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THE WREATH PRODUCT OF ATOMS
OF THE LATTICE OF SEMIGROUP VARIETIES

A. V. TISHCHENKO

Abstract. A semigroup variety is called a Cross variety if it is finitely based, is
generated by a finite semigroup, and has a finite lattice of subvarieties. It is estab-
lished in which cases the wreath product of two semigroup varieties each of which is
an atom of the lattice of semigroup varieties is a Cross variety. Furthermore, for all
the pairs of atoms U and V for which this is possible, either a finite basis of identities

for the wreath product UwV is given explicitly, a finite semigroup generating this
variety is found and the lattice of subvarieties is described, or it is proved that such
a finite characterization is impossible.

1. Statement of the problem and formulation of the main results

This paper is devoted to a systematic study of the wreath products of atoms of the
lattice of semigroup varieties. We consider three classical conditions for varieties to
be finite: having a finite basis of identities, being generated by a finite semigroup, and
having a finite lattice of subvarieties. For all the pairs of atoms U and V for which this is
possible, a finite basis of identities for the wreath product UwV is given explicitly, a finite
semigroup generating this variety is found and the lattice of subvarieties is described.

Definition 1.1. A semigroup variety is called a Cross variety if it is finitely based, is
generated by a finite semigroup and has a finite lattice of subvarieties.

The atoms of the lattice L of all semigroup varieties are well known [16]. These are
precisely the varieties N2 of all semigroups with zero multiplication, Sl of all semilattices,
L1 of all semigroups of left zeros, R1 of all semigroups of right zeros and Ap of all Abelian
groups of prime exponent p. The main result of the paper can be stated as follows.

Theorem 1.2. If U and V are atoms of the lattice of semigroup varieties, then the
wreath product UwV is a Cross variety, except in the following cases:

1) U = V = Ap; here the variety ApwAp = A2
p is finitely based but is not gener-

ated by a finite semigroup and has an infinite lattice of subvarieties;
2) U = V = Sl and U = Sl,V = R1; here each of the varieties SlwSl = Sl2 and

SlwR1 is finitely based, is generated by a finite semigroup and has an infinite
lattice of subvarieties;

3) U = Sl,V = Ap; here the variety SlwAp is essentially infinitely based, is gen-
erated by a finite semigroup and has an infinite lattice of subvarieties.

As a by-product, it becomes possible to estimate how big the difference is between
the monoid wreath product and the lattice join of two semigroup varieties in the case
where the varieties involved in the wreath product are atoms in the lattice of semigroup
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94 A. V. TISHCHENKO

varieties. To measure this difference we choose the cardinality of the lattice interval
I(U,V) = [U ∨ V, UwV] that contains all the varieties between the lattice join and
the monoid wreath product of two semigroup varieties that are atoms. As a rule, when
this interval is finite, it contains at most 4 elements.

The operation given by a semidirect product of pseudovarieties of monoids and semi-
groups has been studied fairly intensively since its introduction in Eilenberg’s book [23]
in 1976. This interest was caused by Eilenberg’s discovery of a one-to-one correspondence
between streams of formal rational languages and pseudovarieties of finite monoids (see
also [5, Ch. 6, Theorem 5.11]). Here we study the operation given by a monoid wreath
product of semigroup varieties (see [33, 9]). In this paper we attempt to give a quantita-
tive estimate of this operation based on the example of the wreath product of atoms of
the lattice L of semigroup varieties. We mention that the monoid of semigroup varieties
with the operation of monoid wreath product was studied in [11, 15].

Just by using the example of atoms of the lattice L one can see that for multiplication
(taking the monoid wreath product) on the left by the atoms N2,L1,R1 the operation is
small and the cardinality of the interval I(U,V) does not exceed 3. This is also almost
always the case for multiplication on the left by a group atom, apart from A2

p. In the
latter case, the lattice L(A2

p) and the corresponding interval are infinite. In the case of
two different group atoms, it is known from Higman’s theorem [6] that the cardinality
of the lattice L(UwV) is equal to 5. But the worst behaviour is that of the operation
for multiplication (taking the monoid wreath product) on the left by the atom Sl of all
semilattices. Here, as a rule, the interval I(U,V) under consideration is infinite, apart
from the monoid wreath products SlwN2 and SlwL1. Furthermore, although in the
case of SlwN2 the lattice L(SlwN2) is finite, it is fairly large, namely, it contains at
least 33 subvarieties. Also, although the interval I(Sl,N2) is finite, it contains at least
18 varieties. We point out that in many cases we succeeded in calculating the lattices
L(U,V) for atoms U and V explicitly.

First, a basis of identities and, in certain cases, a finite semigroup is calculated for the
wreath product of atoms U and V of the lattice L that generates this wreath product. In
calculating the bases of identities the results of [10] play an essential role. (See also [12].)
Next, for all atoms U and V, the lattices L(UwV) of all subvarieties of the wreath
products UwV are calculated, and then the lattice intervals I(U,V) are calculated.
In [24] it is noted that if a finite semigroup has a finite basis of identities, then the same
basis of identities is a basis of the pseudovariety generated by this finite semigroup. On
the other hand, Theorem 4.1 shows that in almost all the cases under consideration, the
wreath product of atoms of varieties is generated by a finite semigroup. These two facts
show that the results obtained are important for pseudovarieties of finite semigroups.

Remark 1.3. The fact that the wreath product of two group varieties has a finite basis
follows from the results of the well-known book [6]. The fact that the varieties SlwAp

are essentially infinitely based was proved in [12]. The fact that there is no finite basis
of identities for the semidirect product Sl ∗ Ap in the case p = 2 was proved earlier,
in [27]. A basis of identities and a finite semigroup generating the variety SlwR1 was
found in [10]. Bases of identities for the semidirect products of pseudovarieties R1 ∗ R1,
Sl ∗ R1, and Sl ∗ Sl can be found in the literature (see, for example, [20, 21, 30]). Fur-
thermore, in [22] it was proved that there is no finite basis for the powers of the semidirect
product Sln for any positive integer exponent n ≥ 3. In addition, it has long been known
that the atoms N2 and L1 are idempotents [28]. The structure of the lattice in the case
of two group atoms of different prime exponents follows from Higman’s result [6, Ch. 5,
Theorem 54.41].
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WREATH PRODUCT OF ATOMS OF LATTICE OF SEMIGROUP VARIETIES 95

In § 2 we calculate bases of identities of the wreath products of atoms of semigroup
varieties; in certain cases at the same time we produce finite semigroups that generate the
wreath products. In § 3 we describe the finite lattices of subvarieties of wreath products or
establish their infiniteness (finiteness). Finally, in § 4 we find finite semigroups generating
the wreath product of atoms of varieties, if this was not done before. Our main result,
Theorem 1.2, is a consequence of Theorems 2.1, 3.1, and 4.1 proved in §§ 2, 3, and 4.

Theorems 2.1 and 4.1 were announced in [34]. Theorem 3.1 substantially refines
Theorem 3 in [34]. All these results were published without proof in [13]. We point out
that in Theorem 3 in [13], due to an oversight, the cardinalities of the lattices L(R1wL1),
L(SlwL1), L(R1wSl), and L(ApwN2) were indicated incorrectly, and a mistake was
made in indicating the cardinality of the lattice L(SlwN2). The lower estimate for a
possible cardinality of the latter lattice was made more precise in [14].

The author is grateful to the referee for some comments, which allowed us to improve
our exposition and reduce the length considerably. In particular, the referee suggested
that we introduce the definition of a Cross variety and state the main result as Theo-
rem 1.2. In addition, the proofs of Propositions 2.31, 3.6, 3.12, and 3.17 were reduced.

2. Calculation of bases of identities

of wreath products of semigroup varieties

In this section we prove the following.

Theorem 2.1. The monoid wreath product UwV of atoms of the lattice L of all semi-
group varieties does not have a finite basis of identities if and only if U = Sl and V = Ap

for some prime p. In this case the monoid wreath product of the atoms is essentially in-
finitely based.

In the proof, as a rule, we calculate the finite basis.

Remark 2.2. According to Proposition 3.3 in [10], the monoid wreath product UwV of
two semigroup varieties is generated as a variety by all the extended standard wreath
products of semigroups SwR, where S ∈ U and R ∈ V. Consequently, to verify that
an identity is true in the wreath product of varieties UwV, it is sufficient to verify that
it is true in any extended standard wreath product of semigroups SwR, where S ∈ U
and R ∈ V. Furthermore, according to Algorithm 4.1 and Theorem 4.2 in [10], an
identity

(2.1) u ≡ xi1 . . . xik
= yj1 . . . yjl

≡ v

is true in the extended standard wreath product SwR if and only if it is true in R and
the equality

(2.2) f1(1)f2(p1) . . . fk(p1 . . . pk−1) = g1(1)g2(q1) . . . gl(q1 . . . ql−1)

is true in S for any functions f1, . . . , fk, g1, . . . , gl ∈ SA and any values p1, . . . , pk,
q1, . . . , ql ∈ R, where A = R1, S ∈ U, R ∈ V. If equality (2.2) holds, then the semigroup
S satisfies the identity obtained from (2.2) by replacing each factor fi(p1 . . . pi−1) or
gj(q1 . . . qj−1) by a letter of the alphabet X so that the following condition holds:

(∗) Two factors are replaced by the same letter in X if and only if their function symbols
are the same and the equality of arguments is an identity that is true on the right R-poly-
gon A.

In what follows we use the following notation: I(S) is the set of identities that are true
in a semigroup S, I(V) is the set of identities that are true in a variety V, var{u1 = v1,
. . . , uk = vk} is the variety of all semigroups in which the identities u1 = v1, . . . , uk = vk

are true, varS is the semigroup variety generated by a semigroup S.
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96 A. V. TISHCHENKO

Lemma 2.3. If S is a non-one-element right-singular semigroup, then

I(SwR) = {uz = vz : u = v ∈ I(R)}.
Proof. By Remark 2.2 it is sufficient to check under what conditions equality (2.2) always
holds in S. According to Remark 2.2, the identity (2.1) is true in the wreath product
SwR if and only if it is true in R and the identity obtained from equality (2.2) by using
the rule (∗) is satisfied by S. It is easy to verify that equality (2.2) holds identically in S
if and only if the identity has the form uz = vz, where u = v ∈ I(R). �
Corollary 2.4. The set of identities I(R1wV) = {uz = vz : u = v ∈ I(V)}.
Corollary 2.5. The following equalities are valid:

a) R1wN2 = var{x1x2z = y1y2z};
b) R1wL1 = R1 ∨ L1 ∨ N2 = var{xyz = xz};
c) R2

1 = var{xz1z2 = z1z2};
d) R1wSl = var{xz = x2z, xyz = yxz};
e) R1wAn = R1 ∨ An = var{z = xnz, xyz = yxz}.

The following lemma is merely a re-formulation of Lemma 4.4 in [15].

Lemma 2.6 (see Lemma 4.4 in [15]). Let U be a semigroup variety and let

(2.3)

I1 = {xu = xv : u = v ∈ I(U), x ∈ X},
I = {xu = xv : zu = zv ∈ I(U) for any z ∈ X},

I2 = {xu = xv : zu = zv ∈ I(U) for some z ∈ X}.
Then the set I(UwL1) of identities that are true in the monoid wreath product of the
semigroup variety U and the variety L1 of semigroups of left zeros coincides with the
set I, and the following inclusions hold:

(2.4) I1 ⊆ I ⊆ I2.

The following assertion follows immediately from Lemma 4.5 in [15].

Lemma 2.7. If B is a basis of identities of a periodic variety U, and an identity of the
form

(2.5) z = zxm

is true in U, then the set of identities

(2.6) B1 = {zw = zw′ : w = w′ ∈ B, z /∈ c(ww′)}
is a basis of identities of the wreath product UwL1 of the semigroup varieties U and L1.

Corollary 2.8. The wreath product AmwL1 = var{xyz = xzy, x = xym}.
Lemma 2.9. The set of identities I(SlwL1) of the wreath product of varieties coincides
with the set

(2.7)
I0 =

{
u = v : 1) c(u) = c(v), 2) h1(u) = h1(v), 3) if z = h1(u),

then either |u|z = |v|z = 1 or |u|z ≥ 2, |v|z ≥ 2
}
.

Proof. Applying Lemma 2.5 we obtain that the equalities

I(W) = {xu = xv : zu = zv ∈ I(Sl) for any z ∈ X} = I

and the inclusion
I ⊇ {zu = zv : u = v ∈ I(Sl)} = I1

hold for the wreath product W = SlwL1. It is easy to see that the set of identities I(W)
coincides with the set I0. �
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Lemma 2.10. The wreath product SlwL1 = var{xyz = xzy, xy = xy2}.
Proof. We verify directly that the identities

(2.8) zxy = zyx, zx = zx2

belong to the set I(W). On the other hand, if u = v ∈ I0, then u ≡ zu′ = zv′ ≡ v,
where either z /∈ c(u′v′) or c(u′) = c(v′) involves the letter z. The fact that c(u′) = c(v′)
implies that the identity u′ = v′ can be derived from the identities xy = yx and x = x2.
Consequently, the identity u = v can be derived from (2.8). �
Lemma 2.11. If varS ⊇ Sl, then an identity u = v belongs to I(SwR), where R ∈ N2,
if and only if the following conditions hold: 1) either u = v is a trivial identity or
|u|, |v| ≥ 3; 2) h2(u) = h2(v); 3) replacing the common beginning h2(u) = h2(v) in the
identity u ≡ h2(u)u1 = h2(v)v1 ≡ v by the subword z1z2 results in the identity z1z2u1 =
z1z2v1, where c(u1) = c(v1) and z1, z2 /∈ c(u1), which is true in the variety varS.

Proof. Obviously, var(SwR) ⊇ N2, and therefore |u|, |v| ≥ 2 for a non-trivial identity.
By Remark 2.2, the inclusion u = v ∈ I(SwR) means that |u|, |v| ≥ 2, and for any
p, q ∈ R the equality

(2.9) f1(1)f2(p)f3(0) . . . fk(0) = g1(1)g2(q)g3(0) . . . gk(0)

is true in the semigroup S. Choosing for the semigroup S one of its divisors, given by
the two-element semilattice U2 = {0, 1} we can argue as follows. If f1 �= g1 in (2.9),
then we set f1(1) = 0 and f1(a) = 1 for a ∈ R, while the other functions occurring
in (2.9), including g1, are set to be equal to the function c1 that is identically equal to 1.
Obviously, then the left-hand side of equality (2.9) takes the value 0, while the right-hand
side takes the value 1. Similarly, if f2 �= g2, then we choose for p a non-zero element
in R and set f2(p) = 0 and f2(a) = 1 for any a ∈ R \ {p}, while the other functions
occurring in (2.9), including g2, are set to be equal to the function c1. Then (2.9) again
gives a false equality. Consequently, h2(u) = h2(v). Moreover, according to Remark 2.2,
from equality (2.9) one can deduce that S satisfies the identity u ≡ z1z2u1 = z1z2v1 ≡ v,
where z1, z2 /∈ c(u1)∪c(v1). Furthermore, by the equality c(u) = c(v) for an identity that
is true in S, since varS ⊇ Sl, this implies condition 3) of the lemma and, in particular,
c(u1) = c(v1). Furthermore, condition 2) for a non-trivial identity u = v implies the
validity of condition 1). The lemma is proved. �

The next corollary follows easily from the description of the identities of the wreath
product of semigroups obtained in Lemma 2.11.

Corollary 2.12. If U ⊇ Sl, then UwN2 ⊇ U ∨ N2 ∨ L1.

Corollary 2.13. If varS = Sl, then an identity u = v belongs to I(SwR), where
R ∈ N2 and |R| ≥ 2, if and only if the following conditions hold: 1) either u = v is
a trivial identity or |u|, |v| ≥ 3; 2) h2(u) = h2(v); 3) replacing the common beginning
h2(u) = h2(v) in the identity u ≡ h2(u)u1 = h2(v)v1 ≡ v by the subword z1z2, where
z1, z2 /∈ c(uv), yields the identity z1z2u1 = z1z2v1 where c(u1) = c(v1).

Corollary 2.14. The wreath product SlwN2 is equal to var{x1x2yz = x1x2zy,
x1x2y = x1x2y

2}.
Lemma 2.15. The wreath product AmwN2 is equal to var{x1x2yz = x1x2zy,
x1x2 = x1x2y

m}.
Proof. Starting the calculations as in Lemma 2.11 we observe that, according to Re-
mark 2.2, equality (2.9) means that the identity

(2.10) y1y2u
′ = z1z2v

′
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98 A. V. TISHCHENKO

such that y1, y2, z1, z2 /∈ c(u′v′) is true in the semigroup S. Setting y1 = y2 = z1 = z2 = 1
in (2.10) we now obtain that the identity u′ = v′ is true in the semigroup S = C(m),
where C(m) is the cyclic group of order m. Clearly, all such identities follow as a
consequence of the group basis {xy = yx, ym = 1}. Consequently, all the identities of
the wreath product of varieties AmwN2 are a consequence of the basis of identities

(2.11) {x1x2yz = x1x2zy, x1x2 = x1x2y
m},

and the lemma is proved. �
Lemma 2.16. An identity u = v is true in SlwSl if and only if c(u) = c(v) and,
moreover, for any occurrence of a variable y in u ≡ u1yu2 there exists an occurrence of
y in v ≡ v1yv2 such that c(u1) = c(v1) and, conversely, for any occurrence of a variable
y in v ≡ v1yv2 there exists an occurrence of y in u ≡ u1yu2 such that c(u1) = c(v1).

Proof. Indeed, the inclusion SlwSl ⊇ Sl is equivalent to the equality c(u) = c(v), and
equality (2.2) induces an identity on the passive semigroup of the wreath product, which
holds if and only if for any integer i = 1, 2, . . . , k there exists an integer j = 1, 2, . . . , l
such that

(2.12) fi(p1 . . . pi−1) = gj(q1 . . . qj−1),

and, conversely, for any integer j = 1, 2, . . . , l there exists an integer i = 1, 2, . . . , k such
that equality (2.12) holds. The latter condition means precisely that for any integer
i = 1, 2, . . . , k there exists an integer j = 1, 2, . . . , l such that fi = gj and p1 . . . pi−1 =
q1 . . . qj−1, and conversely. Furthermore, the first of these equalities means that the
symbols fi and gj are substituted for one and the same variable y of the identity u = v,
and the fact that the second equality is true in Sl means that c(u1) = c(v1) for these
occurrences of y in u and in v. The lemma is proved. �
Proposition 2.17. The set of identities

(2.13)
x2 = x3, xyx2 = xyx,

xuyvyx = xuyvxy, xyyx = xyxy, xuyyx = xuyxy, xyvyx = xyvxy

is a basis of identities of the wreath product of varieties SlwSl.

Proof. It is easy to verify that the identities (2.13) satisfy the conditions of Lemma 2.16
and therefore they are true in SlwSl. Next, every word u can be written in the form

(2.14) u ≡ x1u1x2u2 . . . xnun,

where we have distinguished the first occurrences of the variables x1, x2, . . . , xn on which
the word u depends, and the word ui depends only on the variables x1, x2, . . . , xi, and ui

can also be the empty word. Here we call a word of the form (2.14) a reduced word if the
ui are linear words, and the variables in them are ordered according to increasing indices.
It is easy to see that by using identity (2.13) one can reduce any word to a reduced word
that is equal to it in SlwSl. In order to show that the set of identities (2.13) is a basis of
identities for SlwSl it is now sufficient to show that any two different reduced words are
not equal in SlwSl. To do this we will show that any identity u = v in SlwSl satisfies
the following three conditions:

1) c(u) = c(v);
2) the order of occurrence of the variables in the words u and v is the same;
3) for reduced words u and v we have ui = vi for any i = 1, 2, . . . , n.

Condition 1) is obvious. If condition 2) is violated, then the condition of Lemma 2.16
does not hold. Indeed, suppose that

(2.15) u ≡ x1u1 . . . xi−1ui−1xiu
′ = x1v1 . . . xi−1vi−1yiv

′ ≡ v
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WREATH PRODUCT OF ATOMS OF LATTICE OF SEMIGROUP VARIETIES 99

for some i and xi �= yi. We set xi = (c1, 0) and yi = (g, 0), where g(1) = 0 and g(0) = 1,
while the other variables are set to be equal to (c1, 1). Then equality (2.2) takes the form

(2.16) f1(1) . . . fi(1)fr(0) . . . = g1(1) . . . gi(1)gs(0) . . . .

We observe that the right-hand side of equality (2.16) is equal to zero, since it contains
the factor g(1) = 0, while the left-hand side of equality (2.16) is equal to 1, since it does
not contain the factor g(1). Now suppose that in the identity u = v the words are
reduced but condition 3) is violated. Then for some i ≥ 1 equality (2.15) holds in which
either both words u′, v′ are empty or both begin with one and the same variable xi+1.
Suppose that ui �= vi. For reduced words u and v, this means that some variable xl

(l = 1, 2, . . . , i) occurs in exactly one of the words ui or vi. Suppose for definiteness that
xl ∈ c(ui) \ c(vi). Suppose that the semigroup R contains a subsemigroup isomorphic
to the three-element chain U3 = {1, d, 0}. We use the homomorphism ϕ(xj) = (fj , pj)
(j = 1, 2, . . . , n) and in equality (2.15) we set p1 = · · · = pi−1 = 1, pi = d, pi+1 = 0,
fl = g, where g(1) = g(0) = 1 and g(d) = 0, while the other functions in (2.15) are set to
be equal to the function c1 that is identically equal to 1. Then on the left-hand side of
equality (2.15) the first projection contains the factor g(d) = 0 and, consequently, it is
equal to 0, while on the right-hand side it does not contain such a factor and therefore it
is equal to 1. The contradiction thus obtained shows that condition 3) is satisfied. The
proposition is proved. �

Analyzing the proof of Proposition 2.17 one can see that for the calculation of a
basis of identities for the wreath product of semigroups SwR, where S, R ∈ Sl, the
assumptions were used that the semigroup S is non-one-element and therefore the two-
element semilattice U2 is a divisor of it, while the semigroup R contains a three-element
chain U3 as a subsemigroup. This observation allows us to state the following result.

Corollary 2.18. The wreath product SlwSl = var(U2wU3), where U2 is the two-element
chain and U3 is the three-element chain.

Remark 2.19. The identities

x2yx = xyx,(2.17)

rxyxzx = xyzx(2.18)

are true in the wreath product U2wU2, but they are false in U2wU3. Consequently,
SlwSl �= var(U2wU2).

Proof. Indeed, it is easy to see that both identities (2.17) and (2.18) do not satisfy the
conditions of Lemma 2.16. Therefore they do not hold in SlwSl and, consequently, by
Corollary 2.18, also in the wreath product var(U2wU3). On the other hand, using the
homomorphism ϕ such that ϕ(x) = (f, p), ϕ(y) = (g, q), ϕ(z) = (h, r) we obtain from
the identity (2.17) the equality

(2.19) f(1)f(p)g(p)f(pq) = f(1)g(p)f(pq).

When p = 1 equality (2.19) induces the identity x2yz = xyz in S = U2, and when
p = 0 the identity xyzy = xzy. Both identities are true in Sl. Therefore by Theorem 4.2
in [10] (see Remark 2.1) the identity (2.17) is true in the wreath product var(U2wU2).
The fact that the identity (2.18) is true in the wreath product var(U2wU2) can be verified
in similar fashion. The remark is proved. �
Lemma 2.20. An identity u = v is true in AmwSl if and only if 1) c(u) = c(v),
2) h1(u) = h1(v), and, also 3) for any variable y the difference between the number of
occurrences of y in u ≡ u1yu2 and the number of occurrences of y in v ≡ v1yv2 when
c(u1) = c(v1) is a multiple of m.
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Proof. According to Remark 2.2, the identity (2.1) is true in AmwSl if and only if
c(u) = c(v) and, in addition, equality (2.2) is true for any p1, . . . , pk, q1, . . . , ql ∈ R and
any functions f1, . . . , fk, g1, . . . , gl ∈ F (R1, S), where R ∈ Sl and S ∈ Am. Hence in (2.2)
we have f1 = g1, that is, h1(u) = h1(v). Furthermore, the rule (∗) given in Remark 2.2
implies that in equality (2.2) the numbers of occurrences of any factor fi(p1 . . . pi−1) on
the left- and right-hand side can differ only by a number that is a multiple of m. �
Corollary 2.21. Every non-trivial permutational identity is false in C(m)wR, where
C(m) is the cyclic group of order m and R ∈ Sl.

Lemma 2.22. The identities

x = x1+m,(2.20)

xy2x = xyxy(2.21)

are true in the wreath product of varieties AmwSl.

Proof. This fact follows immediately from Lemma 2.20, or it can be verified by a straight-
forward calculation in the wreath product of semigroups SwR, where R ∈ Sl and S ∈ Am.

�
Lemma 2.23. If the identity (2.20) is true in a semigroup variety, then the iden-
tity (2.21) is true in it if and only if the identity

(2.22) xyvyx = xyvxy

is true in it.

Proof. If (2.20) and (2.22) are true in a variety, then the identity (2.21) is also true in it:

xyyx = xyymyx = xyymxy = xyxy.

Conversely, if (2.20) and (2.21) are true, then (2.22) is true:

xyvyx = (xyv)m−1xyvxyvyx = (xyv)m−1xyv2xyyx

= (xyv)m−1xyv2xyxy = (xyv)m−1xyvxyvxy = xyvxy.

The lemma is proved. �
Lemma 2.24. If the identities (2.20) and (2.21) are true in a semigroup variety, then
the identities (2.22) are also true in it and

xyxm = xy,(2.23)

xuyvyx = xuyvxy,(2.24)

xuyyx = xuyxy.(2.25)

Proof. The fact that (2.22) is true follows from Lemma 2.23. Next, using identities (2.20)
and (2.22) we obtain

xy = xy(xy)m = xyym(xy)m = xyymxmym = xyy2mxm = xyxm.

Consequently, the identity (2.23) is true in the variety. We now prove that (2.24) is true.
Indeed, using (2.20) and (2.22) we obtain

xuyvyx = (xuy)m−1xuyx(uyv)yx = (xuy)m−1xuyxuyvxy = xuyvxy.

Finally, it is easy to see that (2.20) and (2.24) imply (2.25):

xuyyx = xuyymyx = xuyymxy = xuyxy. �
Proposition 2.25. The set of two identities (2.20) and (2.21) is a basis of identities of
the wreath product of varieties AmwSl.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



WREATH PRODUCT OF ATOMS OF LATTICE OF SEMIGROUP VARIETIES 101

Proof. According to Lemmas 2.22 and 2.24, the identities (2.22), (2.23), (2.24), and
(2.25) are also true in the variety AmwSl. It is easy to see that by using the identi-
ties (2.20)–(2.25) one can reduce any word to the form (2.14) in which we pick out the
first occurrences of the variables x1, . . . , xn in the word u, while the words ui depend
only on the variables x1, . . . , xi, and can also be empty words. We say that a word of
the form (2.14) is reduced if ui ≡ xa1

1 . . . xai

i , where 0 ≤ aj ≤ m − 1 (j = 1, . . . , i). We
claim that any two different reduced words are not equal in the variety AmwSl. For that
we will show that for any identity u = v of the variety AmwSl the following conditions
hold: 1) c(u) = c(v); 2) the order in which the variables occur in the words u and v
is the same; 3) for reduced words u and v we have ui ≡ vi for any i = 1, 2, . . . , n.
Condition 1) obviously holds, since AmwSl ⊇ Sl. If condition 2) is violated, then the
conditions of Lemma 2.20 do not hold. Indeed, suppose that condition 2) is violated.
Then, for the identity u = v, equality (2.15) holds for some i and xi �= yi. Assuming
that the semigroup S ∈ Am is non-one-element and, consequently, contains an element
b �= 1, while the semilattice R ∈ Sl contains the two-element chain U2 = {d, 1}, in the
identity (2.15) we set ϕ(xi) = (c1, d) and ϕ(yi) = (g, d), where g(1) = b �= 1 and g(a) = 1
for a ∈ R \ {1}, while ϕ(xj) = (c1, 1) for the other variables, that is, for xj /∈ {xi, yi}.
Then the first projection of the left-hand side of equality (2.15) is a function F1(a) that
takes the value 1 at the point a = 1, while the first projection of the right-hand side
of equality (2.15) is a function F2(a) that takes the value b at the point a = 1, since it
contains the factor g(1) = b exactly once.

Now suppose that the identity u = v satisfies conditions 1) and 2), while condition 3)
is violated. Then this identity induces the equality

(2.26) u ≡ x1u1 . . . ui−1xiuiu
′ = x1v1 . . . xi−1vi−1xiviv

′ ≡ v

in which either both the words u′, v′ are empty or both of them begin with exactly
the same variable xi+1. Suppose that ui �≡ vi. For reduced representations we have
ui ≡ xk1

1 . . . xki
i and vi ≡ xl1

1 . . . xli
i . Suppose that kj �= lj for some 1 ≤ j ≤ i. Suppose

that the semigroup R contains the three-element chain U3 = {1, d, 0}. We consider the
homomorphism ϕi(xj) = (fj , pj) (j = 1, . . . , n) and set p1 = · · · = pi−1 = 1, pi = d,
pi+1 = 0, fi = g, where g(d) = b and g(a) = 1 for a ∈ R \ {d}, while all the other
functions in (2.26) are set to be equal to the function c1 that is identically equal to 1.
Then the identity (2.26) induces an equality of the first projections of elements of the
wreath product SwR with the left-hand side equal to g(d)ki = bki , while the right-hand
side is equal to g(d)li = bli . Hence, kj − lj ≡ 0 (modm). For reduced representations of
the words u and v, this implies that kj = lj for any 1 ≤ j ≤ i. The lemma is proved. �

Corollary 2.26. The wreath product AmwSl = var(C(m)wU2), where U2 is the two-
element chain.

Proof. To prove the assertion, first of all we observe that in the proof of Proposition 2.25,
the fact that the active semigroup R of the wreath product of semigroups contains a
subsemigroup isomorphic to the three-element chain was used only in the very last part
of the proof. We now modify this last argument. Namely, we consider the homomorphism
ψi of a free semigroup into the wreath product SwR that differs from the homomorphism
ϕi indicated above by the fact that in it we choose the function g : U2 → C(m) so that
g(1) = 1 and g(0) = b �= 1. Then the identity (2.26) induces an equality such that the first
projection of the left-hand side equals g(0)ki+···+kn = bki+···+kn , while the first projection
of the right-hand side is equal to g(0)li+···+ln = bli+···+ln . Based on the equality of these
sides in the group, we obtain that

(2.27) (li + · · · + ln) − (ki + · · · + kn) ≡ 0 (mod m).
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Next, setting i = n in equality (2.27) we obtain kn = ln, setting i = n − 1 we obtain
kn−1 = ln−1, and so on. Thus, we find that two reduced representations for equal words
in the wreath product of varieties AmwSl coincide. �

To obtain a basis of identities for the variety AmwR1 we prove several preliminary
assertions. In this case we do not follow the usual method that relies on the description
of all the identities of the wreath product of varieties; instead, we use information about
the structure of the semigroups of the wreath product of varieties.

Lemma 2.27. The identity

(2.28) x = (xy)mx

is true in the wreath product of varieties AmwR1. Consequently, the variety AmwR1

is a completely simple variety over a group of exponent m.

Proof. For the wreath product SwR we set ϕ(x) = (f, p), ϕ(y) = (g, q). Then(
(f, p)(g, q)

)m(f, p) = (f(pg), pq)m(f, p)

=
(
f(pg)(pqf)(pqpg) . . . ((pq)m−1pg), (pq)m

)
(f, p)

=
(
f(pgqf)m−1(pg), q

)
(f, p) =

(
f(pgqf)m, p

)
= (f, p).

Thus, identity (2.28) is true in the wreath product of varieties AmwR1. Next, as already
mentioned in the proof of Proposition 4.2 in [12], the fact that the identity (2.28) is true
in a variety means that all semigroups of this variety are completely simple semigroups
over a group of exponent m. This implies the second assertion of the lemma. �

Lemma 2.28. The inclusion AmwR1 ⊇ Am ∨ R1 ∨ L1 holds.

Proof. By Proposition 3.4 in [10], we have AmwR1 ⊇ Am ∨ R1. Now we apply the
algorithm described in Remark 2.2 to an arbitrary identity (2.1) that is true in the wreath
product AmwR1. Then we find that in equality (2.2), both on the left- and right-hand
side, the argument 1 occurs only for the first functions-factors. Therefore, according
to the rule (∗) of Remark (2.2), either h1(u) = h1(v), or the semigroup S ∈ Am must
satisfy an identity of the form yu1 = zv1, where y �= z and y, z /∈ c(u1v1). Since the
latter is possible only in the one-element group, the first assumption is true, that is,
h1(u) = h1(v). Hence the inclusion AmwR1 ⊇ L1 also holds. The lemma is proved. �

The last two lemmas show us another path in the search for a basis of identities of
the variety AmwR1.

Definition 2.29. We define the semigroup Sm as the Rees semigroup of matrix type
M(C(m), I, Λ, P ), where C(m) is the cyclic group of order m with a generator a and
identity element e, I = Λ = {1, 2}, and the matrix P coincides with the matrix of order
2 over this group, (

e e
e a

)
.

By Rasin’s theorem (see [16, Theorem 20.1] or [7, 31]), the semigroup Sm has a basis of
identities formed by three identities: namely, the identity (2.28) and the following two
identities:

x2yx = xyx2,(2.29)

(xmym)m = (xy)m.(2.30)
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Lemma 2.30. If the identities (2.28) and (2.29) are true in a variety U, then the
identities

(2.31) xyxi = xiyx

for all positive integers i ≥ 2 and the identity (2.30) are also true in U.

Proof. The fact that the identity (2.31) is true can be easily verified by induction
on i. Next, (2.28) obviously implies that the identity (2.20) is true in U. Using (2.31)
and (2.20) we obtain the chain of identities

(xmym)m = xmymxmym . . . xmym = xymx2m−1ym . . . xmym

= xymxym . . . x1+m(m−1)ym = xymxym . . . xym

= xyxy2m−1 . . . xym = xyxy . . . xy1+m(m−1) = (xy)m.

The lemma is proved. �

Proposition 2.31. The wreath product of semigroup varieties AmwR1 coincides with
the variety generated by the semigroup Sm and so it has a basis of identities consisting
of the two identities (2.28) and (2.29).

Proof. According to Lemma 2.27, the identity (2.28) is true in AmwR1. By Remark 2.2
it is sufficient to verify that the identity (2.29) is true in any wreath product of semigroups
SwR, where S ∈ Am and R ∈ R1. Using the homomorphism ϕ(x) = (f, p), ϕ(y) = (g, q)
we obtain

(f, p)2(g, q)(f, p) =
(
f(pf)(p2

g)(p2qf), p2qp
)

=
(
f(pf)(pg)(qf), p

)
,

and, similarly,
(f, p)(g, q)(f, p)2 =

(
f(pg)(qf)(pf), p

)
.

Since the semigroup S is commutative, it follows that the identity (2.29) is true in the
wreath product SwR. Consequently, AmwR1 ⊆ varSm.

We now show that Sm ∈ AmwR1. To do this we observe that by virtue of the proof
of Proposition XI.3.1 in the book [23], the Rees matrix semigroup M = M(Q, X, Y, P )
divides X l × (QwY r), where X l is a semigroup of left zeros, and Y r a semigroup of
right zeros. In our case, Q = C(m) is an Abelian group of exponent m and therefore
(QwY r) ∈ AmwR1. On the other hand, X l ∈ AmwR1 by Lemma 2.28. Consequently,
the direct product of these semigroups, as well as the semigroup Sm, belong to AmwR1.
Proposition 2.31 is proved. �

Proof of Theorem 2.1. Finite bases of identities of the wreath products of atoms of
the lattice of semigroup varieties were found in Corollaries 2.5, 2.6, 2.8, 2.14, Lem-
mas 2.10, 2.15 and Propositions 2.17, 2.25, 2.31.

The fact that the varieties SlwAn are essentially infinitely based was proved in [12].
The fact that the wreath product of the group varieties has a finite basis follows from
the results of the well-known book [6]. Indeed, the wreath product of varieties AmwAn,
being a metabelian variety, has a finite basis of identities [6, Theorem 36.11]. �

3. The calculation of the lattices of subvarieties

of the wreath products of atoms

In this section we prove Theorems 3.1 and 3.2, which yield the assertion of Theo-
rem 1.2, that the lattice of subvarieties of the wreath product of atoms is finite. The
proof actually consists of the proofs of several propositions corresponding to different
cases of these theorems. Note that all the proofs given below use the information about
bases of identities obtained in § 2. As a rule, we also use the description of the identities
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of the wreath product of varieties UwV. In the simplest cases this description is not
formulated explicitly.

Theorem 3.1. The cardinality of the lattice L(U,V) in the case where U and V are
atoms of the lattice of semigroup varieties is indicated in Table 1.

Table 1.

N2 L1 R1 Sl Aq

N2 4 4 4 4 4
L1 4 4 4 4 4
R1 10 8 5 10 4
Sl finite 10 infinite infinite infinite
Ap 10 4 9 11 5 for p �= q

Theorem 3.2. The cardinality of the lattice interval I(U,V) = [U ∨ V, UwV] in the
case where U and V are atoms of the lattice of semigroup varieties is indicated in Table 2.

Table 2.

N2 L1 R1 Sl Aq

N2 1 1 1 1 1
L1 1 1 1 1 1
R1 3 2 3 3 1
Sl finite 3 infinite infinite infinite
Ap 3 1 3 4 2 for p �= q

Proposition 3.3.
1) If U = N2, or U = L1, or U = R1 and V = Ap, or U = Ap and V = L1, then

|L(UwV)| = 4 and |I(U,V)| = 1.
2) Furthermore, |I(R1,L1)| = 2 and |L(R1wL1)| = 8.

Proof. This proposition covers all the cases of atoms of the lattice of semigroup varieties
in which the wreath product of atoms coincides with their lattice join. Then the lattice
L(UwV) is well known (see, for example, [25]). �

Proposition 3.4. The lattice L(R2
1) of subvarieties of the variety R2

1 is five-element
and coincides with the lattice depicted in Figure 1. In particular, |I(R1,R1)| = 3.

Proof. Indeed, let U ⊂ R2
1, that is, I(R2

1) ⊂ I(U). Let u = v ∈ I(U) \ I(R2
1). Then

t2(u) �= t2(v). Here, either the identity x = x2 is true in U, or the identity u ≡ u1yz =
v1y1z ≡ v is true, where y1 �= y. In the first of these cases, U ⊆ R1. In the second case
we have yz = u1yz = v1y1z = y1z ∈ I(U). If in addition y1 = z, then yz = z2 = xz,
where x �= y. Thus, in any case we have U ⊆ R1 ∨ N2. �

Proposition 3.5. The lattice L(R1wN2) of all subvarieties of the variety R1wN2 is de-
picted in Figure 2. In particular, R1wN2 = R1,3 = var{x1x2z = y1y2z}. Furthermore,
|L(R1wN2)| = 10 and |I(R1,N2)| = 3.
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Figure 1.

Figure 2.

In Figure 2 we use the following additional notation:

N3,2 = var{x2 = y1y2y3},
CN3,2 = var{x2 = y1y2y3, xy = yx},
CN3 = var{y1y2y3 = z1z2z3, xy = yx},

RN3,2 = var{z2 = y1y2z}.

Proof. Let U ⊂ R1,3 = var{x1x2z = y1y2z}. Then I(R1,3) ⊂ I(U). Suppose that
u = v ∈ I(U) \ I(R1,3). Then the identity u = v does not satisfy either condition 1)
that either u = v be a trivial identity or |u|, |v| ≥ 3, or condition 2) that t1(u) = t1(v)
from the description of the identities of the set I(R1,3).

Case 1. Suppose that t1(u) �= t1(v). Then an identity of the form u1x = v1y, where
x �= y, is true in U. We multiply this identity on the left by x1x2, where x1 and x2 are
distinct variables that do not belong to the set {x, y}. By using the identity x1x2z =
y1y2z we obtain the identity x1x2x = y1y2y. Thus, U ⊆ var{x1x2x = y1y2y} = N3. All
the subvarieties of the variety N3 are known and can easily be calculated.

Case 2. Now suppose that the identity u = v does not satisfy condition 1). We
can assume in addition that t1(u) = t1(v); otherwise case 1 can be applied to U and
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U ⊆ N3. Next, we can assume that then |u| ≤ 2 and |v| ≤ 3. In this case, the identity
z2 = z3 = y1y2z is automatically true in U. Consequently, U ⊆ RN3,2.

It is easy to see that the variety W1 = SlwL1 contains the variety varP ′ generated
by the three-element semigroup P ′ = {0, e, a} in which ae = a, e2 = e, and all the
other products are equal to 0. The semigroup P ′ is well known in the literature (see the
survey [17], as well as [3, 8]). It is known that the variety varP ′ has the following basis
of identities:

(3.1) xy = xy2, x2y = y2x.

The proposition is proved. �
Proposition 3.6. The lattice L(SlwL1) is depicted in Figure 3. In particular,

|L(SlwL1)| = 10 and I(Sl,L1) = 3.

Figure 3.

In Figure 3 we use the following additional notation:

W1 = SlwL1, V = Sl ∨ L1 ∨ N2.

Proof. By Theorem 1.1, W1 = var{zx = zx2, zyx = zxy}. On the other hand, it is
known that V = var{zx = zx2, zyx = zxy, zx = z2x}. By using Lemma 18 in [4] it is
easy to establish that the variety W1 contains 5 subdirectly indecomposable semigroups:
namely, the two-element semigroups L of left zeros, N with zero multiplication, the
semilattice U2, the semigroup L0 that is equal to L with an externally adjoint zero,
and the semigroup P ′ defined above. As is well known, each variety of semigroups is
generated by its subdirectly indecomposable semigroups. Consequently, it is easy to list
all the subvarieties in W1:

L1 = varL,

N2 = varN,

Sl = varU2,

L1 ∨N2 = var{L, N},
N2 ∨ Sl = var{N, U2, },
L1 ∨ Sl = var{L0} = var{L0, U2, N},

V = L1 ∨ Sl ∨N2 = var{L0, U2, L, N} = var{L0, N},
varP ′ = var{P ′, U2, N},

W1 = var{P ′, L0} = var{P ′, L0, N, U2, L}. �
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Corollary 3.7. The lattice L(R1wSl) is depicted in Figure 4. In particular,

|L(R1wSl)| = 10 and I(R1,Sl) = 3.

Figure 4.

Proof. The proof follows in an obvious fashion from the duality of the bases of identi-
ties for the varieties SlwL1 and R1wSl, which in turn follows from Corollary 2.4 and
Lemma 2.10. �

Proposition 3.8. The lattice L(SlwN2) is finite.

Proof. In Corollary 2.13 conditions are stated under which an identity u = v belongs
to the set I(SlwN2); namely, it is necessary and sufficient that the following three
conditions hold: 1) either u = v is a trivial identity or |u|, |v| ≥ 3; 2) h2(u) = h2(v);
3) the identity obtained from u = v by replacing the common beginning h2(u) = h2(v)
by the subword z1z2, where z1, z2 /∈ c(uv), and having the form

(3.2) z1z2u1 = z1z2v1

satisfies the property c(u1) = c(v1). Now suppose that U ⊂ W = SlwN2. Then there
exists an identity u = v ∈ I(U) \ I(W). It is obvious that for the identity u = v at least
one of the three conditions of Lemma 2.13 is violated. We consider two cases.

Case 1. Suppose that some identity u = v with the condition c(u) �= c(v) is true in U.
We multiply the identity u = v on the left by the factor z1z2, where z1, z2 /∈ c(uv), and
obtain the identity z1z2u = z1z2v, in which there is a letter y that occurs in exactly one
of the words z1z2u or z1z2v. For definiteness suppose that y ∈ c(u)\c(v). In this identity
we set φ(zi) = zi (i = 1, 2), φ(y) = y, φ(t) = x for any t ∈ X \ {z1, z2, y}. As a result
we obtain the identity z1z2yx = z1z2x, which is true in U ⊂ W and which in W easily
implies the identity

(3.3) z1z2y = z1z2x.

It is known that the identity (3.3) defines the variety L2,3, which is an idempotent of the
monoid MV of all semigroup varieties. As already noted in [15], the lattices L(Lj,m) are
finite for any m ≥ 1, j ≤ m.

Case 2. Now suppose that I(U) does not contain identities with the condition c(u) �=
c(v), that is, all the identities in I(U) are homotypic. We can assume in what follows
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that the identity u = v is homotypic and the words u and v in it are reduced in the
set I(W), that is, each of them has one of the following forms:

z, z2x1 . . . xk, z3x1 . . . xk, z1z2x1 . . . xk, z1z2z1x1 . . . xk,

z1z
2
2x1 . . . xk, z1z

2
2z1x1 . . . xk (k ≥ 0).

If |u|, |v| ≥ 3, then the identity u = v has the form

(3.4) u ≡ w(z1, z2)x1 . . . xk = w1(z3, z4)x′
1 . . . x′

l ≡ v,

where |w|, |w1| ≤ 4. Furthermore, if {z1, z2} ∩ {z3, z4} = ∅, then the letters z1, z2 are
contained in the set {x′

1, . . . , x
′
l}, while z3, z4 are contained in the set {x1, . . . , xk} since

we have assumed that the identity u = v is homotypic. Obviously, the identity (3.4) is
W-equivalent to an identity of the form

(3.5) u′ ≡ w(z1, z2)z3z4x = w1(z3, z4)z1z2x ≡ v′.

Here it is possible that the letter x is absent in (3.5) if (3.4) depends only on four letters;
but in any case, |u′|, |v′| ≤ 7, and (3.5) depends on at most 5 letters.

Consequently, up to W-equivalence there are at most finitely many homotypic identi-
ties u = v that satisfy |u|, |v| ≥ 3. Obviously, up to W-equivalence there are also finitely
many such identities that satisfy |u| ≤ 2.

Every subvariety U ⊆ W containing Sl can be defined by some set of homotypic
identities. Since there are finitely many such sets, the lattice L(SlwN2) is finite.

The description of the lattice L(ApwR1) follows from the description of all subvari-
eties of the variety of completely simple semigroups over Abelian groups (see [7, The-
orem 4]) and from Proposition 2.30, which indicates a basis of identities of the variety
ApwR1 and a completely simple semigroup Sp generating this variety. �

Figure 5.

Proposition 3.9. The lattice L(ApwR1) of all subvarieties of the wreath product
ApwR1 is depicted in Figure 5. In particular, |L(ApwR1)| = 9 and |I(Ap,R1)| = 3.

In Figure 5 we denote the variety Ap ∨R1 ∨ L1 by V. For completeness we point
out that from the description of the identities of the atoms of the lattice of semigroup
varieties it easily follows that

Ap ∨ L1 = var{x = xyp, zxy = zyx},(3.6)

Ap ∨ R1 = var{x = xyp, xyz = yxz},(3.7)

Ap ∨ R1 ∨ L1 = var{x = xyp, zxyt = zyxt, xz = xypz}.(3.8)
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The description of the bases of identities for these varieties which follows from [7,
Theorem 4] is more complicated. The fact that these are the same varieties follows from
the following remark, which can be easily verified.

Remark 3.10. The following equalities hold:
a) Ap ∨ L1 = var{x = x(yx)p, x2yx = xyx2, xpyp = xp};
b) Ap ∨ R1 = var{x = x(yx)p, x2yx = xyx2, xpyp = yp};
c) Ap ∨ R1 ∨ L1 = var{x = x(yx)p, x2yx = xyx2, xpyp = (xy)p}.

To describe the lattice L(ApwN2) we first give a description of the identities of the
variety AmwN2.

Proposition 3.11. The identities of AmwN2 are given by I(AmwN2) = {u = v :
1) either u = v is a trivial identity or |u|, |v| ≥ 2; 2) for any x in X, |u|x ≡ |v|x (mod m);
3) h2(u) = h2(v)}.

Proof. The first two conditions follow from the inclusion AmwN2 ⊇ Am ∨ N2. Next,
let Vm = AmwN2 and let u = v ∈ I(Vm). This identity induces the equality

(3.9) f1(1)f2(p1) . . . fk(p1 . . . pk−1) = g1(1)g2(q1) . . . gl(q1 . . . ql−1)

for any functions f1, . . . , fk, g1, . . . , gl ∈ SR1
, where S ∈ Am and R ∈ N2. By condi-

tion 1) we can assume that k, l ≥ 2. Taking into account that R ∈ N2 we can rewrite
equality (3.9) in the form

(3.10) f1(1)f2(p1)f3(0) . . . fk(0) = g1(1)g2(q1)g3(0) . . . gl(0).

According to Remark 2.2, the last equality induces the identity

(3.11) x1x2ũ1 = y1y2ṽ1

in Am. If we choose p1 �= 0, q1 �= 0, which is possible in the case |R| ≥ 2, then in (3.11)
we have x1, x2, y1, y2 /∈ c(ũ1ṽ1). Consequently, if h1(u) �= h1(v) or h1(u) = h1(v) but
h2(u) �= h2(v), then the identity (3.11) violates condition 2), but condition 2) is true
in Am. Thus, condition 3) is also satisfied for an identity u = v ∈ I(Vm).

Conversely, any identity u = v satisfying conditions 1)–3) of Proposition 3.11 can be
derived from the basis (2.11) indicated in Lemma 2.15 and, consequently, is true in Vm.
Indeed, if an identity u = v satisfies conditions 1)–3) and is non-trivial, then by using the
identities xyzm = xy and z1z2xy = z1z2yx we can reduce any word u of length greater
than 1 to the form

(3.12) u′ ≡ h2(u)ya1
1 . . . yak

k ,

where 0 ≤ ai ≤ m − 1. Suppose that the word v in the identity u = v is reduced to the
form

(3.13) v′ ≡ h2(v)yb1
1 . . . ybk

k ,

where 0 ≤ bi ≤ m − 1. If y1, . . . , yk /∈ c(h2(u)), then by condition 3) this implies that
bi = ai (i = 1, . . . , k). Let yi ∈ c(h2(u)) = {x}. Then

x2ya1
1 . . . y

ai−1
i−1 xai . . . yak

k = x2yb1
1 . . . y

bi−1
i−1 xbi . . . ybk

k .

Hence we obtain that ai + 2 ≡ bi + 2 (modm). Thus, the identity x2yxm−1 = xm+1y
holds in Vm. But this identity can be derived from the identities of the basis (2.11).
A similar argument is possible if h2(u) ≡ xy. The variables in the reduced word (3.12)
are ordered as follows: h1(u), c(h2(u)) \ h1(u), and then according to the order in the
alphabet X, where X is a denumerable ordered alphabet. �
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Proposition 3.12. The lattice L(ApwN2) of all subvarieties of the wreath product
ApwN2 is depicted in Figure 6. In particular, |L(ApwN2)| = 10 and |I(Ap, N2)| = 3.

Figure 6.

In Figure 6, Up denotes the variety Ap ∨ L1 ∨ N2, and Vp the variety ApwN2, and
L2,2 = var{x1x2y = x1x2}.
Remark 3.13. The identities zyx = zxy and zxyp = zx form a basis of identities of the
variety Ap ∨ L1 ∨N2. Before proving Proposition 3.12 we introduce some notation and
state two lemmas from [4]. Let

M1 = var{xyz = t2 = 0, xy = yx},
M2 = var{xy = xyz}, M∗

2 = var{xy = zxy},
M5 = var{x = x2, xy = xyx}, M∗

5 = var{x = x2 = 0, yx = xyx},
M(q) = var{x = (xy)qx, x = x1+q, xyx2 = x2yx},

where q is a prime.

Lemma 3.14 ([4, Lemma 5]). If the identity xy = (xy)n+1 (n ≥ 1) is true in a variety
U, which does not contain the varieties M1, M2, M∗

2 , M5, M∗
5 or M(q) for any prime q,

then the identities xn+1y = xy = xyn+1 and xynznt = xznynt are true in U.

Lemma 3.15 ([4, Lemma 16]). If the identities xn+1y = xy = xyn+1 and xynznt =
xznynt are true in a variety U, then the subdirectly indecomposable semigroups in U are
contained in the set {L, L0, R, R0, U2, N, Gi, G

0
i }, where the Gi are subdirectly indecom-

posable groups in U.

Proof of Proposition 3.12. Let U ⊂ Vp = ApwN2. Then I(Vp) ⊂ I(U). Suppose that
an identity u = v belongs to I(U) \ I(Vp). Then at least one of the three conditions 1),
2), 3) of Proposition 3.11 is violated for u = v.

Case 1. If u = v does not satisfy condition 1), then the identity

(3.14) x = x1+p

is true in U. Then in view of the basis of identities (2.13) for m = p of the variety Vp, the
chain of identities zyx = zzpyx = zzpxy = zxy is true in U. Consequently, U ⊆ Ap ∨ L1.

Case 2. Suppose that u = v does not satisfy condition 2). Then an identity of the
form xm = xm+d, where 1 ≤ d ≤ p−1, is true in U. This fact and the identity x2 = x2+p

imply that x2 = x3 ∈ I(U). Then the chain of identities zx = zxyp = zxyp+1 = zxy is
also true in U. Thus, in this case, U ⊆ var{zx = zxy} = L2,2. The lattice L(L2,2) is
well known and contains 5 elements.
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Case 3. In what follows we can already assume that conditions 1) and 2) hold. Suppose
that condition 3) is violated for the identity u = v, that is, h2(u) �= h2(v). Obviously, Vp

satisfies the identity xy = (xy)1+p, does not contain the two-element semigroup R of right
zeros, the two-element semigroup L0 of left zeros with adjoint zero, or the four-element
semigroup Q = {a, b, d, 0} in which ab = ba = d and all the other products are equal to
zero. Furthermore, R ∈ M∗

2,M∗
5,M(q) and, consequently, the varieties M∗

2,M∗
5,M(q)

are not contained in Vp. We have L0 ∈ M5, Q ∈ M1, and, consequently, M1 and M5 are
not contained in Vp. If U ⊂ Vp and in U the condition h2(u) �= h2(v) is not satisfied for
some identity u = v, then M2 = L2,2 is not contained in U. By Lemmas 3.14 and 3.15,
in this case the variety U can contain only three subdirectly indecomposable semigroups
L,N,C(p). Consequently, in this case, U ⊆ Up = L1 ∨ N2 ∨Ap. �

Proposition 3.16. The lattice L(ApwSl) of all subvarieties of the wreath product
ApwSl is depicted in Figure 7. In particular, |L(ApwSl)| = 11 and |I(Ap,Sl)| = 4.

Figure 7.

In Figure 7 we denote by Wp the variety ApwSl, by Up the variety Ap ∨ L1 ∨ Sl,
and set

Vp = var{x = x1+p, xyx = x2y},
W′ = var{x = x2, xyx = xy}.

To prove Proposition 3.16 we use the results of [32]. We recall some definitions and
introduce notation. We denote by B the variety of all bands, by Re the variety of
rectangular bands, by CS the variety of all completely simple semigroups in the signature
〈·,−1 〉, by BG the variety of all bands of groups in the same signature. Let LGn = 〈a, f :
a = a1+n, f2 = f, anf = f, fa = a〉. The semigroup LGn is an ideal extension of the
semigroup of left zeros by the cyclic group of order n. The semigroup RGn is defined as
the right-hand analogue of the semigroup LGn. By Theorem 1 in [32], a variety V of
completely regular semigroups consists of bands of groups if and only if the semigroups
LGn and RGn do not belong to V for any integer n, n ≥ 2.

Lemma 3.17. The varieties Wp and var LGp satisfy Wp = varLGp.

Proof. It is easy to verify that the identities (2.20) and (2.21) are true in LGp. Therefore,
LGp ∈ Wp. By Proposition 2.25, this implies their sets of identities satisfy the inclusion
I(Wp) ⊆ I(LGp). To prove the reverse inclusion, suppose that an identity u = v does
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not belong to I(Wp). Using the description of such identities obtained in Lemma 2.20
one can easily establish, as was done in the proof of Proposition 2.25, that the identity
u = v is false in I(LGp), and therefore, I(LGp) ⊆ I(Wp). This proves the lemma. �

Proof of Proposition 3.16. If V ⊆ W′ and V �= W′, then V is a variety of bands of
groups by Lemma 3.17 and Theorem 1 in [32]. Note that in the case of periodic semi-
groups the notion of “a variety of semigroups” coincides with the notion of “a variety of
completely regular semigroups”. The variety BGp of all bands of groups of exponent p
is described by the identity

(3.15) (xpyp)p = (xy)p,

while the identity of condition 2) of Theorem 2 in [32] takes the form

(3.16) (xy)pxp(zx)p = (xyxzx)p.

It is easy to verify that the variety Vp = Wp ∩BG is the largest variety of bands of
groups contained in Wp. Furthermore, Vp satisfies the identity (3.16). By Theorem 2
in [32], Vp is contained in the lattice join of the variety CS of all completely simple
semigroups and the variety of all bands B. Proposition 1 in [32] gives a description of
the structure of the lattice of all subvarieties of Vp. �

Proposition 3.18. The lattices L(SlwSl), L(SlwR1), and L(SlwAn) and the cor-
responding lattice intervals I(Sl,Sl), I(Sl,R1), and I(Sl,An), where n is a positive
integer greater than or equal to 2, are infinite.

Proof. Consider the lattice of subvarieties of the variety A2,1 = var{x2 = x3, xy = yx}.
First of all we note that the lattice L(A2,1) has long been known and is depicted in
Figure 8 (see, for example, the survey [25]). In Figure 8 we also use the following
notation: W0 is the variety var{x2 = x3, xy = yx, x2y = xy2} and V0 is the variety
var{x2y = x2, xy = yx}. Furthermore, the k-th term in the lattice interval [T,V0] is the
variety Vk = var{xy = yx, x2 = x3, x1 . . . xk = y1 . . . yk} and the k-th term in the lattice
interval [Sl,W0] is the variety Wk = var{xy = yx, x2 = x3, x1 . . . xk = x1 . . . x2

k}.

Figure 8.
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It can be verified that A2,1 ⊂ SlwSl, since from the basis of identities for the variety
A2,1 it is easy to derive all the identities of the basis for the variety SlwSl that are
indicated in Proposition 2.17. Similarly, it can be shown that W0 ⊂ SlwR1. Finally,
in [12] it was proved that the Brandt six-element monoid B1

2 belongs to the variety
SlwAn, where n ≥ 2 is a positive integer. Hence we easily obtain the inclusions SlwAn ⊃
varB1

2 ⊃ varB2. It is known that

varB2 = var{x2 = x3, xyx = xyxyx, x2y2 = y2x2}.
Again, as above, from the basis of identities for the variety W0 one can easily derive all
the identities of the basis for the variety varB2 indicated above. Indeed, let

B(W0) = {x2 = x3, xy = yx, x2y = xy2}.
Then the first identity in the basis of identities of B(varB2) occurs in the basis of
B(W0), the third identity is a consequence of the commutativity law, and the second
has the following inference chain:

xyx = x2y = xy2 = xy3 = x2y2 = x3y2 = xyxyx.

Consequently, I(varB2) ⊆ I(W0), and hence, W0 ⊆ varB2. Thus, all the three lat-
tices contain the infinite lattice interval [Sl, W0]. Hence the lattice intervals I(Sl,Sl),
I(Sl,R1) and I(Sl,An) for any positive integer n ≥ 2 are also infinite. Indeed, it is easy
to verify that an identity u = v belongs to the set of identities I(Wk) if and only if it
has the following two properties:

1) c(u) = c(v);
2) [|u| ≥ k or there exists a letter x such that |u|x ≥ 2] and [|v| ≥ k or there exists

a letter y such that |v|y ≥ 2].
To prove that the lattice interval I(Sl,R1) is infinite we note that the varieties

W′
k = Wk ∨ R1 satisfy I(W′

k) = I(Wk)∩I(R1). Hence we can observe that an identity
u = v belongs to the set of identities I(W′

k) if and only if it has properties 1), 2) and
the following property:

3) t1(u) = t1(v).
It is easy to deduce from this observation that in the set of identities I(W′

k), an
identity of the smallest lexicographic length in which a linear word is equal to some
non-linear word is an identity of the form

(3.17) x1 . . . xk = x1 . . . x2
k.

Therefore the identity (3.17) is true in the variety W′
k but false in W′

k+1. Consequently,
the inclusion of varieties W′

k ⊆ W′
k+1 is strict and the lattice interval I(Sl,R1) is infi-

nite.
Similarly, to prove that the lattice interval I(Sl,An) is infinite we note that for the

varieties Uk = Wk ∨ Ap the equality I(Uk) = I(Wk) ∩ I(Ap) holds. Hence we can
observe that an identity u = v belongs to the set of identities I(Uk) if and only if it has
properties 1), 2) and the property

4) for any letter x we have the congruence |u|x − |v|x ≡ 0 (mod p).
It is easy to deduce from this observation that in the set of identities I(Uk), an identity

of the smallest lexicographic length in which a linear word is equal to some non-linear
word is an identity of the form

(3.18) x1 . . . xk = x1 . . . x1+p
k .

Therefore identity (3.18) is true in the variety Uk but false in Uk+1. Consequently, the
inclusion of varieties Uk ⊆ Uk+1 is strict and the lattice interval I(Sl,An) is infinite. �
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To complete the proof of Theorems 3.1 and 3.2 we consider the case of the wreath
product of group varieties. If we consider the wreath product of different group varieties
Ap and Aq, then the description of the lattice L(ApwAq) follows from the more general
Higman theorem (see [6, Theorem 54.41] or [26]), and this lattice consists of exactly 5
elements.

In the case where the group varieties involved in the wreath product are the same,
we can note that the variety A2

p is metabelian and, consequently, has a finite basis of
identities [6, Theorem 36.11]. On the other hand, by Shmel′kin’s theorem, this variety is
not generated by any finite group [6, Theorem 24.64]. This variety contains the infinite
p-group

G∞ = C(p)w

( ∞∏
i=1

Ci(p)

)
,

where Ci(p) ∼= C(p), which has trivial centre by Theorem 24.23 in [6]. Consequently, the
variety W = A2

p is not a nilpotent variety. Furthermore, in I(W) there exists an infinite
chain of subvarieties, since, according to the results in [29, Theorem 5.1], the nilpotency
class of the wreath product of groups

(3.19) Gm = C(p)w

(
m∏

i=1

Ci(p)

)
,

where Ci(p) ∼= C(p), is equal to l = m(p − 1) + 1. Thus, the lattice interval I(W)
contains the infinite chain of varieties

(3.20) W1 = W ∩ N1 ⊂ W ∩ N2 ⊂ · · · ⊂ W ∩ Nk ⊂ · · · ⊂ W,

where Nk is the variety of nilpotent groups of class k. Theorems 3.1 and 3.2 are
proved. �

Remark 3.19. In [1] it is noted that for p = 2 the chain (3.20) in fact gives the entire
lattice of subvarieties in L(A2

2).

Remark 3.20. We do not have complete information about the structure of the lattice
L(SlwN2). But it is interesting to point out that this lattice contains substantially more
elements than in all other cases of a finite lattice of the wreath product of atoms of
semigroup varieties. Namely, the following assertion holds.

The lattice L(SlwN2) of all subvarieties of the variety SlwN2 contains at least 33
elements. The lattice interval I(Sl,N2) contains at least 18 elements.

The proof of this assertion would take up a lot of space and we do not give it here.

4. Generating of the wreath product of atoms by a finite semigroup

In this section we prove the following theorem.

Theorem 4.1. The monoid wreath product UwV of atoms of the lattice L of all semi-
group varieties is not generated by a finite semigroup if and only if U = V = Ap for
some prime p.

First of all we note that a large part of the theorem already follows from the preceding
results of this paper. We begin with the following well-known and simple remark.

Remark 4.2. The lattice join of varieties U ∨V is generated by the direct product S×R,
where U = var S and V = varR.
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This remark and the results of § 2 imply that quite a number of monoid wreath prod-
ucts of atoms of the lattice of semigroup varieties are generated by a finite semigroup.
Furthermore, results on generation of the monoid wreath product of atoms of the lat-
tice of semigroup varieties are contained in Theorem 6.1 in [10], Proposition 7.2 in [12],
Corollaries 2.18, 2.26 (or Lemma 3.18), and Proposition 2.30. Thus, to complete the
proof of Theorem 4.1 it remains to consider the cases of the monoid wreath products
R1wN2, R1wR1, R1wSl, SlwN2, SlwL1, ApwN2, and the case of the wreath product
of group atoms. Furthermore, in the case of group atoms, the result of the theorem easily
follows from Shmel′kin’s well-known and beautiful theorem [6, Theorem 24.64] (see also
[18, 19]), which gives necessary and sufficient conditions for a product of group varieties
to be generated by a finite group.

Proposition 4.3. The monoid wreath product R1wN2 is generated as a variety by the
four-element semigroup T1 = {e, a, a2, 0} obtained from the monogenic nilpotent three-
element semigroup 〈a | a3 = 0〉 by adjoining an element e such that ae = e2 = e and
ea = 0.

Proof. According to Corollary 2.4, the identity

(4.1) y1y2x = z1z2x

is a basis of identities of the variety R1wN2. We now show that the semigroup T1 has
the same basis of identities. Indeed, for x = e we have y1y2e = e = z1z2e, and for x = a
we have y1y2a = 0 = z1z2a for any values of y1 and y2. If an identity u = v does not
belong to the set I(R1wN2), then either t1(u) �= t1(v) or the length of at least one of
the words |u|, |v| is less than 3. In the first case, in the identity u1z = v1t, where z �= t,
we set z = 0, t = e. Then we obtain that the value of the word u is equal to 0, while
the value of the word v is equal to e. In the second case we can assume that |u| = 2 and
|v| ≥ 2 and, moreover, u ≡ z2 and v ≡ v1z. Setting z = a and setting the values of the
other variables to be equal to e, we obtain that the value of the word u is equal to a2,
while the value of the word v is equal to 0, provided these words are different. �

Proposition 4.4. The monoid wreath product R1wR1 is generated as a variety by the
four-element semigroup T2 = {b1, b2, b3, d} in which xbi = bi (i = 1, 2, 3) for any x ∈ T2,
and the other products are b3d = b2, b2d = b1d = d2 = b1.

Proof. It is easy to verify that the groupoid T2 defined in Proposition 4.4 is associative.
According to Corollary 2.4, the variety R1wR1 has a basis of identities consisting of the
single identity

(4.2) xy1y2 = y1y2.

Obviously, T 2
2 coincides with the ideal R = {b1, b2, b3} of right zeros in T2. Therefore

the identity (4.2) is true in T2. Conversely, since the semigroup T2 has right zeros, we
have t1(u) = t1(v). If in addition t2(u) �= t2(v), then T2 satisfies an identity of the form
zx = yx, where y �= z. Setting x = z = d and y = b3 we obtain that xz = d2 = b1, while
yx = b3d = b2. Consequently, any identity that does not belong to I(R1wR1) is false
in T2. �

Proposition 4.5. The monoid wreath product SlwN2 is generated as a variety by the
sixteen-element semigroup T0 = U2wN, where U2 = {0, 1} is the two-element semilattice
and N = {0, a} is the two-element nilpotent semigroup.

Proof. Recall that the description of identities of the variety SlwN2 was given in Corol-
lary 2.13. By using Remark 2.1 it is easy to establish that the wreath product T0 = U2wN
satisfies the same identities as the variety SlwN2. �
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Proposition 4.6. The monoid wreath product SlwL1 is generated as a variety by the
four-element semigroup T ′ = {e, a, a2, b} in which e is a right identity element, that is,
xe = x for any x, the elements a2, b are left zeros, and ey = b, ay = a2 for y ∈ {a, a2, b}.

Proof. By Lemma 2.10, the set consisting of the two identities

zy = zy2,(4.3)

zyx = zxy(4.4)

is a basis of identities of the variety SlwL1. It is easy to verify that the identities (4.3)
and (4.4) are true in the semigroup T ′. Using Proposition 3.6 we can assert that if
varT ′ �= SlwL1, then either varT ′ ⊆ V = Sl ∨ L1 ∨ N2 and, as is well known, the latter
variety has a basis consisting of the identities (4.3), (4.4) and the identity

(4.5) zx = z2x,

or varT ′ ⊆ varP ′ and, as is well known, the variety varP ′ has a basis of identities
consisting of the identity (4.3) and the identity

(4.6) x2y = y2x.

It remains to observe that the identity (4.5) is false in T0 if we set z = a and x = e,
while the identity (4.6) is false in T0 if we set x = a and y = b. Consequently, T ′ /∈ V
and T ′ /∈ var P ′. Thus, varT ′ = SlwL1. �
Corollary 4.7. The monoid wreath product R1wSl is generated as a variety by a four-
element semigroup.

Proof. This follows from the duality of the bases of identities of the varieties R1wSl
and SlwL1 and from Proposition 4.6. �

To find a semigroup generating the variety ApwN2, we consider the extended standard
wreath product T ′

p = C(p)wN in which N = {a, 0} is the two-element semigroup with
zero multiplication and C(p) is the cyclic group of order p with a generator d. In the
wreath product T ′

p we consider the subsemigroup Tp = 〈(f, a), (cd, 0)〉 generated by two
elements. Here cd is the constant function that is identically equal to the element d of
the group, and the function f is defined by the equalities f(1) = f(a) = e, f(0) = d. It
is easy to verify that 0f = cd and af(1) = e, af(0) = af(a) = d. Next, calculating the
powers of the element (f, a) we obtain

(f, a)2 = (f af, 0), (f, a)3 = (f afcd, 0),

(f, a)4 = (fafc2
d, 0), . . . , (f, a)2+p = (faf, 0) = (f, a)2.

Thus, the monogenic semigroup generated by the element (f, a) contains p + 1 elements.
The monogenic semigroup generated by the element (cd, 0) is a cyclic group of order p.
Furthermore, (f, a)(ci

d, 0) = (fci
d, 0) and (ci

d, 0)(f, a) = (ci+1
d , 0). Thus, we have fci

d(1) =
fci

d(a) = di, fci
d(0) = di+1, and fafci

d(1) = di, fafci
d(a) = di+1, fafci

d(0) = di+2.
Consequently, the semigroup Tp contains 3p+1 elements: namely, (f, a), (ci

d, 0), (fci
d, 0),

(f afci
d, 0) (i = 1, . . . , p).

Proposition 4.8. The monoid wreath product ApwN2 is generated as a variety by the
semigroup Tp defined above.

Proof. By the construction of the semigroup Tp it belongs to ApwN2. By Proposi-
tion 3.12, if varTp �= ApwN2, then either Tp ∈ L2,2 or Tp ∈ Up = Ap ∨ L1 ∨ N2.
Obviously, Tp /∈ L2,2, since Tp contains a group of order p. On the other hand,
Tp /∈ Up, since Tp does not satisfy the identity (4.4), which is true in Up. Indeed,
setting z = y = (f, a), x = (cd, 0) we obtain that zyx = (f afcd, 0) and zxy = (fc2

d, 0).
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Here, f afcd(1) = d, while fc2
d(1) = d2, that is, the identity (4.4) is false in Tp. Conse-

quently, varTp = ApwN2 for any p ≥ 2.
The proof of Proposition 4.8 completes the proof of Theorem 4.1. �
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