The WY Representation for Products
of Householder Matrices

Christian Bischof
Charles Van Loan

TR 85-681
December 1985

Department of Computer Science
Cornell University
[thaca, NY 14853

The WY Representation for Products of Householder Matrices

Christian Bischof
Department of Computer Science
Cornell University
Ithaca, New York 14853

Charles Van Loan
Department of Computer Science
Cornell University
Ithaca, New York 14853

Abstract

A new way to represent products of Householder matrices is given that
makes a typical Householder matrix algorithm rich in matrix-matrix multipli-
cation. This is very desireable in that matrix-matrix multiplication is the
operation of choice for an increasing number of important high performance
computers. We tested the new representation by using it to compute the QR
factorization on the FPS-164/MAX. Preliminary results indicate that it is a
very efficient way to organize Householder computations.

Computations associated with this research were performed on the Production
Supercomputer Facility at Cornell University which is supported in part by the
National Science Foundation and IBM Corporation. Additional funding was
provided by ONR contract N00014-83-K-0640.

1. Introduction

During the past five years a great deal has been written about matrix
computations in high performance “supercomputing” environments. For exam-
ple, techniques have emerged for designing linear algebra codes that “squeeze”
the most out of various vector pipeline architectures. The reader is referred to
the excellent survey article by Dongarra, Gustavson, and Karp (1983). One
theme in their work is how to take an algorithm such as Gaussian elimination
and organize it in such a way that the resulting code is rich in matrix-vector
multiplication. The regularity of that operation allows for maximum pipelin-
ing and minimum traffic to and from memory. The papers by Dongarra and
Eisenstat (1984) and Dongarra, Kaufman, and Hammarling (1985) further
dramatize this point.

It is now the case with some new architectures that high performance can
best be achieved with algorithms that are rich in matrix-matrix multiplication.
Such a requirement leads naturally to block algorithms. For methods such as
Gaussian elimination and the Cholesky factorization the course of action is
relatively straight-forward. Consider the LU factorization:

Ay A Agg Ly 0 0)JUy Uy Ups
Agy Agy Aggl = Loy Lgg 0| 0 Ugy Uy
Agp Agg Agg Ly Lgp Lag|| 0 0 Ujgg

If we assume that the first block row of U and the first block column of L are
known, then the blocks Ly, , Ugy , Lyy , and Usyg can be resolved from the equa-
tions

LogUyy = Ay - Ly Uiy
LogUgs = Agy3 — LgUyg
L3yUgy = Agy — L3y Uyy

Note that the righthand sides are rich in matrix-matrix multiplication. If
block dimensions are chosen properly then the overall method will be suffi-
ciently rich in that operation to ensure high performance. This has been
demonstrated by Steve Oslon (1985) of Floating Point Systems who has imple-
mented the above scheme (with pivoting) on the FPS-164/MAX.

The FPS-164/MAX has an architecture that “likes” matrix-matrix multi-
plication and it is for this machine that we have developed a new algorithm for
the QR factorization that performs extremely well. Although our technique has
been tailored to the FPS-164/MAX, we suspect that our work will be of interest
to users of other high performance computers such as the Cray-2 and the IBM
3090.

.9

It should be noted that block procedures for matrix decompositions involv-
ing orthogonal transformations are not so straight-forward. Consider the QR
factorization:

Ry Ryg Ry
A =[A;, Ay, A3] = QR = Q1,Q2,Q3] 0 Ry Ry
0 0 Ry

If the first block column of @ and the first block row of R are known, then @,
and Ry, can be obtained by computing the QR factorization

Q2R22 = Ay — Q1R12

whereupon Rj3; = QA;. These are essentially the key steps of a block ver-
sion of modified Gram-Schmidt (MGS). Block MGS is certainly rich in matrix
multiplication but the “Q” matrix may not be sufficiently orthonormal for cer-
tain applications. (See Golub and Van Loan (1983,pp.151-152) for a description
of MGS and its properties.) It is an open question how to organize block MGS
and what its numerical properties are. We shall not treat the matter further in
this paper.

Our intention is to examine how the perfectly stable Householder QR fac-
torization procedure can be written in a form that is rich in matrix multiplica-
tions. Householder transformations underpin the eigenvalue and least squares
solvers in EISPACK and LINPACK. A discussion of the algorithms in these
packages may be found in Golub and Van Loan (1983).

The key to obtaining block Householder algorithms that are rich in matrix
multiplication turns out to be what we call the “WY representation”. It
amounts to writing products of Householder matrices like

Q = P, P P, € R™™
in the form

Q, =1 + wyT W,Y €eRm™: (1.1)

Several authors have looked at similar ways to group and generalize House-
holder matrices and we review this work in §2. The basic properties of the WY
representation are detailed in §3. In §4 we show to compute the QR factoriza-
tion using the WY representation. An implementation of our algorithm on the
FPS-164/MAX is then described in §5. The last section suggests how the WY
representation can be used to compute other decompositions that involve
orthogonal transformations.

-3
2. Aggregating Householder Transformations

The idea of “aggregating” Householder transformations for performance is
not new. Dongarra, Kaufman, and Hammarling (1985) suggest pairing House-
holder matrices in order to reduce the number of vector memory references.
For example, they recommend that the update

A= (- awwhHU — BuuT)A

be computed as follows:

yI = o7 = (Bwluwal

A = A-BuxT — awy? .

As the authors point out, this manuever actually increases the number of
required flops. But the resulting algorithm is faster in pipelined environments
because there is less memory traffic. The WY representation (1.1) is a generali-
zation of this pairwise grouping strategy.

Note that an orthogonal matrix of the form I + wy? can be thought of as
a generalized Householder matrix, an idea that was examined by
Dietrich(1976). Given an m-by-p matrix partitioned as follows

Xy
X:‘ ’

Xy | m—p

Dietrich shows how to compute a full rank m-by-p matrix

W,
W o= | e
2 m-—p
so that if
P = I-2WWTw)~tw’
then
T
PTX = | ol 2.1)
m—p

4.

The matrix P above is clearly a block generalization of a Householder matrix.
A stable method for computing W using some recent algorithmic developments
is as follows:

Step 1. Compute the QR factorization:

[Ql
X = R .

Q2

Step 2. Compute the CS decomposition:

Q = U,CVT | C = diagley,...cp)), 1Ze¢p= - =2¢, =0
Qy = Uy,SVT | § = diag(sy,8, , 0 = sy

IA
A
2
IA
—

(Here, U, , U, and V are orthogonal.)

Step 3 . Set
UfC + 1

W= UsyS

The trouble with this method of aggregating Householder transformations is
that some delicate SVD computations are involved in Step 2. See Stewart
(1983) or Van Loan (1985) for details concerning the computation of the CS
decomposition. In addition to these difficulties, the matrix T in (2.1) will not
generally be upper triangular. (T = -U,;V") Thus, if we incorporated
Dietrich’s idea in a QR factorization algorithm the resulting R would be
block upper triangular. True upper triangular form could easily be achieved
but it’s an inconvenient post-computation.

3. The WY Representation

Recall that an m-by-m Householder matrix is an orthogonal matrix of
the form

P=1+ w?

where v ¢ R™ has unit 2-norm length and « = —2v . Householder matrices
can be used to compute all kinds of important matrix decompositions and the

large number of subroutines in LINPACK and EISPACK that rely on these
transformations underscores their importance.

.5.

In a typical application a sequence of Householder transformations
P, =1+ up! is applied to a given matrix. Consider the following algorithm
for computing the QR factorization of

A =1a, " ,a,] a; € R™ .

Algorithm 3.1

For » = 1:n
For j=1:£-1

Qp .= ay + (uJTak)Uj (ak ‘= Pk—l n 'Plak)
end ;
Compute unit 2-norm v, so that if v, = —2v, and

P, =1 + w,vf then P,a, is zero in components £+1 to m .
end %

This computation is rich in inner products and SAXPY’s but not in matrix
multiplication. (A “SAXPY” is the operation y := ax + y where x and y are
vectors and a is a scalar.) The SAXPY’s in the j loop cannot be performed in
parallel because the a, are different for each ;.

Reversing the order of the loops in Algorithm 3.1 essentially gives the
LINPACK QR factorization procedure. In this version the key computations

are updates of the form A := (I + w;v/)"A. The inner products associated
with /A can be computed in parallel as can the SAXPY’s associated with
A= A + uv(u]A). What prevents “supervector performance” is an unfavor-

able ratio of vector loads and unloads to actual computation. See Dongarra,
Kaufman, and Hammarling (1985).

We propose a new way to represent products of Householder matrices
that rectifies this problem. In particular, we exploit the fact that a product of
Householders

Qr =P, P
can be written in the form
Q. = I+ WY}
where W, and Y, are m-by-k matrices. Note that the mission of the ; loop in

Algorithm 3.1 is to compute Q7_,q,.

To anticipate the value of the WY representation observe that if B is a
matrix then the computation B := QfB is rich in matrix multiplication:

-6 -

B := B + Y, (WIB)

However, before we can pursue the algorithmic benefits of the WY represen-
tation be must establish its existance and show how it can be updated.

The WY form certainly exists for the # = 1 case. Indeed, since
Q1 =P, =1+ uw! we just set W = u; and Y = v,;. To establish the result
for general & we show how to obtain (W,, Y,) from (W,_,, Y,_;) upon
receipt of the k-th Householder matrix P, = I + u,vl. From the manipula-
tions

Qr = Qu-1Pp = U + W, YT + wpof)
=1 + [Wk—l ’ Qk——luk][Yk—l » Up]T
=1 + [Wk—l y Up][PkYk—l y Up]T

we see that there are actually two ways to accomplish this:
Method 1.

Wy = [Wi_1, Qr_1up]
Y, = [Ypo1, v]

Method 2.

W = [W, wl
Y, = [Yro1, PpYpy]

We have used Method 1 in our implementations feeling that the matrix-
vector multiplication @,_,u; is easier to optimize than the rank one update
P,Y,_,. However, this is not a clear choice. Indeed, it may be wiser to
update WY factors using Method 2 for the following reason. In many applica-
tions such as in Algorithm 3.1 the first £ — 1 components of the Householder
vector v, are zero. Thus, if Method 2 is used then a simple check reveals
that both Y, and W, are lower trapezoidal. However, if Method 1 is used then
only Y, is lower trapezoidal.

We point out that manipulation of Householder matrices through the
WY form is stable. The same favorable roundoff properties that attend “con-
ventional” Householder algorithms apply if the computations are arranged
in WY form. This claim is justified in a brief appendix to be found at the end
of the paper.

Finally, we mention that the above updating formulae generalize. In
particular, if U =1 + W,;Y} and V = + Wy Y¥ are orthogonal matrices in
WY form then @ = UV has its WY factors given by Wy = [W,, U Wy | and
YQ = [YU’ YV].

-7
4. Computing the QR Factorization Using the WY Representation

To illustrate the attractiveness of the WY representation we show how it
can be used to compute the QR factorization of a rectangular matrix
A =lay,....,a,]€R™ . A naive (but instructive) WY implementation of
Algorithm 3.1 is as follows:

Algorithm 4.1

Fork =1:n
ar = (U + WyT)Tq, (ap = QF_.ia,,skipifk = 1)
Compute unit v such that if « = ~2v then (I + wDPaq,

1s zero in components k£ +1 to m .
Wi=[W,d+WYDHul (W=[ul]ifk=1)
Y:=[Y, v] (Y=[v]ifk=1)

end %

There are three problems with this algorithm. (1) It requires 2mn? — n3/2
flops, approximately twice what is required by the usual Householder QR
factorization scheme, e.g., Algorithm 3.1. (2) It requires an m-by-n
workspace for W. (3) It is not rich in matrix-matrix multiplication.

The same criticisms would essentially apply if Method 2 updating was
used although one could get by with n2/2 fewer storage locations and p3/2
fewer flops.

To obtain a successful QR factorization scheme using the WY represen-
tation it is necessary to partition A into block columns:

A =[A, -, Ay]

where each A, has p columns. (If p does not divide n then Ay may have
fewer than p columns, an unimportant detail that we hereafter suppress.)
The appropriate column width p depends on the underlying architecture.
(For the FPS-164/MAX it will turn out to be equal to the maximum number
of parallel dot products that can be performed.)

The basic idea of our procedure is as follows. At the beginning of Step
k (1 =k =N) the matrix A has been overwritten with

Ry Ry Ry (h=1p
P(k—up"'PLA =

-8 -

where r = m—(k—1)p and ¢ = n—kp. The QR factorization of A, is then
computed and the orthogonal matrix (in WY form) is applied to B.

In our formal description of this procedure we use the notation
A(iy, iy, j1 :j2) to designate the submatrix of A defined by rows i; through
iy and columns j; through /.

Algorithm 4.2

Forkt =1.N

s =(k=1p + 1
Compute W and Y such that I + WYT is orthogonal

and U+WYT)TA(s:m,s:s+p—1) is upper triangular.
A(sim,sin) = (I + WYDT A(s:m,s:n)
end %

Upon emergence from this algorithm the matrix A is overwritten by R. The
Householder vectors v; that are generated can be stored below the diagonal
in the usual manner. (See Golub and Van Loan (1983,p.148).) It is not neces-
sary to save the W matrices from step to step and so we just need an m-by-p
workspace for W (This is in contrast to the m-by-n workspace required by
Algorithm 4.1). Algorithm 4.2 is clearly rich in matrix-matrix multiplication.
Indeed much more work is spent applying the WY factors than generating
them which is good in that it implies richness in matrix multiplication. To
be specific, (2mn? — n®)/N flops are required to generate the W’s and Y’s
while (mn? — n%/3) flops are needed to apply them. Since the LINPACK QR
algorithm requires mn? — 13/3 flops we see that Algorithm 4.2 is more
expensive by a factor of (1 + 2/N) from the standpoint of flops. For modest
(and realistic) values of N this factor is for all practical purposes equal to
one. Moreover, in high performance environments just counting flops is an
inadequate measure of efficiency. The number of references to memory usu-
ally has a much greater bearing on the efficiency of an algorithm. This is
borne out by our experience implementing Algorithm 4.2 on the FPS-
164/MAX.

5. Performance on the FPS-164/MAX System

Up to now a “flop” has meant the amount of work that is roughly associ-
ated with an operation of the form ¢ := a; + a;, a;,. However, manufactur-
ers of “high performance” computers quantify speed using “high performance
flops”. A “high performance flop” equals two “regular” flops. Thus, n-by-n
matrix multiplication requires 2n® flops. In this section we’ll quantify speed
in terms of millions of high performance flops per second as we will be
reporting on the FPS-164-MAX.

.9.

The FPS-164 is an 11 Megaflop (Mflop), 64-bit general purpose scientific
processor built by Floating Point Systems Inc. It is attached to the I/O sys-
tem of a general purpose host computer. In a typical situation the program
executing on the 164 is a subroutine called from a host FORTRAN program.

The FPS-164 can be enhanced with additional “MAX boards” that can
perform selected linear algebra calculations very fast. Each board buys 22
Mflops and up to fifteen can be installed in a single 164. A fully configured
FPS-164/MAX thus has a theoretical peak performance level of 341 Mflops.
A nice overview of the architecture is given in Madura, Broussard, and
Strickland (1985). We cover just enough of its features to build an apprecia-
tion for the type of algorithm that performs efficiently in the MAX environ-
ment.

Each MAX module operates synchronously and in parallel with the
164’s CPU. The modules appear as memory to the 164’s CPU in that they
are accessed via reads and writes to reserved addresses. The essential com-
ponents of a MAX module are two fully pipelined adder/multiplier pairs and
eight vector registers (length = 2047). The MAX modules have a limited
repertoire of operations but by design they figure heavily in matrix computa-
tions. If n.,, denotes the number of installed MAX boards then the system
is able to perform

ng = 4 + 8npax
parallel dot products or

n, =1+ 4n,,,

parallel SAXPY’s as follows:

Parallel Dot Product

IfV =1lvg,...,04] € R™ (d =n,) resides in the MAX vector regis-
ters and w € R™ is stored in main memory, then it is possible to compute
the d inner products v/w concurrently. If d = n, then this means that

VTw can be formed at an approximate rate of 11 + 22-n_,, Mflops.

Parallel SAXPY

IfV =[vg,.,04] € R™ (d < n,) resides in the MAX vector registers
and the vectors : € RY and u € R™ are in main memory, then it is possi-
ble to compute the s SAXPY’s v, := v, + z;u concurrently. If d = n,
then the computation V:= V + u 2T can be formed at the approximate
rate of 5 + 11 - n,, Mflops

FPS has extended its ANSI FORTRAN 77 to accomodate a set of subrou-
tines that perform the above computations. This includes a set of routines for
executing the required loads and unloads that are responsible for moving

- 10 -

data between the MAX modules and main memory. (To those familiar with
the FPS-164, table memory essentially acts like a half MAX board. So when
we refer to “MAX boards” we really mean “MAX boards plus table
memory.”)

Because the overhead associated with the loading and unloading of the
MAX modules can easily dominate a floating point computation, it is desir-
able that the vectors loaded into a MAX module be reasonably long and
(more critically) that they be “re-used” as much as possible before they are
returned to main memory. That way, the cost of a load (or unload) is spread
over a significant amount of high speed computation.

With this review of the FPS-164/MAX we can present the MAX version
of Algorithm 4.2. In the k-th step of the algorithm attention is focussed on
the submatrix

A(sim , sin) = [Xk,B] q

p r

where g =m—=(k—Up ,r =n—kp ,and s =1+ (k—1)p. The block width p
is taken to be the maximum number of parallel dot products that can be per-
formed, i.e., p = n,. There are three steps to consider.

Step 1. Compute the QR Factorization of A, .

Algorithm 4.1 is used for this purpose. The MAX boards are not
used here as the algorithm is not rich in matrix multiplication.

Step 2. Compute ZT = WTB.

Let B = [by,..., b.] be a column partitioning of B . Noting that W
entirely fits into the MAX vector registers, Z € R™ is computed as fol-
lows:

Load W into the MAX boards.

For i = 1.r
Compute 2(i:i, 1:;p):i= bW (Parallel Dot Product)
end |

Note that W is reused r = n—kp times. Except at the very end of the
algorithm this portion of the computation can proceed at close to peak
parallel dot product speed.

Step 3. Overwrite B with B + YZ7T

211 -

This is a parallel SAXPY operation. For clarity, assume that s
divides r and that ¢t = r/s . Partition B, Y, and Z as follows:

B =(B,,....B, B, € R%s
Y - [yl’ uyp] Yi E Rq
211 T 2y
2 e th

With this partitioning the update B := B + YZ! can be computed as
follows:

Fori =1:¢
Load B; into the MAX vector registers.
For; =1:p
B,:= B; + y;zj; (Parallel SAXPY)
end

Unload B, into main memory.
end |

The re-use factor for this portion of the algorithm is p.

The MAX algorithm just described has been tested on Cornell’s FPS-

164/MAX system. Currently, this is a one MAX Board installation implying
33 Mflop peak dot product performance and 15 Mflop peak SAXPY perfor-
mance. Table 1 indicates the megaflop rates that our code has achieved for
problems of various dimensions.

m n=25m | n=.50m | n=.75m | n=m
250 7 9 11 11
500 10 13 14 15
750 13 14 16 17
1000 14 15 17 18

Table 1. Performance in Megaflops (Mflops)

.12 -

We point out that the fraction of the overall computation that is performed on
the MAX boards is N/(N + 2) where N = n/n; = n/12. For the various values
of n represented in the table, this fraction ranges from .71 to .97. Of the all
the MAX computations in our implementation half are parallel dot products
and half are parallel SAXPY’s. Table 5.1 indicates the megaflop rates that our
code has achieved for problems of varying dimension. An optimized “LINPACK
QR” code running on the 164 without MAX boards would perfrom in the vicin-
ity of 5 Mflops. We feel that these benchmarks confirm that the WY represen-
tation is a viable way of organizing Householder computations on the FPS-
164/MAX.

6. Other Factorizations

Householder matrices are traditionally used in the computation of the fol-
lowing decompositions:

QRFAQ =T (A symmetric , T tridiagonal)
QFAQ = H (H Hessenberg)
UTAV = B (B bidiagonal)

When one contemplates WY versions of these algorithms some new difficulties
arise that are not present in the QR factorization. These problems stem from
the fact that the above decompositions involve both left and right transforma-
tions. This makes “delayed” application of the Householder matrices prob-
lematical. In the QR scheme we can reduce a subset of columns without touch-
ing the “rest” of the matrix. This is because the Householders are applied from
Just one side. However, in Householder tridiagonalization (for example) this is
not possible. The second Householder P, is a function of all the matrix ele-
ments because it is based on the second column of

x x00 O
X X xx x
PTAP, = | 0 x x x «x
0 xxx «x
0 xx x «x

In particular, n* flops are required to compute this column. This is not an
order of magnitude less work than performing the entire update A := PTAP,
which costs 2n? flops. Thus, unlike in the QR factorization method, nothing is
gained by aggregating Householders and then applying them in WY form.

One way out of this jam is to strive for block tridiagonalization. Partition
A as follows:

p n—p

If we compute the QR factorization
Ay = QR Q=1+ wYyT?
and then update

B = QTA»Q = U+ WYDT Ay (U + WYT)
we obtain

A,y RT
A = diagl , T A diag(lp, Q) = [R B

This illustrates the basic step of the algorithm. Although it is rich in matrix
multiplies it leaves us with a bandwidth p eigenproblem. One posibility would
be to reduce the resulting matrix to tridiagonal form using the method of
Schwartz(1968). The overall success of this procedure in the MAX environment
is the next item on our agenda and will be reported elsewhere along with some
related procedures for bidiagonalization and Hessenberg reduction.

Acknowledgements

We are indebted to Steve Oslon of FPS who kindly shared his MAX exper-
tise with us as we developed our code. We're also obliged to Gene Golub of
Stanford University for calling our attention to the Dietrich (1976) reference.

- 14 -
Appendix. Roundoff Properties of the WY Representation

In this appendix we have opted for an “O(u)” analysis feeling that com-
plete rigor would add only tedium to an otherwise simple argument. For
further comments on the “philosophy” of roundoff analysis, see Golub and Van
Loan (1983,p.3211).

Suppose u is the unit roundoff and A and B are floating point matrices. If
fl(AB) denotes the computed product of A and B then

flAB) = AB + E
where
HE s = 0@ || Allz]I Bls .
Like_wise, if A and B are compatible for addition then
fllA +B) = A+B+E
with
I1E [l = 0@ (|l Allz+ 1 Bll2) .

Repeated use will be made of these well known facts.

We begin with a definition. Suppose W and Y are m-by-k matrices with
floating point entries. We say that

Q=1+ Wyl

is u-orthogonal if the following three properties hold:

[l Wll, = o) (A1)
1Yl = 0 ' (A2)
Il @TQ@ —Il|; = Ow) . (A3)

If we apply @ to a floating point matrix A then
lIQA) = QA + F

where

HF|ls = Owl|| Al .

Since (A3) implies that the singular values o, of @ are all of the form
g, = 1+ O(u), it follows that

lQA) = QA +Q'F) = QA + E) (A4)
where

HEI: = HQT'F|l, = owl] All, . (A5)

215 -

Thus, if (A1), (A2) , and (A3) hold then manipulations with @ in WY form are
stable because it allows for a favorable inverse error analysis.

A corollary of this result is that
P =1+ w’
is u-orthogonal provided the floating point vectors v and u satisfy
lovlls = 1+ 0@ (A6)
and
u = —2 . (A7)

This can be used to confirm the stability of conventional Householder matrix
manipulations.

What we must show is that when the WY representation is updated (say
by Method 1) then properties (A1)-(A3) remain in force. To this end, suppose

W, = [W, fllQu)]

Y, =[Y,v]
and

Qr =1+ W,Y}

where « and v satisfy (A6) and (A7) and (W, , Y.) is the computed WY
representation of the approximate orthogonal matrix QP. Setting A = « in
(A4) and (A5) gives

fllQu) = Qu + e (A8)
with |
e |l = O |Jully = Ow) . (A9)

Here we used the fact that || u || = 2 + O(w) = 0(1). It follows from (Al),
(A3), (AB), (A9), and the definition of W_ that

HWille = Wl + || /(QW |ls = 0Q) .
Likewise, (A2), (A6), and the definition of Y, imply that

HYille = Y e + el = 00 .

All that remains for us to show is that @, satisfies (A3). Using (A8) and
the definition of @ , we have

Qe =1 +W,. YL =1+ WYT + lQup’
= Q@+ (Qu + e = QU + w') + e = QP + @ tevT) .

- 16 -

Using (A9) it is easy to show that if

P =P+Q!
then
|| PP — Il = O() .

This coupled with (A3) ensures that || Q1Q. — I ||, = O(w) .

We mention that if W and Y are updated using Method 2, then a similar
error analysis goes through.

217 -

References

G. Dietrich (1976), “ A New Formulation of the Hypermatrix Householder-QR

Decomposition”, Computer Methods in Applied Mechanics and
Engineering, 9 , 273-280.

J. Dongarra, J.D. Bunch , C.B.Moler, and G.W.Stewart (1979), Linpack User’s
Guide, SIAM Publications, Philadelphia.

J. Dongarra and S. Eisenstat (1984), “Squeezing the Most Out of an Algorithm

in Cray Fortran ”, ACM Transactions on Mathematical
Software , 10, 216-230.

J. Dongarra, F.G. Gustavson, and A. Karp (1984), “Implementing Linear Alge-
A bra Algorithms on Dense Matrices on a Vector Pipeline
Machine”, SIAM Review, 26, 91-112.

J. Dongarra, L. Kaufman, S. Hammarling (1985). “Squeezing the Most out of
Eigenvalue Solvers on High-Performance Computers”, Techni-
cal Memorandum 46, Mathematics and Computer Science
Division, Argonne National Laboratory, Argonne , IL 60439.

G.H. Golub and C. Van Loan (1983), Matrix Computations , The Johns Hopkins
University Press, Baltimore Md.

D. Madura, R. Broussard, and D. Strickland (1985), “FPS-164 MAX: Parallel
Multiprocessing for Linear Algebra Operation”, Proceedings of

the 1985 Array Processing Conference, , New Orleans., pp. 33-
50.

H.R. Schwartz (1968), “Tridiagonalization of a Symmetric Band Matrix ”
Numerische Mathematik , 12 , 231-241.

2

B.T.Smith, J.M.Boyle, Y.lkebe, V.C. Klema, and C.B. Moler (1970), Matrix
Eigensystem Routines: EISPACK Guide, second edition,
Springer-Verlag, New York.

G.W. Stewart(1983), “An Algorithm for Computing the CS Decomposition of a

Partitioned Orthonormal Matrix”, Numerische Mathematik,
40, 297-306.

C. Van Loan (1985), “Computing the CS and the Generalized Singular Value
Decomposition ”, Numerische Mathematik, 46, 479-491.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif

