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Abstract. Let {Fn}n≥0 be the sequence of Fibonacci numbers defined by F0 = 0,

F1 = 1 and Fn+2 = Fn+1 + Fn for all n ≥ 0. In this paper, for an integer d ≥ 2

which is square-free, we show that there is at most one value of the positive integer

x participating in the Pell equation x2 − dy2 = ±4 which is a sum of two Fibonacci

numbers, with a few exceptions that we completely characterize.
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method.

2010 Mathematics Subject Classification. 11B39, 11D45, 11D61, 11J86.

1. Introduction

Let {Fn}n≥0 be the sequence of Fibonacci numbers given by

F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn for all n ≥ 0.

The Fibonacci sequence is sequence A000045 on the Online Encyclopedia of Integer Se-

quences (OEIS). The first few terms of this sequence are

{Fn}n≥0 = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, . . . .

In this paper, we let U := {Fn+Fm : n ≥ m ≥ 0} be the sequence of sums of two Fibonacci

numbers. The first few members of U are

U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 21, 22, 23, 24, 26, 29, 34, 35, . . .}.

Let d ≥ 2 be a positive integer which is not a square. It is well known that the Pell

equation

x2 − dy2 = ±4, (1)

c© Indian Academy of Sciences 1



2 M. Ddamulira and F. Luca

has infinitely many positive integer solutions (x, y). By putting (x1, y1) for the smallest

positive solutions to (1), all solutions are of the forms (xk, yk) for some positive integer k,

where

xk + yk

√
d

2
=













x1 + y1

√
d

2













k

for all k ≥ 1,

Furthermore, the sequence {xk}k≥1 is binary recurrent. In fact, the following formula

xk =













x1 + y1

√
d

2













k

+













x1 − y1

√
d

2













k

,

holds for all positive integers k.

Recently, Gómez and Luca [2] studied the Diophantine equation

xk = Fm + Fn, with n ≥ m ≥ 0, (2)

where xk are the x−coordinates of the solutions of the Pell equation x2 − dy2 = ±1 for

some positive integer k and {Fn}n≥0 is the sequence of Fibonacci numbers. They proved

that for each square free integer d ≥ 2, there is at most one positive integer k such that

xk admits the representation (3) for some nonnegative integers 0 ≤ m ≤ n, except for d ∈
{2, 3, 5, 11, 30}. Furthermore, they explicitly stated all the solutions for these exceptional

cases.

In the same spirit, Bravo et al. [1] studied the Diophantine equation

xk = Tm + Tn, with n ≥ m ≥ 0. (3)

where xk are the x−coordinates of the solutions of the Pell equation x2 − dy2 = ±1

for some positive integer k and {Tn}n≥0 is the sequence of Tribonacci numbers given by

T0 = 0, T1 = 1 = T2 and Tn+3 = Tn+2 + Tn+1 + Tn for all n ≥ 0. They proved that for each

square free integer d ≥ 2, there is at most one positive integer k such that xk admits the rep-

resentation (3) for some nonnegative integers 0 ≤ m ≤ n, except for d ∈ {2, 3, 5, 15, 26}.
Furthermore, they explicitly stated all the solutions for these exceptional cases. Several

other related problems have been studied where xk belongs to some interesting positive

integer sequences. For example, see [2, 5, 6, 7, 9, 11, 12, 13, 14, 15].

2. Main Result

In this paper, we study a problem related to that of Gómez and Luca [2], but for the Pell

equation (1) instead of x2 − dy2 = ±1. Before formulating our main theorem, let us notice

that our problem is a bit different from the previous ones in that there are infinitely many

d’s such that the equation

xk = Fn + Fm with n ≥ m ≥ 0

has at least two solutions (m, n, k). Indeed, take d = 5u2 with some integer u ≥ 1. Then

positive solutions integer solutions (x, y) to the Diophantine equation

x2 − dy2 = ±4

correspond to positive integer solutions (X,Y) := (x, uy) to X2 − 5Y2 = ±4. It is well-

known that these are parametrised by (X,Y) = (Ln, Fn), where {Ln}n≥0 is the Lucas com-

panion of the Fibonacci sequence given by L0 = 2, L1 = 1 and Ln+2 = Ln+1 + Ln for

n ≥ 0. Furthermore, in this case L2
n − 5F2

n = 4(−1)n. Thus, the sign in the right–hand

side is given by the parity of n. Now say u is fixed and Fn = uy. Then y = Fn/u and

Fn must be a multiple of u. It is well-known that u | Fn is and only if z(u) | n, where
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z(u) is the smallest positive integer ℓ such that u | Fℓ. This always exists and is called the

index of appearance of u in the Fibonacci sequence. We conclude that for d = 5u2, we

have (xk, yk) = (Lz(u)k, Fz(u)k/u). In particular, xk = Lnk
for some positive integer nk. Since

Ln = Fn+1 + Fn−1 holds for all n ≥ 1, it follows that for all values of k, xk is a sum of two

Fibonacci numbers. This gives an infinite parametric family of exceptions which dod not

exist in any of the cases treated by others.

The main aim of this paper is to prove the following result.

Theorem 1. Let d ≥ 2 be an integer which is not a square. If d , 5�, then is at most one

positive integer k such that xk admits a representation as

xk = Fn + Fm (4)

for some nonnegative integers 0 ≤ m ≤ n, except when d ∈ {2, 3, 7, 21, 26}.
For the exceptional values of d listed in Theorem 1, all solutions (k, n,m) are listed at

the end of the paper. The main tools used in this paper are the lower bounds for linear

forms in logarithms of algebraic numbers and the Baker-Davenport reduction procedure,

as well as the elementary properties of Fibonacci numbers and solutions to Pell equations.

3. Preliminary results

3.1 The Fibonacci sequence

Here, we recall some important properties of the Fibonacci sequence {Fn}n≥0. The char-

acteristic equation

x2 − x − 1 = 0

has roots α and β, where

α =
1 +
√

5

2
and β =

1 −
√

5

2
.

The Binet formula for its geneneral terms is given by

Fn =
αn − βn

√
5

for all n ≥ 0. (5)

Furthermore, by induction, we can prove that

αn−2 ≤ Fn ≤ αn−1 holds for all n ≥ 1. (6)

Let {Ln}n≥0 be the sequence of Lucas numbers defined by L0 = 2, L1 = 1 and Ln+2 =

Ln+1 + Ln for all n ≥ 0. For all nonnegative integers n, the following hold.

Ln = Fn−1 + Fn+1 (7)

and

L2
n − 5F2

n = 4(−1)n. (8)

The above identities will be useful in the next parts of this paper.

3.2 Linear forms in logarithms

Let η be an algebraic number of degree d with minimal primitive polynomial over the

integers

a0xd + a1xd−1 + · · · + ad = a0

d
∏

i=1

(x − η(i)),
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where the leading coefficient a0 is positive and the η(i)’s are the conjugates of η. Then the

logarithmic height of η is given by

h(η) :=
1

d

















log a0 +

d
∑

i=1

log
(

max{|η(i)|, 1}
)

















.

In particular, if η = p/q is a rational number with gcd(p, q) = 1 and q > 0, then

h(η) = log max{|p|, q}. The following are some of the properties of the logarithmic height

function h(·), which will be used in the next sections of this paper without reference:

h(η1 ± η2) ≤ h(η1) + h(η2) + log 2,

h(η1η
±1
2 ) ≤ h(η1) + h(η2), (9)

h(ηs) = |s|h(η) (s ∈ Z).

We start by recalling the result of Bugeaud, Mignotte and Siksek ([3], Theorem 9.4,

pp. 989), which is a modified version of the result of Matveev [16]. This result is one of

our main tools in this paper.

Theorem 2. Let η1, . . . , ηt be positive real numbers in number field K ⊆ R of degree DK,

b1, . . . , bt be nonzero integers, and assume that

Λ := η
b1

1
· · · ηbt

t − 1, (10)

is nonzero. Then

log |Λ| > −1.4 × 30t+3 × t4.5 × D2
K(1 + log DK)(1 + log B)A1 · · · At,

where

B ≥ max{|b1|, . . . , |bt |},

and

Ai ≥ max{DKh(ηi), | log ηi|, 0.16}, for all i = 1, . . . , t.

3.3 Reduction procedure

During the calculations, we get upper bounds on our variables which are too large, thus

we need to reduce them. To do so, we use some results from the theory of continued

fractions.

For the treatment of linear forms homogeneous in two integer variables, we use the

well-known classical result in the theory of Diophantine approximation.

Lemma 3. Let τ be an irrational number,
p0

q0
,

p1

q1
,

p2

q2
, . . . be all the convergents of the con-

tinued fraction of τ and M be a positive integer. Let N be a nonnegative integer such that

qN > M. Then putting a(M) := max{ai : i = 0, 1, 2, . . . ,N}, the inequality
∣

∣

∣

∣

∣

τ − r

s

∣

∣

∣

∣

∣

>
1

(a(M) + 2)s2
,

holds for all pairs (r, s) of positive integers with 0 < s < M.

For a nonhomogeneous linear form in two integer variables, we use a slight variation

of a result due to Dujella and Pethő (see [8], Lemma 5a). For a real number X, we write

||X|| := min{|X − n| : n ∈ Z} for the distance from X to the nearest integer.
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Lemma 4. Let M be a positive integer,
p

q
be a convergent of the continued fraction of the

irrational number τ such that q > 6M, and A, B, µ be some real numbers with A > 0 and

B > 1. Let further ε := ||µq|| − M||τq||. If ε > 0, then there is no solution to the inequality

0 < |uτ − v + µ| < AB−w,

in positive integers u, v and w with

u ≤ M and w ≥ log(Aq/ε)

log B
.

At various occasions, we need to find a lower bound for linear forms in logarithms

with bounded integer coefficients in three and four variables. In this case we use the LLL

algorithm that we describe below. Let τ1, τ2, . . . τt ∈ R and the linear form

x1τ1 + x2τ2 + · · · + xtτt with |xi| ≤ Xi. (11)

We put X := max{Xi}, C > (tX)t and consider the integer lattice Ω generated by

b j := e j + ⌊Cτ j⌉ for 1 ≤ j ≤ t − 1 and bt := ⌊Cτt⌉et,

where C is a sufficiently large positive constant.

Lemma 5. Let X1, X2, . . . , Xt be positive integers such that X := max{Xi} and C > (tX)t is

a fixed sufficiently large constant. With the above notation on the lattice Ω, we consider a

reduced base {bi} to Ω and its associated Gram-Schmidt orthogonalization base {b∗i }. We

set

c1 := max
1≤i≤t

||b1||
||b∗i ||
, θ :=

||b1||
c1

, Q :=

t−1
∑

i=1

X2
i and R :=

1

2















1 +

t
∑

i=1

Xi















.

If the integers xi are such that |xi| ≤ Xi, for 1 ≤ i ≤ t and θ2 ≥ Q + R2, then we have
∣

∣

∣

∣

∣

∣

∣

t
∑

i=1

xiτi

∣

∣

∣

∣

∣

∣

∣

≥
√

θ2 − Q − R

C
.

For the proof and further details, we refer the reader to the book of Cohen. (Proposition

2.3.20 in ([4], pp. 58–63).

Finally, the following lemma is also useful. It is Lemma 7 in [10].

Lemma 6. If r > 1, H > (4r2)r and H > L/(log L)r, then

L < 2rH(log H)r.

4. Proof of Theorem 1

Let (x1, y1) be the smallest positive integer solution to the Pell quation (1). We Put

δ :=
x1 + y1

√
d

2
and σ =

x1 − y1

√
d

2
. (12)

From which we get that

δ · σ =
x2

1
− dy2

1

4
=: ǫ, where ǫ ∈ {±1}. (13)

Then

xk = δ
k + σk. (14)
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Since δ ≥ α, it follows that the estimate

δk

α
< xk < αδ

k holds for all k ≥ 1. (15)

We assume that (k1, n1,m1) and (k2, n2,m2) are triples of integers such that

xk1
= Fn1

+ Fm1
and xk2

= Fn2
+ Fm2

(16)

We assume that 1 ≤ k1 < k2.

Furthermore, by the well-known properties of solutions to Pell equations, we may as-

sume that gcd(k1, k2) = 1. That is, if gcd(k1, k2) = ℓ, we then write k1 = k′
1
ℓ, k2 = k′

2
ℓ.

We replace d by d′ := dy2
ℓ
. Then the smallest solution (x′

1
, y′

1
) of the Pell equation

x′2 − d′y′2 = ±4 is (xℓ, 1). Furthermore, x′
k′

1

= xk1
and x′

k′
2

= xk2
. This justifies our

claim that we may assume that gcd(k1, k2) = 1.

Next, F1 = F2 = 1, so it follows that we may assume that mi ≥ 2 if mi , 0. Thus, we

either have (mi, ni) = (0, ni) with ni ≥ 2 or 2 ≤ mi ≤ ni. If m = n, then Fm + Fn = 2Fn. If

n = 2, then 2Fn = F3. Otherwise, 2Fn = Fn+1 + Fn−2 and n ≥ 3. Thus, we may always

assume that mi < ni for i = 1, 2. Finally, if m = n − 1, then Fm + Fn = Fn−1 + Fn = Fn+1.

Thus, if 2 ≤ mi < ni, we may assume that mi and ni are not consecutive. In particular,

either (mi, ni) = (0, 2). or ni ≥ 3. Let us treat the case (mi, ni) = (0, 2). In this case,

xk = F2
0
+ F2

2
= 1. Thus, 12 − dy2 = ±4. The only possibility is the sign − in the

right–hand side, for which d = 5, a case which we have excluded.

Thus, ni ≥ 3 for i = 1, 2.

Using the inequalities (6) and (15), we get from (16) that

δk

α
≤ xk = Fn + Fm ≤ Fn + Fn−2 ≤ αn and αn−2 ≤ Fn + Fm = xk ≤ αδk.

The above inequalities give

(n − 3) logα < k log δ < (n + 1) logα.

Dividing through by logα and setting c2 := 1/ logα, we get that

−3 < c2k log δ − n < 1,

and since α3/2 > 2, we get

|n − c2k log δ| < 3. (17)

Furthermore, k ≤ n, for if not, we would then get that

αn+1 ≤ δn+1 ≤ δk < αn+1,

a contradiction. Besides, given that k1 < k2, we have by (6) and (16) that

αn1−2 ≤ Fn1
≤ Fn1

+ Fm1
= xk1

< xk2
= Fn2

+ Fm2
≤ Fn2

+ Fn2−2 ≤ αn2−1 + αn2−3 < αn2 .

Thus, we get that

n1 < n2 + 2. (18)

4.1 An inequality for n and k

Using the equations (5) and (14) and (16), we get

δk + σk = Fn + Fm =
αn − βn

√
5
+
αm − βm

√
5
.

So,

δk − α
n + αm

√
5
= −σk − β

n + βm

√
5
,
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and by (6), we have
∣

∣

∣

∣

δk ·
√

5 · α−n(1 + αm−n)−1 − 1
∣

∣

∣

∣

≤
√

5

δk(αn + αm)
+
|β|n + |β|m

αn + αm

≤
√

5α

αn(αn + αm)
+

1

αn+m

≤ 1

αn













√
5

αn + αm
+

1

αm













<
2

αn
.

The numerator 1.5 above comes from the fact that m ≥ 0 and n ≥ 3. Thus, we have
∣

∣

∣

∣

δk(
√

5)α−n(1 + αm−n)−1 − 1
∣

∣

∣

∣

<
2

αn
. (19)

Put

Λ1 := δk(
√

5)α−n(1 + αm−n)−1 − 1

and

Γ1 := k log δ + log(
√

5) − n logα − log(1 + αm−n).

Since |Λ1| = |eΓ1 − 1| < 1
2

for n ≥ 3 (because n ≥ 3 and α3 > 4, so 2/αn ≤ 2/α3 < 1/2),

and since the inequality |y| < 2|ey −1| holds for all y ∈
(

− 1
2
, 1

2

)

, it follows that e|Γ1 | < 2 and

so

|Γ1| < e|Γ1 ||eΓ1 − 1| < 4

αn
.

Thus, we get that
∣

∣

∣

∣

k log δ + log(
√

5) − n logα − log(1 + αm−n)
∣

∣

∣

∣

<
4

αn
. (20)

We apply Theorem 2 on the left-hand side of (19) with the data:

t := 4, η1 := δ, η2 :=
√

5, η3 := α, η4 := 1 + αm−n,

b1 := k, b2 := 1, b3 := −n, b4 := −1.

Furthermore, we take the number field K := Q(
√

d, α) which has degree DK := 4. Since

max{1, k, n} ≤ n, we take B := n. First we note that the left-hand side of (19) is non-zero,

since otherwise,

δk =
1
√

5
(αn + αm).

The left-hand side belongs to the quadratic field Q(
√

d) and is not rational while the right-

hand side belongs to the field Q(
√

5). This is not possible since d , 5. Thus, Λ1 , 0 and

we can apply Theorem 2.

We have h(η1) = h(δ) = 1
2

log δ, h(η2) = h(
√

5) = 1
2

log 5 and h(η3) = h(α) = 1
2

logα.

On the other hand,

h(η4) = h(1 + αm−n) ≤ h(1) + h(αm−n) + log 2

= (n − m)h(α) + log 2 =
1

2
(n − m) logα + log 2.

Thus, we can take

A1 := 2 log δ, A2 := 2 log 5, A3 := 2 logα, A4 := 2(n − m) logα + 4 log 2.

Now, Theorem 2 tells us that

log |Λ1| > −1.4 × 307 × 44.5 × 42(1 + log 4)(1 + log n)(2 log δ)

×(2 log 5)(2 logα)(2(n − m) logα + 4 log 2)

> −3.4 × 1016(n − m) log n log δ logα.

Comparing the above inequality with (19), we get

n logα − log 2 < 3.4 × 1016(n − m) log n log δ logα.
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Hence, we get that

n < 3.5 × 1016(n − m) log n log δ. (21)

We now return to the equation xk = Fn + Fm and rewrite it as

δk − α
n

√
5
= −σk − β

n

√
5
+ Fm,

we obtain
∣

∣

∣

∣

δk ·
√

5 · α−n − 1
∣

∣

∣

∣

≤ 1

αn−m













1

α
+

1

αn+m
+

√
5

δkαm













<
2

αn−m
. (22)

The numerator 2 in the right–hand side above comes from the fact that m ≥ 0, n ≥ 3,

δ ≥ 1 +
√

2. Put

Λ2 := δk ·
√

5 · α−n − 1 and Γ2 := k log δ + log(
√

5) − n logα.

If n − m ≥ 3, then 2/αn−m ≤ 2/α3 < 1/2, so |eΛ2 − 1| < 1
2
. It follows that

∣

∣

∣

∣

k log δ + log(
√

5) − n logα
∣

∣

∣

∣

= |Γ2| < e|Λ2 ||eΛ2 − 1| < 4

αn−m
. (23)

We show that (23) holds for n−m = 2 as well. Well, the case (m, n) = (0, 2) is not allowed

(since d = 5). The case (m, n) = (1, 3) reduces to (m, n) = (0, 4) by our conventions, for

which xk = F4 = 3, so 32−dy2
k
= ±4, and since d , 5, we get d = 13, so δk = (3+

√
13)/2.

One checks that (23) holds in this particular case as well. In the same way, (m, n) = (2, 4)

gives xk = F2 + F4 = 4, so 42 − dy2
k
= ±4 and since d , 5, we get dy2

k
= 12. Thus,

δk = 2 +
√

3 and one checks that (23) holds in this case as well. Finally, for m ≥ 3, we

have n + m = (m + 2) + m ≥ 8, and now the factor 2 in the numerator of the right–hand

side of (22) can be replaced by 1. Since 1/αn−m ≤ 1/α2 < 1/2, it follows that (23) holds

also in this case (even with the better numerator of 2 in the right–hand side instead of 4).

Furthermore, Λ2 , 0 (so Γ2 , 0), since δk < Q(α) by the previous argument.

We now apply Theorem 2 to the left-hand side of (22) with the data

t := 3, η1 := δ, η2 :=
√

5, η3 := α, b1 := k, b2 := 1, b3 := −n.

Thus, we have the same A1, A2, A3, B as before. Then, by Theorem 2, we conclude that

log |Λ2| > −2.4 × 1014 log n log δ logα.

By comparing with (22), we get

n − m < 2.5 × 1014 log n log δ. (24)

We replace the bound (24) on n − m in (21) and use the fact that δk < αn+1, to obtain

bounds on n and k in terms of log n and log δ. We now record what we have proved so far.

Lemma 7. Let (k, n,m) be a solution to the equation xk = Fn + Fm with 0 ≤ m ≤ n and

d , 5�, then

k < 4.2 × 1030(log n)2 log δ and n < 8.8 × 1030(log n)2(log δ)2. (25)

4.2 Absolute bounds

We recall that (k, n,m) = (ki, ni,mi), where 0 ≤ mi ≤ ni, for i = 1, 2 and 1 ≤ k1 < k2.

Further, ni ≥ 2 for i = 1, 2. We return to (23) and write
∣

∣

∣Γ
(i)

2

∣

∣

∣ :=
∣

∣

∣

∣

ki log δ + log
(√

5
)

− ni logα
∣

∣

∣

∣

<
4

αni−mi
, for i = 1, 2.

We do a suitable cross product between Γ
(1)

2
, Γ

(2)

2
and k1, k2 to eliminate the term involving

log δ in the above linear forms in logarithms:

|Γ3| :=
∣

∣

∣

∣

(k2 − k1) log
(√

5
)

+ (k1n2 − k2n1) logα
∣

∣

∣

∣

= |k2Γ
(1)

2
− k1Γ

(2)

2
|

≤ k2|Γ(1)

2
| + k1|Γ(2)

2
| ≤ 4k2

αn1−m1
+

4k1

αn2−m2
≤ 8n2

αλ
, (26)
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where λ := min
1≤i≤2
{ni − mi}.

We need to find an upper bound for λ. If 8n2/α
λ > 1/2, we then get

λ <
log(16n2)

logα
< 3 log(16n2). (27)

Otherwise, |Γ3| < 1
2
, so

∣

∣

∣eΓ3 − 1
∣

∣

∣ =

∣

∣

∣

∣

∣

(√
5
)k2−k1

αk1n2−k2n1 − 1

∣

∣

∣

∣

∣

< 2|Γ3| <
16n2

αλ
. (28)

We apply Theorem 2 with the data: t := 2, η1 :=
√

5, η2 := α, b1 := k2 − k1, b2 :=

k1n2 − k2n1. We take the number field K := Q(α) and DK := 2. We begin by checking that

eΓ3 − 1 , 0 (so Γ3 , 0). This is true because α and
√

5 are multiplicatively independent,

since α is a unit in the ring of integers Q(α) while the norm of
√

5 is −5 , ±1.

We note that k2 − k1 < k2 < n2. Further, from (26), we have

|k2n1 − k1n2| < (k2 − k1)
log

(√
5
)

logα
+

8k2

αλ logα
< 15k2 < 15n2

given that λ ≥ 1. So, we can take B := 15n2. By Theorem 2, with A1 := log 5 and

A2 := logα, we have that

log |eΓ3 − 1| > −1.4 × 305 × 24.5 × 2 × (1 + log 2)(1 + log(15n2))(log 5)(logα)

> −1.7 × 1010 log(15n2) logα.

By comparing this with (28), we get

λ logα − log(16n2) < 1.7 × 1010 log(15n2) logα,

which implies that

λ < 1.8 × 1010 log(15n2). (29)

Note that (29) is better than (27), so (29) always holds. Without loss of generality, we

can assume that λ = ni − mi, for i = 1, 2 fixed.

We set {i, j} = {1, 2} and return to (20) to replace (k, n,m) = (ki, ni,mi):

|Γ(i)

1
| =

∣

∣

∣

∣

ki log δ + log(
√

5) − ni logα − log(1 + αmi−ni )
∣

∣

∣

∣

<
4

αni
, (30)

and also return to (23), replacing with (k, n,m) = (k j, n j,m j):

|Γ( j)

2
| =

∣

∣

∣

∣

k j log δ + log(
√

5) − n j logα
∣

∣

∣

∣

<
4

αn j−m j
. (31)

We perform a cross product on (30) and (31) in order to eliminate the term on log δ:

|Γ4| :=
∣

∣

∣

∣

(ki − k j) log(
√

5) + (k jni − kin j) logα + k j log(1 + αmi−ni )
∣

∣

∣

∣

=

∣

∣

∣

∣

kiΓ
( j)

2
− k jΓ

(i)

1

∣

∣

∣

∣

≤ ki

∣

∣

∣

∣

Γ
( j)

2

∣

∣

∣

∣

+ k j

∣

∣

∣Γ
(i)

1

∣

∣

∣

<
4ki

αn j−m j
+

4k j

αni
<

8n2

αν
(32)

with ν := min{ni, n j − m j}. As before, we need to find an upper bound on ν. If 8n2/α
ν >

1/2, then we get

ν <
log(16n2)

logα
< 3 log(16n2). (33)
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Otherwise, |Γ4| < 1/2, so we have
∣

∣

∣eΓ4 − 1
∣

∣

∣ =

∣

∣

∣

∣

∣

(√
5
)ki−k j

αk jni−kin j (1 + αmi−ni )k j − 1

∣

∣

∣

∣

∣

≤ 2|Γ4| <
16n2

αν
. (34)

In order to apply Theorem 2, first if eΓ4 = 1, we obtain

(
√

5)k j−ki = αk jni−kin j (1 + α−λ)k j . (35)

Let us show that the above equation is impossible. Since the right–hand side is an alge-

braic integer (because α is a unit), it follows that k j > ki. We take norms (in Q(
√

5)) and

absolute values in both sides of (35). We then get

5k j−ki = ((1 + αλ)(1 + βλ))k j =























L
k j

λ
if λ ≡ 1 (mod 2);

L
2k j

λ/2
if λ ≡ 0 (mod 4);

(5F2
λ/2

)k j if λ ≡ 2 (mod 4).

(36)

The above equation is impossible since the exponent of 5 in the left–hand side is positive

and smaller than k j, while in the right–hand side, ether it is at least k j (if λ ≡ 2 (mod 4))

or is 0 (if λ . 2 (mod 4)), because 5 never divides Ln for any positive integer n. Hence,

eΓ4 , 1. We apply Theorem 2 with the data:

t := 3, η1 :=
√

5, η2 := α, η3 := 1 + α−λ,

b1 := ki − k j, b2 := k jni − kin j, b3 := k j,

We take DK := 2, A1 := log 5, A2 := logα, A3 := λ logα + 2 log 2 ≤ 2λ logα, and

B := 15n2. By Theorem 2, we get that

log |eΓ4 − 1| > −1.4 × 306 × 34.5 × 2(1 + log 2)(1 + log(15n2))(log 5)(logα)(2λ logα)

> −3.0 × 1012λ log(15n2) logα.

By comparing this with (34) together with the inequality (29), we get

ν logα − log(16n2) < 3.0 × 1012λ log(15n2) logα,

ν := min{ni, n j − m j} < 3.2 × 1012λ log(15n2) < 5.8 × 1022(log(15n2))2. (37)

Further, it also holds when the inequality (33) holds. So the above inequality holds in all

cases. Note that the case {i, j} = {2, 1} leads to n1−m1 ≤ n1 ≤ n2+2 whereas {i, j} = {1, 2}
lead to ν = min{n1, n2 − m2}. Hence, either the minimum is n1, so

n1 < 5.8 × 1022(log(15n2))2, (38)

or the minimum is n j − m j and from the inequality (29) we get that

max
1≤ j≤2
{n j − m j} < 5.8 × 1022(log(15n2))2. (39)

Next, we assume that we are in the case (39). We evaluate (30) in i = 1, 2 and make a

suitable cross product to eliminate the term involving log δ:

|Γ5| :=
∣

∣

∣

∣

(k1 − k2) log(
√

5) + (k2n1 − k1n2) logα

+k2 log(1 + αm1−n1 ) − k1 log(1 + αm2−n2 )
∣

∣

∣

=
∣

∣

∣k1Γ
(2)

1
− k2Γ

(1)

1

∣

∣

∣ ≤ k1

∣

∣

∣Γ
(2)

1

∣

∣

∣ + k2

∣

∣

∣Γ
(1)

1

∣

∣

∣ <
8n2

αn1
. (40)

In the above inequality we used the inequality (18) to conclude that min{n1, n2} ≥ n1 − 3

as well as the fact that ni ≥ 3 for i = 1, 2. Next, we apply a linear form in four logarithms

to obtain an upper bound to n1. As in the previous calculations, we pass from (40) to
∣

∣

∣eΓ5 − 1
∣

∣

∣ =

∣

∣

∣

∣

∣

(√
5
)k1−k2

αk2n1−k1n2 (1 + αm1−n1 )k2 (1 + αm2−n2 )−k1 − 1

∣

∣

∣

∣

∣

<
16n2

αn1
, (41)
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which is implied by (40) except if n1 is very small, say

n1 ≤ 3 log(16n2). (42)

Thus, we assume that (42) does not hold, therefore (41) holds. Then to apply Theorem 2,

we first justify that eΓ5 , 1. Otherwise,

(
√

5)k2−k1 = αk2m1−k1m2 (1 + αn1−m1 )k2 (1 + αn2−m2 )−k1 , (43)

We need to check that the equation (43) has no positive integer solutions. We let K :=

Q(
√

5). We use, as we did in (36), that for any positive integer k,

NK/Q(1 + αk) =



























Lk, if k ≡ 1 (mod 2),

L2
k/2
, if k ≡ 0 (mod 4),

5F2
k/2
, if k ≡ 2 (mod 4).

Now, we assume that (43) holds and take norms and absolute values on both sides to get

5k2−k1 =

∣

∣

∣

∣

NK/Q
(√

5
)

∣

∣

∣

∣

k2−k1

=
∣

∣

∣NK/Q(α)
∣

∣

∣

k2m1−k1m2 |NK/Q(1 + αn1−m1 )|
|NK/Q(1 + αn2−m2 )|

=
E

k2

n1−m1

E
k1

n2−m2

,

where Ek ∈
{

Lk, L
2
k/2
, 5F2

k/2

}

according to the residue class of k modulo 4. Since 5 divides

the left–hand side above which is an integer, 5 divides the numerator of the right–hand

side. Since 5 ∤ Lm for any m, it follows that En1−m1
= 5F2

(n1−m1)/2
. Then the exponent of 5

in the numerator of the right–hand side is at least k2 > k2 − k1, we infer that 5 should also

divide the denominator of the right–hand side meaning En2−m2
= 5F2

(n2−m2)/2
. But then we

get

F
2k2

(n1−m1)/2
= F

2k1

(n2−m2)/2
.

Since k2 > k1, we either have F(n1−m1)/2 < F(n2−m2)/2 or both sides are 1. The only distinct

Fibonacci numbers which are multiplicatively dependent are 2 and 8 = F6, but then

n2 − m2 = 12, so En2−m2
= L2

(n2−m2)/2
(instead of 5F2

(n2−m2)/2
), a contradiction. Hence,

F(n1−m1)/2 = F(n2−m2)/2 = 1 and since (ni −mi)/2 is odd (in order for Eni−mi
= 5F2

(ni−mi)/2
to

hold), we get ni − mi = 2. Thus, xki
= Fni

+ Fni−2 = Lni−1 for i = 1, 2.

Further, 1 + αni−mi = 1 + α2 =
√

5α for i = 1, 2 so (43) becomes

√
5

k2−k1

= αk2m1−k1m2 (
√

5α)k2 (
√

5α)−k1 =
√

5
k2−k1

αk2(m1+1)−k1(m2+1).

We now get k1(n2 − 1) = k2(n1 − 1) (because ni − 1 = mi + 1 for i = 1, 2) and since

gcd(k1, k2) = 1, we have k1 = (n1 − 1)/ℓ and k2 = (n2 − 1)/ℓ for some number ℓ. Thus,

n1 − 1 = k1ℓ and n2 − 1 = k2ℓ. So, we get

xki
= δki + σki = (αℓ)ki + (βℓ)ki for i = 1, 2.

Then

δki − (αℓ)ki = (δ − αℓ)(δki−1 + · · · + (αℓ)ki−1) = −σki + (βℓ)ki .

Assume now that k2 ≥ 3. We then get

δ2|δ − αℓ | < |δ − αℓ((δk2−1 + · · · + (αℓ)k2−1) ≤ δ−k2 + (αℓ)−k2 .

Now δ ≥ α, so δ−k2 + (αℓ)−k2 ≤ 2/α3. Hence, δ2|δ − αℓ | < 2/α3 giving |δ − αℓ | < 2/α5.

Thus, αℓ ≥ δ − 2/α5. Thus,

(αℓ)−k2 ≤ (αℓ)−3 ≤ (δ − 2/α5)−3 < 2δ−3,
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where we used the fact that
(

δ

δ − 2/α5

)3

> 2,

which follows because δ > α and α/(α − 2/α5) < 21/3. We thus get that

δ2|δ − αℓ | ≤ δ−k2 + (αℓ)−k2 ≤ 3δ−3,

giving |δ − αℓ | < 3δ−5. Assume δ , αℓ. Then δ − αℓ is an algebraic integer of degree at

most 4 and its conjugates are among σ−αℓ, σ−βℓ and δ−βℓ. These have absolute values

at most 1/δ + αℓ < δ + 1/δ + 3/δ5 ≤ δ + (1/α + 3/α5) < δ + 1, 2 and δ + 1 respectively.

Computing the norm of the algebraic integer δ − αℓ, we get

1 ≤ |NK/Q(δ − αℓ)| ≤ (3δ−5)(2(δ + 1)2),

giving δ < 2.31. Here, K = Q(
√

d,
√

5). The only value of δ < 2.31 is α (the next value

of δ is 1 +
√

2 > 2.4). This shows that k2 ≥ 3 is not possible. Thus, k1 = 1, k2 = 2, and

so n1 − 1 = ℓ and n2 − 1 = 2ℓ. So, we get

x1 = Lℓ and x2 = L2ℓ.

Now putting

x2
1 − dy2

1 = 4ǫ,

it follows that x2 = x2
1
− 2ǫ, so L2

2ℓ
= L2

ℓ
− 2ǫ. Since in fact L2ℓ = L2

ℓ
− 2(−1)ℓ, it follows

that ǫ = (−1)ℓ. Thus,

L2
ℓ − dy2

1 = 4(−1)ℓ

and comparing it with the identity L2
ℓ
− 5F2

ℓ
= 4(−1)ℓ, we get dy2

1
= 5F2

ℓ
, so d = 5u2 for

some integer u (which in this case is Fℓ/y1), which is not the case. Thus, eΓ5 , 1.

Thus, we apply Theorem 2 on the left-hand side of the inequalities (41) with the data

t := 4, η1 :=
√

5, η2 := α, η3 := 1 + αm1−n1 , η4 := 1 + αm2−n2 ,

b1 := k2 − k1, b2 := k2n1 − k1n2, b3 := k2, b4 := −k1.

We take DK := 2, a1 := log 5, A2 := logα, A3 := 2(n1 −m1) logα, A3 := 2(n2 −m2) logα,

and B := 15n2. By Theorem 2, we get

log |eΓ5 − 1| > −1.4 × 307 × 44.5 × 22(1 + log 2)(1 + log(15n2))(log 5)(logα)

× (2(n1 − m1) logα)(2(n2 − m2) logα)

> −3.2 × 1014(n1 − m1)(n2 − m2) log(15n2) logα.

By comparing this with (41) together with the inequalities (29) and (39), we get

n1 < 3.3 × 1014(n1 − m1)(n2 − m2) log(15n2)

< 3.5 × 1047(log(15n2))4. (44)

In the above we used the facts that

min
1≤i≤2
{ni − mi} < 1.8 × 1010 log(15n2) and max

1≤i≤2
{ni − mi} < 5.8 × 1022(log(15n2))2.

This was obtained under the assumption that the inequality (42) does not hold. If (42)

holds, then so does (44). Thus, we have that inequality (44) holds provided that inequality
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(39) holds. Otherwise, inequality (38) holds which is a better bound than (44). Hence,

conclude that (44) holds in all posibble cases.

We have,

log δ ≤ k1 log δ ≤ (n1 + 1) logα < 1.7 × 1049(log(15n2))4.

By substituting this into (25) we get 15n2 < 3.6×10126(log(15n2))10, and then, by Lemma

6, with the data r := 10, H := 3.6 × 10126 and L := 15n2, we get that 15n2 < 1.6 × 10154.

This immediately gives that n2 < 1.1 × 10153 and n1 < 5.6 × 1057.

We record what we have proved.

Lemma 8. Let (ki, ni,mi) be a solution to xki
= Fni

+ Fmi
, with 0 ≤ mi ≤ ni for i ∈ {1, 2},

d , 5� and 1 ≤ k1 < k2, then

max{k1,m1} ≤ n1 < 1058 and max{k2,m2} ≤ n2 < 10154.

5. Reducing the bounds for n1 and n2

In this section we reduce the bounds for n1 and n2 given in Lemma 8 to cases that can be

computationally treated. For this, we return to the inequalities for Γ3, Γ4 and Γ5.

5.1 The first reduction

We divide through both sides of the inequality (26) by (k2 − k1) logα. We get that
∣

∣

∣

∣

∣

∣

log(
√

5)

logα
− k2n1 − k1n2

k2 − k1

∣

∣

∣

∣

∣

∣

<
8n2

αλ(k2 − k1) logα
with λ := min

1≤i≤2
{ni − mi}. (45)

We assume that λ ≥ 10. Below we apply Lemma 3. We put τ :=
log(
√

5)

logα
, which is

irrational and compute its continued fraction

[a0; a1, a2, . . .] = [1; 1, 2, 19, 2, 9, 1, 1, 3, 1, 9, 1, 2, 6, 1, 1, 1, 5, 1, 14, 29, 1, 2, 1, 4, 2, 1, . . .]

and its convergents

[

p0

q0

,
p1

q1

,
p2

q2

, . . .

]

=

[

1, 2,
5

3
,

97

58
,

199

119
,

1888

1129
,

2087

1248
,

3975

2377
,

14012

8379
,

17987

10756
,

175895

105183
, . . .

]

.

Furthermore, we note that taking M := 10154 (by Lemma 8), it follows that

q297 > M > n2 > k2 − k1 and a(M) := max{ai : 0 ≤ i ≤ 297} = a170 = 330.

Thus, by Lemma 3, we have that
∣

∣

∣

∣

∣

τ − k2n1 − k1n2

k2 − k1

∣

∣

∣

∣

∣

>
1

332(k2 − k1)2
. (46)

Hence, combining the inequalities (45) and (46), we obtain

αλ < 5519n2(k2 − k1) < 5.52 × 10311,

so λ ≤ 1491. This was obtained under the assumption that λ ≥ 10, Otherwise, λ < 10 <

1491 holds as well.

Now, for each ni − mi = λ ∈ [1, 1491] we estimate a lower bound |Γ4|, with

Γ4 = (ki − k j) log(
√

5) + (k jni − kin j) logα + k j log(1 + αmi−ni ) (47)

given in the inequality (32), via the procedure described in Subsection 3.3 (LLL-algorithm).

We recall that Γ4 , 0.

We apply Lemma 5 with the data:

t := 3, τ1 := log(
√

5), τ2 := logα, τ3 := log(1 + α−λ),

x1 := ki − k j, x2 := k jni − kin j, x3 := k j.
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We set X := 15×10154 as an upper bound to |xi| < 15n2 for all i = 1, 2, 3, and C := (10X)5.

A computer in Mathematica search allows us to conclude, together with the inequality

(32), that

2 × 10−653 < min
1≤λ≤1491

|Γ4| < 8n2α
−ν, with ν := min{ni, n j − m j}

which leads to ν ≤ 3855. As we have noted before, ν = n1 (so n1 ≤ 3855) or ν = n j − m j.

Next, we suppose that n j − m j = ν ≤ 3855. Since λ ≤ 1491, we have

λ := min
1≤i≤2
{ni − mi} ≤ 1491 and χ := max

1≤i≤2
{ni − mi} ≤ 3855.

Now, returning to the inequality (40) which involves

Γ5 : = (k2 − k1) log(
√

5) + (k2n1 − k1n2) logα

+k2 log(1 + αm1−n1 ) − k1 log(1 + αm2−n2 ) , 0, (48)

we use again the LLL-algorithm to estimate the lower bound for |Γ5| and thus, find a

bound for n1 that is better than the one given in Lemma 8.

We distinguish the cases λ < χ and λ = χ.

5.2 The case λ < χ.

We take λ ∈ [1, 1491] and χ ∈ [λ + 1, 3855] and apply Lemma 5 with the data: t := 4,

τ1 := log(
√

5), τ2 := logα, τ3 := log(1 + αm1−n1 ), τ4 := log(1 + αm2−n2 ),

x1 := k2 − k1, x2 := k2n1 − k1n2, x3 := k2, x4 := −k1.

We also put X := 15 × 10154 and C := (20X)9. After a computer search in Mathematica

together with the inequality (40), we can confirm that

10−1312 < min
1≤λ≤1491
λ+1≤χ≤3855

|Γ5| < 8n2α
−n1 . (49)

This leads to the inequality

αn1 < 8 × 101312n2. (50)

Subsitituting for the bound n2 given in Lemma 8, we get that n1 ≤ 7019.

5.3 The case λ = χ.

In this case, we have

Γ5 := (k2 − k1)
(

log(1/
√

5) + log(1 + αm1−n1 )
)

+ (k2n1 − k1n2) logα , 0.

We divide through the inequality 40 by (k2 − k1) logα to obtain
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣log(1/
√

5) + log(1 + αm1−n1 )
∣

∣

∣

logα
− k2n1 − k1n2

k2 − k1

∣

∣

∣

∣

∣

∣

∣

<
8n2

αn1 (k2 − k1) logα
. (51)

We now put

τλ :=

∣

∣

∣log(1/
√

5) + log(1 + α−λ)
∣

∣

∣

logα

and compute its continued fractions [a
(λ)

0
, a

(λ)

1
, a

(λ)

2
, . . .] and its convergents

[p
(λ)

0
/q

(λ)

0
, p

(λ)

1
/q

(λ)

1
, p

(λ)

2
/q

(λ)

2
, . . .] for each λ ∈ [1, 1491]. Furthermore, for each case we

find an integer tλ such that q
(λ)
tλ
> M := 10154 > n2 > k2 − k1 and calculate

a(M) := max
1≤λ≤1491

{

a
(λ)

i
: 0 ≤ i ≤ tλ

}

.

A computer search in Mathematica reveals that for λ = 61, tλ = 276 and i = 224, we

have that a(M) = a
(61)

224
= 121895. Hence, combining the conclusion of Lemma 3 and the

inequality (51), we get

αn1 < 16.62 × 121897n2(k2 − k1) < 2.02 × 10314,
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so n1 ≤ 1503. Hence, we obtain that n1 ≤ 7019 holds in all cases (ν = n1, λ < χ or λ = χ).

By the inequality (17), we have that

log δ ≤ k1 log δ ≤ (n1 + 1) logα < 3378.

By considering the second inequality in (25), we can conclude that n2 ≤ 1.0×1038(log n2)2,

which immediately yields n2 < 3.5× 1040, by a simple application of Lemma 6. We sum-

marise the first cycle of our reduction process as follows:

n1 ≤ 7019 and n2 ≤ 3.5 × 1040. (52)

From the above, we note that the upper bound on n2 represents a very good reduction of

the bound given in Lemma 8. Hence, we expect that if we restart our reduction cycle with

the new bound on n2, then we get a better bound on n1. Thus, we return to the inequality

(45) and take M := 3.5 × 1040. A computer search in Mathematica reveals that

q86 > M > n2 > k2 − k1 and a(M) := max{ai : 0 ≤ i ≤ 86} = a21 = 29,

from which it follows that λ ≤ 400. We now return to (47) and we put X := 5.25 × 1041

and C := (10X)5 and then apply the LLL algorithm in Lemma 5 to λ ∈ [1, 400]. After a

computer search, we get

1 × 10−172 < min
1≤λ≤400

|Γ4| < 16.62n2α
−ν,

then ν ≤ 1022. By continuing under the assumption that n j − m j = ν ≤ 1022, we return

to (48) and put X := 5.25× 1041, C := (10X)9 and M := 3.5× 1040 for the case λ < χ and

λ = χ. After a computer search, we confirm that

2 × 10−344 < min
1≤λ≤400
λ+1≤χ≤1022

|Γ5| < 16.62n2α
−n1 ,

gives n1 ≤ 1844, and a(M) = a
(117)

55
= 30400, leads to n1 ≤ 415. Hence, in both cases

n1 ≤ 1844 holds. This gives n2 ≤ 4.2 × 1038 by a similar procedure as before.

We record what we have proved.

Lemma 9. Let (ki, ni,mi) be a solution to xi = Fni
+ Fmi

, with 0 ≤ mi ≤ ni for i = 1, 2 and

1 ≤ k1 < k2 and where d , 5�, then

max{k1,m1} ≤ n1 ≤ 1844 and max{k2,m2} ≤ n2 ≤ 4.2 × 1038.

5.4 The final reduction

Returning back to (12) and (14) and using the fact that (x1, y1) is the smallest positive

solution to the Pell equation (1), we obtain

xk = δk + σk =













x1 + y1

√
d

2













k

+













x1 − y1

√
d

2













k

=

























x1 +

√

x2
1
∓ 4

2

























k

+

























x1 −
√

x2
1
∓ 4

2

























k

:= P±k (x1).

Thus, we return to the Diophantine equation xk1
= Pn1

+ Pm1
and consider the equations

P+k1
(x1) = Fn1

+ Fm1
and P−k1

(x1) = Fn1
+ Fm1

, (53)

with k1 ∈ [1, 1844], m1 ∈ [0, 1844] and n1 ∈ [m1 + 2, 1844].

Besides the trivial case k1 = 1, with the help of a computer search in Mathematica on

the above equations in (53), we list the only nontrivial solutions in Table 1. We also note

that 3 + 2
√

2 = (1 +
√

2)2, so these solutions come from the same Pell equation when

d = 2.
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P+
k1

(x1)

k1 x1 y1 d δ

2 6 4 2 3 + 2
√

2

2 4 2 3 2 +
√

3

2 16 6 7 8 + 3
√

7

2 5 1 21 (5 +
√

21)/2

2 25 3 69 (25 + 3
√

69)/2

2 40 2 399 20 +
√

399

P−
k1

(x1)

k1 x1 y1 d δ

2 2 2 2 1 +
√

2

2 10 2 26 5 +
√

26

2 12 2 37 6 +
√

37

2 40 2 401 20 +
√

401

Table 1. Solutions to P±
k1

(x1) = Fn1
+ Fm1

From the above tables, we set each δ := δt for t = 1, 2, . . . 9. We then work on the

linear forms in logarithms Γ1 and Γ2, in order to reduce the bound on n2 given in Lemma

9. From the inequality (23), for (k, n,m) := (k2, n2,m2), we write
∣

∣

∣

∣

∣

∣

k2

log δt

logα
− n2 +

log(
√

5)

logα

∣

∣

∣

∣

∣

∣

<

(

4

logα

)

α−(n2−m2), (54)

for t = 1, 2, . . . 9.

We put

τt :=
log δt

logα
, µt :=

log(
√

5)

logα
and (At, Bt) :=

(

4

logα
, α

)

.

We note that τt is transcendental by the Gelfond-Schneider’s Theorem and thus, τt is

irrational. We can rewrite the above inequality, (54) as

0 < |k2τt − n2 + µt | < AtB
−(n2−m2)
t , for t = 1, 2, . . . , 9. (55)

We take M := 4.2×1038 which is the upper bound on n2 according to Lemma 9 and apply

Lemma 4 to the inequality (55). As before, for each τt with t = 1, 2, . . . , 9, we compute its

continued fraction [a
(t)

0
, a

(t)

1
, a

(t)

2
, . . .] and its convergents p

(t)

0
/q

(t)

0
, p

(t)

1
/q

(t)

1
, p

(t)

2
/q

(t)

2
, . . .. For

each case, by means of a computer search in Mathematica, we find and integer st such

that

q(t)
st
> 2.52 × 1039 = 6M and ǫt := ||µtq

(t)|| − M||τtq
(t)| > 0.

We finally compute all the values of bt := ⌊log(Atq
(t)
st
/ǫt)/ log Bt⌋. The values of bt cor-

respond to the upper bounds on n2 − m2, for each t = 1, 2, . . . , 9, according to Lemma

4. With the help of Mathematica we got that the maximum value of n2 − m2 is 201 for

t ∈ [1, 9]. The results of the computation for each t are recorded in Table 2 below.

t δt st qst
εt > bt

1 1 +
√

2 81 4.51994 × 1039 0.388126 194

2 2 +
√

3 72 8.76409 × 1040 0.225348 201

3 8 + 3
√

7 76 1.32196 × 1040 0.421692 196

4 (5 +
√

21)/2 80 6.12803 × 1039 0.142135 197

5 5 +
√

26 70 2.62621 × 1039 0.158712 195

6 6 +
√

37 89 3.06359 × 1039 0.241184 194

7 (25 + 3
√

69)/2 68 2.75772 × 1039 0.048435 197

8 20 +
√

399 84 2.84745 × 1039 0.399493 193

9 20 +
√

401 80 4.10314 × 1039 0.125005 196

Table 2. First reduction computation results
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By replacing (k, n,m) := (k2, n2,m2) in the inequality (20), we can write
∣

∣

∣

∣

∣

∣

∣

∣

k2

log δt

logα
− n2 +

log
(

(
√

5)/(1 + α−(n2−m2))
)

logα

∣

∣

∣

∣

∣

∣

∣

∣

<

(

4

logα

)

α−n2 , for t = 1, 2, . . . , 9. (56)

We now put

τt :=
log δt

logα
, µt,n2−m2

:=
log

(

(
√

5)/(1 + α−(n2−m2))
)

logα
and (At, Bt) :=

(

4

logα
, α

)

.

With the above notations, we can rewrite (56) as

0 < |k2τt − n2 + µt,n2−m2
| < AtB

−n2

t , for t = 1, 2, . . . 9. (57)

We again apply Lemma 4 to the above inequality (57), for

t = 1, 2, . . . , 9, n2 − m2 = 1, 2, . . . , bt, with M := 4.2 × 1038.

We take

ε = εt,n2−m2
:= ||µtq

(t,n2−m2)|| − M||τtq
(t,n2−m2)|| > 0,

and

b = bt,n2−m2
:= ⌊log(Atq

(t,n2−m2)
st

/ǫt,n2−m2
)/ log Bt⌋.

With the help of Mathematica, we obtain the results in Table 3.

t 1 2 3 4 5 6 7 8 9

ε > 0.0019 0.0008 0.0006 0.0005 0.0017 0.0026 0.0016 0.0038 0.0071

b 207 215 211 213 204 205 209 204 202

Table 3. Final reduction computation results

Therefore, max{bt,n2−m2
: t = 1, 2, . . . , 9 and n2 − m2 = 1, 2, . . . bt} ≤ 215.

Thus, by Lemma 4, we have that n2 ≤ 215, for all t = 1, 2, . . . , 9, and by the inequality

(18) we have that n1 ≤ n2 + 2. From the fact that δk ≤ αn+1, we can conclude that

k1 < k2 ≤ 104. Collecting everything together, our problem is reduced to search for the

solutions for (16) in the following range

1 ≤ k1 ≤ k2 ≤ 110, 0 ≤ m1 ≤ n1 ≤ 220 and 0 ≤ m2 ≤ n2 ≤ 220.

After a computer search on the equation (16) on the above ranges, we obtained the fol-

lowing solutions, which are the only solutions for the exceptional d cases we have stated

in Theorem 1:

For the +4 case:

(d = 2) x1 = 6 = F5 + F2 = F4 + F4, x2 = 34 = F9 + F0 = F8 + F7;

(d = 3) x1 = 4 = F4 + F2 = F3 + F3, x2 = 14 = F7 + F2;

(d = 7) x1 = 16 = F7 + F4, x2 = 254 = F13 + F8;

(d = 21) x1 = 5 = F5 + F0 = F4 + F3, x2 = 23 = F8 + F3, x3 = 110 = F11 + F8.

For the −4 case:

(d = 2) x1 = 2 = F3 + F0 = F2 + F2, x2 = 6 = F5 + F2 = F4 + F4,

x3 = 14 = F7 + F2, x4 = 34 = F9 + F0 = F8 + F7;

(d = 26) x1 = 10 = F6 + F3 = F5 + F5, x2 = 102 = F11 + F7.

This completes the proof of Theorem 1.
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