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Introduction

Force transmission from muscle to bone near the elbow
joint takes place by means of connective tissues which connect
contractile elements from the muscle to the bones. They often
consist of thin membrane-like structures. Because of their
geometry, the membrane-like tissues will wrinkle easily. This
wrinkling may have much influence on the stress state and the
force transmission. In Roddeman et al. (1987) a mechanical
model of wrinkling membranes has been presented. Wrinkling
is accounted for by replacing a given deformation tensor,
which would result in negative Cauchy stresses in the mem-
brane, by a modified deformation tensor which results in the
correct stress situation. With this model the wrinkling of
anisotropic membranes in geometrically nonlinear analysis
can be described. In this paper a membrane element will be
derived which can be used for the modelling of thin structures.

The Equilibrium Conditions

The equilibrium conditions in local form may be formulated
as:

- -

Veo=0 )

where V is the gradient operator with respect to the deformed
configuration and ¢ is the real Cauchy stress tensor which is
symmetric: ¢=g°.

For a finite element model an integral form of equation (1)
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determined by making use of a modified deformation tensor. A structure may have
completely slack regions, leading to a singular stiffness matrix. Because of this we
have chosen to use a restricted step method for the iterative solution procedure. A
simple shear test is used to compare numerical and analytical results which show

is needed. Taking the inner product of the local equilibrium
conditions with an arbitrary vector function 4 and integrating
the result over the deformed volume V leads to:

SV(G-U)-h’dV=0 2

The integral form of equation (2) is equivalent to the
equilibrium conditions (1), as long as A is arbitrary. Partial in-
tegration and the application of Gauss’ theorem leads to:

SV [a:(Gl?)c]dh SA T eloehldA 3)

where 74 denotes the outward unit normal on the deformed
surface 4 of the body. Since the volume V and the surface A
are a priori unknown, equation (3) is transformed to the initial

configuration, for which the volume ¥ and the surface A, are
known:

|, @G oheav,=| . toRrda, @
()} Ag

with J=dV/dV,; J*=dA/dAy; and V, is the gradient
operator with respect to the initial configuration. ;

R denotes the real deformation tensor of the body. It should
be noticed that in a wrinkled membrane with no flexural stiff-
ness R is indefinite. It can be shown that an equivalent for-
mulation of equation (4) is:

SVO [(R~1eJo):(V  A)1dV, = SAO 74

The term R~!sJo in equation (5) is called the first Piola-
Kirchhoff stress tensor «. If a membrane wrinkles (in a prin-
cipal direction, for example given by unit vector ;) the exact
shape in wrinkling direction is not known, and so thé real
deformation tensor R is unknown. It can be demonstrated
however that R may be replaced by a similar deformation ten-
sor S, which is known.

[oeh]JodA, &)
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Fig. 1 The total deformation R is divided into F and G

Consider the deformation of a wrinkled membrane, as a
deformation from the initial configuration to an imaginary
nonwrinkled membrane (with corresponding deformation ten-
sor F), followed by the wrinkling of the membrane, with cor-
responding deformation tensor G (Fig. 1). So, we write:

R=G-F ©)
where:
G =770 + gy Ty 1Ty + 81371, 7y + 83,7311, + 83371311 )

The frame 7, , 7,, 7, is the principal Cauchy frame where 7, is
perpendicular to the plane of the fictive nonwrinkled mem-
brane. The unknown terms g;7i;7; only cause deformations in

the plane determined by 7, and #; and define the wrinkles of
the membrane part. Using the fact that there are only stresses
in the 77, direction, it is obvious that:

Jo=(Joy)ii,it, ®
and it can be shown that:
7=R-le(Jo)=F1+G1e(Jo)
=F 1o {01y + g, i1 71, + 837 Tl + g3, 7131,
+ 833713713} T o (Jopp)iy 7y =F ~ o(Jo,)iiy i, =F~1o(Jo)  (9)

In a similar way the deformation tensor F can be regarded to
be a deformation from the initial configuration to a non-
wrinkled membrane, still with initial thickness D, with cor-
responding deformation tensor S, followed by a change of the
thickness from D to its real value D:

F = (7,11} + i, 71, + D/DyH313) S (10)
After substituting equation (10) in (9) it is found that:
w=F~1e(Jo)=S~1e(#\ i, + i1, + D/Dyfi3713) = ! o (Jop, )i, 1,
=87 e(Jop)hiy 1,
thus:
w=8""+(Jo) 11)

It is easy to show that the last equation is also true in case the
membrane does not wrinkle. The advantage of equation (11) is
that S does not contain variations in the membrane thickness
anymore, which will prove to be useful for the linearization of
the equations to follow.

The integral form of the equilibrium conditions now can be
written as:

S w7V o) dV,y= S kyshdA, 12
<0 4
where = is given by equation (11) and I?O =J" , «g, which is the

force on the deformed surface transformed to the undeformed
surface.
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Fig. 2 A three-noded element. 4, {5, and £; are material coordinates.

An estimated solution of the equilibrium condition in in-
tegral form (12) is marked with a superscript *. In general the
estimated solution will not satisfy equation (12) exactly, so a
better solution is searched for. The difference between the
estimated solution and a solution satisfying equilibrium condi-
tion (12) is indicated by a delta, so:

T=7*+8n
S=8*+68S
, etc., Thus equation (12) may also be written as:

SV (w*+aw):(€0}T)CdVo=SA (k3 + 8ky)-hdA, (13)
0 0

Until now equation (13) is perfectly equivalent to the
equilibium conditions (1). The difference between the
displacement field satisfying the equilibrium conditions and
the estimated displacement field is regarded to be the primary
unknown of equation (13). Let us assume that the estimated
solution is close to the real solution. Then equation (13) can be
linearized with respect to the primary unknown. '
According to equation (11), the difference in « in the
estimated solution and equilibrium is approximately given by:

dr=8(S " 1)e(Jo)* +S* ~14(Jo) (14)

Since:
8(S~1)=~ —8*~1.588* ! (15)
it is easily shown that linearization of equation (13) leads to:

[, 1@ahees -11:1000))
(SRR (Fo )5t S lav,

—§ 5/&,-;‘@10:—5 w*;(GQiT)CdVOJrS ki+hdA, (16)
Ap Vo AO

We will solve (16) by means of the Finite Element Method.
The observed mechanical system is divided into a number of
elements of finite dimensions. Often it is possible to define all
kinds of elements and to give a general derivation of the equa-
tions without considering the type of the element. In the
present case however it is convenient to have an element with
constant strains and stresses. Otherwise the element might be
divided into wrinkling and nonwrinkling zones, which would
make the analysis unfeasible. Thus, we have decided to use a
triangular, three-noded, constant strain element and specialize
the derivation for this element. In Fig. 2 the element is shown.
Equation (16) will be analyzed for one element (thus V) is the
initial volume of the element and A, the initial surface).

The position of a material point of the element is given by:

X=X+ £3Dr; a7

where ¢, are shape functions, £; is the material coordinate in
the direction perpendicular to the plane of the membrane, and
X, are position vectors of the nodal points. D denotes the
thickness of the membrane. The Einstein summation conven-
tion is used, i.e., when an index occurs twice in a product
term, this implies summation with respect to all its possible
values. Normally the possible values of an index are 1, 2, and
3. However, indices which are Greek characters only can take
the values 1 and 2.

DECEMBER 1987, Vol. 54 889



Fig. 3 The direction of the principal Cauchy frame is indicated by the
angle «

The shape functions depend on the material coordinates £,
and &,:

Vi=fda=85¥:=1-§-§, (18)
First, an expression will be derived for the increment S (equa-

tion (16)). Base vectors in the initial configuration are given
by:

Cor = 0%/ 3% =Xoy — X3 19
Cop = 0%y /88, =T — X3 (20)
Co3 = %o/ 33 =Dyl 2D

where the subscript 0 denotes values in the initial configura-
tion. The reciprocal vectors are given by:

For = 1/¢Co*C3 (22)
Yoo = 1/¢Co3*Coy (23)
Fos = 1/¢Coy *Cia (249
where
€= Co3*(Co1*Coz) 25)
It can be derived that F is given by:
F =0y, /38,57, + DH3¥os (26)
From equations (10) and (26) it follows that:
S =0y,./0%,X, 7o, + Dofi3Tos 27
Using equation (27) leads to:
55 = a¢k/asfaﬁk701 +D05ﬁ3_703 (28)

where i, is the nodal displacement of node k. Secondly, ex-
pressions will be derived for the increment 7, (equation (28))
and the increment §(Jo) (equation (16)).
In Roddeman et al. (1987) it is shown that the real stresses in
a wrinkled membrane can be determined by modifying the
deformation tensor in the constitutive equation:
(Jo)=F' «H(E')+F’¢ (29)
with:

F’ = +Brn,)F (30)
where I is the unit tensor. The direction of the principal
Cauchy frame is denoted by the angle o (see Fig. 3). .

The parameters o and 8 and the element’s thickness D are
determined numerically by using the coupled conditions:

(a) there is no stress in wrinkling direction:

i, +(Jo)s7t, =0 (3D
(b) the frame 7, i,, A, is the principal frame:

i, o(Jo)er,=0 (32)
(c¢) membranes are in a state of plane stress:

Fye(Jo)efty=0 (33)

Using equations (29) to (33), it is possible to derive expressions
for the increments in 7; and Je, which can be represented by:

890/ Vol. 54, DECEMBER 1987

Sy = N3 <01l 34)

8(Jo) =3 a5, (35)
Thus, increments in these terms are depending on increments
in the primary unknown nodal displacements, via equations
(34) and (35). The second order tensor N3, (in equation (34))
and the third order tensor 3o} (in equation (35)) depend on the
current estimation of the nodal displacements. Using equa-
tions (34) and (35) the discretized form of equation (16) may
be written as:

[, t@omeest1y:ape0m) - (801 0)°
0 e -
(Vo)) {S* 1«3y /0%, 06U, + DoNii

ST )} 1V - SAO 6y +fidA g~ — SVO (T oIV

+ S kiohdA, (36)
0

Because of the approximation for the displacement field it is
no longer possible to fulfill exactly equation (36) and the
boundary conditions. However, an approximation can be
made by choosing well determined weighting functions for 4.
Often good results can be obtained by using the shape func-
tions, introduced in equation (17), as weighting functions. So
we introduce:

B=y,h, (37

where 7, is the value of the function 7 in the nodal point /.

Using equation (37) and the fact that all terms in the volume
integral in expression (36) are constant over the volume, ex-
pression (36) may be replaced with:

E'[Voa‘#]/asvé;'?’ov .S*—l.3a’=:rc.é;
- V06¢1/6£v6¢k/627707 .é’p (Jo)* .S*—c.é’pyov §*-1
- VODOa‘/’I/asU:fos’é;, (Jo)*+S* —C.é’p,%v WS*-1

N3]0, — S SkyohdAy~ — S x*:(V B dV,
Ao Yo
+ LO ELehdA, (38)
in which use has been made of the identity:
CA W) T= (PAT )W

where W and U are arbitrary vectors. Furthermore &), &,, and
€, denote an orthonormal set of vectors. The first term on the
right of equation (38) will be written as:

SV w* (T R dVy = iy Vo8, 04, /08T, o7 <8 = Iy 1 (39)
0

in which the vector f 7 is defined, which is the equivalent nodal
force in node / due to the stresses in the membrane. We only
consider constant forces on the nodal points. Thus:

S bk shdAy=0 (40)
Ag
and:

[, Foehdao=hof; @1)
Ap

where f] is the prescribed nodal force on node /.
According to equations (39) to (41), expression (38) may be
written as:

By K88, ~ By o i = f) (42)
where K}, contains the term [V, .. ... ... N#%.] from equa-
tion (38). Equation (42) is satisfied by arbitrary 4, if:

Transactions of the ASME
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Fig. 4 Simple shear and stretching of a membrane

K0 =fi = 43)
The matrix representation of the first term on the left side with

respect to a certain base is called the stiffness matrix of the ele-
ment. The right side contains the residual nodal forces.

Logical Structure of the Element

Given a new estimation of the nodal displacements, the ele-
ment decides on the following criteria whether it is taut,
wrinkled, or slack. If both the principal Cauchy stresses in an
analysis without wrinkling are non-negative, the element is
taut. In this situation the stiffness matrix and the equivalent
nodal forces are determined by normal analysis (i.e., without
wrinkling terms). If at least one of the principal Cauchy
stresses in the analysis without wrinkling would be negative,
and one principal Green-Lagrange strain in the analysis
without wrinkling would be positive, the element is wrinkled.
Then the new stiffness matrix and equivalent nodal forces are
determined on the basis of wrinkling analysis. Otherwise the
element is slack and the stiffness matrix and the equivalent
nodal forees only contain zeros.

The Iterative Process

Choosing a base, assemblage of the equations (43) of all the
elements of the body and elimination of prescribed nodal
displacements leads to:

K*ebu=f-f* “4)
with
K* the stiffness matrix of the structure;
Su the total column of incremental free nodal
displacements;
[ the total column of prescribed forces on the body;

J* the total column of equivalent nodal forces due to the
stresses in the elements.

Since there may be completely slack regions in the structure,
the total stiffness matrix may be singular and Newton-
Raphson iteration cannot be used. A globally convergent
iterative procedure, based on a minimization problem, which
can be used, for example, is a restricted step method where the
column du is the solution of:

(2§*T-§* +6I)-6g=2§*7-(f—f) 45)
The parameter § is chosen each iteration step such that (2
K*T«K* +61) is positive definite (which is true if 8 is positive)
and such that the norm of (f—f*) decreases. For a theoretical
background see Fletcher (1980).

Journal of Applied Mechanics
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Fig. 5 An element mesh with 18 elements
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Fig. 6 The force Fy as a function of the stretching distance v for dif-
ferent vaiues of the anisoiropy parameter f
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Fig. 7 The force Fy as a function of the stretching distance v for dif-
ferent values of the anisotropy parameter f

Test Problems

In Roddeman et al. (1987) the analytical solution of the
wrinkling of a membrane deformed by a simple shear and
stretching is derived. In Fig. 4 the simple shear test is
illustrated. '

Again we have studied the behavior of the membrane when,
with constant simple shear, the membrane is stretched. An ele-
ment mesh with 18 elements is used (Fig. 5). The nodes on the
sides of the mesh are prescribed displacements according to
the analytical solution, so the nodal displacements in the inner
area should converge to the analytical solution and the
analytical results should be regained. Figure 6 and Fig. 7 com-
pare analytical and numerical results. Tranversally isotropic
material is used for the membrane. The parameter f deter-
mines the measure of anisotropy (see Roddeman et al., 1987).
If f=1 then the membrane is isotropic, if f>1 then &] is the
stiffest direction. It can be seen that the agreement between
the analytical and numerical results is very good.

DECEMBER 1987, Vol. 54 / 891



Conclusions

The Finite Element Method can be used in geometrically
nonlinear analysis of anisotropic membranes which wrinkle.
Test problems show good agreement between analytical and
numerical results. Since completely slack regions in the struc-
ture lead to a singular stiffness matrix, the iterative procedure
should be chosen with care. Comparison between numerical
and experimental results still has to be done. This is part of
our present work and will be published later.
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