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Introduction

In modern technology thin membranes are often used as
construction elements. Examples can be found in aircraft and
spacecraft applications. The building industry also uses mem-
branes (fabric constructions). The objective of our research is
to study the force transmission from muscle to bone near the
elbow joint. The connective tissue structures which connect
contractile elements from the muscle to the bones often consist
of thin membrane-like structures. Because of their geometry
the membrane-like tissues will wrinkle easily. This wrinkling
has much influence on the stress state and the force
transmission.

Models describing the mechanical behavior of membranes
are usually based on the assumption that membranes have
zero flexural stiffness. In normal membrane theory, however,
negative stresses are possible. A membrane theory which ac-
counts for wrinkling does not allow any negative stress to ap-
pear. When a negative stress is about to appear the membrane
will wrinkle. A model for the stress field after wrinkling is a
so-called tension field. By definition a tension field is uniaxial
in the sense that it has only one nonzero principal stress com-
ponent. In the direction perpendicular to the lines of tension
the membrane is wrinkled. .

The modelling was apparently started by Wagner (1929). He
tried to explain the behavior of thin metal webs and spars car-
rying a shear load well in excess of the initial buckling value.
Many authors (for example Reissner, 1938; Kondo et al.,

Contributed by the Applied Mechanics Division for presentation at the
Winter Annual Meeting, Boston, MA, December 13-18, 1987, of the American
Society of Mechanical Engineers.

Discussion on this paper should be addressed to the Editorial Department,
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y.
10017, and will be accepted until two months after final publication of the paper
itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by ASME
Applied Mechanics Division, December 15, 1986; final revision April 20, 1987.

Paper No. 87-WA/APM-24.

884/Vol. 54, DECEMBER 1987

stretching of a membrane is considered to illustrate the potency of the method.

1955; Mansfield, 1970, 1977) contributed to the geometrically
linear analysis. This modelling is based on the theorem that
the lines of tension in a wrinkled membrane are exactly in a
direction for which the strain energy of the membrane is at a
maximum. In this situation the wrinkling of isotropic and
anisotropic membranes can be described (Mansfield, 1977). In
geometrically nonlinear theory the analysis is more complex.
Wu (1981) presented a model describing the wrinkling of
membranes in finite plane-stress theory. He modified the
deformation tensor by introducing an extra parameter. The
value of this parameter was determined by the condition that
the stress in wrinkling direction is zero. The modification of
the deformation tensor was chosen in a way that the principal
Cauchy directions did not change because of the wrinkling,
which is only true when the material is isotropic.

Since the connective tissue structures we study may show
large deformations and anisotropy, it was necessary to
develop a new model capable of dealing with these
phenomena. In this paper a detailed discussion of the theory is
given.

Theory

Let us assutne that: (@) Plane-stréss theory can bé iised; (b)
Flexure of the membrane does not introduce stresses in the
membrane; (¢) The membrane is not able to support any
negative stress. If a negative stress is about to appear the mem-
brane will wrinkle at once.

Although not essential for the theory we restrict ourselves to
materials which behave ‘‘Cauchy-elastic’’. Thus, if it is taken
into account that constitutive equations have to be objective,
we are allowed to write for the Cauchy stress tensor o:

¢=1/JF H(E).F¢ )

with: F the deformation tensor; J= det(F) the Jacobian of the
deformation tensor; E the Green-Lagrange strain tensor; and
H a tensor function of E.
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Notice that the deformation tensor F can only be used in
equation (1) if it contains the real deformations of a mem-
brane. If however, a theoretical model does not account for
wrinkling, deformations F may occur which result in negative
Cauchy stresses. In reality these deformations will not occur
because the membrane will wrinkle. The exact shape of the
membrane after wrinkling is not definable with our theory.
However, it is possible to use a special modified deformation
tensor in the constitutive equation which results in the real
Cauchy stresses. ‘

Consider a small part of a membrane (Fig. 1) in the
neighborhood of position ¥. Vector @’is a vector tangent to the
midsurface of the membrane. In mathematical terms the
assumption that no negative stresses occur can be represented
by:

Geg+d=0 )

The tensor ¢ is the real Cauchy stress tensor.

Inequality (2) means that, in equilibrium, there can be no
direction with negative Cauchy stress. There is dn infinite
number of inequality conditions because @ is arbitrary. It can
be proved, however, that the following finite number of ine-
quality conditions are necessary and sufficient in order to
satisfy equation (2):

Hysaeil; =0 ©)]
Tiysoeii, =0 C))
fiysaeri, =0 )

where 7, and 7, are orthonormal vectors denoting the prin-
cipal directions of the real Cauchy stress tensor. So, if the
membrane wrinkles, these vectors give the a priori unknown
directions of the principal Cauchy stresses in the wrinkled
membrane. The two inequalities represent the condition that
neither of the principal Cauchy stresses can be negative. These
conditions are necessary because a negative principal stress
would contradict the assumption that negative stresses are not
possible. These conditions are sufficient because determina-
tion of the stress in an arbitrary direction a:

@e0+d= [T, + (@e7,)T,] ea+ (@71},
+ (@ M)iy] = (@11, 1y s0 07Ty + (Fo1,) 1y 00 Ty (6)

always leads to a positive stress in direction @ if conditions (3)
and (4) are true.

Considering conditions (3), (4), and (5), the following situa-
tions are possible. If both the principle stresses are positive the
membrane is taut. If both the principle stresses are zero the
membrane is slack. The only possibility left is the situation in
which one principal stress is zero (for example, in the 7, direc-
tion) and the other principal stress (in the 7, direction) is
positive. In the latter case conditions (3), (4), and (5) are
transformed into:

’-{1 ’0"’71 =0 (7)
;L.z g -‘-ﬁz >0 (8)
iy saeiiy =0 ©)

In this situation the membrane may be wrinkled. In Fig. 2 a
wrinkled membrane part is shown. The deformed configura-
tion of this membrane part, if it would not have wrinkled, is
indicated by the dotted lines. The dotted membrane part
would be the result of the deformation tensor F corresponding
with a theory which does allow for negative principal stresses.
In this figure 7, again is the a priori unknown direction in
which the real principal Cauchy stress is zero. The problem to
be solved is the determination of the principal stress in the
direction of the unit vector #,. Because of the second assump-
tion, the stresses in the membrane part stay the same if we
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Fig. 1 Vector 3 is touching the midsurface of the membrane

wWri

Fig. 2 A wrinkled membrane part with deformed length L‘ and de-
formed width B. Also the fictive nonwrinkled membrane part is shown
(dotted lines) with length L<L’ and width B.

N
/ "2
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™

Fig.3 The wrinkled membrane part straight in the plane determined by
ﬁ1 and l-l‘2 '

straighten it (by flexure only) in the plane determined by 7,
and 71, (Fig. 3).

The deformation tensor which would have given the mem-
brane part of Fig. 3 is a deformation tensor which corresponds
with the real stresses, because that membrane part contains the
real stresses as we argued above. Since the membrane part of
Fig. 3 has the same shape, but is only longer in the 7, direction
in comparison with the fictive nonwrinkled part, that defor-
mation tensor has to be of the form:

F’'=(1+Bn,n,;)+F (10)
with I denoting the unit tensor. The tensor (I+8#,7;)
lengthens the fictive nonwrinkled membrane part to become
just as long as the real wrinkled membrane part.

It should be noticed that, when the material is anisotropic,

the principal directions after wrinkling in general differ from
the principal directions in the fictive nonwrinkled situation.

DECEMBER 1987, Vol. 54 /885



|
|
! straight sides
I B
/] -
Z ! ’FZ
| ! A
| ' By
|
: |
% I
80 _E}M b
g g v
0

Fig. 4 Simple shear and stretching of a membrane

The parameter § and the direction of the principal frame have
to be determined by using the coupled nonlinear conditions (7)
and (9). The parameter 8, which is never negative, is a measure
of the wrinkliness of the membrane.

Summarizing we may state that the real stress state in a
wrinkled membrane can be determined by using the modified
deformation tensor F’ in the constitutive equation:

o(F')=1/J F’' H(E')F’'¢ an
where:

E’' =1/2(F'¢sF’'—I); J=det(¥’) (12)

and where § and the direction of the principal frame have to
be determined by making use of the equations (7) and (9).

At this point there is only one problem left. Suppose a
deformation tensor F is given which, using constitutive equa-
tion (1), generates one or two negative principal Cauchy
stresses. It is not immediately clear what the condition of the
membrane shall be. To be able to determine whether the mem-
brane is wrinkled or slack, the Green-Lagrange strain tensor
based on F should be considered. When both the principal
values of this strain tensor are negative, there are no directions
at which material is stretched, so the membrane part is slack.
If, however, in this situation, one of the principal values of
this strain tensor is positive, there are directions at which
material is stretched, so there are positive stresses, thus the
membrane part is wrinkled.

Notice that no assumptions, such as geometrical linearity or
isotropic material have been made. The preceding formulation
is generally applicable.

Example: Simple Shear and Stretching of a Membrane

In this example a membrane is deformed by simple shear
and stretching (Fig. 4). F; and F, are the forces required to
shear the membrane over a distance u and stretch it over a
distance v. Material coordinates are denoted by ¢;(0<§,<1;
i=1,2,3). The initial position vector of a material point is
given by:

¥o=£,Bo&, + £, Lo2) +£3Dy8, (13)
where By is the initial width, L is the initial length and D, is
the initial thickness of the membrane.

If no wrinkling takes place, the displacement field is given
by:

i=Eue, +£,V8, + ;w8 (14

where u is the shearing distance, v is the stretching distance,
and w is the variation in the thickness of the membrane. This
leads to the deformation tensor:

F=1+u/Ly&,, + 0/Lo&,&, + w/Dyes,s (15)
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Fig. 5 The direction ot the principal frame is indicated by the angle «

In simulating transversely isotropic material, the following
representation of the tensor function H(E) with respect to the
frame &, €,, €, is chosen:

E 'e (4
HE, =m[(1 = V)ES; + v(ES,; + E5)))
(-DE _,
= -
€ e (] — e e e 7
%2 d+o(-29) [(1—v)E%, + v(EY, +E55)] an
g ————-E [(A —v)E% + v(E%, + E5)] (18)
3= (+0)(1-29) U)Li3s 11 22 .
E . . .
Hf;=———FE%, inotequalj (19)

1+0v @

E} are the components of the Green-Lagrange strain tensor
with respect to the frame €|, &, &. The factor f determines the
measure of anisotropy of the membrane (if f=1 then the
membrane is isotropic, if £> 1 then é| is the stiffest direction).
If the membrane wrinkles the real Cauchy stresses have to

be determined by using the following set of equations:
F’ =1+ Bn; 7)) s(1+u/Lo&,€, + v/Ly&\ 8, + w/Dye3&;)  (20)
o(F')=1/JF +HE")F* 1)

where:

J=detF'); E =1/2F<F -1 22)

and in the equations (16) to (19) EY; is replaced by E "G
Denoting the direction of the principal frame by the angle o

(Fig. 5), the parameters «, 8, and w have to be determined by
using conditions (23) and (24):

fyea(F’)eri; =0 23

i eo(F")eii, =0 (24
and the plane-stress condition:

&-0(F')-&=0 (25)
Using equations (20) to (22) with the conditions (23) to (25)

leads to three nonlinear coupled equations in the unknowns «,

Transactions of the ASME
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Fig. 6 The angle « as a function of the stretching distance v for dif-
ferent values of the anisotropy parameter f (see equation (18))
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Fig. 7 The parameter 8 as a function of the stretching distance v for
different values of the anisotropy parameter f

B, and w:
Ay (o, B,w)=0 (26)
hy(e,B,w)=0 2N
A3 (o, B,w)=0 28)

The unknowns «, 8, and w can be solved numerically by using
equations (26) to (28), for example by means of a Newton-
Raphson procedure.

We have chosen the following numerical values for the
model parameters:

Ly=100{mm]; By = 100fmm]}; D, = 1[mm]};
E=100[N/mm?]; v=0.3

The membrane is sheared with =5 [mm] and then stretched
until v=1.2 [mm]. Results for the geometrically nonlinear
analysis are given in Figs. 6 to 9.

In Fig. 6 it can be seen that if the membrane stiffens in &,
direction the lines of tension tend to this direction. Notice that
if the stretching is strong enough the wrinkles are pulled out of
the membrane. This is the point at which the parameter 8
becomes zero (Fig. 7). If the membrane stiffens, the forces
necessary to the deform the membrane increase (Fig. 8 and
Fig. 9).

For isotropic materials (f= 1) the formulation of Wu (1981)
would generate the same results because, in this situation,
equation (10) degenerates to the same modification of the
deformation tensor as Wu proposes in order to describe the
wrinkling of isotropic membranes. The results for anisotropic
materials, however, can only be found by making use of the
theoretical model given above. )

Similar figures can be found in a geometrical linear analysis.
These results turn out to be the same as results found by
geometrical linear formulations, for example the formulation
of Mansfield (1977).
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Fig. 8 The force Fy as a function of the stretching distance v for dif-
ferent values of the anisotropy parameter f
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Fig. 9 The force F, as a function of the stretching distance v for dif-
ferent values of the anisotropy parameter f

Conclusions

The model given above is easy to understand and pretends
to describe the general situation of the wrinkling of
anisotropic membranes in geometrically nonlinear analysis.
However, the preceding analysis of wrinkling membranes is
only theoretical. A confrontation between this theory and ex-
periments still has to be done.

In situations in which no analytical solutions to problems
are known we want to use numerical approximation methods.
We choose to use the Finite Element Method. Based on the
theoretical method, a membrane element which is able to
wrinkle has been developed. We plan to discuss this element in
a paper to follow.
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