
The World of Graph Databases from An Industry
Perspective

Yuanyuan Tian
Gray Systems Lab, Microsoft

yuanyuantian@microsoft.com

ABSTRACT
Rapidly growing social networks and other graph data
have created a high demand for graph technologies in
the market. A plethora of graph databases, systems, and
solutions have emerged, as a result. On the other hand,
graph has long been a well studied area in the database
research community. Despite the numerous surveys on
various graph research topics, there is a lack of sur-
vey on graph technologies from an industry perspective.
The purpose of this paper is to provide the research
community with an industrial perspective on the graph
database landscape, so that graph researcher can better
understand the industry trend and the challenges that
the industry is facing, and work on solutions to help
address these problems.

1. INTRODUCTION
Rapidly growing social networks and other graph data

have created a high demand for graph technologies. No
wonder Gartner ranked graph technologies among the
top 10 data and analytics trends in 2021 [40]. According
to Gartner, up to 50% of their client inquiries around the
topic of AI involve a discussion about the use of graph
technology [40], and by 2025, graph technologies will
be used in 80% of data and analytics innovations [12].
Inkwood Research projected that the global market for
graph databases will grow at 21.7% from 2019 to 2027,
and reach $4.6 billion by 2027 [30]. The industry has re-
sponded to the high demand of graph technologies with
a boom of graph companies, systems, and solutions, as
depicted in [45]. The venture capital investment has also
been very active in graphs in the last couple of years.
Not only new startups, like Katana graph ($28.5 mil-
lion in Series A), but even seasoned graph database
companies, like Neo4j and TigerGraph, received a lot
of funding (Neo4j raised $325 million in Series F and
TigerGraph received $105 million in Series C).

On the research side, graph has long been a well stud-
ied area in the database research community. In his
VLDB 2019 keynote [58], Professor Özsu provided a
good summary of the various subareas of graph research.
Professor Boncz delivered a keynote in EDBT 2022 about
the state of graph database systems [17], touching on
graph models, graph languages, the common pitfalls in
designing graph database systems, and the blueprint of
a competent graph database system. Professor Fan’s

keynote in VLDB 2022 [23] discussed the challenges
and progress made on processing big graphs, includ-
ing parallel scalability, incremental computation, and
semantic joins between relations and graphs. There have
also been numerous research surveys on topics such as
graph database models [16], graph query languages [15],
graph stream algorithms [37], knowledge graphs [29],
distributed graph pattern matching [18], large-scale graph
processing [57], etc. Back in 2014, Professor Deshpande
blogged his views on graph data management and pointed
out some open problems [13]. The VLDB 2018 best pa-
per [42] and its extension [43] conducted a comprehen-
sive user survey about how graphs are used in prac-
tice, and revealed many interesting insights, including
the ubiquity of large graphs, variety of entities repre-
sented by graphs, the scalability challenges faced by
many graph systems, the importance of visualization
tools, and the continued popularity of RDBMSs in man-
aging and processing graphs. The recent community pub-
lication [44] painted a picture of what the next-decade
big-graph processing systems look like in the aspects
of abstractions, ecosystems, and performance. However,
none of the above work discussed in detail the solution
space or architecture of existing graph databases in the
market. Despite the recent surge in graph technology
innovation in the industry, there is still a lack of survey
on graph technologies from an industry perspective.

The database research community, as a whole, has
been having very strong ties to and impact on the in-
dustry, witnessed by the fleet of database products (e.g.
PostgreSQL and Flink) and startups (e.g. Vertica and
Databricks) originated from research. In the area of graph
databases, the research community has also influenced
heavily on graph benchmarking [10] and graph query
languages [2]. But still, some of the major problems
that the graph database industry cares about are not
well known to the research community. The purpose of
this paper is to provide the research community with
an industrial perspective on the graph database land-
scape, in the hope of helping researchers better under-
stand the current industry status quo and the challenges
they are facing, and ultimately increasing the impact of
the graph database research community.

2. USE CASES AND WORKLOADS
In terms of customer use cases, graph databases have

been used in many vertical industries, including finance,

ar
X

iv
:2

21
1.

13
17

0v
1

 [
cs

.D
B

]
 2

3
N

ov
 2

02
2

insurance, healthcare, retail, energy, power, manufactur-
ing, government, marketing, supply chain, transporta-
tion, etc. This diverse and wide applicability of graphs
in many domains is also observed in [42]. Some of the
concrete use cases of graph databases have been pro-
vided in [51, 39, 48, 46]. Perhaps, the most common
example of graph database usage is fraud detection.
For example, [47] demonstrated a detailed example sce-
nario of traversing through a graph containing insurance
claims information and patients medical records to de-
tect fraudulent claims.

Similar to the different types of workloads in rela-
tional databases, there are also two different types of
graph database workloads. The first type focuses on
low-latency graph traversal and pattern matching. They
are often called graph queries. These queries only touch
small local regions of a graph, for example, finding 2-
hop neighbors of a vertex, or the shortest path between
two vertices. Due to the low-latency requirement and
the interactive nature of the graph queries, people also
call them graph OLTP. Graph OLTP is often used in
exploratory analysis and case studies. The second type
of graph workload is graph algorithms, which usually
involve iterative, long running processing on the entire
graph. Good examples are Pagerank and community de-
tection algorithms. Graph algorithms are often used for
BI-ish applications. Because of this reason, people also
call them graph OLAP. Recently, a new trend emerges
that combines graph and machine learning together,
called graph ML. For example, graph embedding or ver-
tex embedding are used to transform graph structures
into vector space which are then included as features
for ML model training. Graph neural network (GNN) is
another example of graph ML. Quite often graph ML is
lumped together with the graph OLAP workload.

3. GRAPH MODELS

Patient 1 Disease 1

Disease 2

isa
diagnosedWith

64572345 hasID

Diabetes hasName

64572326

hasID

Type 2
Diabetes

hasName

198076

hasID

Alice Brown

hasName

Diagnosis 1

03/24/2020

happensOn
hasDiagnosis

(a) RDF Model

Properties:
ID = 198076
name = “Alice Brown”

Label: diagnosedWith
Properties:
time = “03/24/2020”

Properties:
ID = 64572326
name = “Type 2 diabetes”

Properties:
ID = 64572345
name = “Diabetes”

Label: isa

Label: disease

Label: disease

Label: patient

(b) Property Graph Model

Figure 1: RDF and property graph models

Whenever talking about a graph database, we need
to first talk about the graph model(s) that it supports.
The two prominent graph models supported by most

commercial graph databases are the RDF model and
the property graph model.

RDF Model. RDF is among the suite of W3C stan-
dards to support Linked Data and Knowledge Graphs [52].
An RDF graph is a directed edge-labeled graph, rep-
resented by the subject–predicate–object triples. Fig-
ure 1(a) shows an example graph represented in the
RDF model. This graph captures the following infor-
mation: A patient, named Alice Brown, with patient ID
19806, is diagnosed with Type 2 Diabetes which has
disease ID 64572326 on March 24, 2020; and Type 2
Diabetes is sub-type of Diabetes which has disease ID
6472345. For example, in the (Patient 1) −[hasName]→
(Alice Brown) triple, Patient 1 is the subject, hasName
is the predicate, and Alice Brown is the object. The
RDF model is often used in knowledge representation
and inference as well as sematic web applications. For
example, DBPedia [21] and YAGO [56] both utilize RDF
to represent their knowledge graphs and support queries
on the knowledge bases using SPARQL [53].

Property Graph Model. In comparison, a property
graph is a direct graph where each vertex and edge
can have arbitrary number of properties. Vertices/edges
can also be tagged with labels to distinguish the dif-
ferent types of objects/relationships in the graph. Fig-
ure 1(b) shows how the same information captured in
the RDF graph in Figure 1(a) is represented in the prop-
erty graph model. Here, instead of representing the ID
and the name of a patient or disease as separate nodes,
the property graph model can fold them in as the prop-
erties of the patient and the disease nodes. Similarly,
the diagnosis time can be represented as a property of
the diagnosedWith edge, eliminating the need to cre-
ate a separate diagnosis node and its connecting edges
to the patient and disease nodes. In general, the prop-
erty graph model can capture the same information with
fewer nodes and edges than the RDF model, as illus-
trated by this example. This is because a piece of in-
formation can only be represented either as a node or
an edge in the RDF model, whereas the property graph
model can also define it as an attribute of an existing
node or edge, thus leading to fewer number of nodes
and edges in the graph. The property graph model is
often used for applications that require graph traversal,
pattern matching, path and graph analysis.

Today, although both models are supported in the
graph database industry, as we will show in Section 5,
the property graph model has overwhelming endorse-
ment, despite the fact that RDF is a much older model.
All the major offerings we surveyed in the paper sup-
port the property graph model, and two of them also
support the RDF model. In [27], Hartig proposed a
formal transformations between the RDF and property
graph models, in the hope to reconcile both models.

4. GRAPH QUERY LANGUAGES
On the graph OLTP side, for RDF graphs, there is

the standard SPARQL query language [53]. For prop-
erty graphs, there are many languages being used and
proposed, but no clear winner. One of the top con-
tenders is Tinkerpop Gremlin [1] which is supported

by around 30 graph vendors today, also probably the
most widely used graph query language today. Another
strong contender is openCypher [8]. Cypher [24] was
originally Neo4j’s proprietary declarative graph query
language, and it was open-sourced in 2015. Around 10
graph vendors support openCypher. Besides these two
more widely adopted languages, many vendors proposed
their own graph query languages. Oracle proposed a
declarative language based on SQL, called PGQL [9].
GSQL [4] is the SQL-like graph query language adopted
by TigerGraph. Microsoft SQL Graph extended SQL
with MATCH clause for graph pattern matching [38].
The LDBC [11] Graph Query Language Task Force (with
members from both academia and industry) has pro-
posed G-Core [14]. In an attempt to reduce the chaos
on graph query languages, in 2019, the Joint Technical
Committee 1 of ISO/IEC, approved a project to create
a standard graph query language, called GQL [2]. This
effort is also complemented by another project that ex-
tends SQL with graph view definition and graph query
constructs, called SQL/PGQ. GQL and SQL/PGQ share
a common declarative graph pattern matching language
component. This common component integrates ideas
from openCypher, Oracle’s PGQL, TigerGraphs’s GSQL,
and LDBC G-CORE. The standardization effort on GQL
and SQL/PGQ has strong participation from academia,
and it is one of the areas where the graph research com-
munity has heavily impacted the graph industry. How-
ever, given the current state of the graph query lan-
guages, even when GQL and SQL/PGQ standards are
published, it is going to take time for the vendors to
adopt it, since a large number of graph applications are
already written in these existing languages. It will still
take many years for the standardization to settle down.

In terms of language properties, Gremlin is more of
an imperative graph traversal language (although the
recent version of Gremlin also has some declarative lan-
guage features), while the others are declarative. As a
result, Gremlin is relatively more low-level and less user-
friendly. But in terms of expressiveness, Gremlin is Tur-
ing Complete [41], while most of the declarative counter-
parts, including openCypher, are not. This means there
are graph algorithms or operations not expressible in
these non-Turing-Complete languages. Out of all the
declarative languages, TigerGraph’s GSQL is the only
one that is Turing Complete [55].

On graph OLAP side, there is also no standard lan-
guage or API, but most vendors support a variation of
the Pregel-like API [36]. Like for ML, a library of build-
in graph algorithms are more useful to users, so the lack
of standard is not so much an issue for graph OLAP.

5. GRAPH DATABASE OFFERINGS
The graph database area is a very crowded space in

the industry, with new projects and startups popping
out every moment. It is impossible to enumerate all the
current graph database offerings. So, this section only
highlights some of the major offerings in the three cat-
egories: graph-database-only vendors, data companies
with graph support, and enterprise cloud vendors with
built-in graph database support. The different features

of their graph products are summarized in Figure 2. In
Section 6, we will discuss the different architecture so-
lutions adopted by the various vendors.

In the pure-play space, Neo4j and TigerGraph are the
two strongest contenders. They provide solutions both
on premise and on all major clouds, AWS, Azure, and
GCP. They have good support for both graph OLTP
and OLAP workloads. The pure players have also per-
fected the art of visualization and tooling, as well as the
support of a large number of built-in graph algorithms.

DataStax and Databricks are two data companies with
a wide range of data portfolio. The graph component is
also integrated well with the rest of the system compo-
nents. For example, DataStax Enterprise Graph (DSG)
is built on top of the DataStax’s main NoSQL data
engine Cassandra. And for Databricks graph support,
GraphX is built on top of Spark’s RDD, and Graph-
Frames is based on DataFrames. Since both companies
aim at more general data systems, their support on
graphs is not as comprehensive as the graph-only ven-
dors. DataStax’s support on graph OLAP is very rudi-
mentary (only relying on SparkGraphComputer API in
Gremlin with just 3 built-in graph algorithms). Databricks’
graph OLTP support comes only from the simple mo-
tif finding support in GraphFrames. This support is not
only limited by the very simple motif finding DSL, but
also unlikely to perform well, since the graph OLTP
query processing utilizes DataFrames underneath, which
is originally designed for analytics purpose.

The last category of graph database vendors are big
cloud companies, including Amazon, Microsoft, Oracle,
and IBM. They all provide a large number of data ser-
vices on their cloud platform, and the built-in graph
database service is one of them. Microsoft, Oracle, and
IBM are previously big relational database shops, so
it is not surprising that their graph database solutions
are based on their relational databases: Microsoft SQL
Graph on top of SQL Server (on premise) and Azure
SQL Database (on cloud), Oracle Spatial and Graph on
top of Oracle databases (on premise and cloud), and
IBM Db2 Graph on top of Db2 (on premise and Cloud
Pak for Data). Microsoft also provides another graph
database solution, Cosmos DB Graph, built on top of
the NoSQL database Azure Cosmos DB. Amazon, on
the other hand, builds Neptune on the same back end
storage as other AWS platforms, such as Aurora and Dy-
namoDB. Amazon, since a pure cloud company, doesn’t
provide an on-premise graph database solution. Most
of the graph databases from this category focus on the
graph OLTP workload, except that Oracle Spatial and
Graph has a very good graph OLAP support with a
large number of built-in algorithms.

Now, let’s look at the different dimensions of the ta-
ble shown in Figure 2. Most vendors support both on-
premise and cloud deployment, except that Amazon Nep-
tune and Microsoft Cosmos DB Graph are on cloud
only. In terms of graph models, all the vendors sup-
port the property graph model. Amazon Neptune along
with Oracle Spatial and Graph additionally support the
RDF model. For graph OLTP workload, the languages
that different vendors use reflect the language chaos

Deployment Graph
Model

Graph OLTP
Graph OLAP Scale-OutQuery

Language
Visualization

tools Transaction

TigerGraph On-prem / AWS,
Azure, GCP PG GSQL Graph Studio ACID GSQL, 23 built-in

algorithms Yes

Neo4J On-prem / AWS,
Azure, GCP PG Cypher Studio Non-repeatable

reads may occur

Pregel API, 48 built-in
algorithms (including

Graph ML)
Yes

DataStax
Enterprise Graph

On-prem / AWS,
Azure, GCP PG Gremlin Studio Row-level

(Cassandra)
SparkGraphComputer

API Yes

Databricks
GraphX & GraphFrames

On-prem / AWS,
Azure, GCP PG Motif Finding

DSL - - Pregel API, 7 built-in
algorithms Yes

Amazon
Neptune AWS PG, RDF Gremlin,

SPARQL
Neptune

Workbench ACID - Yes

Microsoft
SQL Graph

On-prem /
Azure PG SQL

Extension

Power BI
plugin, 3rd

party tools
ACID

Python/R scripts via
Machine Learning

Services

Yes (Read-
Only

Queries)

Microsoft
Cosmos DB Graph Azure PG Gremlin

Azure Portal,
3rd party

tools
- - Yes

Oracle
Spatial and Graph

On-prem / OCI
AWS, Azure,

GCP
PG, RDF PGQL,

SPARQL Graph Studio ACID
Green Marl DSL, 50+
built-in algorithms

(including Graph ML)
Yes

IBM
Db2 Graph On-prem / CP4D PG Gremlin Graph UI ACID - Yes

G
ra

ph
 O

nl
y

Co
m

pa
ni

es
En

te
rp

ris
e

Cl
ou

d
Co

m
pa

ni
es

Da
ta

Co

m
pa

ni
es

Figure 2: Major Graph Database Offerings

discussed in Section 4, but Gremlin appears to be the
most supported. Due to the exploratory nature of graph
OLTP workload, visualization is especially important
for customers. Most graph vendors do provide visualiza-
tion support. Compared to relational databases, trans-
action support has been a sore spot for graph databases.
An update to a single node often affected its edges and
connected nodes, e.g. deleting a node requires the dele-
tion of all the edges it is connected to. So, a transaction
is often more complex in a graph database, especially
in a distributed setting. Some graph databases manage
to provide full ACID support, but others either have
no support or week support for transactions. Compared
to graph OLTP, the graph OLAP support is relatively
weak in general, but TigerGraph, Neo4j, and Oracle
stand out due to their large number of built-in algo-
rithms. The VLDB survey [42] has observed the ubiq-
uity of large graphs with over a billion edges and pointed
out that scalability is a challenge that many users face.
As a result, major graph vendors strive to address this
challenge. All the graph database solutions can scale
up nicely to a certain extent, which can satisfy a lot of
customers, and most also provide scale-out solutions for
those customers working on huge graphs that cannot fit
in a single node. As rightly pointed out by [23], while
distributed parallelization can handle larger graphs, it
does not always provide desirable performance. Due to
the connected nature of graphs, it is almost impossible
to achieve access locality in a distributed setting. As
a result, distributed graph computation often accesses
many partitions of a graph, which incurs a lot of com-
munication cost. If a large graph can fit in a single node,
the scale-up solution might provide better performance
than the scale-out version of the same system. As shown
in [46], a single node system on a decent machine con-
figuration can comfortably handle large graphs with bil-
lions of edges. However, concurring with [42], efficiently

Native Graph DB Hybrid Graph DB

Graph-only DB Converged DB (Multi Model)

AWS Neptune
Neo4j

TigerGraph

IBM Db2 Graph
Oracle Spatial & Graph

DataStax Graph
Microsoft SQL Graph

Microsoft Cosmos DB Graph

Figure 3: Graph Solution Space

querying and processing large-scale graphs (way beyond
billions of edges) remains a challenge.

6. GRAPH DATABASE SOLUTION SPACE

6.1 Native vs Hybrid Graph Databases
One way to categorize the solution space is native

graph databases vs hybrid graph databases, as shown in
Figure 3. As the name suggested, native graph databases
are built with specialized query and storage engines
from scratch just for graphs. Neo4j and Tigergraph are
two prime examples of native graph databases. This
type of graph databases are highly optimized to the sup-
ported graph workloads. But the drawback is the high
engineering cost, since they have to reinvent the wheels
for the support of transactions, access control, scalabil-
ity, high availability (HA), disaster recovery (DR) and
so on. In contrast, a hybrid graph database has a spe-
cialized graph query engine, but resorts to an existing
data store to handle the persistence of data, be it either
a SQL database, a key value store, or a document store.
As shown in Figure 3, more graph databases fall into
this camp. Since a hybrid graph database delegates its
storage engine to an existing data store, it has much
faster development time. In addition, it can also get
many things for free from the backend store, such as
transaction support, access control, scalability, HA and
DR, etc. But the potential downside is that the per-

formance of a hybrid graph database may not match a
highly optimized native graph database. Of course, the
performance of an individual graph database also highly
depends on the implementation details.

6.2 Graph-Only vs Converged Databases
Another way to categorize the solution space is graph-

only databases vs converged databases, or also called
multi-model databases. As shown in Figure 3, all native
graph databases are graph-only databases, and most hy-
brid graph databases are converged databases, but some
are graph-only. Graph-only databases support graph work-
load only. This fact can also be a fundamental limita-
tion of these databases. In fact, Neo4j and TigerGraph
both have dedicated chapters on data import and ex-
port in their user manuals. In contrast, a converged
database or a multi-model database supports poly query
languages/APIs on the shared data. This fact can also
be an advantage of the converged database architecture.
We elaborate on some of the advantages below.

Fundementally, the converged database solution solves
the fragmented database problem. Real applications sel-
dom have only homogenous workload that just contains
graph analysis. Often graph analysis is mixed with SQL,
ML, and other analytics. In order to support the het-
erogenous workload, developers have to move data around
different systems, in the fragmented database world.
By supporting multiple languages/APIs on the shared
data, the converged database solution essentially allows
users to view the data in the way that is needed! SQL,
graph, and ML can work on the same data synergis-
tically. There is also no data transfer or transforma-
tion needed. This is a huge saving. Even though native
graph databases are highly optimized for graph work-
loads, but if we consider the performance of the end-to-
end pipeline of a heterogenous workload, the converged
graph databases may actually have an edge.

Moreover, some converged database solutions, such
as IBM Db2 Graph, even allow graph queries to be per-
formed on the original data in the operational databases.
The extra advantage it brings is to have the graph query
capability without disturbing the large number of ex-
isting relational applications and that transaction up-
dates to the operational data can be visible to the graph
queries in real time.

Other advantages of converged database solution come
from the existing backend data store, for example trans-
action support, access control, compliance to audits and
regulations, temporal support, scalability support, HA
and DR support, etc.

As discussed above, each type of graph solution has
its own pros and cons. Choosing the right architecture
depends highly on the actual application requirements,
such as whether the workload is graph-only or hetero-
geneous, the latency and throughput requirement, the
frequency of updates, the recency requirement of the
results, etc.

7. GRAPH BENCHMARKS
Benchmarks are very important in evaluating differ-

ent database systems. Since graph databases are a rela-

tive new area compared to relational databases, there
is no standard benchmarks, like TPCC, TPCH, and
TPCDS, yet for graph databases. There has been some
community efforts in establishing graph benchmarks,
such as the Linked Data Benchmark Council (LDBC) [11]
benchmarks, Linkbench from Facebook [5], Graph500 [3],
HPC Scalable Graph Analysis Benchmark [26], and Open
Graph Benchmark [7] for graph ML specifically. No-
tably, LDBC benchmarks are the most widely adopted
and hence the closest to a standard. It is also the most
comprehensive benchmark and currently has three bench-
mark suites. The LDBC Social Network Benchmark (LDBC-
SNB) contains tests for interactive workload, which cor-
responds to graph OLTP workload, and business intel-
ligent workload, which is more relational (aggregation
and join heavy) queries on graph data and is still under
development. The LDBC Graphalytics benchmark tar-
gets graph OLAP workload. And the LDBC Semantic
Publishing Benchmark (SPB) is an RDF-based bench-
mark for semantic databases. Since LDBC is a non-
profit organization with members from both industry
and academia, graph benchmarking is another area where
the graph research community has influenced the indus-
try. Both TigerGraph and Neo4j has published white
papers or blogs about their test results on LDBC-SNB
benchmark [25, 49], as well as the responses to each
other’s results [54].

This has been a lot of work in the research community
that compares various graph databases [22, 32, 34, 35].
This line of research is highly useful, however, most of
these efforts proposed their own benchmark frameworks,
and the results from different studies often generated
different conclusions. It will be more valuable if future
studies adopt an existing widely used benchmark that
the industry embraces, such as the LDBC benchmark.

8. DISCUSSION

8.1 Graph Database Users
There are different types of graph users from the most

sophisticated to the most novice. The first category of
graph users are the few companies such as LinkedIn or
Facebook for whom graph is the business! These users
usually have an army of in-house engineers to build cus-
tomized systems for their bread and butter [6, 19]. They
will not shop for a general graph database. The second
category is the power users, where their core business
has a strong dependence on graphs, such as companies
specialized in fraud detection, anti-money laundering,
security, and intelligence. They most likely will adopt
the best graph technologies in the market that fit their
needs. The third category is a larger group of standard
experienced users. Many of them were the traditional
database customers who now build new applications
enabled by graph technologies. Some example success
stories of such customers were showcased in [48]. Then
there is a large of number of novice users and poten-
tial users, who are interested in trying out graph tech-
nologies. The last three categories of users are the ones
whom graph database vendors typically go after. And if
they come from the traditional database side, converged

database solutions may provide them with an easier en-
try point into graphs. To better serve the experienced
graph users and convert novice or potential users, cus-
tomers need education on what they can do with graph
technologies and how to apply them. Pure-play compa-
nies like Neo4j and TigerGraph are particularly strong
in customer education. They publish books, organize
workshops, summits and conferences where they show-
case the technologies as well as demonstrate use cases.

Another important point is that graph problems are
greater than graphs! Yes, customers need graph solu-
tions, but not just graph solutions. They need an end-
to-end solution which involves data ingestion, prepro-
cessing, graph analytics, maybe also other types of an-
alytics, and result rendering. When we think about the
big picture, graph performance is not the only factor
that customers consider when choosing graph solutions.

Finally, both graph OLTP and OLAP are important.
Some customers primarily use one type vs the other, but
others use both. For graph OLTP, due to the exploratory
nature of the queries, graph visualization is a must-have.
For graph OLAP, the set of built-in algorithms will be
the winning factor that attracts customers.

8.2 In-House Graph Systems
As mentioned before, big tech companies, like LinkedIn

and Facebook, have developed their own specialized graph
systems to serve their business needs. Although these in-
house systems are not yet in the commercial space, these
companies have a good track record of open-sourcing
their in-house systems with great industrial impact. So,
some of these graph systems are worth watching for.

LIquid [6] is LinkedIn’s in-house graph database for
real-time querying of its economic graph. LIquid adopts
a subject-predicate-object triple model to store edges
similar to RDF, employs a declarative language based on
Datalog, and achieves nanosecond-level query efficiency
via dynamic query optimization on wait-free shared-
memory index structures [20]. TAO [19] is Facebook’s
geographically distributed graph system for serving ef-
ficient access to its social graph. It supports a property-
graph-like model, provides simple APIs to access nodes
and edges, and is built with an efficient caching layer on
top of the MySQL storage layer.

8.3 Research Graph Database Prototypes
Although a comprehensive survey of graph databases

from academia is beyond the scope of this paper, it is
still interesting to briefly discuss some recent related
systems. Research graph systems are also divided into
native and hybrid graph databases. Graphflow [33] and
AvantGraph [50] are two examples of native graph sys-
tems. Both systems implemented the worst case optimal
(wco) joins and factorization of intermediate results. Al-
though not yet widely adopted in industry, these tech-
niques have been proven to be promising in speeding up
graph query processing and present great potential for
future adoption. GRFusion [28] and GRainDB [31] are
two examples of hybrid graph databases. GRFusion [28]
extends VoltDB to define graph views on relational ta-
bles, and to materialize graph structures in memory for
the graph queries to execute on. This architecture re-

sembles Oracle Spatial and Graph. GRainDB extends
the internals of DuckDB to support predefined pointer-
based joins, and plans to also incorporate wco joins and
factorization into the query engine. Most commercial
hybrid graph databases today have conservatively cho-
sen to avoid modifying the core engines when supporting
graph queries. GRainDB points out interesting direc-
tions on how graph-specific techniques can be incorpo-
rated into an existing database engine.

8.4 Opportunities and Directions
There is a growing global market for graph databases.

Right now, the graph-only vendors are leading in query
performance and algorithm support. But there is still
a lot of opportunities for new vendors or other existing
vendors to catch up. Especially, when looking at end-to-
end scenarios, data import and export may increasingly
become a bottleneck for graph-only databases. Making
data movement easier and faster will be a crucial invest-
ment for these pure-play vendors. Major cloud compa-
nies are also investing in the graph space. Their major
advantage is that they own the whole stack of data ser-
vices, including operational data services (OLTP and
NoSQL engines), which is a major source of graph data.
It makes sense that most of these vendors adopt con-
verged database solutions. Taking the advantage of the
whole stack and focusing on end-to-end solutions will be
a winning recipe for them.

8.5 Recommendation for Researchers
The graph database research community has been fo-

cusing heavily on sophisticated algorithms and query
performance so far. These are very important, but there
are other equally important but also practical problems
that the graph database industry cares about and needs
more help on. Due to the connected nature of graphs,
transaction support, especially in a distributed setting,
is hard to achieve and even harder to perform efficiently
in graph databases. Visualization is crucial for graph
OLTP workloads, but laying out graphs in a way that
users can clearly understand the relationship of entities
in the graph is generally a hard problem. Compliance to
regulations (e.g. GDPR) requires keeping track of ver-
sions of graph data and potentially supporting point-in-
time queries, but this feature is unfortunately missing
in most existing graph databases. Multi-tenancy and
access control are not supported efficiently in existing
graph databases (most just assume there is a single ten-
ant for a graph database server), so helps are definitely
needed on this front. Graph queries and analytics are
seldom executed in isolation, so integrating them with
non-graph workloads efficiently deserves a lot of atten-
tion. For native graph databases, optimizing data im-
port and export will be crucial.

In addition, existing graph research largely assumes
read-only workloads. But real-life graphs do change over
time. Future research would better support the dynamic
nature of graphs. Some of the existing research also de-
fine their own graph models (e.g. simple graphs and at-
tributed graphs) or propose new query languages. Fo-
cusing on widely adopted graph models and languages
from industry might lead to more practical impact.

9. REFERENCES

[1] Apache TinkerPop. http://http://tinkerpop.apache.org.

[2] GQL. https://www.gqlstandards.org.

[3] Graph500. https://graph500.org.

[4] GSQL. https://www.tigergraph.com/gsql.

[5] LinkBench: A database benchmark for the social graph.
https://www.facebook.com/notes/facebook-engineering/
linkbench-a-database-benchmark-for-the-social-graph/
10151391496443920.

[6] LIquid: The soul of a new graph database.
https://engineering.linkedin.com/blog/2020/
liquid-the-soul-of-a-new-graph-database-part-1.

[7] Open Graph Benchmark. https://ogb.stanford.edu.

[8] openCypher. https://www.opencypher.org.

[9] PQGL. http://pgql-lang.org.

[10] The LDBC Benchmark Overview.
https://ldbcouncil.org/benchmarks/overview.

[11] The LDBC Council. http://ldbcouncil.org.

[12] M. Adrian, A. Jaffri, and D. Feinberg. Market Guide for
Graph Database Management Solutions.
https://www.gartner.com/en/documents/4001808/
market-guide-for-graph-database-management-solutions,
2021.

[13] Amol Deshpande. GRAPH DATA MANAGEMENT.
https://wp.sigmod.org/?p=1497, 2014.

[14] R. Angles, M. Arenas, P. Barcelo, P. Boncz, G. Fletcher,
C. Gutierrez, T. Lindaaker, M. Paradies, S. Plantikow,
J. Sequeda, O. van Rest, and H. Voigt. G-core: A core for
future graph query languages. In SIGMOD ’18, pages
1421–1432, 2018.

[15] R. Angles, M. Arenas, P. Barceló, A. Hogan, J. Reutter,
and D. Vrgoč. Foundations of modern query languages for
graph databases. ACM Comput. Surv., 50(5), sep 2017.

[16] R. Angles and C. Gutierrez. Survey of graph database
models. ACM Comput. Surv., 40(1), feb 2008.

[17] P. Boncz. The (sorry) State of Graph Database Systems.
https://homepages.cwi.nl/~boncz/edbt2022.pdf.

[18] S. Bouhenni, S. Yahiaoui, N. Nouali-Taboudjemat, and
H. Kheddouci. A survey on distributed graph pattern
matching in massive graphs. ACM Comput. Surv., 54(2),
feb 2021.

[19] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov,
H. Ding, J. Ferris, A. Giardullo, S. Kulkarni, H. Li,
M. Marchukov, D. Petrov, L. Puzar, Y. J. Song, and
V. Venkataramani. TAO: Facebook’s distributed data store
for the social graph. In 2013 USENIX Annual Technical
Conference (USENIX ATC 13), pages 49–60, 2013.

[20] A. Carter, A. Rodriguez, Y. Yang, and S. Meyer.
Nanosecond indexing of graph data with hash maps and
vlists. In Proceedings of the 2019 International
Conference on Management of Data, SIGMOD ’19, page
623–635, 2019.

[21] DBPedia. DBPedia. https://www.dbpedia.org/.

[22] D. Dominguez-Sal, P. Urbón-Bayes, A. Giménez-Vañó,
S. Gómez-Villamor, N. Mart́ınez-Bazán, and J. L.
Larriba-Pey. Survey of graph database performance on the
hpc scalable graph analysis benchmark. In WAIM’10,
pages 37–48, 2010.

[23] W. Fan. Big graphs: Challenges and opportunities. Proc.
VLDB Endow., 15(12):3782–3797, 2022.

[24] N. Francis, A. Green, P. Guagliardo, L. Libkin,
T. Lindaaker, V. Marsault, S. Plantikow, M. Rydberg,
P. Selmer, and A. Taylor. Cypher: An evolving query
language for property graphs. In SIGMOD ’18, pages
1433–1445, 2018.

[25] C. Gioran. Behind the Scenes of Creating the World’s
Biggest Graph Database.
https://medium.com/neo4j/behind-the-scenes-of-creating-
the-worlds-biggest
-graph-database-cd22f477c843.

[26] GraphAnalysis.org. HPC Graph Analysis.
http://www.graphanalysis.org/benchmark/index.html.

[27] O. Hartig. Reconciliation of rdf* and property graphs,
2014.

[28] M. S. Hassan, T. Kuznetsova, H. C. Jeong, W. G. Aref,
and M. Sadoghi. Grfusion: Graphs as first-class citizens in

main-memory relational database systems. In SIGMOD
’18, pages 1789–1792, 2018.

[29] A. Hogan, E. Blomqvist, M. Cochez, C. D’amato, G. D.
Melo, C. Gutierrez, S. Kirrane, J. E. L. Gayo, R. Navigli,
S. Neumaier, A.-C. N. Ngomo, A. Polleres, S. M. Rashid,
A. Rula, L. Schmelzeisen, J. Sequeda, S. Staab, and
A. Zimmermann. Knowledge graphs. ACM Comput.
Surv., 54(4), jul 2021.

[30] Inkwood Research. Global Graph Database Market
Forcase 2019-2027. https://inkwoodresearch.com/reports/
global-graph-database-market, 2019.

[31] G. Jin, N. Anzum, and S. Salihoglu. Graindb: A
relational-core graph-relational DBMS. In 12th
Conference on Innovative Data Systems Research, CIDR
2022, Chaminade, CA, USA, January 9-12, 2022.
www.cidrdb.org, 2022.

[32] S. Jouili and V. Vansteenberghe. An empirical comparison
of graph databases. In SOCIALCOM ’13, pages 708–715,
2013.

[33] C. Kankanamge, S. Sahu, A. Mhedbhi, J. Chen, and
S. Salihoglu. Graphflow: An active graph database. In
SIGMOD ’17, page 1695–1698, 2017.

[34] V. Kolomičenko, M. Svoboda, and I. H. Mlýnková.
Experimental comparison of graph databases. In IIWAS
’13, pages 115:115–115:124, 2013.

[35] M. Lissandrini, M. Brugnara, and Y. Velegrakis. Beyond
macrobenchmarks: Microbenchmark-based graph database
evaluation. PVLDB, 12(4):390–403, 2018.

[36] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: A system
for large-scale graph processing. In Proceedings of the
2010 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’10, page 135–146, 2010.

[37] A. McGregor. Graph stream algorithms: A survey.
SIGMOD Rec., 43(1):9–20, may 2014.

[38] Microsoft. Graph processing with SQL Server and Azure
SQL Database. https:
//docs.microsoft.com/en-us/sql/relational-databases/
graphs/sql-graph-overview?view=sql-server-ver15, 2021.

[39] Oracle. 17 Use Cases for Graph Databases and Graph
Analytics. https://www.oracle.com/a/ocom/docs/
graph-db-use-cases-ebook.pdf, 2021.

[40] K. Panetta. Gartner Top 10 Data and Analytics Trends for
2021. https://www.gartner.com/smarterwithgartner/
gartner-top-10-data-and-analytics-trends-for-2021,
2021.

[41] M. A. Rodriguez. The gremlin graph traversal machine and
language (invited talk). In DBPL ’15, pages 1–10, 2015.

[42] S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T. Özsu.
The ubiquity of large graphs and surprising challenges of
graph processing. Proc. VLDB Endow., 11(4):420–431,
dec 2017.

[43] S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T. Özsu.
The ubiquity of large graphs and surprising challenges of
graph processing: extended survey. VLDB J.,
29(2-3):595–618, 2020.

[44] S. Sakr, A. Bonifati, H. Voigt, A. Iosup, K. Ammar,
R. Angles, W. G. Aref, M. Arenas, M. Besta, P. A. Boncz,
K. Daudjee, E. D. Valle, S. Dumbrava, O. Hartig,
B. Haslhofer, T. Hegeman, J. Hidders, K. Hose,
A. Iamnitchi, V. Kalavri, H. Kapp, W. Martens, M. T.
Özsu, E. Peukert, S. Plantikow, M. Ragab, M. Ripeanu,
S. Salihoglu, C. Schulz, P. Selmer, J. F. Sequeda,
J. Shinavier, G. Szárnyas, R. Tommasini, A. Tumeo,
A. Uta, A. L. Varbanescu, H. Wu, N. Yakovets, D. Yan,
and E. Yoneki. The future is big graphs: a community
view on graph processing systems. Commun. ACM,
64(9):62–71, 2021.

[45] J. Szendi-Varga. Graph Technology Landscape 2020.
https://graphaware.com/graphaware/2020/02/17/
graph-technology-landscape-2020.html, 2020.

[46] Y. Tian, S. J. Tong, M. H. Pirahesh, W. Sun, E. L. Xu,
and W. Zhao. Synergistic graph and SQL analytics Inside
IBM Db2. PVLDB, 12(12), 2019.

[47] Y. Tian, S. J. Tong, M. H. Pirahesh, W. Sun, E. L. Xu,
and W. Zhao. Synergistic graph and SQL analytics Inside
IBM Db2. PVLDB, 12(12), 2019.

[48] TigerGraph. Customer Success Stories: Why Our

http://http://tinkerpop.apache.org
https://www.gqlstandards.org
https://graph500.org
https://www.tigergraph.com/gsql
https://www.facebook.com/notes/facebook-engineering/linkbench-a-database-benchmark-for-the-social-graph/10151391496443920
https://www.facebook.com/notes/facebook-engineering/linkbench-a-database-benchmark-for-the-social-graph/10151391496443920
https://www.facebook.com/notes/facebook-engineering/linkbench-a-database-benchmark-for-the-social-graph/10151391496443920
https://engineering.linkedin.com/blog/2020/liquid-the-soul-of-a-new-graph-database-part-1
https://engineering.linkedin.com/blog/2020/liquid-the-soul-of-a-new-graph-database-part-1
https://ogb.stanford.edu
https://www.opencypher.org
http://pgql-lang.org
https://ldbcouncil.org/benchmarks/overview
http://ldbcouncil.org
https://www.gartner.com/en/documents/4001808/market-guide-for-graph-database-management-solutions
https://www.gartner.com/en/documents/4001808/market-guide-for-graph-database-management-solutions
https://wp.sigmod.org/?p=1497
https://homepages.cwi.nl/~boncz/edbt2022.pdf
https://www.dbpedia.org/
http://www.graphanalysis.org/benchmark/index.html
https://inkwoodresearch.com/reports/global-graph-database-market
https://inkwoodresearch.com/reports/global-graph-database-market
https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview?view=sql-server-ver15
https://www.oracle.com/a/ocom/docs/graph-db-use-cases-ebook.pdf
https://www.oracle.com/a/ocom/docs/graph-db-use-cases-ebook.pdf
https://www.gartner.com/smarterwithgartner/gartner-top-10-data-and-analytics-trends-for-2021
https://www.gartner.com/smarterwithgartner/gartner-top-10-data-and-analytics-trends-for-2021
https://graphaware.com/graphaware/2020/02/17/graph-technology-landscape-2020.html
https://graphaware.com/graphaware/2020/02/17/graph-technology-landscape-2020.html

Customers Choose TigerGraph.
https://www.tigergraph.com/customers/.

[49] TigerGraph. Using the linked data benchmark council
social network benchmark methodology to evaluate
tigergraph at 36 terabytes. Technical report, TigerGraph,
2022.

[50] W. van Leeuwen, T. Mulder, B. V. D. Wall, G. Fletcher,
and N. Yakovets. Avantgraph query processing engine.
Proc. VLDB Endow., 15(12):3698–3701, 2022.

[51] J. Webber. The Top 10 Use Cases of Graph Database
Technology: Unlock New Possibilities with Connected
Data. Technical report, Neo4j, 2021.

[52] World Wide Web Consortium. Resource Description
Framework (RDF) Model and Syntax Specification.
https://www.w3.org/TR/PR-rdf-syntax/Overview.html.

[53] World Wide Web Consortium. SPARQL Query Language
for RDF. https://www.w3.org/TR/rdf-sparql-query.

[54] M. Wu. Truth Behind Neo4j’s “Trillion”
Relationship Graph. https://medium.com/@mingxi.wu_19315/
truth-behind-neo4js-trillion-relationship-graph-97f29625fe19.

[55] M. Wu and A. Deutsch. GSQL: An SQL-Inspired Graph
Query Language. Technical report, TigerGraph, 2021.

[56] YAGO. YAGO. https://yago-knowledge.org/.

[57] D. Yan, Y. Bu, Y. Tian, and A. Deshpande. Big graph
analytics platforms. Found. Trends Databases,
7(1–2):1–195, jan 2017.

[58] T. Özsu. Graph Processing: A Panaromic View and Some
Open Problems. https://cs.uwaterloo.ca/~tozsu/
presentations/VLDB19-keynote.pdf, 2019.

https://www.tigergraph.com/customers/
https://www.w3.org/TR/PR-rdf-syntax/Overview.html
https://www.w3.org/TR/rdf-sparql-query
https://medium.com/@mingxi.wu_19315/truth-behind-neo4js-trillion-relationship-graph-97f29625fe19
https://medium.com/@mingxi.wu_19315/truth-behind-neo4js-trillion-relationship-graph-97f29625fe19
https://yago-knowledge.org/
https://cs.uwaterloo.ca/~tozsu/presentations/VLDB19-keynote.pdf
https://cs.uwaterloo.ca/~tozsu/presentations/VLDB19-keynote.pdf

	1 Introduction
	2 Use Cases and Workloads
	3 Graph Models
	4 Graph Query Languages
	5 Graph Database Offerings
	6 Graph Database Solution Space
	6.1 Native vs Hybrid Graph Databases
	6.2 Graph-Only vs Converged Databases

	7 Graph Benchmarks
	8 Discussion
	8.1 Graph Database Users
	8.2 In-House Graph Systems
	8.3 Research Graph Database Prototypes
	8.4 Opportunities and Directions
	8.5 Recommendation for Researchers

	9 References

