M has Dy as the identity connected component. Consider the

map ^y : My x Dy —^ Gy (where Gy = G(Ay)) given by {g, t) ̂  gtg~^. Then it is well known

— and easy to see that each ^y is of maximal rank in the open set My x D^ and hence

the image of this open set in My is an open subset Qy in My. It follows that if g G £2y,

the identity connected component of Z(,g), the centralizer of g in G, is conjugate to

Dy by an element of Gy. Now by a well known theorem due to Kneser [Kn], M(A) is

dense in M^ = n»es^- I1 follows that there is an element g G M(A) D Floes ̂ - To prove
the first assertion we need only take D to be the identity connected component of the

centraliser of g in G. The second assertion, that D can be chosen to be anisotropic

over k, is seen as follows: Let w be a non-archimedean valuation of k not in E. Let

Z' =SU {w}. For each v G S choose a maximal torus Dy over Ay containing a maximal

Ay-split torus. Let D^ be a maximal torus in G anisotropic over k^ (such a Dy; exists —

see ([PR] Theorem 6.21)). We have seen that there is a maximal torus D in G defined

over k and such that D is conjugate to Dy by an element of Gy for all v G £'. Since

D^ is anisotropic over k^y D is anisotropic over k.

(3.11). — Fix now a maximal torus D in M anisotropic over k which contains

a maximal A:y-split torus for every v C S (such a D exists by Lemma 3.10). Then

T=T.C.D is a maximal torus in G. Let Ti=T.C. We introduce lexicographic

orderings in the character groups X(T), X(Ti) and X(T) compatible with the restriction

maps: ^ £ X(T) is positive if its restriction to Ti (resp. T) is positive. In the case when
|S| = 1 so that S={y} a single valuation, we will require more of this ordering. To

formulate this requirement, we fix a maximal Ay-split torus C' C C and a maximal

Ay-split torus D7 C D. Let T^=T.C' and T^ =T.C:D'. We demand that there are
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orderings on the character groups T'i and Tg as well such that the restriction maps
induced by the inclusions

T C TI C Ti C Tg C T

are compatible with the orderings. We denote by 0 (resp. 0) the /-root - (resp. absolute

root) - system of G with respect to T (resp. T). Let A (resp.̂ A) be the system of simple

(resp. simple absolute) roots of G with respect to T (resp. T). If P G A, and P |r =^0 ,

then P IT = a e A. For a € A, let a = {P e A | P IT = a}; then a ̂  (|). For (p € 0, there
is a unique 1-parameter unipotent subgroup U((p) (over ks) in G normalized by T and
such that the Lie algebra c5f^(U((p)) of U((p) is precisely the eigen-space corresponding

to (p for the torus T. For (p G 0, we denote by U((p) the A-subgroup generated by

{U(\|/) | \|/ IT is of the form (p or 2(p} (2(p can be a A-root). U((p) is a unipotent k-

subgroup. If 2(p is not a A-root U((p) is in a natural fashion a A-vector space. If 2(p is

a root, U(2(p) is a A; vector space in a natural fashion and U((p)/U(2(p) has a natural

A-vector space structure. The U((p), (p G 0 will be referred to as the (A;)-root group
corresponding to (p.

(3.12). — The set A (resp.^A) is a basis for X(T) (resp. X(T)). Thus we can write

9= EeeA ^e^)6 for ^y 9 G ° II is then well known that all the We(<P), 9 € A

are integers^ and that me ^ 0 or me ^ 0 for all 9 € A. For A' C A, we set

^ = {<P e 0 | me((p) > 0 for all 6 € A'}. Let UA/ be the A-subgroup of G generated

by {U((p) | (p^G OA'} and PA/ the A-subgroup generated by {U((p) | (p G 0, me(<P) ^ 0
for all 9 G A'}. Then PA/ is a A-parabolic subgroup of G with UA/ as its unipotent

radical; also LA the subgroup generated by Z(T) and {U((p) [e 0, me((p)=0 for 9 € A'}
is a Levi supplement to UA/ in PA/. Finally it is known that every A-parabolic subgroup

of G is conjugate to PA/ for a unique subset A' C A by an element of G(A;) (Borel-Tits
[BT]).

(3.13) Proposition. — When S-rank G ^ 2, do |u((p)nr and dy [u((p)nr are Lipschik

equivalent

(3.14). — We now show that (3.13) implies (3.7). The rest of the section will

then be devoted to the proof of (3.13). Let (pi, (p2 ...<PN be the enumeration of the roots

in OA' in increasing order. Let (l: n^o , ̂ ^ —^ ̂  be the morphism

|Ll(^l,...,^N)=^l •^2-^N

Xi G U((p,). Then |LI is an isomorphism of algebraic varieties. It follows that there are

morphisms f,: UA/ —> U((p,), 1 ̂  i ̂  N over k such that

x=f\W'Mx)'"Mx).
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Further if F is a suitable congruence subgroup of G(^§) one sees easily that if

x € r D UA/, fix) C U((p,)(^s) for all i, 1 < i < N. Since |LI is an isomorphism it

follows easily from the inequality (**) of (3.5) that one has

</G(1^)^ E ^G(IJ^))
l^^N

for all x € FLes^A^). Since do and dy are Lipschitz equivalent on U((p^) Fir, we see

that there is a constant G > 0 such that dr{l,Ji{x)) ^ Cdo^,fi(x)) for all ^ € F. It
follows that

rfr(l^)< E ^r(lJ^)) ^GEi^N^(l^))
l^N

^C^G(I^)

for some constant G' > 0. Thus we see that do and dy are Lipschitz equivalent on

(UA/ H F). Since T is commensurable with any S-arithmetic subgroup and any k-

parabolic subgroup of G is conjugate to a PA/ by an element G(k), we see that (3.13)
implies (3.7).

(3.15). — A first step towards the proof of (3.13) is Lemma 3.16 below whose

formulation requires some preliminaries. Let v € S and let E be unipotent algebraic

group defined over Ay. Let B be any group and assume we have a homomorphism

of B into the group of automorphisms of E defined over ky. We assume that E is

A-isomorphic to a vector space over k and that for this vector space structure on E,
the action of B on E is linear thus giving a linear representation a : B —> GL(Ey)

where we have set E(Ay) = Ey. For b G B, let y\b) denote the set of eigen-values of a(b).

Let L be the finite extension of kv obtained by adjoining all the elements of ^[b). We

continue to denote by | [y the unique extension to L of the absolute value on ky. For

^ G y\b\ let E(6, X) denote the generalized eigen-space for b corresponding to K: it

is the vector space spanned by {e G Ey [ (a{b) — Vfe=Q} (here rf=dimEy over ^). Let

^±(^)=Z^e^),|9l|^lE(^ A<); it is defined over ky. Then E
±
(b)(kv) can be characterized

as the set of vectors {e € Ey | o^)^^) tends to zero as n —> +00}. We define E^(B)

as the span of {E^) [ b € B} - it is the same as the span of {E~(6) | b € B} as

well. Suppose now that E' C E is a B-stable Ay-subspace and let F=E/E'. Then the

generalized eigen-subspace in E for b € B corresponding to an eigen-value ^ maps

onto the generalized eigen-subspace of b in F corresponding to the same eigen-value.

In particular E^(B) maps onto F^(B). With these observations we have:

(3.16) Lemma. — Let'L be a reductive k-group and C its central torus. Assume that one of

the following conditions hold.

(1) L = C is a k-split torus and \ S |^ 2 or

(2) C is anisotropic over k.
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Let A C L be an ^-arithmetic subgroup. Then for any representation <5 : L —> GL(E) on a

k-vector space E we have for all v € S, E^(Ay) =E,,(L(Ay)) ^A^ Ay =A regarded as a group of

automorphisms ofE over Ay.

Proof. — When L = C is split over k and | S | ̂  2 this is immediate from the

fact that A is Zariski dense in C so that every non-trivial character on C is non-trivial

on A. To deal with the second case, let L/7 (resp. C ) be the Zariski closure of A (resp.

C D A) in L and L' (resp. C') the connected component of the identity in L (resp.

C ). Then L7 = C'.Li where Li is the product of all the /-simple factors of L which

are isotropic over Ay for some v € S. Then it is clear that Ly/Ly is compact where we

have set L, (resp. Ly)=L(Ay) (resp. L/(Ay)). Let E'=E^(L^. Then, since Ly is normal in

L,, it is immediate that E' is L, stable. Let F=E/E'; then F,(L',)=0 and F,(Ly) =

Image Ey(Ly). We claim that F^(Ly) = 0. To see this let o be the representation of Ly

on F induced by <J. Let D' C L' be any Ay-split torus. Then for any g € D'(Ay), all the

eigen-values of a{g) must have absolute value 1 - in view of the fact that F^(L'y) = 0. It

follows that D' acts trivially on F. We conclude thus that a is trivial when restricted to

L^ where L^ =L*(Ay) and L* is the product of all the Ay-isotropic factors of L and the

maximal Ay-split central torus in L. It is further clear that Ly/L^ is compact. Next let D

be a Ay-split torus in L. Then D(Ay) C 0.' L^ with Sl C Ly a compact set. Since L^ fixes

every vector in F(Ay), we see that D{ky]fis relatively compact for every/in F(Ay). Since

D is Ay-split, this can happen only if D acts trivially on F. We conclude that a factors

through L/LI where Li is the product of the maximal central Ay-split torus in L and

all the Ay-isotropic factors of L. This means that L/Lq is anisotropic over Ay and hence

o((L/Li)(Ay)) is compact. Since a(Ly) is contained in this last compact group, Fy(Ly)=0.

We have thus shown that E^Ly) = E^(L^). Thus to show that E^(A) = E^(Ly), it suffices

to show that E^(A) == E^(Ly) in other words we may assume that A is Zariski dense in

L. This means that E^(A) is L-stable (since it is A-stable). Let D be a maximal Ay-split

torus in L. From Lemma 3.10 we know that there is a A-torus D defined over A and

anisotropic over A and containing a conjugate of D. Consider now the representation a

ofL on F=E/E^(A). The eigen-values ofa{g) f o r ^ G D ' H A are all of absolute value 1.

Hence the (D'nA)-orbit of any vector/€ F(Ay) is relatively compact in F(Ay). The same

then holds for the D'(Ay) orbit since D'(Ay)/(D' D A)~ is compact where (D' ft A)~ is the

closure of (D' D A). This means that the orbit of any vector in F(Ay) under any Ay-split

torus in L is relatively compact. Thus (?(Ly) is compact and hence Fy(Ly) = {0}. Hence
E,(A)=E,(L).

(3.17) Corollary. — Let L^ A and E be as in Proposition 3.16. Then there is a finitely

generated subgroup B C A such that E,(B) =E^(L,)for all v £ S.

Proof. — By Proposition 3.16, E^(A)=E^(Ly) so that E^Ly) is spanned by vectors

e\, ...,Cy with the property that for each z, there is an element b\ € A such that e\ is in
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the span of generalized eigen-spaces for b\ corresponding to eigen-values of absolute

value < 1 in the valuation v. We need only take B to be the subgroup of A generated
by { ^ | y ( E S , 1 ̂  i ̂  r}.

(3.18) Lemma. — Let V a unipotent k-algebraic subgroup ofGL(ri) and T be an S-arithmetic

subgroup of GL(n). Let B C F be a finitely generated subgroup of Y normalising V. Suppose that

there is a k-vector space structure on V compatible with the k-algebraic group structure on it such

that the B action (by inner conjugation) on V is linear. We denote by By the group B and regard

b i-̂  Int b, b G B, as a homomorphism of^ into k^-automorphism ofV. Assume that V^(By) =V

for all v € S. Let V = ILes V(^) and H be the subgroup of ̂  = [Les GL(^ k,) generated by

B and V. 77^ H is a closed subgroup of G. It is compactly generated. Moreover if d^ is a path

space metric on H.for every neighbourhood U of 1 in H, there is a constant G(= G(U)) > 1 such

that for all x G V \ U,

(*) G-^ogO + \\(x- 1)||) ^ ^(1. x) ^ Glog(l + \\x- 1||)

whereforA={A,}^, ||A|| = Sup {||A,|| | v € S}.

Proo/^ — Since V is isomorphic to a vector space over k, V/V n F is compact.

Suppose now that gn == bnXn, bn G B, Xn G V is any sequence converging to a limit in '̂.

Since V/V H F is compact, there is a sequence y^ G V D F such that {y^^ | n G N}

is relatively compact. Passing to a subsequence we assume that J^Xn converges to a

limit^ in V. This means that bnjn={bnXn){x^\n) converges to a limit h. On the other

hand bnjn e F, a discrete subgroup of ^. It follows that h=bnjn for all large n. Thus

<?=^W ^ H- Hence H is closed in ^. Next for ^ G S, let '|| • || be a vector space
norm on V(A;,). Then there is a constant Cq > 1 such that for all A: C V(A;,)

G-^ogO +' IHI) ^ log(l + \\{x- 1)||) ^ Clog(l +' 11^11).

This follows from the following : let ^,...5^ be a basis of V(A:y) over ky. Then the

coordinates of any x e V(A;y) w.r.t. this basis are polynomials in the entries of {x — 1)
as a matrix in GL(n, ky) and conversely. Thus for proving the inequality (*) we may

replace \\{x — 1)|[ in that inequality by ' H ^ H . To prove the compact generation of H, it

is evidently sufficient to show that for v C S, V(A;,) is contained in the group generated
by B and ^={x (E V(/;,) | '[HI ^ 1}. Our assumption that V,(B,)=V means that

we can find a basis ^i,...,^ of V(A:,) and elements b^...,br G B such that 'H^A'^II
tends to zero as m —> oo for 1 ̂  i ̂  r. One concludes in fact that there are constants
Gi, C2 > 0 and ^ > 1 such that for all m G Z,

G
<\ —m . /|| j m i—mn ^ ^ r\—m

lA, ^ II^-^A- I I ^ L<2^• .

We assume, as we may, that for x= Si^,.w, x, 6 k^

'[H^max^-1 | 1 ̂ i ^ r } .
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One has then

^l^/ \L~m\\ ^ r^ i— w | \m\\b,(xiCi)b, || ^ €2/1, |^ | .

If we now choose m so large that ^ w | ̂  | < 1 for all i, ̂  = b^Xie^b^
 m € ^2 for every z,

then

(
\ V ^ i—We »W

**) x=2^bi ^i

Ki^r

evidently belongs to the group generated by Q. and B. Suppose now the m == m(x)

above is chosen as follows: m{x)=0 i f ^ G Q ; i f ^ ^ t 2 , m i s the smallest integer > 0

such that c^-
m
 \ Xi |^ 1. If x ^ Q. one then has an integer io, 1 ^ io ^ r such that

C^^^ | ̂  ^ 1 leading to m ^ Alog(l + '\\x\\) for a suitable constant A > 0. The
inequality evidently holds also if x € Q.. Let M > 0 be a constant such that d^(\, g) ^ M

for all ^ G Q U {61,..., &J. Then from the expression (**) for x it is immediate that we

have

dn{l, x) ̂  (2m + r)M ̂  A' log(l +' \\x ||) + A"

for suitable constants A' and A". The inequality (*) of the lemma is now clear : if

we set y = riyes SL(TZ, ky), the inequality C'^og 1 + \\(x — 1)||) < d^(\, x) is immediate
from the discussion in 3.5 applied to the case G= q

^ ' since d^(l, x) "^ C ' d ^ ' ( \ ^ x) for

all x € H outside a neighbourhood of 1 with a suitable constant C' > 0.

(3.19) Corollary. — Suppose now that V\, T, B^ H are as in Lemma 3.18. Assume further

that there is a semisimple k subgroup G of GL{n) such that B and V are contained in G. Then

do |v is coarse Lipschik equivalent to </H|v-

(3.20) Corollary. — Let V, F, B, H and G be as in Corollary (3.19) (with S-rank

G ^ 2). Let © be the subgroup B(V H F). Then 0 is finitely generated and do |vnr is Lipschik

equivalent to d@ [vnr- Also dy |vnr is Lipschik equivalent to d@ |vnr-

Proof. — We need only observe (in the light of 3.2) that 0 is cocompact in H.

For the second assertion observe that if c > 0 is such that d^, y) ^ c for all the

generators of T defining dy then one has do{l, Y) ^ ^r(l ? Y); also if we assume, as we
may, that the set of generators for F (defining dy) include a set of generators for 0

(which define do), then de{\, y) >^r(l , r) for aU y C H.

The next lemma will be used to prove a generalization of Lemma 3.18.

(3.21) Lemma. — Let V be a connected unipotent algebraic group over k and V be a

connected k-subgroup. Assume that V and E = V/V are vector spaces on k. Further suppose that
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the commutator map (x,y) \—> xyx~^y~^ o /^VxVmV induces a k- bilinear map c'. E x E —> V

whose image spans V as a vector space. Then there exist k-morphisms L^ : V —> V over k and

elements yi € V(k), 1 ^ i ̂  q = dimV such that we have for ^ € V^

^ \{{U^W~^\
\^q

Proof. — Since image c spans all of V we can find vectors x^y^ C E(A)

such that ei=c(xi,yi), 1 ^ i ^ y is a basis of V(A;) over A;. Let ^ : V —» E be the

linear map ^zd^.^)=^ of V in E. Then clearly one has for ^= Si<^^,

^= S/^^^),;^). Next observe that the natural map V —> E admits a section

<7 : E —> V defined over k. We need only take now L,•= a o ̂ .

(3.22) Lemma. — Let V <2W V C V be unipotent k-subgroups of SL(n) satisfying the

conditions of Lemma 3.21. Let T C G be an ^-arithmetic subgroup, B C F a finitely generated

subgroup normalising V and V. We assume that the actions ofJ^ on E =V/V7 and on V are

linear and that for every v G S, E^(By) = E where By = B regarded as a group acting as (linear)

automorphisms ofE over ky. Let V = Hycs V(A;y) and H = B-V^ ̂  subgroup generated by B aW V

in G( = n^es G(A;y)). Then H zj compactly generated. Moreover if d^ is a left translation invariant

path space metric on I-L, for any neighbourhood V of I in H^ there is a constant G = C(U) > 0

such that for all x G H \ V,

G-^ogO + \\(x- 1)||) ^ d^(\,x) ^ Glog(l + ( x -

If © =H H Y, then © is finitely generated and d@ |vnr Lipschik equivalent to d^ [vnn ^G |vnr

and also to dy [vnr*

Proof — Let N denote the Zariski closure of H. Then N is a A-subgroup of GL(n).

Let p : N —> GL^') be a representation trivial on V7 and inducing an isomorphism of

N/V onto a A-subgroup of GL^'). Let B = Image B and V = Image V under p.

Then the pair (V, B) satisfy all the conditions imposed on (V, B) in Lemma 3.18. Thus

if H (= Image H under p) is the group B V where V = fLes V(A;y), H is compactly

generated and one has for any compact neighbourhood U of 1 in H, a constant C > 0

such that d^(\, V) ^ Clog(l + ||(V - 1)||) for all x G V \ U. Now let x G V be any

element and x its image in V. Let t2 be a compact neighbourhood of 1 such that Q
and E generates H where £ C B is a finite set generating B and E is its image in B.

Let Q. = a(Q), where a : E —> V is a /-section for the map V —> E. We claim that £U^2
generates V. Since Z U f2 generates H, we need only show that V is contained in the

subgroup Hi generated by E and Q. Let now ^ C V; then by Lemma 3.21, one has

^ n^^)^^)"1^1)
\^q
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in the notation of that lemma. Clearly it suffices to show that L^)j^L^)~1^ belongs

to the subgroup Hi. Now the commutator ^r)^"1^"1 for ^, T| e V depends only on the

images of^ and T| in V=V/V /. Suppose now that L^)(= image Li(x) in V) is written

as a product ni^Oty with Oy € Q and^= FIi^P; with ^ e H then ^= Fli^^)

and r|,= rii^^(P/) belong to Hi; and since ^ and L,(^) (resp. ̂  and T|,) have the

same image in V, we see that ^•ri^"1^"1 =L^)^•L^)-1^-1, belongs to Hi. This proves

the compact generation of H. But the expression ^= rii^^^L^^L^)"1^-1 contains

more information. Let x C V be any element and ~x its image in H. Now since p is a

A-morphism one has a constant G > 0 such that for every x 6 V(/;y),

log(l + ||( F - 1)||) ^Clog(l+||(^-1)||).

(the norm on the left hand side is the norm in M(n, ky) while that on the right hand

side is the norm^on^M^, A:,)). Hence if ~x G H \ U. By Lemma 3.18, one sees that

for all ~x € H \ U, U a compact neighbourhood of 1 in H, there is a constant G > 0

such that d^(l,~x) ^ Clog(l + \\(x - 1)||). Hence it follows from the definition of a

path space metric, that there is a compact (generating set) neighbourhood H of 1 in

V such that any element ~x G V \ U can be written as a product of not more than

N(^) elements from H U E where N = N ( ^ ) ^ G'lo^l + \\(x - 1)||) for some constant

C > 0. Let ^=^1,^,...,^ with .̂ € H U E and let x=a( ^i)<7( x^)...a( ^) : for

~x e V, a has already been defined; we extend it to all Q. U £ by taking a |̂  to be

any section to the map 2 —» 2. Then one has x =x.x~ ̂ x with ^=x~^x C V. Now

ll^'"1^! ^ H^"11| |H| ^ (IIi^N l l^r^lDIHI- It A > 0 is a constant such that \\a(g)\\ ^ A

for all g G Q. U £, we conclude that

-Ul ^ A N | | 1 | ^ j A.T ^ 7 '̂4 = H^ll ^ A^ll^l and N ^ G log(l + \\(x - 1)|[).

It follows that

log ||̂  - 11| ^G'logQ 4- ||(^-1)||)

for all x C V with x outside a fixed neighbourhood U of 1 in V (G' depends on U).

The expression for ^, z= IIi^ ^^"^z"1, shows now that ^ is a product

^=Ti...Tp

with T^ G a(H U S) for 1 ^ j ^ P and P ^ G"\og(\ + ||(^ - 1)||) for a suitable

constant G > 0. By definition x is a product of N elements from G(H U £) with

N < C'log^ + ||(^- 1)||). Thus x is a product of at most (C -4- G'Qlog^ + \\{x - 1)|[)

elements from a(Q.U S), it follows that ^(1, x) < A^C' + G")log(l + \\(x - 1)|[) for all x

in V with ~x f. U, U a compact neighbourhood of 1 in V with A7 > 0 an appropriate

constant. Let U C V be a compact neighbourhood of 1 such that image U contains
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U. Then if x C V with ~x € U, we can find ^ € U with ^=W so that ^=^~
{
x G V.

Since U is compact, \\g\\ ^ M for a suitable M > 0 and all g 6 U. We conclude

that H^"1^!! ^ M||x||. Thus ^=^'~1^ can be expressed as a product of not more than

constant • log(l + \\(x — 1)||) elements for o(Q U S) provided that x ^ U proving that for

x f. U, </H(I? ^) < const • log(l + \\(x — 1)||). Thus given a neighbourhood U of 1 in V,

there is a constant G > 0 such that for all x G V \ U,

C^lo^l + \\(x- 1)||) ^ </H(I^) ^ Clog(l + \\{x- 1)||).

Since 0 is a cocompact subgroup of H, one concludes that (IQ |vnr and (/H |vnr are

Lipschitz equivalent. On the other hand the inequality above shows that d^ |vnr is

Lipschitz equivalent to do |vnr (cf. (3.5); note that G C SL(yz)). On the other hand

there are constant A, A' > 0 such that

^G(I ,Y) ^Arfr( l ,y) for all y C F

r f r ( l ,y) ^AW^for aU y € 0.

The Lipschitz equivalence of do, (IQ , dy and d^ all restricted to V D F now

follows.

(3.23) Lemma. — Let V, V C V ^ unipotent k-subgroups of a reductive k-group

G C SL(̂ ). Let F C G be a finitely generated ^-arithmetic group and B C F a finitely generated

subgroup normalising V and V. Assume that E =V/V7 carries a vector space structure such that

the natural action of B on E is linear. Suppose further that for all v G S, Ey(By) = E ^A^ By

is B regarded as k^-automorphisms ofE. Finally assume that d^ Iv'nr is Lipschit^ equivalent to

dy Iv'nr- Then do |vnr is Lipschit^ equivalent to dy [vnr-

Proof. — Let H* be the Zariski closure of H = B.V and p a faithful representation

of H*/V7 in GL(^') for some n!'. We will treat p also as a representation of H*. Let

p(V)=V, p(B)=B and p(H)=H Let 0=B(Vnr) and e=p(0). Then by Lemma 3.18

and Corollary 3.20 (applied to B, V, H) we see that i fSC p(Hnr) is a finite symmetric

set of generators, then for y € Vnr C H, the image y= p(y) € 0 is a product oci •... • ON

with a,, G E and N ^ Clog(l + ||(Y- 1)||) for a suitable constant G > 0. Let Z C H be

a subset that maps bijectively onto E and for a G E, let a be the unique element of E

lying over it. Let y= ai ... ON, then one has Hy"11| ^ A1^ where A = Sup {||a|| | a € E}.

Now e^y-^C V and one has clearly ||e|| = Hy-^H ^ A^lyH ^ A^^^-^llyll. One

concludes from this that there is a constant G' > 0 such that

log (1 +11(6-1)||) ^ G ' l o g O + H y -1||)

for all y G H. Since do |v'nr is Lipschitz equivalent rfriv'nr? 9 is expressible as a product

of N' elements from a finite set of generators £1 of F with N' ^ G" log(l + ||(y— 1)||) for

some C" > 0. It follows that y=y9 is a product of N + N' =N / / elements from Z U Z'
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where N" < C" log(l + ||(Y- 1)||. Thus r f r ( l ,Y) ^ Ci^l^y) for some Gi > 0 and all

Y e V D F. This shows that dy |vnr and do [vnr are Lipschitz equivalent.

(3.24) Proof of 3.13. Case 1: |S| ^ 2. —- Let (p G 0 be a root such that 2(p is not a

root. Set V = U((p) and B = T D Y where F C G is an S-arithmetic group in G. Then B

is finitely generated. The pair (V, B) then satisfies all the conditions of (3.18): Note that

since T acts on V linearly through the non-trivial character (p, V^(T(A;,)) =V=V^(B)

for all v C S (3.16). Proposition 3.13 for this case is now a restatement of Corol-

lary 3.20. Next suppose that (p G €> and 2(p G 0. Here we appeal to Lemma 3.23

taking V=U((p), V =U(2(p) and B = = T n r , T an S-arithmetic subgroup of G. All

the assumptions made in that lemma are satisfied and we conclude that do |vnr is

Lipschitz equivalent to dy |vnr-

(3.25) Proof 3.13. Case 2: |S| === 1, S ={v}, k-rank G > 2. — Observe first that we

may assume that (p G A in proving (3.13). This is because for any (p G 0 there is an

element 0) in the A-Weyl group of G such that co((p) € A or co((p)/2 G A; and in the latter

case U((p) C U((p/2) ((p/2 G 0). Thus we assume that (p is a simple A-root. Since G is

A-simple there is a root \|/ € A with ((p, \|/) -^ 0. We may evidently replace G by the

group G' generated U((p), U(—(p), U(\|/) and U(—\|/) for proving (3.13). In other words,

we can assume that A-rank G=2. Thus A = { a , ?}. Let V(a) be the group generated

by {U((p) | (p € 0, (p=ma + nft with m > 0} and let M(P)= group generated by U(P)

and U(—P). Then M(P) normalizes V(a) and M(P) is a A-simple group of A-rank 1.

Also T(P), the identity component ofTnM(P) is a maximal split torus in M(P). For an

integer t > 0, let V(a)^ = group generated by {U((p) | (p € 0, (p = ma + TZ? with m > t}.

Then it is known that E(a)^=V(a)^/V(a)^+i are in a natural fashion A-vector spaces (for

t ^ 0) and that the action of M(P) on E(a)^ is linear. (Each E(a)^ is evidently naturally

isomorphic to the direct product of the {U((p) | (p € 0, (p=(^+ l)a+^P}. Since each

U((p) carries a vector space structure we can equip E(a)< with the direct sum vector

space structure. This vector space structure affords another description. Let T'(P) be

the identity component of the kernel of P in T. Then for v C E(a)^) and ?l € T, we

define 'kv as the class of XA"1 modulo V(a)^+i where ^ C V(a)^+i is any lift of v and

% € T'(P)(A:) is an element such that {t + l)a(X) = ?l. Since M(P) and T'(P) commute, it

is clear that the action of M(P) on Ea(^) is linear for the above vector space structure.)

Moreover, the eigen-characters of T(P) acting on E((p)^ is precisely the set

^(i) = {(p e 0 | (p = (t + l)a + mp for some m}.

Let g^)={(p 6 S(t) | (p is non-trivial on T(P)} and let A=M(P)nr . Then one

has (by (3.16)) that (E(a),),(A) = (E(a)^(M(P)(A,)); on the other hand (E(a),),(M(P)(^)) D
(E(a)^(T(p)(A;,))=Z^^/^W((p), where W((p) = Image U((p) in E(a),

We observe that as the root system 0 being of rank 2, one has only the following

possibilities (assuming that (a, a) ^ (P, ?}):
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-TypeA2 : 0={±a, ± P, ±(a+P)}

-TypeBs : < D = { ±a , ± P, ±(a+P) , ±(a+2P)}

- Type Gs : 0= {±a, ± P, ± (a + P), ± (a + 2P), ± (a + 3p), ± 2a + 3?}

-Type BC2 : 0={±a , ±P, ±2?, ±(a+P), =b(a+2p), ±(2a+2?)} : This
is the only "non-reduced55 case.

Type As: Here we observe that V(a)^ = 0 for t^ 1 so that V(a) = E(a)o == W(a) +

W(a+ P). It foUows that V(a) is a vector space and V(a),(T(P)(^))=V(a). From (3.17)

it follows then that there is a finitely generated subgroup B C A( = (M(P) H F)) such

that (B,V=V(a)) satisfy all the hypotheses in (3.18). It follows now from (3.20) that

Proportion 3.13 holds for U(a). Since 0 is of type As and P is a Weyl group transform

of a, (3.13) holds for P as well and hence for any (p G 0.

Type BS. Here we have to show that (3.13) holds with (p=a or (p=P separately

as the two are not conjugates under the Weyl group. Consider first the case (p = a.

Then V(a) is generated by U(a), U(a + P) and U(a + 2?). It is a A-vector space and

one has V(a), = 0 for t^ 1 so that E(a) = V(a) = W(a) © W(a + P) © W(a + 2P). The

characters a and a + 2? are both non-trivial on T(P). Let V = V(a)^(M(P)(A;y)); then

V=V^(Mp(A;y)) and it contains U(a). Let B C A(=M D F) be a finitely generated

subgroup such that Vy(B)=V^ : such a B exists by Corollary 3.17. Then the pair

(V, B) satisfy the hypotheses of Lemma 3.18. By Corollary 3.20. do |vnr and dy |vnr

are Lipschitz equivalent. Since U(a) C V, do |u(a)nr is Lipschitz equivalent to dy |u(a)nr.

To deal with the root P, consider the unipotent group V=V(P). Let V =U(a+2P). Let

M(a) be the group generated by U(±a) and T(a) the identity connected component of

TnM(a); then T(a) is a maximal A-split torus in M(a). The group M(a) normalizes V

as well as V. Since a + 2? is a long root it is conjugate to a under the Weyl group.

Hence by what we have shown above do [v'nr is Lipschitz equivalent to dy Iv'nr- O11

the other hand in E = V/V the eigen characters for the action of T(a) are precisely

the restrictions of P and P + a to T(a); since P and P + a are both non-trivial on T(a)

(a is a long root) we see that E^(T(a)(A:y))=E. From (3.17) once again we can find

B C A = M(a) D r which is finitely generated and such that E^(B) = E. Thus Lemma

3.23 applies to (V, V7, B) and we conclude that do and dr are Lipschitz equivalent on

Vnr. Since V D U(P) we see that (3.13) holds for (p=P. This completes the proof in

the case of Type Bs.

Type G2. Consider here the root system generated by (a, a+3?). This is of type

A2. By replacing the group G by the group generated by U(±a), U(d=(a + 3?)) which

is again A-simple with a reduced root system of type A2, we see by the preceding

that do and dy are Lipschitz equivalent when restricted to U(a + 3?) D F. Let V = V(a)
and V'=U(2a+ 3p)(=V(a)i). Then M(p) normalizes V as well as V. Moreover, V

and V/V = E have natural A-vector space structures for which the actions of M(P) is

linear. Now the eigen-characters for T(P) acting on E are precisely the restrictions to
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T(P) of the roots a , a + P , a + 2 P , a + 3 p and every one of them is non-trivial. Thus

E,(T(P)(/;,))=E. We can now apply (3.17) and (3.22) as before to conclude that do and
dr are Lipschitz equivalent on V | V D F. Now U(a + P) C V and a + P is a short root.
It is clear that do and dr are Lipschitz equivalent on U(a -+- P) and hence (since a + P

is conjugate to P under the Weyl group) on U(P) as well. The proof in the case 0 is
of type G2 is thus complete.

Type BG2. The root a being long, A'= {a, 2?} is a simple root system for the

A-group G' generated by U(d=a) and U(=L2P); and the root system of G' is reduced of
type B2 and G' is A-simple. Thus by appealing to the case of type B2, we see that

d^ and dr are Lipschitz equivalent on U(a) H F and U(2P) H F and hence also the

metrics do and dy are Lipschitz equivalent on U(a) H F and U(2P) Fl F hence also on
U(a + 2P) and U(2a + 2?) (a + 2? and 2a + 2? are Weyl group transforms of a and

2P respectively). Consider now the group V = U(P)U(a + p)U(2?)U(a + 2?)U(2a + 2P).

Let V'=U(2P)U(a+2P)U(2a+2P)(=V(P)i). Then M(a) normalizes V and V and if
E=V/V7, the eigen-characters ofT(a) acting on E are precisely P and oc+P (restricted
to T(a)) and they are both nontrivial on T(a) so that E^(M(a)(A;y)) = E. We can again

apply (3.23) to conclude that do and dr are Lipschitz equivalent on V H r. (do and dr

are Lipschitz equivalent on V D F as V is the direct product of U(2P), U(a + 2?) and

U(2a + 2P)). This concludes the proof of (3.13) for the case A-rank G ^ 2.

(3.26). — We shall use the following corollary of Ghevalley commutation
relations.

^ Lmima. — Let G be a connected semisimpk algebraic group over an algebraically closed

field ~k. Let"! be a maximal Ie—split torus ofG and 0 the root system ofG with respect to T. For

a € 0 ,̂ let U(a) denote the unipotent 1 -parameter subgroup of G corresponding to a. Let qy, 9 6 0
be a pair of distinct roots such that (p — 6 = (p' is a root but (p — 29 is not a root. Let V (resp V^

be the subgroup ofG generated by V(m^ + nff), m > 0, n ̂  0 (resp. U(m(p' + nff), m > 1, n ̂  0).

Then V is a normal subgroup of V and V/V has a natural structure of a vector space over ~k

on which the action ofV{6) is linear. Moreover (V/V')(^) ^ V^/V^) is generated by U((p') as

a module over A;[U(9)]. If^ + 9 is not a root, U((p)(i) = {xyx^y^ \ x € U(9),j^ € U((p — 6)}.

Proof. — This is essentially consequence of the Ghevalley commutation relations.

These relations assert the following: There is a collection X^ : Add —> G of

isomorphisms of the additive group Add (over ~K) onto the subgroup U(a) with the
following property: for a, P roots with a + P a root, a — P not a root, and length

a ^ length P X^Xp^Xa^Xp^)-1 =Xa+p(Nap • ts)^(t, s) where ^, s) is a product of

elements belonging to the group generated by the {V(ma+%P) | n > 1} with Nap = ± 1.
(Note that since length a ^ length P, if ma + nft is a root with m > 1, then n > 1 as

well) (see [St]). We now take a=(p — 6 and P=9; since a + 2P=(p is a root, one sees

that length a(^ length P) and the lemma is now immediate. When a, P have the same
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root length, then ma + nft is a root for n > 1, if and only if m = 0 or 1 and 72 = 1. This
proves the second assertion.

(3.27) Case 3. S = {v}, k-rank G = 1, C contains a nontrivial ky-split torus. — Recall

that C is the maximal anisotropic central torus in -^(T), the centralizer of T. Thus

Z(T) = TCM with M = [Z(T), Z(T)] an anisotropic semisimple group over k. The simple

A-root system A of G w.r.t. T now consists of a single element a. In the absolute simple

root system A of G w.r.t. T (cf. (3.11) for notation), the set a= {(p € A | (p |r =a}
consists of one or two roots (this is true for any A-rank 1, k simple group); in the case at

hand i.e. when C is non-trivial, we assert that | a | =2. Let AM = {(p G A | U((p) C M}.
Since C is central in Z(T) the centralizer Z(T) of T is also the centralizer of CT. Thus

if (p G 0 is trivial on T (i.e. if U((p) centralizes T), U((p) centralizes CT as well. Thus

every (p C A which is trivial on T is trivial on CT. On the other hand, ft ^ ^er (?

is a finite subgroup of T. Thus we see that ft^A \^ non trivial} (Kernel (p in TC) has

to be finite. This means, since dimC > 1, that | {(p e A | (p IT nontrivial } |^ 2. On
the other hand if (p G A, and (p |r is non-trivial, then (p |r ^oc. Thus | a |^ 2, hence

| a | =2. Since a= {(p € A | (p |r is non-trivial } one sees that dimTC = 2 and hence
dimC= 1.

Let a = {P i , Ps}. The Galois group ^ = Gal ( k s / K ) of a separable closure ks of k

over k operates on the character group of T stabilizing 0. Moreover since T is split

over A:, it is immediate that for a C S^ and (p G $, o((p) = (p on T. It follows that we
have for a C ̂

^(Pî p^ E m^
<P€AM

with iy = 1 or 2. Since dim C = 1 and C is anisotropic, there is a o"o € ^ such that
Go(Pi) = - pi on C. Since KerRi H Kerp2 H C is finite, at least one of Pi or ?2 say Pi

is non-trivial on C; then Oo(Pi) ^ Pi on C while all (p € AM are trivial on C. Thus we

see that P^ ^ Pi i.e. P^ = ?2 and in fact ?2 = P7 on C.

Suppose now that (p C 0 is any root such that (p IT =oc. Then one has

^^z'+ SrncA ^^^ wlt
^

 l= 1 or 2. It is immediate from this that all the eigen-

characters of C acting on E = U(a)/U(2a) (where we set U(2a) = 0 if 2a is not a root)
are non-trivial. Set V = U(a) and V = U(2a). Then V and E = V/V are vector spaces
in a natural fashion for which the action of Z(T) is linear. Moreover, V is central

in V and the commutation map V x V —> V, {x,jy) ^—> xyx^y^ defines a A-bilinear

map c : E x E —» V. We now assert that the image of c spans V as a vector

space. To see this observe first that since |a| == 2, S is simply laced (Tits classification)

so that all roots lengths in S are equal. Next let 3>* = {(p G $ : (p |y =2a}.

Then V is spanned by the {U((p) : (p € $*}. Thus it suffices to show that V
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contains U((p) for every (p G <!>*. Let k be a Galois extension of A; over which T

splits and let S '̂ = Gal^/A). Then 3?' acts on the character group X(T) leaving $

stable and hence leaves invariant the standard inner product (•, •} on X(T) (g) R.

We identify X(T) (g) R as the subspace orthogonal to the kernel of the natural map

X(T) 0 R —^ X(T) 0 R for this inner product. Under this identification — note

that X(T) (g) R is precisely the space of ^'-invariants in X(T) (g) R - one sees

easily that for (p G 3>, n^ |r = Soe^'0^)? ^ere n=\^'\. Now if (p G <!>*, one

has 0 < (2a, a) = ((p IT , P Ir) ̂ -'(Eae^^P). Eoe^(P)) =^(<P. E^ac^^(P))

(where P € (x). It follows that there is a 6=o(P) in 3) such that {(p, 6} > 0. It follows

that (p — 6 is a root. Moreover (p — 26 is not a root since A is simply laced. It follows now

from Lemma 3.26 that the set {xyx~^ : x G V(Q)(k), y C U((p - Q)(k)} is all of U((p)(I).

Since 9 IT = P IT = a and (p — 6 |r = 2a — a = a, we see that U(p) is contained in the
image of c.

Let B = C n r , r an S-arithmetic group in G. Then (V,V',B) satisfy all the

conditions in Lemma 3.22 (in view of the assumption that C splits over A:y, the fact

proved above that all eigen characters for the action on E are non-trivial and 3.17).

Thus do and dy are Lipschitz equivalent on U(a) H r = V D F.

We are now left with the last case:

(3.28). Case 4. S ={y}., k-rank G = \, C is anisotropic over kv while M is isotropic over

ky. — Suppose first that | a [ =2. From the Tits classification scheme, we can then

conclude from the assumption that A-rank G = 1 the following : G is of type A^, n ^ 3

or Ee. Moreover since /;y-rank G ^ 1, once again from the Tits classification it is seen

that Z(T) has an absolutely simple component M' which is defined over k, isotropic over

ky and its sub-diagram A^ in A is connected to both the roots in a (in the case G is of

type EG, M itself is absolutely simple).

Now P G a is negative dominant as a weight of M' for the simple system AM. It

follows that (since M7 is absolutely simple) that as a weight for M', any P G a is a strictly

negative linear combination of the roots in A^; and our choice of order on X(T) ensures

that P is nontrivial on the maximal ky -split torus of M' (which is contained in T). Set

V=U(a) and V'=U(2a). We will now examine the action of M' on E = U(a)/U(2a).

E is a A-vector space on which M' acts linearly. Clearly from what we saw above

E,(M'(A;,)) D U(P) for pea . Since M' is normal in Z(T), E^M^)) (denoted E' in the

sequel) is Z(T)-stable. Let (p € 0 be such that U((p) C U(a), U((p) ^ U(2a). Let F((p) be

the image of U((p) in E. We want to show that F((p) C E'. Since E' is Z(T)-stable, we

may by transforming U((p) by an element of the Weyl group of Z(T) assume that (p is

negative dominant with respect to AM. This means that ((p, \(/) < 0 for all \y G AM; on

the other hand since U((p) C V(oc), (p > 0. Since U((p) ({_ (2a), (p |r =a. We see thus
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that there is a root P G a = A\AM such that ((p, P) > 0 so that (p = P or (p — R i s a root.
If (p=P, (p is non-trivial on a A:y-split torus of M' and hence E((p) C E'. Suppose then

that (p =^ P; then (p — P is a root of M' so that U((p — P) C M'. Now the root system
A is simply laced and one deduces from the Chevally commutation relations (arguing

as in (3.26)) that E((p) belongs to the U((p — P)-submodule of E generated by U(P).

Since E7 D U(P) and is Z(T)-stable, E' C U((p). We see therefore that E,(M'(^)) = E.

The group V'=U(2a) is central in V=U(oc). Also V and E = V/V are k vector

spaces and the commutation map ( x ^ y ) ^—> xyyT^y"^ of V yields a A-bilinear map c:

E x E —> V; image c spans V as is seen from Lemma 3.26 in view of the fact that

A is simply laced. One can now apply Lemma 3.22 taking for B a suitable finitely

generated subgroup ofM'nr (Lemma 3.17) to conclude that do and dy are Lipschitz

equivalent on V n r = U ( a ) n r . We have thus proved (3.13) in case 4 under the

additional assumption that | a | =2.

We now deal with the case | a | =1. Let {?} =a. Then P is connected to every

connected component of the diagram AM of M. It follows that P is nontrivial on the

maximal Ay-split torus of M contained in T. As before let V = U(oc) and V = U(2a) with
U(2a) trivial if 2a is not a root. One then has vector space structures on E = V/V and

V with the Z(T)-action for these structures linear. We denote by p the representation
of Z(T) on E.

Now let ^{(p G 0 | U((p) C U(a),U((p) (jL U(2a)} (it is the same as the set

{(p € 0 | (p IT =oc}. For \|/ G V, let E(\|/) = Image U(\|/) in E(=V/V). We assert
now that E':=Ey(M(A;o)) is equal to E. For this first observe that E' contains E(P) and

thus it suffices to show that for \|/ G ̂  E(\|/) is contained in the Z(T) submodule E

of E generated by E(?) (E' is Z(T)-stable). To prove that E(\|/) C E" for \y G V we

may replace \y by a transform of \y under the Weyl group Z(T). In particular we may

assume \|/ to be negative dominant for AM. This means that (\|/, (p) ^ 0 for all (p e AM.

Since V|/ |r = oc, \y > 0; hence (\|/, P) > 0. If \|/= P, E(\(^) C E" and so we assume that
\|/ 7^ P. Now \y = P + Y, ^ m((p)(p with w((p) integers > 0. It follows that \|/ — 2? cannot

be a root. On the other hand since (\|/, P) > 0, \y — P is a root. Now Lemma 3.26,

taking \y = (p and P = 9, shows that E(\|/) is contained in the U(\|/ — P) submodule of E

generated by E(P): If x G U(\|/ - P),j/ e E(P), then p{x){jy) -jy=^ + ^ where ^ € E(\y)

and ^ belongs to sum of eigen-spaces for T corresponding to characters other then

\y (Lemma 3.26); the lemma also ensures that ^ ^ 0 if x ^ 1 and y ^ 0. Thus since

U(\|/ - P) C M and E" are T-stable, ^ G E". As dimE(\|/)= 1, we have E(\y) C E".

Since the E(\)/), \y e "V span all of E we see that E^(M(A;,)) = E. By Corollary 3.17, we

can find a finitely generated subgroup B C M Fl F such that Ey(B) = E. We can now

appeal to Lemma 3.22 with V, V and B as above. The conditions in that lemma

about the commutator map V x V —> V are satisfied if char k == 0 or if 2a is not a

root or if A is simply laced. Thus we have proved (3.13) in the following situations :

S={y}, | a | = l , C i s anisotropic over ky and either char A; =0 or A is simply laced
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or 2a is not a root. In the case that is left out, viz when char k > 0, 2a is a A-root

and A is not simply laced, we will appeal to Lemma 3.23. In order to do this one has

to show that do and dr are Lipschitz equivalent on V H F. Let G' be the k simple

algebraic group generated by U(±2a). Then T C G' and {2a} is a simple A-root of
G' with respect to T. Now if we show that S-rank G' ^ 2, we can then appeal to

the earlier situation (where V is trivial) to conclude that d^ and dr, F^G' H F, are

Lipschitz equivalent on VFlF. Since do and d^ are Lipschitz equivalent on V'nr, this

would prove the result. Thus we have to show that A:y-rank G' ^ 2 under the following
conditions on G and k

(i) Char k > 0 (ii) A has two root lengths (iii) 2a is a A-root.

We will appeal to the Tits classification. Since A has two root lengths, G is of one
of the types B^, G^, G^ or F4. The fact that 2a is a root leads us to exclude (rank 1)

groups of type B^ as also €2. There are no A-rank 1 forms of type G^ (over any field,
see [Ti2]) so that G^ is also excluded. Since A: is a global field of positive characteristic,

all anisotropic groups over k are of type of An (see [Ha2], cf. [Ma IX.(1.6)(viii)]). This
means that G cannot be of type ?4 (of A-rank 1). This leaves us to consider only groups

of type Cn. Here again using the fact that all anisotropic groups over k are of type An

and examining the Tits diagrams of type C», we see that the Tits Diagram of G over
k is necessarily

Over A;y, the diagram is necessarily of the form

It follows that over A;y, M is an almost direct product of two copies Hi, H2 of

SL(2). The representation of M on E is the tensor product pi (g) p2 of the natural

representations pi , p2 of Hi, H2 respectively. The representation of M on V on the
other hand is trivial on one of the H^, i= 1, 2, H2 say, and is the adjoint representation

restricted to the other factor Hi. It is easy to see now that Hi is the commutator

subgroup of the centralizer of T in G'. Thus A-rank G' > 2. This completes the proof
of Proportion 3.13.

4. Kazhdan conjecture

The main goal of this section is to prove:

(4.1) Theorem. — Let T < G be an irreducible lattice in G as in (3.6). Assume that

rank G =Z^ i rank^Gi ^ 2 then {T, d^) is undistorted in (G, d^).
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(4.2) Remarks

(i) Clearly rf^y, 1) ^ Cd^{y, 1) for some fixed constant. Hence we need only
show the other inequality.

(ii) Recall that by Margulis arithmeticity theorem ([Ma, chap. IX, (1.11), p. 298],

[Ve]) r as in the theorem is an S-arithmetic group, i.e., there exists a global field A;,

a finite set of valuations S of A:, containing all the archimedean ones, and an almost

simple A-algebraic group G, such that G is locally isomorphic to ]~[yes G(A:y), where ky

denotes the completion of k with respect to y, and r is commensurable with G(^s)?

where ^s =
 {

x ^ k\ |x[v ^ 1 for every v ^_ S}. Note that we can assume that none of

the factors of G is compact since otherwise we can project the lattice into the product

of the non-compact factors. It will still be discrete and the kernel is finite. This also

does not change the rank. We may, and will, assume that rank^G ^ 1 since otherwise

G(^s) 1s cocompact in G, in which case the theorem is easy (see also (3.2)).

Note also that F is indeed finitely generated (cf. [Ma, §IX.3], [Ra2]).

(iii) We will think of ^s as embedded discretely in FLes^ vla Ae diagonal
embedding and when talking about "bounded set55 etc. — it will always be with respect

to this embedding. If So C S is a subset of valuations (e.g., So = Soo the set of the

archimedean valuations) we write for x e A;, Hso^Z^es H^ ^e write simply \x\ for

Ms.

We also write for x C k, \x\* = ]~[oes N»- Note that as S is finite (and fixed for

our discussion), |^|* is bounded polynomially by \x\. Observe also that for x € ^s we

have H*=#(^s/^s).

Definition. — In what follows, we shall say that a subgroup Fo ^ F is (d\/^y d^)-undistorted

if (TQ, </w|ro) u undistorted in (G, d^), i.e., for every element y G TQ there exists a word in the

generators o/T(!!) expressing y, whose length is 0{d^(y, 1)). Clearly zfT\ < Fo < F and FQ is

(a?w.? dys^-undistorted then T\ is (d\^, d^-undistorted. Notice also that zf a finitely generated subgroup

FO < r is undistorted in G with respect to its own word metric then it is (d^y d^)-undistorted (with

respect to a?w — the word metric ofT).

We shall break the proof of the theorem into several lemmas.

The proof proceeds in several steps. The results of section 3 enables one to

conclude first that for a A-split unipotent subgroup U of G. U D F is (rfw? d^)-\m-

distorted. Since reductive ^-subgroups are undistorted in G and uniform lattices are

undistorted in their ambient groups, the above fact leads us to conclude that if H C G

is a A-subgroup such that H D r is uniform in H, then H D r is (rfw 5 rfiO-undistorted.

We then consider a A-rank one subgroup H in G and show that H n F is (d^, d^)-

undistorted (note that H D F may fail to be undistorted in H itself). This is achieved

through a geometric argument involving the structure of the fundamental domain as

constructed by Borel [Bo]. The next step is to show that if P D r is (rfyy, rfpj-undistorted
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for all maximal parabolic A-subgroups then F is undistorted in G. Once this is proved

a simple induction on the rank of G and the result stated above for A-rank one

subgroups yields the theorem. The proof that it suffices to show that P H F is (rfw? ^p)-
undistorted for all maximal parabolic /-subgroups occupies essentially all of section 4

starting (4.10). Here we exploit the Bruhat decomposition in G{k) with respect to P{k).

One can confine oneself to elements of F that lie in the unique open Bruhat cell. In

this cell we have a natural product decomposition for every y as a product y=u~m.u
+

where u^ (respectively u^, m^) belongs to the unipotent radical of P (respectively the

unipotent radical of the opposite of P, Levi component of P). The elements u~, u
+

and Wy belong to V~{k), V
+
{k) and M(k) respectively and are not, in general, integral.

The failure of u^ to be integral is measured by a function which we call Den{u~). In

our case this is measured by the value of a natural representative function F on G
at Y. Viz the function that describes the divisor which is the complement of the open

Bruhat cell. (This function is of the form F(^) = < y*, go > for a suitable linear action

of G on a vector space V with v C V a vector such that the line kv is stable under P.)

The proof uses induction on the values of Den(^), F(y) as well as ||^||.

(4.3) Lemma. — Let U < G be a k-split unipotent k-subgroup ofG. Then Fo =U(^s) is

(^Wj? dy^-undistorted.

Proof. — Any A-split unipotent group is contained in the unipotent radical of

some /-parabolic subgroup (see [BT2]). Hence the lemma follows from Theorem 3.7
and the remark in the definition following 4.2.

(4.4) Remark. — When k is of characteristic ^ero all unipotent k-subgroups are k-split.

(4.5) Lemma. — Let H < G be a reductive k-subgroup such that Hnr is a uniform lattice

in H. Then H D F is (d^, dy^-undistorted.

Proof. — This follows from Proposition 3.2 and the fact that a reductive group
H < G is always undistorted.

(4.6) Remark. — Assume k is of characteristic ^ero. Let H < G be a k-subgroup such that

H D r\H is compact then H D F is (d^, dy^-undistorted.

Proof. — Let H = RU where R is a reductive ^-subgroup and U is the A-unipotent

radical of H. R D Y is a uniform lattice in R and hence by Lemma 4.5 is (rfw? <&)-

undistorted. U D F is (rfw, rfiQ-undistorted by Lemma 4.3. Since (R H F)(U D F) is of

finite index in H D F, it follows that H D F is (d^, ^R)-undistorted.

(4.7) Lemma. — Let H < G be a k-simpk k-subgroup ofk-rank one. Then Fo =Hnr^

is (rfw;? dy^-undistorted where r^g =G(^s)-
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Proof. — Let T be a maximal A-split torus in H, Z(T) its centralizer and N and

N~ the two (opposing) maximal unipotent ^-subgroups of H normalized by Z(T). Then

P = Z(T)N is the normalizer of N in H. We denote by O"^ the positive root system

of H with respect to T determined by N and by a the unique simple root in 0. If

CO is any non-zero invariant volume form on N one has g{w) = %{g)w, for g E P, for a

character % on P; moreover there is an integer r > 0 such that % = of on T. Consider

now the homomorphism | % [ : n»es P(^) = P —> ^+ given by | ̂  \ (x)= \ ̂ (x) \ .

Let °P denote the kernel of | 5C | . Then there is a closed subgroup A C T such that

| % [ maps A isomorphically onto | % \ (P). The group | % | (P) is all of R^ if char

k= 0 while it is isomorphic to Z if char k > 0. It is well known that there is a maximal

compact subgroup K C H(= FLs H(^)) such that H = K.P( = K.A.°P). The quotient
°P/(°P D r) is compact. We introduce the following additional notation: for a real

number c > 0, let A[c] = {x E A [ | %{x) \ ^ c} and A(c)={x € A | [ ^(d) \ < c}.

If ft C °P is any subset and c € R is positive, define F[ft, c] =K.A[^].ft (a "Siegel

set55), and let F(ft, ^)=K.A(^).ft. For d < c let E(ft, G, G')=F[ft, f]\F(ft, ^). Note that

E(ft, 6:5 </) is compact. The following result is due to Borel [Bo] when char k=0 and

Harder [Hal] (see also Behr [Be]) when char k > 0.

There is a finite subset £ in H(A) containing 1 and a real number CQ > 0 such

that the following holds: let ft C °P be any compact set with ft^Pnr)^? and c > CQ,

then

F[ft^]iTo=H.

Moreover the set {6 € TQ \ F[ft, c]^Q H F[ft, c]J. is non-empty} is finite.

We fix a metric on H which is: 1) invariant under right translations under all of

H and also under left translation by elements of K, 2) compatible with the topology

on H and 3) makes H into a "path space55 in the sense of 3.1; as has already been

observed such a metric exists. Since E(ft, c, (/} {c > </) is compact for compact ft, we

note that the set {x \ d(x, E(ft, c, (/)) < M} is also relatively compact for any M > 0;

consequently the set

e = {e e ro|<E(Q, c, c ) , E(ft, c, c)Q) < M}

is finite. We need in the sequel the following assertion which is essentially known.

Assertion. — Let 2^ c and Q. be as above. Let S > 0 be any constant. Then there exists

c' > 0, d < c (depending on c, ft and 6} such that the following holds: ifx,j> € F[ft^ c], ̂  T| G S

and y € FQ are such that d(x^,y^ < 8, then either ry^~1 G N or K,J e E(ft, c, d\

We outline a proof of the assertion. Let q = dimN and V be the (f
1 exterior power

o f A ( = Lie algebra of H). Then V decomposes (under the natural representation of
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H) into eigenspaces for T over k. The weights of T acting on V are necessarily of

the form a
1
., t € Z; the highest and the lowest of these weights are then %{=a

r
) ^d

^"^a"^ respectively and the corresponding weight spaces are of dimension 1. Let

|| [ I be a K-invariant norm on V= ]~[yGS V(A;y). Now we assume - as we may - that
V(A;) has a A-basis J8 containing weight vectors e and/corresponding to % and %~1,

respectively, such that Fo stabilizes the ^s-span of ̂ . Suppose now that x, y^ ^, T|

and Y are as in the assertion. Then one has

^=^.T|Y

where g is in a compact subset of H determined by §. Suppose now that r|Y^~1 ^ N;

then r\ySy~
1
 =mp where p € P(^), n G N(A;) and T is an element of H{k) normalizing T

but not belonging to T(A:). Such an element T maps e into k.f as is easily seen. As e

belongs to (f
1 exterior power o f 7 z ( = Lie subalgebra of A corresponding to N),j^ C k.e

while 7z/=y+ w where w belongs to the /-span of weight vectors corresponding to

weights other than %~1. Let x=k.a.u=kM*.a where X C K, a € A(^) and M* belongs to

compact subset Q* of°P (depending on c and Q). Similarly j/= A/M'*^', A/ € K, a! € A(c)
and M'* € t2*. Clearly then one has a constant P > 0 such that ||̂ || ^ P[%(fl)|||^|| . On

the other hand, x=g^.
/
r\^~

{
. Since T|, ^ € 2 a finite set and Fo stabilizes the ^s"span

of ̂ , we see that there is a p € <^s such that p =(= 0 and

(TIY^O^S span of^)C 2To£(^s span of^)

C p~\^s span of^).

Since xe ^ k ' f , one sees that TIY^"^ is of the form p - l^•y+ WQ with ^ G ^s and

PWQ in the ^s"span of weight vectors other than^ Note that there exists some p > 0

(depending only on p and^) such that for any t ' € ^s we have HP'^II ^ p. Now
gJy=gk

/
u^a

f and gkfu^ belongs to a fixed compact set. We see thus that there is a

constant P' > 0 such that ||^AY*(^)|| ^ P'|H|. It follows that

HI = ILswrtI
^\\gku-d^e\\

^p'li^Y^-^ii^p'ii^p-y+^ii
^ii.p-yii^pwr^ip-^ii
^pwr^^p'^p

since %(a/) ^ c. This leads to the inequality

x(^ p-^plHl-1

and analogously reversing the roles of x and y

x^p-^piHr1.
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We need only choose d = P"1?^"^!!^!!"1 to obtain the assertion.

With the assertion established we now go on to prove (4.7). Fix a 8 > 0 and
choose c' > 0 as in the assertion. Let F=F[Q, c] and E=E(Q, c, c'}. Let

B= max (8, diameter E)

and set

OB={YeroKE,EY)^2B} .

The set OB is finite. Suppose now y ^ F() with d{l,y)=\y\ ^ 2B. Then we can find
hi, 0 ^ i < n in H with ho = 1 and hn =Y such that a(A,, A,+i) < 8/2 and

< l , y ) ^ ̂  <^^i)
0^<w

«1,Y)+8/4.

Passing to a subset of Ao, ...,A^ we can in fact assume that

8/4 ^ d(h,, h^) < 8.

Let J= {0 = zo < ^i ... < ^= 7?} be the subset of [0, n] consisting of those integers j for
which hj G E2To. We set ̂  = h^. Also for each i,0 ^ i ̂  n pick elements ^ e F, ̂  C S

and Yz ^ Fo such that ^ = x^ji and ^ C E whenever i G J; we assume - as we may -

that XQ = Xn = 1, ^o = ^i = 13 Yo = 1 and y^ = Y. We also set for 0 ^ t ^ r, ya = x^, T|̂  = ̂
and 6^ =y^ so that ̂  ==^T|^O^.

Claim. — d[gt, g^+\) > 8/4. This is clear ifk+\ =ie + 1. Suppose then that i^+\ > n + 1.

Let K = Eo^^ ^^ ^+1) WAZ& H = Ez^^z^ d(hi, A,+i). TA^z o^ AOJ

<l ,Y)+8/4^+|Li+ ^ <A,,A^i)
^^<^+i

^ K + H + 8/2

since there are at least two terms in the last summation each of which is > 8/4. On
the other hand

<l ,Y)^+H+fc^i)

by triangle inequality. We thus find that

^+H+<^^ i )^+H+8/4

so that d{ge,g^+\) ^ 8/4. Hence the claim.
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Suppose now that i is such that 0 ^ i < r and that ^(^,.^+1) ^ 2B. Then one
has

<ES, ESe^iO^1) ^ 2B

so that 6^+167 6 ©B. Since OB is finite and d{ge, ^+1) ^ S/4 as well, there is a constant
|Ll > 0 such that

<^^+i)^Ki,^+i671).

We will establish a similar inequality also in the case when d(ge,ge+\) > 2B. In this
case one has necessarily z^+i > n + 1; consequently hi ^ ESFo for ^ < z < ^+1. It follows

now from the assertion that ^Y^i^7-1! and ^nY^nY^1^"1 belong to N for k < i < ̂ +1.

We conclude from this that ^+\Qe+\Q^
l
r\^ G N. Moreover one has:

^gi 5 g£+i) = d{y^ ,^+ir|^+i9^+i671)

^ -<^^ 5^+1^+1)

+ <^+i^+i ,^+i^+i6^+i971)

^-B+^i^+i^+iO^ie^^^+ie^))
>-B+^(i,e^ie71)

for a suitable constant p/ > 0; since d{ge,ge+\) > 2B, one sees that

fc^+i)^ 21 (̂1, e^e^/s.

We see thus that if we set v= min (n, 2^/3),

<^,^+i)^v<l,9^i671)

for 0 < t < r. Since for elements of N D Fo the word metric and d are equivalent we
conclude that

E <^<?^i)^vE <i,e^i671)
0^£<r 0^£<r

^ v^ength Y)

(where length y is referred to some finite set of generators of Fo). On the other hand
we know that

E ^^O^^Y)^.
0<^<r

This shows that the word metric is dominated by d.

We refer the reader to [LMR] where a similar lemma is proved in a more

geometric language for the special case where H is an SL(2, R) in G=SL(^,R). A
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similar "geometric95 argument applies in the characteristic zero case to any rank one

H < G .

(4.8) Lemma. — Let G be an absolutely almost simple k-group, G == ]~[ G(A^) of rank ^ 2

and r < G be an ^-arithmetic subgroup ofG. Suppose that PHF is (d\^, d^-undistorted for every

maximal k-parabolic subgroup PofG. Then T is (rfwj> d^-undistorted.

We postpone the proof of (4.8) to (4.10) showing first how (4.8) implies

Theorem 4.1.

(4.9) Proof of Theorem 4.1. — We prove Theorem 4.1 by induction on A-rank of

G. When A-rank G=0 this follows from (3.2). When A-rank G = l Theorem 4.1 is
immediate from (4.7). Thus the start of the induction is secured and we assume as

we may that A-rank G ^ 2. Let P be a maximal A-parabolic subgroup of G. We need

only show that P H F is (rfw? ^iQ-undistorted. Now P=MU where M is a connected
reductive A-subgroup and U is the unipotent radical of P. Theorem 3.7 tells us that

U H r is (rfw, ^R)-undistorted. Since (M H r)(U H F) has finite index in P H F it suffices
to show that M D T is (^w? fi?R)-undistorted. Now M=CM' where M'= [M, M] and
C is a A-torus in the center of M. Further C=CSCa where C" is split over k and
C

a is anisotropic over k. Moreover, (C0 D r)(M7 D r) has finite index in M H F and

(0° H F) n (M' n F) is finite. Now GVC^ n r is compact so that G0 D F is undistorted

in G^ while C0 being a torus is undistorted in G. Thus G0 H F is (ti?w? ^-undistorted.

We see thus that it suffices to prove that M' H T is (a?w ? ^-undistorted. Now A-rank
M' > 0. If A-rank M' = 1, this follows from (4.7). If A-rank M' > 1, we know by the
induction hypothesis that M'DF is undistorted in M'. As M' is undistorted in G, M'nr

is undistorted in G, hence (rfw? ^-undistorted.

(4.10) Proof of (4.8). — As the proof of (4.8) is rather technical it may be useful

to sketch its main steps for the special case of SL^(Z) < SL^(R). Let P < SL^(R) be the
maximal parabolic subgroup consisting of the stabilizer of R^i in the natural action of

SL^R) on R". Given an element y ^ SL^(Z) we would like to multiply it by elements
of "controlled" length to bring it into PH SL^(Z). To this end we have y=u~p where

f / 1 V
* 1

p e P n SL,(Q) and u- € U- n SL,(Q), where U- = ^ * ° 1 - . (This

A* 0 I / .
decomposition exists whenever the (1,1) entry of y is nonzero which we may assume
without loss of generality.) By multiplying by some appropriate 8 G UTiSL^Z) we may

assume that u~ belongs to a fixed compact set. Had u~ belonged to U~ n SL^(Z) we

would have attained our goal. As this is not always the case we have to use a certain
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induction argument. Let F(y) C Z\{0} be the (1, 1) entry of y (and hence also ofp). Its

absolute value |F(v)| serves as a measure to the "failure" ofu~ to be integral (|F(Y)| is the

common denominator of the entries of u~). In order to argue by induction on |F(y)| we
need to show how by multiplying y by some element 9 e SL^(Z) of controllable length
we get a new element 67 s.t. |F(6Y)| < |F(v)|. Iterating this procedure we eventually

"push" Y into P D SL^(Z). For constructing an element 6 as required observe that

for (^ ^ € SL,(Z) we have (^ ^ (^ ^,) = ̂  ^ hence if we have

/ 1 \

c / a 1 / a b\
: with a > 1 hen an element 9-1 = e SLz(Z) C SL»(Z)

\ ^ " /
V * i /

satisfies the required properties and |F(OY)| = I / a ' |F(Y)|. Clearly similar argument works
using other entries in case the (2, 1) entry of u~ is integral. In the general case

the role of the (2, 1) entry of U~ is played by an element u{—a) belonging to

the root group corresponding to the root —a (where a is the root associated with

the maximal parabolic subgroup) s.t. u~ =u(—a)u{^)... u{(pr). We show how one may

ensure (by multiplication by an element of a fixed finite set) that u{—a) has a large

denominator. This enables us to reduce |F(y)| by multiplication by some controllable

element belonging to the intersection of F with the rank one subgroup corresponding
to the root a.

We return now to the proof of (4.8).

Let T be a maximal A-split torus of G. We can assume T is of dimension

^ 1, since otherwise G is A-anisotropic in which case F is cocompact in G, and

hence undistorted in G. Let 0 be the A-root system corresponding to T, II C 0 a
simple system of roots. We denote by N(T) and Z(T) the normalizer and centralizer,

respectively, of T. Let W = N(T)/Z(T) be the corresponding Weyl group of G. We may

assume that there exists a set W C F of representatives of W. Here is a sketch of
the ideas in showing the existence of a commensurable lattice which contains such a

set of representatives: Let V = {(p G 0 | 2(p ^ <E>}. Let G' be the A-subgroup of G

generated by the root groups U<p, (p G y. The groups G and G' share the A-split
torus T. The inclusion G' C G induces an isomorphism of the corresponding Weyl

groups. Let F' < G be an S-arithmetic lattice and l : G —> GL(V) an embedding

of G as a A-group (where V is a A-vector space). The induced embedding of G' in

GL(V) is also a A-embedding. The lattice F' leaves invariant some finitely generated

^s-submodule L of V(A;). If F' contains a full set of representatives of W so does the

lattice F = { Y £ G(A;) | yL=L}, clearly H < F. The root system of G' is reduced. For
each P e n choose an element x^ € Up(A:) different from the identity By a theorem of

Borel and Tits [BT1] there is a unique split semisimple A-subgroup G" ofG' sharing the

split torus T and containing the elements x^ P € II. The argument above for reducing
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the problem to finding an appropriate lattice in G' applies to reduce the problem

to finding a lattice in G" containing representatives of W. Thus we are reduced to
the case of a Ghevalley group. The /-rational points of a semisimple Chevalley group
contain a finite group which contains representatives for W. As this finite group is in

the commensurability group of our lattice it normalizes a sublattice of finite index and

we can add it to this sublattice to generate a lattice as required.

For any root (p (E 0, let Ucp be the corresponding root group. Let U<p = U(p in

case 2(p is not a root, and lJ(p = U(p/U2(p in case 2(p is a root. In both cases (J(p(A:)

is a A-vector space. We denote by L., the image of U(p(^s) m U<p(A;). Let L<p be the

maximal ^s-submodule of 0(p(A;) contained in L ' , L^ is finitely generated projective

^s-submodule, of finite index in L., and span V^{k) as a A-vector space. Let \|/o € 0

be the highest root (with respect to the order determined by n). For (p € 0 and P e II

let m(q>5 P) € Z be defined by (p= Z^n^^? P)P- Choose a simple root a € II so that

the following conditions are satisfied:

(1) m(\|/o, a) ^ m(\)/o, P) tor every P G II.

(2) If the root system 0 is not reduced then a is the unique short root in II. (In

this case, this is compatible with the first condition.)

Denote by 0-(a) = {(p G 0 [ m((p, a) < 0}, O'-(a) = {(p e 0-(a) | -(p ^ 0}. Using

the classification of root systems of simple Lie algebras one can check that this choice

of the root a implies that for any (p € 0-(a), m((p, a) G { — 1 , —2}. Let P be the
maximal parabolic subgroup of G determined by the root a. Let P=MU+ , where M

is reductive and V+ is the unipotent radical of P. Let U~ be the opposite of U"^. A

root (p C 0 is M-dominant if it satisfies ((p, P) ^ 0 for all P € II different from a.

Note that M is generated by {U(p | m((p, a) = 0} together with the centralizer of T.

Let W(M) = NM(T)/ZM(T) be the Z-Weyl group of M. It is naturally embedded in W.

Let W(M) C W be the elements representing W(M). Enumerate the roots in O'_(a) in

decreasing order (with respect to the order determined by II): O'-(a)={(pi, (p2, ...,(pr}.
Note that in completing the partial order determined by II to a linear one we can

make sure that if m((p^, a) = — 1 and m((pp a) = — 2 then i <j. We have (pi = — a. If (p^

is M-dominant and w G W(M) then (p^=w(p, satisfies i ̂ j.

We have U~ =U^U^...U^ and the map U^ x U^ x ... x U^ -^ U~,

(xi, x^ ...,^) —^ x\x^...Xr is a A-rational isomorphism. For u € U~, we define M((p^),

(p^ G '̂-(oc), by u=u{(p\)u{^)...u{(pr) where each u{(^i) € U^(A;). We shall define the

denominator Den(^), of an element x € V~(k), as follows: Let x € U<p(A;) for some

(p € 0-(a). If 2(p is not a root then ^ € V^(k) = 'D<p(A:) viewed as a A-vector space.

Define the ideal I(x)= {t € <^s I tx € L<p}. Let Den(A:)=#(^s/I(^)). If 2(p is a root, fix

a /-section ^ : tJ(p(A:) —^ U(p(A) of the natural projection map n^ : V^(k) —» t?(p(A). Let
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y; = s^(x)) and y !
1 = yf-^x € U2<p(A;). We have the ideals I(n^x)) = {^ G ^s I ^<p(^) ^ L<p}

and I(^')=0 € ^s | ̂ / € L^}. Set Den(^)= max{#(^s/I(^))), #(^s/I(^))}. For
M C U~(/;) its denominator is defined to be Den(z/)= max{Den (^((p)) [ (p € e>'-(a)}. A

subset of V~{k) bounded in U~, whose elements have denominators bounded by a

constant is finite. Notice that since for every (p € 0-(a), m((p, a) G { — 1 5 — 2} it follows
that U'is at most two step nilpotent.

Let ^ be a weight of G such that (X, P) = 1 when P = a and 0 otherwise. Let

W^ be the corresponding finite dimensional irreducible representation of G, and r the
dimension of its highest weight space. Let \\ = A^ W^ and v = v^ € V^ be an integral

highest weight vector. Let V^ be the dual representation and y* = v^ the lowest weight

vector of V^ s.t. {y*, v) = 1. Define a function F = F^ : G(A;) —> k by F(^) = (^* 5 ̂ ). The

function F is a character on P. Let S^U'ML^ an open dense subset of G, and

let Q^=t2 D G(A:), a Zariski dense subset of G. For g G t2 we write g=u~mu
+
. Since

U'^s) =^ H U~ is a uniform lattice in U~, there exists some § G FDU" such that

6u~ belongs to a fixed compact fundamental domain for U~ D r in U~. Define p{g)

by p(,?)= ||8[|. As U~ D r is discrete, p has values in a discrete set and it is minimal

for § = e. We rescale it so that p(e) = 1.

(4.11) Lemma.

(i)a=G\{F=0},

(ii)/;[a]=/;[G][i/FL
(iii) For y € F H Q, fe^ j^u-mi^ with u~ G U"^), yn G M(A) and u^ G U""^). 7%^z

the denominator Den(u~) is bounded by a polynomial in [F(y)[*.

Proof Let T be a maximal torus of G containing T and $ the root system of

G with respect to T. The torus T is contained in M and hence in P as well. Fix an

order on the character group of T such that for p C <£, P is positive if P restricted to

T is positive. Let W (resp. W(M)) denote the Weyl group of G (resp. M) with respect

to T. From the work of Kostant [Ko] one knows that there is a subset S C W such

that S maps bijectively onto W/W(M) and for w € W, the singleton (^W(M) n S) is the

unique element WQ in z^W(M) with the property that all the root spaces corresponding

to the positive roots P € 0 such that ^o(P) < 0 are contained in the Lie algebra u^

of V+
. We denote by A(P) the root space of P € 0 in the sequel. Suppose now that

w € W, w i W(M); then w= WQ.W' with w' G W(M) and for 0 < P € ,̂ if ^o(P) < 0,

then A(P) C ^+. Suppose then g € G(A), ~k an algebraic closure of k. Then one has

g=u~wp
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where u~ € V~{k), w € S and p € P(A;). Hence

F{g)= <v*,gu>= <v*^u~wpv>

= t < y*, wv > , ^ 0.

Now ~ko is an eigenspace for all of T since ]f is T-stable. Consequently w(k.v) is

an eigenspace for T as well. This last eigenspace coincides with to, if and only if w

maps each root space A(P) C u^ into a A(P') C ^+. But then w does not change the sign

of any p € 3>, P > 0 with A(P) C ^+; this means that w must be the identity element.

Finally all the eigenspaces of T other than ~kv^ are orthogonal to y*. Thus F{g) =(= 0 if

and only if w= identity, i.e., g C U~P. The first two assertions are immediate from

this. Also since the map,

^3 : U~ x M x LT" -^ ft

given by (u~, m, ^+) H-» u~mu^ is an isomorphism (over K), its inverse is also defined

over k. Since the coordinate ring of ft is identified with A:[G][1/F], assertion (iii) follows.

(4.12) Remark. — To prove (4.8) we need to show that every y G G(^s) can be
written as a word of length 0(log ||y||). It suffices to show this for y ^= F D ft^ since a

finite number of translations of ft^ by elements of G(^s) covers G(^s)-

(4.13) Lemma. — There exist positive constants A, B and G so that for all y € F D ft^

rfw(Y, ^) ^ Alog HYl l + Blog |F(Y)|* + G logp(v).

(4.14) Remark. — Note that |F(y)|* and p(y) are bounded polynomially by ||Y[|, so

the lemma actually says that rfw(Y? e) = 0(log ||Y||). For the proof, however, it is more

convenient to use also F(y) and p(y).

(4.15) Proof of (4.13). — Denote l(y)=d^(y, e). Since both |^s|* and p(F) are

discrete we can argue by induction on |F(v)|* and p(y).

Let Y ^ F H Q.k and Y:^"^^. Let ND be a fixed constant (to be determined
later). Lemma 4.11 (iii) implies that there exists a constant Np such that if |F(y)|* ^ Np

then Den(z/~) ^ ND. There exists a finite set Q^ of elements ofU^ such that ify= u'mu^

satisfies Den(%~) ^ ND and p(y)= I? then u~ C C .̂ Choose a fixed set (^ of elements

of r D ft^ whose U~ parts represent all elements of Q; Thus if Den (u~) ^ ND and

p(y)= 1, then by multiplying y by the inverse of a suitable element^ of Q, we have

y^^ C P=MU. As P is a proper ^-subgroup of G, P n F is (a?w? ^-undistorted so

j^Y is efficiently generated and so is Y? i.e., there exists a constant Ao such that (4.13)
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holds for elements f>
/=u~mu

+ € mt^ which satisfy Den(M~) ^ ND (hence in particular

those satisfying |F(Y)|* ^ Np) and p(y)= 1 provided A ^ Ao.

If p(y) > 1, let 8 be the element of m U~ as in the definition of p(y) in (4.10).

The element §y satisfies F(8y) = F(y) and p(Sy) = 1 < p(y). So we can apply the induction

hypothesis to deduce:

/(y) ^ /(S-1) + /(&y) ^ /(§) + Alog |[Sy[[ + Blog [F(§y)|*

+ C logp(&y) ^ /(§) + Alog ||Y|| + Alog ||S[| + Blog |F(y)|* + G . 0

^ Cu- log ||S|[ + Alog l ly l l + B log |F(y)|* + Alog ||8||

== Alog HYl l + Blog |F(Y)|* +(Cu- +A)logp(y).

This proves the claim for y provided G was chosen to be bigger than Cy- + A

where Gu- is the implied constant for U~ by (4.3).

Hence we can assume that p(y) = 1.

(4.16). — Recall (see 4.10) that U~ is a product of root groups, U" = r[(peo'-(a)

U<p=U-a .nL2U^. ( (p i= -a).
As in 4.10, u~ C U~ may be written as u~ = u~(^\)u~(^^)... u~(f^j) where

u~(ffz) e U^.. Let u\ = ̂ ~'((pi), ^2 = u
~~{

(
^2)'" ^"(^r)? hence u~ = u\u^.

(4.17) Lemma. — Let N1 > 0 be a given constant. There exist ND > 0, a bounded subset

K.3 ofU-a(k) and a finite set Q, of elements of G(̂ s) such that if y G F H Q^ y=u~mu+,

satisfies p(y) = 1 (or more generally u~ belongs to a fixed compact subset ofV~) and the denominator

of u~ satisfies Den(^~) > ND, then for some q € Q^ we have y/=UQmoUQ, UQ^—O) € Ks and

Den(Mo"(-a)) >Ni (notation as in 4.10). Moreover |F(yy)[* =|F(y)[*.

(4.18) Remark. — We shall postpone the proof of Lemma 4.17 to (4.23) and

continue with the proof of Lemma 4.13 assuming Lemma 4.17. The choice ofNi will

be made as in (4.20).

(4.19) Lemma. — Let G" be the k-rank one group associated with the root a, P" be the

positive parabolic subgroup ofG^, P^N^^ where N" is the unipotent radical ofP", T"

is the (one dimensional) k-split torus and M" is anisotropic and commutes with T". There exists a

finite subset Q^ of\S_y{k) such that every u\ € U_a(A:) can be written as u\ =6sp where s 6 Q,

5 € G"^), p E P^A). Moreover, p can be written as p =la where I is in a bounded subset of

N^M^A;) and a is in the split torus T" o/G^ so that\og\\a\\ ^ Kolog|l/F(^)|*,/or some

fixed Ko. (Note that it follows that the sw of p is controlled by |I/FO&)|* = \\/V(a)\\)

Proof. — It is well known that G^^G^/P^k) is finite [Bo]. Hence we

can write ^ as %i = 8Y^ where p ' C P"^), 8' C Ga(^)) and s ' is in a finite

subset CY of G^k). If s ' belongs to P^A:) then we can take s ^ e . p ^ s ^ p ' and
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^=§'. Otherwise we have / G Ua^wP"^) where w is the non-trivial element of

the Weyl group of G". Hence s ' = ̂ ' w p " . Take ^8'w, s=w~
l
u

ff
w and p = p

/ /
p

/
. Let

Q^={e} U {^r^'^lj^z/^" C Q'}. Without loss of generality, we can assume that

w G G"^), since we could a priori replace the S-arithmetic lattice r=G(^s) by a

commensurable one containing a representative of ^. Indeed, by [BT1] the group

G"^) contains a A-subgroup SL^A;) such that the usual torus of SL^(k) coincides

with the split torus of G
a
{k). Hence the element w= ( , „ ) is a representative

of the non-trivial element of the Weyl group of G". w is of finite order 4. Let

r=r H wrw~
1 n w^rw'

2 n w^rw'
3
. Then w normalizes F and we have (F, w) a

commensurable lattice as required. Notice that our group G satisfies the assumptions

of Proposition 4.8 also with respect to this new lattice.

The above S, s and p satisfy the requirement of the first part of the lemma. To

justify the second part, recall that the finite set Q^ is in the commensurability group of

G"^), hence there exists a finite index subgroup A ofG"^) such that sAs~^ C G"^)

for every s € Q; Let p=Ta with 7 C N^M"^) and ^ G T". There exist a G T" and

a! e T01 H A such that 1i=a
f
a and log||^|| ^ Kolog|l/F(fl)|* for some fixed Ko. (This

follows from the fact that the elements of norm ([ • |*) one in ^ form a uniform

lattice in the elements of norm one in A;s^.) Hence we get u\ =^sp=^sIa
f
a=^sta with

y € Ga(^)), 7 C N^M^A:). Next we use the compactness of A n N^^N^" to get

u\ •=- Ssia as required.

(4.20) Lemma. — There exist constants OQ < 1 and N1 such that if Ks C V-a(k) is a

bounded set as in 4.17 and u\ € Ks is an element whose denominator is bigger than N1, then zf

MI =6sp as in (4.19), then |F(^)|* < OQ < 1.

Proof. — Consider the way u\ acts on the highest weight vector v G \\ (see 4.10):

Since u\ € U_a, u\v=v-^- if where v' is a weight vector of weight r ' k — a (note that

the highest weight of V^ is rX). By our assumption the denominator of u\ is large,

hence the denominator of v' is large. (The "denominator95 of a vector in V^ is in the

natural way the least common multiple of the denominators of its coordinate with

respect to a fixed rational basis obtained from G(A)^.) At the same time u\ =8 s p y so

u\ v = 6s p v = F(^)8 sv. This forces |F(^)|* to be very small. Indeed, s belongs to a finite

set of U_a(A:) and S belongs to the integral points G"^), hence {Sjy} is a discrete set

(with respect to || ||soo)- On the other hand u\ is in a bounded subset ofU_a(A).

(4.21) Lemma. — There exists a constant K such that if u\ € V-a{k) is in a bounded set

as in (4.17) and ^ =6sp as in (4.19), then max{log US-1!], log||5||} ^ Klog|l/FQ&)|*.

Proof. — Let p^la as in (4.19), so u\=6{sl)a. As both u\ and sl are in

compact sets, the size of § is controlled by the size of a. By Lemma 4.19 we have
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log | \a\ | ̂  Kolog|l/F(^)|*, hence for suitable K' and K"

logHSH^K'logll/F^I^K'logll/F^I*.

The second inequality follows from the fact that / is in a compact set. Since logHS"1]]
is Lipschitz equivalent to log||8||, the lemma follows.

(4.22). — We can now complete the proof of (4.13). Let y=u~mu
+ € rnfl^ we

need to bound Z(y) = ^w(Y, 1). Let N1 be the constant determined by (4.20) and ND the

corresponding constant implied by Lemma 4.17. As shown in (4.15), we can assume
p(y)== 1. We also show there that if Den(z/~) ^ ND, then Lemma 4.13 holds for some

constants. So we assume now Den(^~) > ND and that (4.13) holds by induction for
smaller value of |F(y)|*.

Let q be the element given by Lemma 4.17 so that we have q^^=.u\u^mu' with
u\ having a denominator >Np Let u\ =6sp be as in 4.19.

^(S-^l* = |F(8-^2 ̂ T = |F(^2 ̂ T =

(*) = [F^m^l* = \T(pmu^ = |F(^)|* = |FO&)F(m)|* =

=W\W\'=\WW<W^

Notice that u^=pu^p~
1 is in the maximal unipotent subgroup corresponding to the

negative roots.

We have the following inequalities:

/(8-lyy)<Alog||8-lyy||+Blog|F(S-lyy)|*+

Clogp(5-lyy)<Alog||Y|| +Alog||5-l|| +Alog||y||
(**) (2)

+ B(log(|F(Y)|* |FO&)|*) + C^S-^)

^Alog||Y||+Blog|F(Y)|*+Rlog|l/F(^)|*-Blog|l/F^)|*.

The inequality (1) follows from the induction hypotheses. In inequality (2) we have
used (*) and in (3) we choose R so that

Alog||y||+Alog||8- l | |+Cp(5- lyy)<Rlog|l/FO&)|*.

Since p(y) = 1 and q belongs to a fixed finite set it follows that u\u^ belongs to a certain

compact subset ofU~. As 6~
i
(^=spU2mu

+
=su

f
^pmu

+ it follows that the size ofp(8-lyy)
(which is determined by the size of su^) is controlled by the size of p. Combined with

(4.21) this ensures the existence of such a constant R.

We also have by (4.7), (4.20) and (4.21) that for a suitable constants S' and S,

(***) l(q)+l(S)<l(q) +^11811 <Slog|l/FQ&)|*.
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Thus by (**) and (***):

^(Y)^^)+^(S)+/(S- l^)^Alog|[Y||+Blog|F(Y)[*+(R-B+S)log|l/FO&)|*.

Thus, if we make sure to choose B bigger than R+ S, (4.13) follows and hence

also (4.8). As shown in (4.9), this finishes the proof of our main theorem (4.1).

(4.23) Proof of Lemma 4.17. — We are given an element y=u~mu
+ such

that u~ belongs to a compact subset of U~ and Den(z/~) is large, i.e., if we let

u~ =u~{^)u~{^)...u~((fr) as in (4.10) then Den^^cp,)) is large for some 1 ^ i ^ r.

Our goal is to multiply y by elements belonging to a fixed finite set so that the new
element will have in the corresponding decomposition a large denominator of the part

belonging to U^. We shall use the following lemmas:

(4.24) Lemma. — Let Ki C U~ be a compact subset and Mi € N. There exist an

integer M^ G N and a compact subset K.2 C U~ so that if x € Ki, x=x{^)x{(f>^) ...x((p,) (as

in (4.10)) and Den(x((p^)) > M^ for some 1 ^ io ^ r, then there exists w e W(M) such that

y = wxw~^ C K.2, y (̂cpiM )̂ -J<<Pr). and Den [)<(py)) > Mi for some j such that either j < io

o r j ^ , io and (̂  2,5- ^-dominant.

Proof. — Since W(M) is a fixed finite set, there exists M2 C N such that if

Den(x((p,)) ^ M2 then Den(^((p,)w~1) > M^cM
2
^ for any w C W(M), where c > 1 is

a constant chosen so that if ^ € U(p(A;), ^ € U(p/(A:) then Den([^, ^]) ^ cDen (^)Den ( '̂).

Without loss of generality let 1 ̂  io ^ r be the first index such that Den(A:((p^)) > M2.

If (p^ is an M-dominant root then the assertion holds (with w=e). Otherwise let

w C W(M) be the (unique) element such that w^^ = (p^, 1 < n ^ r, is M-dominant.

Let y = wxw~
{ = wx{(f \)w~^ wx[^w~

1... wx{(fr)w~
1, each ^A:((p^~1 G U^^.. Note that

Den(zm:((p^~1) > Mi^Mf)' > Mi. We have to reorder the wx{(f>i)w~^ to get an

expression j/=j/((pi))/((p2)...j^((pr). Since U~ is (at most) two step nilpotent this process
produces only new elements which are commutators of the various wx(^i}w~^^. In case

w(p^ is not a sum of two roots from 0-(a) thenj/(w(p^)=^(p^)^~1 and the assertion
holds (note that rexp^ being M-dominant appears before (p^). If z£Xp^ may be expressed

as a sum of two roots, say w^ = (p + (p' then either for some such (p we will have

Den[)/((p)) > Mi and the assertion holds - note that such (p necessarily precedes w(p^

and hence also precedes (p^, or for all these roots (p, Den{wx{w~
{
(p)w~^) < Mi. This

implies that their commutator has denominator at most cM^. As the number of such

roots is at most r (actually much less), and Den^^cp^"1) ^ Mi^Mi/ it follows that

Den (^xpzn)) ^ Mi as required. Note that in the above we have used the fact that

w((p, a) € { — 1 , — 2} for (p C O-(oc), which guaranteed that a root in O'-(a) is at the
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sum of no more than two other roots in ^-(a). The existence of the compact set K.2
is clear.

(4.25) Lemma. — Let (p € 0-(a) be a root such that (<p^ a) < 0 and 2(p is not a root.

For z C Va{k) let G^ : £4 —^ (J(p+a be defined as follows: Given x C f5(p = U(p(A;), z^ have

^x^"1^"1 C U* - ̂  algebraic subgroup generated by {Um^na | m,n € N, rncp+yza C 0}. Z^
U*' = < Vrn^+na \ m, n ^z N, m + 77 ^ 3^ m(p + yza € 0 >. 7%^? £5- ^ natural identification of

C(p+a ^A IT/LI*7. Z^ C )̂ ^ the image of zx^"1^"1 zW^r ^y identification. ^2((p+ a) ^

72^ ^ roo^ ^W ^ =^ 1, ^TZ G^ ^ injective. If2(^ -^ a) is a root, 2a is a root; ify, ^ G Va(k) are

such thatjy^y~^~
1
 ^ \, then Cy © C^ : C^p -^ O'(p+a © t?(p+a ^ injective.

Proof. — Since U(p and U(p+a are vector spaces over k, it suffices to show that
the maps in question are injective at the level of A-points. Let G7 denote the A-rank

2 subgroup generated by U±(p and U±oc and ^V the root system of G' with respect
to the torus T' (= identity component of G' H T). It is easily checked - using for

instance the classification of rank 2 root systems - that {(p, a} constitute a simple system

for T. Consider first the case when is reduced. If ^ € Ea = Va(k) and x C E(p = V^(k)

are non-trivial elements, then there is a Chevalley group over k contained in G'
and containing T', ^ and x; and our contention is immediate from the Chevalley

commutation relations. Suppose ^ is not reduced; then, as is easily checked, 2a as

well as 2((p+oc) are roots. Let G" be the A-subgroup of G' generated by {U±(p, U±2a}.

Then ^F'= {\|/ G V|2\l/ ^ ^V} is the root system of G" and the preceding discussion
shows that

C^:E((p)->E((p+2a)

where [ y , z] =J^-1^-1, is injective. Now we have the commutator identity of P. Hall:

[b^],^[b^],^[[^]/^]=i.
One sees easily from this identity that if Cy © C^ is not injective, C^j is not injective
either. This proves the lemma.

As a consequence we have:

(4.26) Corollary. — Let K C V~(k) be a bounded subset and an integer Mi > 0 be given.

Let (p^ € O'-^a) be an ̂ .-dominant root linearly independent of a. There is a finite set] C G(^s)^

a bounded set K' C V~(k) and an integer M^ > 0 such that ifx = x((pi)^((p2)... x((f>r) € K C V~(k)

satisfies Den(^((p,)) < Mi for all roots (p,, 1 < i < io < r and Den(A:((pj) > M^ then there

exists an element g € J such that gx = uab with u G K/, a belongs to the unipotent subgroup of

M generated by the negative roots, b G Ua and u=u{^\)u{^... u((f>r) with Den (ut^j)) > Mi for

some j < io.
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Proof. — Since the root (p = (p^ is a negative root which is M-dominant it follows

that (a, (p^) < 0. Moreover one can check by considering the rank 2 root system

Z obtained by looking at the roots in 0 lying in the linear span of a and (p^ that

{a, (p^} is a simple system for £. In the non reduced case Z is of type BG2, a is

a short root and (p^ is a long root and in particular 2(p^ is not a root. Hence the

conditions of Lemma 4.25 are satisfied. Let K C V~{K) be a bounded subset such that

if x € K then ^((pi) ...<(p^-i) G SL Let D = {y G & C V~{k) \ Den(v) ^ Mi}. D is a

finite set. If 2((p + a) is not a root, for any element v € D, we choose an element

f(v) e G(^s) such that/(^) € Ua(^s) \ U2a(^s) and vf(v)v-^ € G(^s). It 2((p + a) is a

root choose elements f(v),g{v) G Ua(^s)\U2a(^s) such that [/(y),^)] + 1 and vf(v)v~^

and vgf^v^ G G(^s). LetJ^y/^zr1 [ v € D}. Let ^ G K be the given element. Let

v=x(^\) ...^((p^_i). By the assumptions y € D. Consider the elements

vh(v)v~^x = vh(v)x^) ... <(p,)

= ̂ (y)^)^)-1^)-1)^)^)^^!)... x((p,) (#)

where h(v) denotes f{v) or g{v). We can write ^^((p^)^)"1^^)"1 =j^2 where j/i €

U(p +a{k) andj^2 belongs to product of other root groups (corresponding to combinations

of the form yzq^+ma, where n, m G N). Lemma 4.25 implies that there exists a constant

M2 6 N so large that under the assumptions of the corollary the denominator of y\
c\

will be larger then M^ (note that we are using the fact that 2(p^ is not a root). Taking

h(v) to be one of gf,v) or f(v) as we conjugate h(v) in (#) through the rest of the terms

;c((p^+i)...^((pr) we will obtain

h(v)x{^^)... <(p,) = ̂ 1^:2... ^sh(v).

Where the various ^ belong to root groups corresponding to roots of the form m(p^+^a,

i > io and m, n G N. We can reorder the product so that

vh(v)v~^x= vy^x{^)^ ... ̂ h{v) = vy^x(^)t^... tndh(v).

Where a belongs to the unipotent subgroup of M corresponding to the negative roots,

the 4's belong to root groups V^{K) where \|/ is a linear combination with nonnegative

integer coefficients of a and roots (py where j > io and \|/ G 0-(a). Next we can

express the element u= vy\y^x(^^)t\t^... tn as u= u((f\)u{^)... u{(^r)' Using the above and
c\

the ordering of the roots one can check that u{^ + a) =x(^ + a)^i. As Den(j^i) ^ Mi

and Den(x((p^ + a)) < Mi, we conclude that Den(M((p^ + a)) ^ Mi. Clearly the root

(p^ + a precede, in our ordering, the root (p^. The existence of a bounded set K' as

required is clear.

Repeated use of Lemma 4.24 and Corollary 4.26 yield the existence of a finite

set Q, C H(^s) as required in Lemma 4.17. The existence of the required bounded
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subset Ks C V~{k) is clear. To verify that for q G Q^one has |F(^)|* = [F(Y)|*, note that:

(i) W(M) is contained in the semisimple part of M and hence for w € W(M) we have

[F(w)|*= 1. (ii) Applying Corollary 4.26 multiplies the "M part" of y by ab where a

belongs to the unipotent subgroup of M generated by the negative roots and b € Va(k).

Using the definition of F(*) it follows that it remains unchanged.
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