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Abstract The problem of the timing of an investment decision under partial infor-
mation is analyzed in a framework where the firm is ambiguity averse. The analysis
yields the description of a robust decision rule for an investment in a finite life project
in presence of a stochastic instantaneous return. It is demonstrated that ambiguity
aversion may accelerate investment in the short run. Ex post validation of the deter-
mined investment policy treats the impact of ambiguity aversion on the proper way
of discounting of the profit flow resulting from the project and the fair price of risk
associated with ambiguity aversion.

Keywords Real options · Ambiguity aversion · Endogenous discount factor ·
Market price of risk · Ex post analysis

1 Introduction

The estimation of a project’s growth rate is a crucial problem for determining the
timing of an investment decision. This paper examines this question in case the in-
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stantaneous rate of return on the project may vary due to, e.g., the presence of tech-
nological progress. Motivated by statistical evidence, we assume that, based on the
current state of the market, the firm is somehow able to estimate the rate of techno-
logical progress, but at the same time the firm suspects that this estimation may turn
out to be incorrect in future. For instance, such a situation occurs in today’s practice
in fast developing industries due to the presence of high frequency shocks linked with
forthcoming technological innovations (see [1]).

The model presented in this paper is related to three streams of literature. First,
the problem we focus on comes from the standard real options literature (see, e.g.,
[2] and [3]). The aim is to determine the optimal timing to undertake an irreversible
investment in the presence of risk. As usual, we start out from solving the prob-
lem under the assumption that the firm has complete confidence in the dynamics of
the state variable (profit flow). To reflect implications of technological progress, our
analysis focuses on projects with finite life-times. Later, we depart from the standard
framework. We weaken the assumption on having perfect confidence about dynam-
ics driving future profit flows from the project. To deal with this question our model
incorporates the distinction between risk and uncertainty originating from [4]. Risk
is referred to as a situation where the probabilistic model is unique. Knightian uncer-
tainty (called ambiguity in the literature) captures the situation where uncertainty is
not reducible to a single probability measure and needs to be characterized by a spec-
trum of probability measures. Having faced the lack of certainty about the true model,
the firm’s investment decision is based on priors with respect to the future form of
uncertainty. Following [5] we adopt the concept of ambiguity so that the firm’s priors
are represented by a set of probability measures identifying the formal representation
of a diffusion process describing the profit flow. To capture the firm’s fear of having
to deal with a possibly incorrect representation for the future technological progress
we impose that the firm is ambiguity averse.

This approach constitutes an alternative to two commonly used decision frame-
works: rational expectations and subjective valuation. As argued in [6], the naive
application of the rational expectations equilibrium concept on stochastic growth rate
models endows the investor with too much knowledge about future growth. On the
other hand, subjective valuation of the investment opportunities would result in the
creation of subjective illusions about the form of uncertainty (cf. [7]). For the problem
under question, ambiguity aversion offers an advantage over the Bayesian approach
because it does not require knowledge of the probability distributions capturing the
decision maker’s beliefs or Bayesian prior with respect to the unknown shocks linked
with forthcoming innovations. The investment decision criterion in our model is de-
rived as if the state variable were governed by the worst-case probability measure
among the measures considered, which leads to a maximin decision framework.

We derive the optimal investment trigger for the investment problem employing
the dynamic programming approach. We show that ambiguity aversion leads to an
erosion of the value of the investment opportunity. Consequently, the value of the op-
tion to invest is lower, which reduces the opportunity cost of undertaking the invest-
ment. However, this does not necessarily bring about investment acceleration. This
distinguishes our findings from [8], who established only the option value reduction
result for the case of a perpetual project and showed in this way that the impact of
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ambiguity on optimal investment behavior is drastically different from the impact of
risk (volatility). Our result that ambiguity may speed up or delay investment links our
paper to [9]. Their contribution builds on a comparison of the effects of different de-
grees of ambiguity before and after the time of the investment. If uncertainty is fully
resolved after the investment is undertaken, then an increase in ambiguity accelerates
investment. However, if then ambiguity is still present, the firm may possibly delay
the investment.

Our approach assumes that undertaking the investment does not change the level of
ambiguity and for the reason of analytical tractability it is assumed that before taking
a decision the firm knows what the worst case would be. Still, there are two contradic-
tory effects that govern the investment timing. First, there is the option value effect.
It captures the erosion of the value of the investment opportunity due to the pres-
ence of Knightian uncertainty, which reduces the investment trigger. Second, there is
the present-value effect. This effect raises the trigger, because the higher the degree
of ambiguity the lower is the net present value of the project under the worst case
scenario. It turns out that combining these effects implies nonmonotonicity of the
investment trigger in the level of ambiguity. We further examine the probability that
the investment takes place before some prespecified point of time. We find that the
reduced value of waiting makes that in the short-run Knightian uncertainty may be
investment enhancing. The opposite effect holds in the long-run: the ambiguity averse
firm totally refrains from investment with a larger probability than a firm facing no
ambiguity.

The problem we solve in this paper is also connected with the literature on dis-
count anomalies appearing in the context of a preference based approach. In order to
find the endogenous discount factor implied by preferences, we exploit the close link
between recursive multiple-priors and robust control. It has been noted that Bellman
equations arising in robust control settings are of the same form as Bellman equa-
tions arising from stochastic differential utility maximization (cf. [10] and [11]). We
employ this analogy together with a dual representation of the value of a claim un-
der model misspecification known from the robust control approach to asset pricing
theory ([12], Chap. 12).

We explicitly derive the stochastic discount factor that results from optimizing
investment behavior of the ambiguity averse firm facing a menu of representations
for uncertainty and we evaluate a decision criterion a posteriori. While carrying out
the ex post analysis we define the endogenous price of risk: a measure of the extra
return that the firm demands to bear risk. This measure is considered fair by the
uncertainty averse firm: if the worst case occurs then the prices of risk are identical,
and consequently the risk is overpriced in all other cases.

The remainder of the paper is organized as follows. Section 2 describes two cases.
First, it presents a standard investment problem, where the project’s value follows
a geometric Brownian motion process and the project has finite life-time. The cor-
responding optimal investment decision criterion is derived. Second, it develops a
model where the firm is uncertain about the correct process describing future rev-
enues, and a robust investment decision rule is derived. Section 3 examines the sensi-
tivity of the main results with respect to the key parameters and presents probability
calculations. Section 4 derives the endogenous discount factor for the problem and
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discusses the endogenous price of risk. The last section concludes. The mathematical
proofs are gathered in the Appendix.

2 The Model

2.1 The Project with Known Dynamics of the State Variable

Let time be continuous and indexed by t ≥ 0. Uncertainty is represented by a filtered
probability space (�, (Ft )t≥0, Q). The firm faces an investment opportunity yield-
ing a stochastic profit. Profit is modelled as a geometric Brownian motion and its
dynamics under Q is given by

dπt = πt (μdt + σdBt ), (1)

with π0 > 0 and where μ and σ are positive constants denoting drift and instan-
taneous standard deviation, respectively, while dBt is the increment of a Wiener
process.

In what follows, we consider the project to have a finite life, τ , rather than that it
goes on forever. As argued in [13] and [14], this seems to be more realistic in today’s
knowledge economy with its fast-changing technology environment. Our analysis
however applies to a wider class of problems, including maintenance studies as well.
For this reason, we define the discount factor more generally in the sense that it
consists of two components: the rate of depreciation γ and the interest rate ρ. As main
sources of depreciation we point out physical decay and technological obsolescence.
In other words, the project depreciates through age or use (maintenance problems) or
advance of competing technologies (cf. [2], Chap. 6). The discount factor is imposed
exogenously and follows a deterministic process

dRt = −(ρ + γ )Rtdt := −rRtdt,

where μ < r in order to assure that the firm wants to invest in the project. The math-
ematical representation of the market is thus as follows {(Rt ,πt ), (�, (Ft )t≥0, Q)}.

The firm wants to determine the optimal time to pay a sunk cost I to get access
to the profit stream described under (1).1 Suppose that the investment be undertaken
at time t . The value of the project installed, Wt , equals the expected present value of
the profit flow generated by the project during its life-time τ :

W(πt ) = E
Q
[∫ t+τ

t

Rs

Rt

πsds

∣∣∣∣Ft

]
= πt (1 − e−(r−μ)τ )

r − μ
=: Wt. (2)

Applying Itô’s lemma to W(πt ) implies that the dynamics of the value of the project
under Q satisfies

dWt = Wt(μdt + σdBt ) with W0 = π0
1 − e−(r−μ)τ

r − μ
.

1We assume that the project has no salvage value, i.e. I is totally sunk. As claimed in [15], second hand
markets are of great importance for a nongrowing steady state economy. The fast-changing technology
environment constitutes the complementary case where the second hand value is negligible.
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The value of the opportunity to invest at time t equals

F(πt ) = max
t ′≥t

E
Q
[
Rt ′

Rt

(∫ t ′+τ

t ′
Rs

Rt ′
πsds − I

)∣∣∣∣Ft

]
.

Because the model is stationary (see Appendix 6.1) the solution follows by employing
standard methods (cf. [2]). The main result of this subsection is summarized in the
proposition below.

Proposition 2.1 Let r > μ and let β denote the positive root of the fundamental
quadratic 1

2σ 2β(β − 1) + μβ − r . The firm optimally undertakes the investment the

first time the process Wt exceeds the threshold W ∗ = β
β−1I . The corresponding value

function equals

F(Wt) =
{

(W ∗ − I )( Wt

W ∗ )β if Wt ≤ W ∗,
Wt − I if Wt > W ∗.

The accompanying trigger on the process of profit flows equals π∗ = β
β−1 ×

I
r−μ

1−exp(−(r−μ)τ)
.

2.2 The Investment Policy under Ambiguity Aversion

In this subsection we generalize the problem from the previous subsection. We as-
sume that the investor somehow constructed a model for technological progress, but
suspects that model to be misspecified in the long-run. In order to incorporate the
firm’s fear about model misspecification, we relax the assumption that the firm have
perfect confidence about the process governing the stochastic state variable (profit).
Throughout this subsection the profit flow is modelled as the stochastic process from
the previous section perturbed with the noise of an unspecified distribution. We as-
sume that the perturbation process does not vanish over time and takes the form of
nonzero shocks.

For reasons of mathematical tractability we adopt a noise process that persists in
an independently and indistinguishably distributed manner (IID) according to the ter-
minology of [16]. The noise is represented by a process θ over the range [−κ, κ].
Due to this probabilistic model misspecification, the uncertainty is not reducible to a
single probability measure and thus needs to be characterized by a spectrum of prob-
ability measures. This situation, namely a framework where the firm is not able to
assign a precise probability to future alternatives, is referred to as Knightian uncer-
tainty or ambiguity. Following the seminal work [4], we stress the distinction between
uncertainty and risk. The latter relates to the standard real options setting where the
dynamics of the shock can be captured by a single probabilistic law (a standard geo-
metric Brownian motion in our paper). The parameter κ is crucial for the analysis and
describes the ambiguity level or the degree of Knightian uncertainty.

Similar to [5] and [17], we exclude the possibility of learning. This is due to tech-
nical reasons: there is no constructive way to accommodate the responsiveness of
ambiguity to information arriving continuously over time. Consequently, we impose
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that the firm has acquired all information about market fundamentals at the initial date
and it seeks a form of robust decision rule to deal with the unprecise characteristics
that may (or may not) appear in the future.

The process θ serves as a density generator, so ambiguity in continuous time is
defined as an expansion of the measure Q with a set of density generators. Conse-
quently, the uncertainty is represented by a family of filtered probability spaces in-
dexed by the set of density generators θ : (�, (Ft )t≥0, Qθ ). For a formal construction
the reader is referred to Appendix 6.2. It follows from the representation of ambiguity
and Girsanov’s theorem that the stochastic process

dBθ
t = dBt + θtdt

is a standard Brownian motion on (�, (Ft )t≥0, Qθ ).
This fact allows us to incorporate the noise process affecting the profit flows and

state the general representation of the profit flow as follows:

∀θ dπt = (μ − σθt )πtdt + σπtdBθ
t . (3)

This construction restricts the analysis to the set of measures equivalent to a reference
probability measure. Consequently, the model uncertainty is transformed into para-
meter uncertainty after the change of measure. Thus all processes used to describe
the profit evolution are equivalent and ambiguity is captured by a spectrum of drift
terms. The main limitation of this approach is that Girsanov’s theorem applies for
finite time intervals only and does not ensure the equivalence of measures over an
infinite horizon (cf. [18]). In practice it does not really matter whether the option to
invest exists during a sufficiently large time horizon or an infinite one as long as the
project has finite life-time. However, imposing a fixed horizon on the existence of
the option to invest complicates the analysis due to anomalies appearing close to the
maturity date of the option to invest. To avoid these we construct an approximation
by imposing an infinite decision horizon.2

Returning to the main stream of reasoning, the firm targets a robust decision rule
with respect to uncertainty (model misspecification) in order to hedge itself against
unfavorable shocks. For this reason, we employ an extremal performance measure
(which constitutes a special case of the worst case approach) by adopting the concept
of ambiguity aversion (fear of model misspecification). The framework of our paper
follows the ambiguity aversion definition by Epstein and coauthors [5, 17], which is
recently used by [22] in the context of pricing options.3

According to the ambiguity aversion concept plugged into the decision making
set-up, the firm’s aim is to react optimally to the worst alternative among the possible

2In the literature alternative approaches exist to deal with this problem. The most common are a numerical
valuation of American options assuming fixed and finite horizon (employing a finite differences algorithm),
an analytic approximation of the solution to the same problem [19] and the extension of Girsanov’s theorem
to an uncertain time-horizon proposed in [20]. For the axiomatization of an infinite horizon version of
recursive multiple-priors, the reader is referred to [21], Appendix B.
3The nature of the problem links our analysis with contributions on robust control and model misspecifi-
cation ([6, 23] and [11]). The formal discussion on the relationship between these two approaches can be
found in [21], Sect. 4. We exploit this link in Sect. 4.
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outcomes. By construction (see Appendix 6.2), ambiguity aversion corresponds to
the case where the firm assigns the lowest value of the growth rate to the project,
such that

dπt = (μ − κσ)πtdt + σπtdBκ
t .

For this reason, in what follows we do not distinguish between the level of Knightian
uncertainty and the level of ambiguity aversion. To make the framework mathemati-
cally transparent, in this section we define the market as {(Rt ,πt ), (�, (Ft )t≥0, Qκ )},
where κ is fixed. It is worth stressing that in the case of a one dimensional set of val-
ues for θ , ambiguity aversion restores the market, which is complete. This means that
all market dynamics can be described under the single worst case measure and the
description of uncertainty is reduced to a filtered probability space (�, (Ft )t≥0, Qκ).
Consequently, ambiguity aversion leads to a transformation of uncertainty to risk.
Furthermore, the investor is assumed to be neutral with respect to risk. By employing
different criteria towards risk and uncertainty in the sequence of the above described
steps, we link to Ellsberg’s paradox [24] revealing a difference in responses with
respect to risk and uncertainty widely reconciled in behavioral economics.

Now we are ready to outline the main steps of project valuation and the solution to
the investment problem under ambiguity. The fact that the firm is ambiguity averse is
captured by taking the minimum over all models describing the dynamics of profits
(captured by (3)), whereas the attitude towards risk is modelled by taking the expec-
tation with respect to the future realization of the profit flow process. Combining the
above with the question of determining the timing to undertake the irreversible in-
vestment leads to a ‘maxmin’ decision framework.4 We demonstrate in Appendix 6.2
that the project value under the worst case scenario is described by the following
proposition.

Proposition 2.2 Under the worst case scenario, the present value at t of a cash flow
stream generated by the project during its life-time τ equals

W(πt , t) = min
θ∈[−κ,κ]E

Qθ

[∫ t+τ

t

Rs

Rt

πsds

∣∣∣∣Ft

]
= πt

1 − e−(r−μ+κσ)τ

r − μ + κσ
,

and its dynamics under the worst case measure, Qκ , is given by

dWt = Wt(μ − κσ)dt + WtσdBκ
t with W0 = π0

1 − e−(r−μ+κσ)τ

r − μ + κσ
.

4Let us stress the similarity with robust control theory here: “To attain a robust decision rule, the decision
maker modifies the usual Bellman equation by adding another player (‘nature’) who, by choosing a nearby
model to hurt the decision maker, assists the decision maker to find a robust decision rule. Thus, the
decision maker devises a robust decision rule by finding a value function that solves a ‘maxmin’ problem.”
(cf. [12], Chap. 6).
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As shown in Appendix 6.2, the corresponding value of the investment opportunity
equals

F(W(πt )) = max
t ′≥t

min
θ∈[−κ,κ]E

Qθ

[
Rt ′

Rt

(∫ t ′+τ

t ′
Rs

Rt

πsds − I

)∣∣∣∣Ft

]
.

By employing dynamic programming and Itô’s lemma we find that

1

2
σ 2W 2

t F ′′(Wt) + (μ − κσ)WtF
′(Wt) − rF (Wt) = 0.

This equation is solved subject to standard boundary conditions (value-matching,
smooth-pasting and absorbing barrier condition, respectively):

F(W ∗) = W ∗ − I, F ′(W ∗) = 1, F (0) = 0,

in which W ∗ is the investment trigger. The main result is summarized in the following
proposition.

Proposition 2.3 Let the firm be ambiguity averse and let κ > 0 represent the firm’s
degree of Knightian uncertainty. Let r > μ − κσ and let β denote the positive root
of the fundamental quadratic 1

2σ 2β(β − 1) + (μ − κσ)β − r . The firm optimally
undertakes the investment the first time the process Wt exceeds the threshold W ∗ =

β
β−1I . The corresponding value function equals

F(Wt) =
{

(W ∗ − I )( Wt

W ∗ )β if Wt ≤ W ∗,
Wt − I if Wt > W ∗.

In order to provide a complete characterization of the optimal investment rule, we
state an analogous proposition in terms of profit flows.

Proposition 2.4 Let the firm be ambiguity averse and let κ > 0 represent the firm’s
degree of Knightian uncertainty. Let r > μ − κσ and let β denote the positive root
of the fundamental quadratic 1

2σ 2β(β − 1) + (μ − κσ)β − r . The firm optimally
undertakes the investment the first time the process πt exceeds the threshold π∗ =

β
β−1I δ

1−exp(−δτ)
, where δ = r − μ + κσ . The corresponding value function is

G(πt ) =
⎧⎨
⎩

(π∗ 1−exp(−δτ)
δ

− I )( πt

π∗ )β if πt ≤ π∗,

πt
1−exp(−δτ)

δ
− I if πt > π∗.

3 Characterization of Investment Policy A Priori

The investment policy under ambiguity is determined on the basis of recursive-priors
formulated in reply to a possible model misspecification. In this section we examine
the impact of ambiguity aversion and finite life-time on the project value and optimal
investment timing. As a reference point we consider the model without Knightian
uncertainty.
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3.1 No Ambiguity

To examine the effect of an increase in risk (volatility) of the project in the absence
of Knightian uncertainty we derive the following partial derivatives of the triggers:

∂W ∗

∂σ
= − W ∗

β(β − 1)

∂β

∂σ
> 0 and

∂π∗

∂σ
= ∂W ∗

∂σ

r − μ

1 − exp(−(r − μ)τ)
> 0.

Both critical values W ∗ and π∗ increase when σ increases. Thus a greater degree of
risk σ results in an increase of the value of the option to wait. This is a well-known
result in the real options literature.

3.2 Comparative Statics Results under Ambiguity Aversion

First, we focus on the effect of ambiguity aversion on the time interval before the
investment takes place. The threshold level of the present value of the project that
triggers investment equals

W ∗ = β

β − 1
I, where β = 1

2
− μ − κσ

σ 2
+
√(1

2
− μ − κσ

σ 2

)2 + 2r

σ 2
> 1.

For this trigger the comparative statics result is easy to establish. Increasing ambigu-
ity (κ) erodes the drift and raises β . This implies that the hysteresis factor β

β−1 de-
creases, and so does the investment threshold W ∗. Hence, higher ambiguity implies
that, compared to the standard problem from Sect. 2.1, less precise information about
the project value becomes available over time, which makes waiting with investment
less valuable. Thus higher ambiguity erodes the value of the investment opportunity.
This result is in contrast with the impact of risk (volatility) in the standard real op-
tions literature. On the other hand, the hysteresis factor β

β−1 remains above 1, thus
invalidation of the simple static NPV rule still holds.

To further investigate the impact of ambiguity on investment, we present compar-
ative statics results for the trigger π∗. This allows us to incorporate the impact of
ambiguity on the profit received by the firm after the investment has taken place. The
partial derivative of trigger π∗ is

∂π∗

∂κ
= ∂π∗

∂β

∂β

∂κ︸ ︷︷ ︸
option value effect <0

+ ∂π∗

∂δ

∂δ

∂κ
,︸ ︷︷ ︸

present-value effect >0

where δ is the convenience yield as defined in Proposition 2.4. The above decompo-
sition reveals two effects that govern the comparative statics results. The first term
is the option value effect. It describes the impact of the change in the option value
due to the change in the degree of Knightian uncertainty. Similarly as for the trigger
W ∗, the increase in ambiguity lowers the growth rate of the project. This raises β

and decreases the factor β
β−1 and thus lowers the investment threshold. The second

effect is the present-value effect. This measures the change in the trigger caused by
the change in the convenience yield. An increase in the degree of ambiguity lowers
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Fig. 1 Impact of ambiguity aversion on triggers W∗ and π∗ . The parameters are (r,μ,σ,

τ, I ) = (0.2,0.1,0.2,15,100)

Fig. 2 The finite life-time effect in the optimal investment trigger. The parameters are (r,μ,σ,

I ) = (0.2,0.1,0.2,100)

the trend μ − κσ and thus reduces the net present value of the project. This makes
investment less profitable and consequently raises the trigger. Thus the present-value
effect is contradictory to the option value effect. Combining both effects yields that
the relation investment trigger-Knightian uncertainty is equivocal for π∗. It is worth
stressing that the origin of the nonmonotonicity result in the investment trigger here
is different than in [9]. Their findings are related to the different levels of ambigu-
ity regarding continuation and termination value whereas in our model the level of
ambiguity remains unchanged after the investment has been undertaken.

Figure 1 illustrates the difference in the impact of the Knightian uncertainty on the
triggers W ∗ and π∗, while this difference will be analyzed further in the next sub-
section. Nonmonotonicity only occurs in case of π∗ because only then the ambiguity
after the investment is taken into account resulting in the present-value effect.

Let us now turn to the effect of the length of the life-time of the project. It is easy
to show that the trigger π∗ decreases at an exponential rate with τ . The larger τ , the
larger the time that the project generates profits, so that the current profit flow can be
smaller for investing to be optimal. Figure 2 depicts the convergence of the optimal
threshold to the case of the perpetual one. In the latter case the investment trigger is
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increasing in κ so the present-value effect dominates. Moreover, in Fig. 2 we see that
the magnitude of the option value effect relative to the present-value effect decays
when the life-time of the project increases. For the perpetual project, the comparative
statics results for triggers W ∗ and π∗ exhibits monotonicity but in opposite direc-
tions: the former is decreasing while the latter is increasing in κ (cf. [8]). As said
before, this extreme case reflects domination of the present-value effect over the op-
tion value effect (see Appendix 6.3). Concluding, we can summarize the comparative
statics results for the trigger π∗ in the following proposition.

Proposition 3.1 If the project life-time is finite, the impact of ambiguity on the in-
vestment trigger π∗ is equivocal:

∂π∗

∂κ
� 0 ⇐⇒

σ 2

2 (β − 1)

(β − 1
2 )σ 2 + μ − κσ

� τδ

exp(τδ) − 1
.

Simulations show that a combination of a short life-time of projects and a low
degree of Knightian uncertainty is associated with a high value of the trigger π∗.
This is also the case when we have high levels of ambiguity and larger life-times.

3.3 Probability of Investment

In the previous section we have shown that investment triggers W ∗ and π∗ exhibit
different comparative statics results (see Fig. 1), despite the fact that processes Wt and
πt are governed by the same dynamics. To investigate this issue further, we determine
the impact of ambiguity aversion on the length of the period before the investment
takes place. This allows us to establish how powerful the nonmonotonic effect in π∗
is.

We examine the probability that investment takes within a period of length H .
Since the future evolution of π (and W ) is unknown, the time of the investment is a
random variable. Following [25], the cumulative distribution of the first passage time
can be written as:

Qκ
(

sup
0≤t≤H

Wt ≥ W ∗)= 
(d1) + 
(d2)

(
W ∗

W0

) 2μ̂

σ2

,

where d1 = [− ln(W ∗
W0

) + μ̂H ][σ√
H ]−1, d2 = [− ln(W ∗

W0
) − μ̂H ][σ√

H ]−1, μ̂ =
μ − κσ − σ 2

2 , and 
(·) is the standard normal cumulative distribution function. Be-
fore we turn to the analysis of the results, let us recall that a change in the degree
of ambiguity aversion affects the initial value for the process of the present values
of project, W0 (see Proposition 2.2), whereas the starting value of the profit flow,
π0, is not sensitive to changes in κ . While marking both triggers down we obtain
W ∗
W0

= π∗
π0

. Thus, because both Wt and πt are geometric Brownian motions with iden-
tical parameters, the probability of investment is the same for the processes under
question. Therefore, without loss of generality, in the remainder of this section we
only consider profit flows.
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Fig. 3 Impact of ambiguity aversion on probability of investment. The parameters are (r,μ,

σ, τ, I,π0) = (0.2,0.1,0.2,15,100,20)

There are two important observations related to the probability of investment. Fig-
ure 3 shows the probability of investment for different time horizons and for different
levels of ambiguity aversion. The panel for low values of H illustrates the case where
the reduced value of waiting makes that in the short-run Knightian uncertainty may
be investment enhancing. On the other hand, for relatively high values of H the op-
posite effect holds: the ambiguous firm is less eager to invest than the firm facing
no ambiguity. In fact such a behavior of the probability of investment reflects two
opposite effects acting on this measure. First, the investment trigger is decreasing in
low values of Knightian uncertainty so that investment occurs earlier. Second, a large
degree of Knightian uncertainty lowers the perceived drift of the project. This implies
that approaching the zero-absorbing barrier for the process is more likely. Combin-
ing these effects imply that, even if the trigger π∗ is nonmonotonic in the degree of
the Knightian uncertainty, the probability of investment appears to be monotonically
decreasing in the level of Knightian uncertainty for a sufficiently large time horizon.

We focus now on the limiting case as the horizon date H tends to infinity. Follow-
ing [25], p. 43, we can write:

Qκ
(

sup
0≤t≤∞

πt ≥ π∗)=

⎧⎪⎨
⎪⎩

1 if 2μ̂

σ 2 ≥ 0 ⇔ κ ≤ μ− σ2
2

σ
,

(π∗
π0

)
2μ̂

σ2 if 2μ̂

σ 2 < 0 ⇔ κ >
μ− σ2

2
σ

.

This confirms the intuitive result that high uncertainty regarding the growth rate of
future technological progress lowers the likelihood of the investment, as summarized
in the following proposition.

Proposition 3.2 The firm with low degree of ambiguity aversion, κ ≤ μ− σ2
2

σ
, invests

with probability 1, whereas the firm with large ambiguity aversion, κ >
μ− σ2

2
σ

, re-
frains from investment with positive probability, if the horizon date is infinite.
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3.4 Ironing the Investment Trigger

Throughout the paper we assume that the life-time of the project is given exogenously
and does not reflect any characteristics of market uncertainty. That is, regardless of
the form of uncertainty, the project lasts exactly τ years and then suddenly stops
functioning. However, while a firm forms beliefs about the dynamics of profits, at the
same time a firm may calculate the estimated life-time of the project reflecting the
firm’s attitude towards ambiguity.

In this section we provide comparative statics taking this life-time effect into ac-
count. We start out by deriving the life-time τ(κ) of the project that guarantees that
profits at the moment of investment under the worst case scenario are the same as
for the case without ambiguity. The trigger corresponding to this preference-adjusted
project’s life-time is denoted by π∗(κ, τ (κ)), so that τ(κ) is implicitly determined by
the equality π∗(κ, τ (κ)) ≡ π∗(0, τ (0)). The necessary condition for the existence of
this iso-profit curve is stated in the proposition below, whereas derivations are placed
in Appendix 6.3.

Proposition 3.3 Let π∗(κ,∞) := limτ→∞ π∗(κ, τ ). For levels of ambiguity κ

satisfying π∗(0, τ (0)) > π∗(κ,∞) there exists a τ(κ) such that π∗(κ, τ (κ)) ≡
π∗(0, τ (0)).

Figure 4 depicts this criterion. If the firm’s estimate of the project’s life-time
is below τ(κ), then the investment trigger on the profit flow process exceeds the
investment trigger under the absence of ambiguity. The opposite holds for val-
ues of project’s life-times above τ(κ). The constraint on the level of ambiguity,
π∗(0, τ (0)) > π∗(κ,∞), implies that the larger τ(0) the smaller is the set of κ

for which the iso-profit curve exists. Consequently, the region where π∗(0, τ (0)) >

π∗(κ, τ ) declines with an increase of the project’s life-time τ(0).
The impact of ambiguity on the investment policy can be analyzed by examining

the change in the probability of investment due to a change in the degree of Knightian
uncertainty and the adjusted life-time of the project. Simulations for the case where
life-time of the project equals τ(κ) suggest that the likelihood of investment is eroded
by the presence of Knightian uncertainty. However, establishing in full generality the

Fig. 4 The life-time τ(κ)

corresponding with iso-profit
curve π∗(κ, τ (κ))

≡ π∗(0, τ (0)) for the set of
parameters
(r,μ,σ, τ (0), I ) = (0.2,0.1,0.2,

15,100)
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result that the probability of investment over a finite horizon is decreasing in the
degree of Knightian uncertainty for projects with life-time τ(κ) remains an open
problem (see Appendix 6.3).

4 Discount Factor Problem and Ex Post Analysis

4.1 Endogenous Discount Factor

It is known from the literature that the application of a preference based valuation
may lead to some bias of decision criteria [7]. In this section we examine this prob-
lem and we carry out an ex post analysis to validate the investment decision criterion.
To do so, we construct the endogenous discount factor implied by the firm’s pref-
erences (ambiguity aversion). Because our construction of the preference-adjusted
discount factor exploits analogies between ambiguity aversion and the robust control
approach to model misspecification, we first discuss the link between recursive-priors
and robust control approaches within the framework of our model.

In the absence of misspecification (Sect. 2.1), the optimal investment decision is
obtained on the basis of the value of the installed project, W , and the accompanying
optimal stopping problem. However, under the fear of model misspecification the
mathematical representation capturing the value of the installed project is no longer
unique (cf. [12], Chap. 12). There are two ways of approaching this problem and they
differ in what they take as a model with respect to which conditional expectation is
valuated. In Sect. 2.2, we adopt the first approach. We introduce ambiguity in order
to model the reaction of the project’s growth rate to persistent shocks and we carry
out the analysis on the basis of recursive-priors in analogy to [5]. Later, by imposing
preferences to reflect the firm’s fear of model misspecification (ambiguity aversion)
we obtain that the conditional expectation defining the installed project’s value, W ,
is evaluated with respect to the worst case model for profit flows. This representation
captures a concern about robustness by adjusting the probability distribution of the
profit flow.

The second approach to the valuation of the installed project, W , is based on an ad-
justment of the discount factor (cf. [12], Chap. 12). It corresponds to a multiplication
of the ordinary discount factor of the no ambiguity case, with the Radon-Nikodym
derivative defining the worst case measure. In this way the endogenous discount fac-
tor arises from the preferences with respect to ambiguity.5

Following [21], from a formal point of view we would like to stress that recursive
multiple-priors and a robust optimal control model do not serve as perfect substitutes.
The difference stems from alternative restrictions on the initial set of priors and on
updating rules. Whereas ambiguity in [5, 16] and [21] is captured by a rectangular
set of priors updated prior-by-prior (see Appendix 6.2), the robust control model
delivers a set of priors constrained by the relative entropy measure (Radon-Nikodym

5There exists a vast literature on discount factor anomalies in discrete time models (see, e.g. [26] for an
up to date summary). The problem of modelling preferences in the real options framework is still at its
infancy. Among the pioneering works we have [27–30].
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derivative). However, it has been proven (cf. [10] and [11]) that Bellman equations
arising from stochastic differential utility optimization and Bellman equations arising
in robust control settings are of the same form.

Let us now apply this finding in order to construct the endogenous discount factor
for the problem formulated in Sect. 2.2. In order to transform the discount factor
used ex ante, Rt , into the discount factor implied by preferences (called endogenous,
ambiguity-adjusted or ex post discount factor in what follows) and denoted by St , we
employ a two-step reasoning resembling the search method proposed in [29].

The procedure is designed for a fixed κ . First, we analyze how a discount fac-
tor should be adjusted if only risk is taken into account but no decision making is
involved. Technically, we search for a Q-measurable process St , such that it holds
that

E
Q
[∫ t+τ

t

Ss

St

πsds

∣∣∣∣Ft

]
= E

Qκ

[∫ t+τ

t

Rs

Rt

πsds

∣∣∣∣Ft

]
, for all κ > 0. (4)

Restricting to a Q-measurable processes can be interpreted as imposing some sto-
chastic noise on the existing discount factor Rt . This corresponds with the construc-
tion of a Radon-Nikodym derivative suggested by the robust control approach.

Second, we include the decision making aspect. Namely, we verify that the optimal
stopping problem solved under Q with stochastic discount factor St gives the same
decision criterion as the optimal stopping problem solved under Qκ and deterministic
discount factor Rt . The main result is formalized in the proposition below, whereas
formal derivations are placed in Appendix 6.4.

Proposition 4.1 There exists an endogenous discount factor satisfying criterion (4)
and yielding the same decision criterion under Q as the worst case approach from
Sect. 2.2. This endogenous stochastic discount factor described under Q follows the
geometric Brownian motion

dSt = St (−rdt − κdBt ), with S0 = 0. (5)

This class of discount factors has been introduced to real options in [30]. Proposi-
tion 4.1 establishes a close connection between optimal investment decisions in two
frameworks: preference-free valuation under the stochastic discount factor and valu-
ation under ambiguity aversion and the deterministic discount factor.

4.2 Endogenous Price of Risk

Having established Proposition 4.1 we proceed to an ex post analysis. To do so, we
refer to the concept of the market price of risk known from stochastic finance (see
[31], Chap. 15 or [32], Chap. 5). The complete market has the property that the mar-
ket price of risk is uniquely determined within the model and there is a one-to-one
correspondence between the underlying martingale measure and the market price of
risk. In the framework of this chapter such a situation occurs for instance if there
is no noise related to forthcoming innovations, so that the model without ambigu-
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ity (as in Sect. 2.1) applies. Then, the discounted profit flow follows under Q the
process

d(Rtπt ) = (μ − r)Rtπtdt + σRtπtdBt = σRtπt (ηdt + dBt ),

where η = μ−r
σ

describes the market price of risk.
If the project is subject to shocks that reflect the forthcoming innovations (see

Sect. 2.2), so the firm faces ambiguity about the profit on the project, then the market
is perceived as incomplete. Market incompleteness is associated with the spectrum
of martingale measures that can be adopted in determination of a fair value of the
project and consequently results in multiplicity of the market prices of risk. Refer-
ence [31] points out that in the framework where the individual preferences of the
decision maker are defined and the value functions consistent with these preferences
are specified, the market price of risk is defined endogenously. However, the word
‘market’ appearing in this context in the term ‘the market price of risk’ is controver-
sial.6 Bearing this in mind, in the further discussion we use the term ‘the endogenous
price of risk’ to stress connotation with preferences of the decision maker.

In our framework the description of the individual preferences with respect to am-
biguity is essentially equivalent to a specification of the endogenous price of risk,
because there is a one-to-one correspondence between the worst case measure de-
scribing the ambiguity aversion and the endogenous price of risk. Consequently, the
discounted profit flow under Qκ defines the endogenous price of risk η(κ) as follows:

d(Rtπt ) = (μ − σκ − r)Rtπtdt + σRtπtdBκ
t = σRtπt (η(κ)dt + dBκ

t ).

Alternatively, we can employ the endogenous discount factor which leads to the same
result since under Q we have:

d(Stπt ) = σStπt (η(κ)dt + dBκ
t ).

Let δ be the convenience yield defined in Proposition 2.4. Clearly, the endogenous
price of risk

η(κ) = μ − κσ − r

σ
= − δ

σ

is a measure of the extra return, or risk premium, that the firm demands to bear risk.
Suppose we know the true process, (θ̄t )t≥0, capturing the impact of technological

progress on the investment. The corresponding profit flow process is:

dπt = (μ − σ θ̄t )πtdt + σπtdBθ̄
t .

6First, the market price of risk is essentially set by the market while here it results from theoretical con-
siderations. Second, the project may not be traded in capital market. “Since the market price of risk is
determined by the market, then if there is no market, there is no market price of risk” (cf. [31]). To avoid
this paradox in the framework of real options models additional assumptions are imposed to assure the
existence of real assets that may (partly) span the risk. For an extensive discussion on the real options
models in incomplete markets (with partly spanning assets) the reader is referred to [33] and [34].
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Thus, the discounted profit flow process follows:

d(Rtπt ) = (μ − σ θ̄t − r)Rtπtdt + σRtπtdBθ̄
t = σRtπt (η(θ̄t )dt + dB

θ̄t
t ),

where η(θ̄t ) = μ−σ θ̄t−r
σ

describes the market price of risk. By direct comparison of
the risk measures under ambiguity aversion and in the true world we obtain:

η(κ) ≤ η(θ̄t ), (6)

with equality iff θ̄t ≡ κ . Intuitively, the worst case approach describes a game against
nature that the uncertainty averse firm would consider as fair: if the worst case occurs
then the prices of risk are identical, and consequently it is a favorable game in all other
cases.7 Alternatively, in the language of quantitative finance (see, e.g. [36]) from (6)
it follows that η(θ̄t ) − η(κ) ≥ 0 describes the difference in the return in excess of the
risk-free rate that the ambiguity averse firm gets as compensation for taking risk.

Let A = {κ : κ > 0 and r > μ − κσ }. In particular it holds that

∀κ∈A η(κ) < η, (7)

which describes the relation between prices of risk corresponding to the processes
(Stπt )t≥0 and (Rtπt )t≥0 defined under Q. Thus, (7) says that the uncertainty averse
firm perceives the project as more risky since the excess return to the risk ratio deter-
mined under ambiguity aversion is lower than in the absence of ambiguity.

5 Conclusions

This paper examines the problem of an investment decision under uncertainty in the
presence of high frequency shocks linked with, e.g., forthcoming innovations. Be-
cause the naive application of the rational expectations equilibrium concept endows
the investor with too much knowledge about future growth prospects, we adopt the
concept of ambiguity aversion and the concept of model misspecification. This allows
us to capture the fear of model misspecification in the decision making process.

Our main focus is on the impact of ambiguity on the investment timing. We iden-
tify two factors that critically influence the results: the length of the project’s life and
whether undertaking the investment solves ambiguity or not. We find that if the in-
vestor remains ambiguous about the profit flows after the investment is undertaken,
then under a short life-time of the project, ambiguity may be investment enhancing. In
general, we obtain that a combination of ambiguity and finite life-time of the project
affects the investment trigger equivocally.

7Because there is one-to-one relation between market price of risk and priors described by density gen-
erators (see, Appendix 6.2) similar result can be stated in terms of martingales: “A minimax martingale
models a game against the nature that an uncertainty-averse agent would consider as ‘fair’: in the worst
case, it is a fair game (martingale)—as a consequence it must be a favorable game (submartingale) in all
other cases” [35].
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To investigate the impact of the threshold’s nonmonotonicity we examine the prob-
ability of investment over a finite horizon. We find that in the short-run ambigu-
ity aversion may be investment enhancing. However, it is also found that the non-
monotonic effect is eroded when the time horizon is increased and in the long-run
a high degree of ambiguity aversion results in totally refraining from the investment
with a substantial probability.

Due to the fact that our robust decision rule corresponds with a specific form
of preferences and may be biased, we evaluate our decision criterion by employing
an ex post analysis. We explicitly derive the stochastic discount factor that results
from optimizing investment behavior of the ambiguity averse firm facing a menu
of representations for uncertainty. The ex post analysis of the investment decision
criterion under ambiguity reveals that the uncertainty averse firm perceives the project
as more risky than in the absence of ambiguity. In general, the risk is overpriced under
ambiguity aversion.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix

6.1 Value of the Project under Risk and Finite Lifetime τ

Solving (1), we obtain the profit stream:

πs = πt exp

(∫ s

t

(
μ − σ 2

2

)
du +

∫ s

t

σdBu

)
, (8)

where π0 is given and the indices are ordered as 0 ≤ t ≤ s. By Fubini’s theorem and
substitution of πt from (8) we get

W(t,πt ) = E
Q
[∫ t+τ

t

e−r(s−t)πsds

∣∣∣∣Ft

]
=
∫ t+τ

t

E
Q[

e−r(s−t)πs

∣∣Ft

]
ds

= πt

∫ t+τ

t

e−r(s−t) exp

(∫ s

t

(
μ − σ 2

2

)
du

)
E

Q
[

exp

(∫ s

t

σdBu

)∣∣∣∣Ft

]
ds

= πt

∫ t+τ

t

exp

((
μ − r − σ 2

2

)
(s − t)

)
E

Q[
exp

(
σ(Bs − Bt)

)∣∣Ft

]
ds

= πt

∫ t+τ

t

exp

((
μ − r − σ 2

2

)
(s − t)

)
exp

(
σ 2(s − t)

2

)
ds

= πt (1 − e−(r−μ)τ )

r − μ
.

Thus W(πt , t) is independent of time and follows the process denoted by Wt :

W(πt , t) = E
Q
[∫ t+τ

t

e−r(s−t)πsds

∣∣∣∣Ft

]
= πt (1 − e−(r−μ)τ )

r − μ
:= Wt. (9)
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The value function is derived by splitting the decision between the immediate invest-
ment and waiting for a short time interval t + dt as follows:

Ft = max
t ′≥t

E
Q
[∫ t ′+τ

t ′
e−r(s−t)πsds − e−r(t ′−t)I

∣∣∣∣Ft

]

= max

{
E

Q
[∫ t+τ

t

e−r(s−t)πsds

∣∣∣∣Ft

]
− I,

max
t ′≥t+dt

E
Q
[∫ t ′+τ

t ′
e−r(s−t)πsds − e−r(t ′−t)I

∣∣∣∣Ft

]}
.

Inserting Wt from (9) and applying the tower property, give that Ft is equal to

max

{
Wt − I, e−rdt max

t ′≥t+dt
E

Q
[
E

Q
[∫ t ′+τ

t ′
e−r(s−t−dt)πsds

− e−r(t ′−t−dt)I

∣∣∣Ft+dt

]∣∣∣∣Ft

]}

⇐⇒ Ft = max
{
Wt − I, e−rdt

E
Q[

dFt

∣∣Ft

]}
.

By the first order Taylor approximation of e−rdt we obtain

F(Wt) = max
{
Wt − I,E

Q[dFt |Ft ] + F(Wt) − rF (Wt )dt
}
.

In the continuation region it holds that rF (Wt)dt = E
Q[dFt |Ft ], which by Itô’s

lemma simplifies to

1

2
σ 2W 2

t F ′′(Wt) + μWtF
′(Wt) − rF (Wt) = 0.

Solving the above equation subject to appropriate boundary conditions (value-
matching, smooth-pasting, and absorbing-barrier condition, respectively):

F(W ∗) = W ∗ − I, F ′(W ∗) = 1, F (0) = 0

gives the unique solution reported in Proposition 2.1.

6.2 Ambiguity and Ambiguity Aversion in Continuous Time

This subsection outlines the concept of Knightian uncertainty in continuous time as
proposed in [5]. Some necessary definitions used in further subsections to model
multiple-priors are also provided here.

Let L be the set of real-valued, measurable and (Ft )-adapted stochastic processes
on (�, FT , Q) with index set [0, T ]. Let L2 be a subset of L:

L2 =
{
(θt )0≤t≤T ∈ L

∣∣∣∣
∫ T

0
θ2
t dt < ∞ Q-a.s.

}
.
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Given θ = (θt ) ∈ L2, define a stochastic process (zθ
t )0≤t≤T by

dzθ
t = −zθ

t θtdBt with zθ
0 = 1.

A stochastic process (θt ) ∈ L2 is called a density generator if (zθ
t ) is a (Ft ) martin-

gale. The most commonly used sufficient condition for (zθ
t ) to be a (Ft ) martingale

is Novikov’s condition:

E
Q
[

exp

(
1

2

∫ T

0
θ2
s ds

)]
< ∞.

Let θ be a density generator. Define Qθ by

∀A∈FT
Qθ (A) = E

Q[zθ
T 1A]. (10)

Qθ is a probability measure equivalent to Q. Any equivalent to Q probability measure
can be obtained by a density generator as described above.

Let � be a set of density generators. The set of probability measures P � on
(�, FT ) generated by � is denoted by

P � = {Qθ |θ ∈ �},
where Qθ is derived from Q according to (10). This completes the formal construc-
tion of multiple-priors. Thus, firm’s beliefs are operationally captured by the set of
probability measures equivalent to Q in the multiple-priors set-up proposed by [5].

Now, by Girsanov’s Theorem, Bθ
t = Bt + ∫ t

0 θsds is Brownian motion relative to
Qθ , and the set of SDEs capturing uncertain profit turns out to be

dπt = μπtdt + σπtdBt = μπtdt + σπt (dBθ
t − θtdt)

= (μ − σθt )πtdt + σπtdBθ
t (11)

for any θ ∈ �. Consequently, the multiplicity of measures in P can be interpreted as
modelling ambiguity about the drift of the driving process.

Definition 6.1 A set of density generators is called strongly rectangular if there ex-
ists a nonempty compact subset K of R and a compact-valued, convex-valued, mea-
surable correspondence K : [0, T ] � K such that 0 ∈ Kt and

�Kt = {(θt ) ∈ L2|θt (ω) ∈ Kt m ⊗ Q-a.s.},
where m is the Lebesgue measure restricted on B([0, T ]).

In the main part of our paper we focus on the case of strongly rectangular sets in
which Kt is independent of time t .

Definition 6.2 The uncertainty characterized by �K is IID uncertainty (see, [16]) if
there exists a compact subset Kof R such that 0 ∈ Kt and

�K = {(θt ) ∈ L2|θt (ω) ∈ K m ⊗ Q-a.s.}.
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Definition 6.3 The special case of the IID uncertainty �K , where the set K is the
symmetric interval K = [−κ, κ], is called κ-ignorance.

The real number κ > 0 represents the degree of Knightian uncertainty.

Lemma 6.1 For any s ≥ t and for any θ ∈ �Kt it holds that

E
Qθ

[
exp

(
−
∫ s

t

σ θudu + σ(Bθ
s − Bθ

t )

)∣∣∣∣Ft

]

≥ E
Qθ∗[

exp

(
−
∫ s

t

σ θ∗
udu + σ(Bθ∗

s − Bθ∗
t )

)∣∣∣∣Ft

]

where θ∗
t ≡ arg max{σx|x ∈ Kt } = maxKt is a degenerated measurable process.

For the proof of this lemma the reader is referred to [8], Appendix A. The degen-
eracy follows from the theory of support functions (cf. [5] or [37], pp. 11–12).

Let 0 ≤ t ≤ s and let π0 > 0. Regarding Qθ as the true measure, the solution to
profit equation (11) admits the following recursive form

πs = πt exp

(∫ s

t

(
μ − σ 2

2

)
du − σ

∫ s

t

θudu +
∫ s

t

σdBθ
u

)
. (12)

Derivation of the value of the project installed:

W(πt , t) = inf
θ∈�

E
Qθ

[∫ t+τ

t

e−r(s−t)πsds

∣∣∣∣Ft

]
= inf

θ∈�

∫ t+τ

t

E
Qθ [

e−r(s−t)πs

∣∣Ft

]
ds

= inf
θ∈�

∫ t+τ

t

πt e
(μ− σ2

2 −r)(s−t)
E

Qθ

[
exp

(∫ s

t

σdBθ
u −

∫ s

t

σ θudu

)∣∣∣∣Ft

]
ds

= πt

∫ t+τ

t

e(μ− σ2
2 −r)(s−t)

E
Qθ∗[

exp

(
σ(Bθ∗

s − Bθ∗
t ) −

∫ s

t

σ θ∗
udu

)∣∣∣∣Ft

]
ds

= πt

∫ t+τ

t

exp

((
μ − r − σ 2

2

)
(s − t) −

∫ s

t

σ θ∗
udu

)

× exp
(σ 2(s − t)

2

)
ds

= πt

∫ t+τ

t

exp

(
(μ − r)(s − t) −

∫ s

t

σ θ∗
udu

)
ds.

The sequence of equalities is validated by Fubini’s theorem, (12), Lemma 6.1, degen-
eracy of θ∗ and easy algebra, respectively.

Lemma 6.2 Let 0 ≤ t1 ≤ t2 ≤ T and let X be an FT -measurable random variable. If
� is strongly rectangular then, under the assumption that the minima exist, it holds
that

min
θ∈�

E
Qθ

[
E

Qθ [X|Ft2]
∣∣∣Ft1

]
= min

θ∈�
E

Qθ
[

min
θ ′∈�

E
Qθ ′ [X|Ft2]

∣∣∣Ft1

]
. (13)
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For the proof of this lemma the reader is referred to [8], Appendix B.
The value function, Ft , is derived recursively as follows:

Ft = max
t ′≥t

min
Q∈P �

E
Q
[∫ t ′+τ

t ′
e−r(s−t)πsds − e−r(t ′−t)I

∣∣∣∣Ft

]

= max

{
min

Q∈P �
E

Q
[∫ t+τ

t

e−r(s−t)πsds

∣∣∣∣Ft

]
− I, Jt

}
,

where

Jt = max
t ′≥t+dt

min
Q∈P �

E
Q
[∫ t ′+τ

t ′
e−r(s−t)πsds − e−r(t ′−t)I

∣∣∣∣Ft

]
.

Applying the tower property and Lemma 6.2 yield

Jt = e−rdt max
t ′≥t+dt

min
Q∈P �

E
Q
[∫ t ′+τ

t ′
e−r(s−t−dt)πsds − e−r(t ′−t−dt)I

∣∣∣∣Ft

]

= e−rdt max
t ′≥t+dt

min
θ∈�

E
Qθ

[
E

Qθ
[∫ t ′+τ

t ′
e−r(s−t−dt)πsds

− e−r(t ′−t−dt)I

∣∣∣Ft+dt

]∣∣∣∣Ft

]

= e−rdt max
t ′≥t+dt

min
θ∈�

E
Qθ

[
min
θ ′∈�

E
Qθ ′ [∫ t ′+τ

t ′
e−r(s−t−dt)πsds

− e−r(t ′−t−dt)I

∣∣∣Ft+dt

]∣∣∣∣Ft

]

= e−rdt min
θ∈�

E
Qθ

[
max

t ′≥t+dt
min
θ ′∈�

E
Qθ ′ [∫ t ′+τ

t ′
e−r(s−t−dt)πsds

− e−r(t ′−t−dt)I

∣∣∣Ft+dt

]∣∣∣∣Ft

]

= e−rdt min
θ∈�

E
Q
[
dFt

∣∣∣Ft

]
.

Inserting Wt and substituting Jt give

Ft = max{Wt − I, Jt } = max
{
Wt − I, e−rdt min

θ∈�
E

Q
[
dFt+dt

∣∣∣Ft

]}
.

By the first order Taylor approximation of e−rdt we obtain

F(Wt) = max
{
Wt − I,min

θ∈�
E

Qθ [dFt |Ft ] + F(Wt) − rF (Wt)dt
}
.

In the continuation region it holds that

rF (Wt)dt = min
θ∈�

E
Qθ [dFt |Ft ],
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which by Itô’s lemma simplifies to

1

2
σ 2W 2

t F ′′(Wt) + (μ − κσ)WtF
′(Wt) − rF (Wt) = 0.

6.3 Comparative Statics Results

The impact of ambiguity aversion on π∗:

∂π∗

∂κ
= π∗

(
− 1

β(β − 1)

∂β

∂κ
+ 1

δ

∂δ

∂κ︸ ︷︷ ︸
perepetual project effect> 0

− τ exp(−δτ)

1 − exp(−δτ)

∂δ

∂κ︸ ︷︷ ︸
finite life-time effect< 0

)
.

Note that (β − 1
2 )σ 2 + μ − κσ =

√
(μ − κσ − 1

2σ 2)2 + 2rσ 2 and thus

∂β

∂κ
= 1

σ

(
1 − μ − κσ − 1

2σ 2√
((μ − κσ) − 1

2σ 2)2 + 2rσ 2

)

= σβ

σ 2(β − 1
2 ) + μ − κσ

,

− 1

β(β − 1)

∂β

∂κ
+ 1

δ

∂δ

∂κ
= − 1

β − 1

σ

(β − 1
2 )σ 2 + μ − κσ

+ σ

r − μ + κσ

= σ

β − 1

−r + (β − 1)σ 2(β − 1
2 ) + β(μ − κσ)

((β − 1
2 )σ 2 + μ − κσ)(r − μ + κσ)

= σ

β − 1

σ 2

2 (β − 1)2

((β − 1
2 )σ 2 + μ − κσ)(r − μ + κσ)

> 0.

The last equality follows after substitution of the fundamental quadratic. Thus, the

sign of derivative for π∗ depends on τ : ∂π∗
∂κ

� 0 ⇔ σ2
2 (β−1)

(β− 1
2 )σ 2+μ−κσ

� τδ
exp(τδ)−1 . The

RHS can be made large for τ small, whereas the LHS is independent on τ .
We discuss the condition for ironing the investment trigger:

∂π∗(κ, τ (κ))

∂κ
= π∗

(
∂ ln(

β(κ)
β(κ)−1Iδ(κ))

∂κ
− ∂ ln(1 − exp(−δ(κ)τ (κ)))

∂κ

)
.

Equating the derivative above to 0 and solving the ODE obtained give

ln
( β(κ)

β(κ) − 1
Iδ(κ)

)
+ c0 = ln

(
1 − exp(−δ(κ)τ (κ))

)
,

where c0 is an integration constant. Thus, C0
β(κ)

β(κ)−1Iδ(κ) = 1 − exp(−δ(κ)τ (κ))

with C0 := exp(c0). Rearranging and employing the initial condition reflecting the
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case without ambiguity, yield C0 = 1
π∗(0,τ (0))

and

τ(κ) = 1

δ(κ)
ln

(
1 − 1

π∗(0, τ (0))

β(κ)

β(κ) − 1
Iδ(κ)

)−1

= 1

δ(κ)
ln

(
1 − π∗(κ,∞)

π∗(0, τ (0))

)−1

.

The solution is meaningful if τ(κ) > 0, which corresponds to π∗(0, τ (0)) >

π∗(κ,∞).
We examine the monotonicity (in κ) of the probability of investment over a plan-

ing period of length H , given that the project’s life-time is τ(κ). By definition
π∗(κ, τ (κ)) = π∗(0, τ (0)) and thus

∂Qκ (sup0≤t≤H πt ≥ π∗(κ, τ (κ)))

∂κ

= ∂
(d1)

∂d1

∂d1

∂κ
+ ∂
(d2)

∂d2

∂d2

∂κ

(
π∗(0, τ (0))

π0

) 2μ̂

σ2

+ 
(d2)

(
π∗(0, τ (0))

π0

) 2μ̂

σ2

ln

(
π∗(0, τ (0))

π0

)
∂(

2μ̂

σ 2 )

∂κ
.

It is easy to see that the second term is positive, whereas the remaining ones are
negative. The total sign of the derivative is difficult to verify analytically.

6.4 Derivation of Endogenous Discount Factor

We search for the endogenous discount factor in the class of processes obtained from
Rt by a stochastic disturbance of the following form:

dSt = d(CtRt ),

where the correction term follows a geometric Brownian motion driven by the same
shock as the project under Q, i.e.

dCt = Ct(αdt − κdBt ).

It follows by Itô’s lemma that St is geometric Brownian motion under Q:

dSt = St

(
(−r + α)dt − κdBt

)
.

We impose S0 = 1, which implies that C0 = 1. In order to define a measure, Ct has
to be a martingale, so it must be the case that α = 0. Now we are ready to verify
condition (4):
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E
Q
[∫ t+τ

t

Ss

St

πsds

∣∣∣∣Ft

]

= πt

∫ t+τ

t

e(μ− σ2
2 −r− κ

2
2 )(s−t)

E
Q
[

exp
(∫ s

t

(σ − κ)dBu

)∣∣∣∣Ft

]
ds

= πt

∫ t+τ

t

e(μ− σ2
2 −r− κ

2
2 )(s−t)e

(σ−κ)2
2 (s−t)ds

= πt (1 − e−(r−μ+κσ)τ )

r − μ + κσ
= πt (1 − e−δτ )

δ

where δ = r − μ + κσ . Thus, for κ = κ we obtain the result from Proposition 2.2.
To verify the second step of the procedure, we extend the solution of the optimal

stopping under the stochastic discount factor St from [30] for the case of a finite
life-time τ of the project. Let

F(πt ) = max
t ′≥t

E
Q
[
St ′

St

(∫ t ′+τ

t ′
Ss

St ′
πsds − I

)∣∣∣∣Ft

]

denote the value of investment opportunity at time t . Imposing Bellman principle in
the form derived by [30], gives that F(·) must satisfy

E

[
d
(
StF (πt )

)∣∣∣Ft

]
= 0 ⇐⇒ E[F(πt )dSt + StdF (πt ) + dStdF (πt )|Ft ] = 0.

Consequently, we obtain the following equation

σ 2

2
π2

t F ′′(πt ) + (μ − κσ)πtF
′(πt ) − rF (πt ) = 0.

The set of boundary conditions corresponding to the finite life-time τ is as follows:

F(0) = 0, F (π∗) = π∗ 1 − exp(−δτ)

δ
− I, Fπ(π∗) = 1 − exp(−δτ)

δ
.

Setting κ = κ and solving this standard problem give the same optimal investment
criterion as the model under the degree of ambiguity κ .
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