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ABSTRACT

We describe the science case, design and expected performances of the X/Gamma-ray Imaging Spectrometer (XGIS), a
GRB and transients monitor developed and studied for the THESEUS mission project, capable of covering an
exceptionally wide energy band (2 keV — 10 MeV), with imaging capabilities and location accuracy <15 arcmin up to
150 keV over a Field of View of 2sr, a few hundreds eV energy resolution in the X-ray band (<30 keV) and few micro
seconds time resolution over the whole energy band. Thanks to a design based on a modular approach, the XGIS can be
easily re-scaled and adapted for fitting the available resources and specific scientific objectives of future high-energy
astrophysics missions, and especially those aimed at fully exploiting GRBs and high-energy transients for multi-
messenger astrophysics and fundamental physics.

Keywords: High-energy astrophysics: future missions; Gamma-ray:bursts; Time-domain astronomy; Multi-messenger
astrophysics; Space astrophysics: X and gamma-ray detectors; X-rays: transients.

1. INTRODUCTION

The Transient High-Energy Sky and Early Universe Surveyor (THESEUS) mission concept! aims at fully exploiting
Gamma-Ray Bursts (GRB) for early Universe and multi-messenger astrophysics, as well as providing a substantial
advance in time-domain astronomy through detection, accurate location, multi-wavelength (0.3 keV — 10 MeV plus near
IR) characterization, and redshift measurement, of many classes of high-energy transients*®°. Developed by a large
international collaboration, in 2018 THESEUS was selected by ESA for a three years Phase 0/A study as one of the three
candidates for the M5 medium-class space mission opportunity for a launch in ~20323,

The scientific goals for the exploration of the early Universe* require the detection, identification, and characterization of
several tens of long GRBs occurred in the first billion years of the Universe (z > 6) within the 4 years of nominal mission
lifetime of THESEUS. This would be a giant leap with respect to what has been obtained in the last 20 years (7 GRBs at
>6), using past and current GRB dedicated experiments like Swift/BAT, Fermi/GBM, Konus-WIND combined with
intensive follow-up programs from the ground with small robotic and large telescopes (e.g., VLT). This breakthrough
performance can be achieved by overcoming the current limitations through an extension of the GRB monitoring
passband to the soft X-rays with an increase of at least one order of magnitude in sensitivity with respect to previously
flown wide-field X-ray monitors, as well as a substantial improvement of the efficiency of counterpart detection,
spectroscopy and redshift measurement through prompt on-board NIR follow-up observations. At the same time, the
objectives on multi-messenger astrophysics®® and, more generally, time domain astronomy’° and synergies with future
very large facilities'®!!, require: a) a substantial advancement in the detection and localization, over a large (>2 sr)
Field-of-View (FoV) of short GRBs as electromagnetic counterparts of GW signals coming from NS-NS, and possibly
NS-BH) mergers; b) monitoring the high-energy sky with an unprecedented combination of sensitivity, location accuracy
and field of view in the soft X-rays; c) imaging up to the hard X-rays and spectroscopy / timing to the soft gamma-rays.

Based on these scientific requirements and the unique heritage and Consortium worldwide leadership in the enabling
technologies, the THESEUS payload would include the following scientific instruments?3:

e Soft X-ray Imager (SXI, 0.3 — 5 keV): a set of two “Lobster-eye” telescope units, covering a total FoV of ~0.5
sr with source location accuracy <2’, focusing onto innovative large size X-ray CMOS detectors??;

e X/Gamma-ray Imaging Spectrometer (XGIS, 2 keV — 10 MeV): a set of two coded-mask cameras using
monolithic SDD+Csl X- and gamma-ray detectors, granting a ~2 sr imaging FoV and a source location
accuracy <15 arcmin in 2-150 keV and few (s timing resolution??;

¢ InfraRed Telescope (IRT, 0.7 — 1.8 pm): a 0.7-m class IR telescope with 15°x15” FoV, with imaging (I, Z, Y,
J and H) and moderate spectroscopic (resolving power, R~400, through 2°x2° grism) capabilities*.
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Figure 1. A pictoric view of the main subjects of investigations of THESEUS and, on the bottom-right part, a sketch of
the spaceraft design and payload accommodation as investigated during ESA/M5 Phase O/A study (credits: ESA
THESEUS Assessment Study report: https://sci.esa.int/web/cosmic-vision/-/theseus-assessment-study-report-yellow-
book ).

Figure 1 shows a pictoric view of the main subjects of investigations of THESEUS and a sketch of the spaceraft design
and payload accommodation as assessed during ESA/M5 Phase 0/A study. The baseline launcher / orbit configuration is
a launch with Vega-C to a low inclination (<6°) Low Earth Orbit (LEO, 550-640 km altitude), which has the unique
advantages of granting a low and stable background level in the high-energy instruments, allowing the exploitation of the
Earth’s magnetic field for spacecraft fast slewing and facilitating the prompt transmission of transient triggers and
positions to the ground. The mission profile will include a spacecraft autonomous slewing capability >7°/min, allowing
fast NIR follow-up with the IRT of GRBs and transients detected and localized by the monitors (SXI and XGIS).

In this article we describe the concept of the THESEUS X/Gamma-ray Imaging Spectrometer (XGIS)*3, a GRB and
transients monitor capable of covering an exceptionally wide energy band (2 keVV — 10 MeV), with imaging capabilities
and location accuracy <15 arcmin up to 150 keV over a Field of View of 2sr, a few hundred eV energy resolution in the
X-ray band (<30 keV) and few micro seconds time resolution over the whole energy band. This unprecedented
capabilities are obtained through a coded mask imaging system joined to an innovative detection plane made of pixels
built of Silicon Driift Detectors (SDD, 2- 30 keV) coupled to Csl crystal scintillator detectors (20 keV - 10 MeV). In
synergy with the Soft-X-ray Imager (0.3 — 5 keV) and the Infra-Red Telescope (IRT), combined with spacecraft fast
slewing capabilities, the XGIS will allow THESEUS to detect, accurately localize and characterize any class of GRBs
(long, short, high-z, sub-energetic, ultra-long, etc.), as well as further bright X/gamma-ray transients, for a fraction of
which the IRT will provide detection, arcsec localization, moderate spectroscopy and on-board redshift determination.

Thanks to its capability of detecting, localizing and characterizing any kind of GRBs (short, long, X-Ray Flashes, under-
luminous, ultra-long) and a design based on a modularity approach, the XGIS can be easily re-scaled and adapted for
fitting the available resources and specific scientific objectvies of other high-energy astrophysics missions. Moreover, an
XGIS-like instrument will provide an important contribution also to the high-z GRB detection and localization, thus
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enabling GRB cosmology. The ESA Phase A study of THESEUS (2018-2021) and related TDAs grants an already good
TRL level (e.g., detection module prototype, SDD detectors and specifically designed ASIC already under testing).

2. SCIENTIFIC MOTIVATION AND REQUIREMENTS FOR THE XGIS

The inclusion in the THESUS payload of a broad field of view hard X/soft gamma-ray detection system, covering a >2sr
FoV (that includes that of the SXI) and extending the energy band from few keV up to several MeV with at least a few
hundred cm? effective area over the whole range is fundamental for:

a) detecting and localizing short GRBs, which are a key phenomenon for multi-messenger astrophysics, being up to now
the most likely and only one detected EM counterparts of GW signals (specifically, from NS-NS and NS-BH mergers),
and determining the hard spectrum of these events, which makes them mostly undetectable with the SXI;

b) complementing the SXI capabilities for the detection and localization of high-z GRBs, thanks to the large effective
area at <10 keV with respect to past/current GRB detectors;

c) providing unique clues to the physics and geometry of the emission of GRBs and other bright X-ray transients through
sensitive timing and spectroscopy over an unprecedentedly wide energy band;

d) detecting possible absorption features in the low-energy spectra of GRBs that may be used for investigating the
circum-burst environment, and hence the nature of the progenitor star, as well as inferring the redshift;

e) allowing accurate spectral and timing characterization of GRB prompt emission over four orders of magnitude, thus
further extending THESEUS scientific return by enabling tests of fundamental physics (e.g., Lorentz Invariance
Violation) and the use of GRBs for measuring cosmological parameters (through spectrum-energy correlations).

Table 1. Summary of main scientific requirements for THESEUS scientific instruments.

1.8x10! erg/cm?/s (0.3-5 keV, 1500 s)
1020 erg/cm?/s (0.3-5 keV, 100 s)

108 erg/cm?/s (2-30 keV)

3x108 erg/cm?/s (30-150 keV)
2.7x107 erglcm?/s (150 keV-1 MeV)

SXI sensitivity (36)

XGIS sensitivity (1s, 30)

IRT sensitivity (imaging, SNR=5, 150 s)

20.9 (1), 20.7 (Z), 20.4 (Y), 20.7 (3), 20.8 (H)

SXI field-of-view

0.5 sr - 31x61 degrees?

XGIS field-of-view (area corresponding to >20%
efficiency)

2 sr (2-150 keV) — 117x77 degrees?

4 sr (>150 keV)
IRT field-of-view 15°x15°
Redshift accuracy (6<z<10) <10%
IRT resolving power >400

XGIS background stability

<10% (over 10 minutes)

SXI positional accuracy (0.3-5 keV, 99% c.l.)

<2 arcminutes

XGIS positional accuracy (2-150 keV, 90% c.l.)

<7 arcminutes (50% of the triggered sGRB)

<15 arcminutes (90% of the triggered sGRB)

IRT positional accuracy (5c detections)

<5 arcsecond (real-time)

<1 arcsecond (post-processing)
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In addition, as the SXI lobster-eye telescopes can be triggered by several classes of transient phenomena (e.qg., flare stars,
X-ray bursts, etc), the detection in hard X-rays with the XGIS provides an efficient tool of identifying bona fide GRBs.

The core science requirements of THESEUS have been assessed by simulating a number of observational scenarios
during the ESA/M5 assessment phase 0/A study. The main goal of these simulations was to ensure that a set of
observation strategies exists enabling the core scientific requirements of THESEUS. These were then injected in the
industrial study for their further validation and optimization. The simulations made use of a state-of-the-art GRB
population model based on the original work by THESEUS team members®,

An overall summary of the main scientific requirements for THESEUS scientific instruments, and specifically for the
XGIS, is reported in Table 1.

3. XGIS INSTRUMENT DESCRIPTION

The architecture of the XGIS system consists of two X/gamma-ray cameras (Figure 2), two power supply units (XSU), a
Data Handling Unit (DHU) and harness*3!58, Each XGIS camera is powered from its dedicated XSU and is directly
connected to the DHU. DHU is the interface of XGIS with the S/C for commands, data downloading and power that is
then delivered to the XSUs. The burst trigger functionality is part of the SW of the DHU, which includes also the mass
memory and operates as instrument control unit (ICU).

XGIS has imaging capabilities up to 150 keV, with a FoV larger than and fully overlapping with the SXI one, and has
spectrometric capabilities covering a wide energy range from few keV to several MeV, partially overlapping the SXI one
in the soft X-rays.

As an imager, XGIS is based on the coded mask principle, with the mask shadowgram being recorded by a position
sensitive detector, that can then be deconvolved into a sky image. A XGIS camera has a partially-coded imaging FoV of
77x77 degrees?; the two cameras are misaligned by +20° with respect to SXI and IRT, thus providing a total FoV of
117x77 degrees®. The size of the point spread function in the sky image is determined by the ratio of the mask pixel size
and the mask-to-detector distance. Above 150 keV, the mask and the collimator of a XGIS camera become transparent,
thus imaging capabilities are lost and FoV is not delimited, reaching about 2z sr. Outside the imaging FoV, a rough
location accuracy of a few tens of degrees can be obtained by exploiting the different offset of the two cameras and the
detection plane architecture.

detector =

collimator

Figure 2. Exploded view of an XGIS camera.
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Figure 2 shows a view of an XGIS camera that consists of the Collimator and Mask assemblies, made of W elements
thick enough to be opaque to radiation up to 150 keV, the detector plane and the camera support and mechanical frame.
A Cold-Finger for the detector thermal control is included. The XGIS detector plane contains 10x10 Modules arranged
side by side. Each Module (Figure 3) contains 8x8 pixels (pitch 5 mm). A passive space, one pixel wide, interleaves one
Module and the adjacent ones. In this way there are 9 “dead” rows and 9 “dead” columns in the plane. A Super-Module
assembles 10 Modules, providing a mechanical structure to hold and align the Modules and the electrical Super-Module
Back End Electronics (SM-BEE) with common services for the Modules. Finally, a Camera Back End Electronics board
provides general logic, mass memory and interfaces to the DHU and the XSU (see the XGIS block diagram in Figure 4).

Ton FE PCB
ASICs

Two sides-adhesive Top Cover

Top SDD
Separation Grid

Optical Pads )
<+— Housing

Flex Top FE to BE

64 x Csl(TI)
Wrapped Crystals

BE PCB

ASICs

HVPCB

Iz

Bottom PCB not shown

Orion-FE Orion-BE Collimator
ASIC ASIC

s ~
SDD 8x
array
—
)
) w
CslI(TI
i) 10x SuperModule XGIS XGIS
crystal Camera system
)
Wrapping
opt coupl SuperModule
~ / BEE
PCB & Mech. str. Back End Elet Detector 2
electr. opt. filter mech. Ca';;:ra
frame XGls Harness
Xsu

Figure 4. Block diagram of the XGIS system.
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The Module is the basic element of the detector plane, it contains 64 autonomous pixels; the dedicated electronics can
identify, convert in digital word and store all the information of a detected event. A view of a Module prototype realized
during THESEUS ESA M5 activity is shown in Figure 3. It contains two Silicon Drift Detector (SDDs) chips arranged in
an 8x8 array; between these, and coupled optically to them through transparent and flexible silicone pads, 64 CslI(TI)
scintillator bars (3 cm thick) are arranged. The crystal wrapping drives the light to the SDDs and optically insulates one
crystal to the others. XGIS SDD have a square cross section 5x5 mm? while the scintillator crystal is 4.5x4.5x30 mm? in
size. Top and bottom SDDs array are glued on a Printed Circuit Board (PCB), which hosts also the first stages of the
electronic chain, the preamplifiers Front End ASIC, named Orion-FE*8. A third PCB below, contains the ASICs Back
End, named Orion-BE, that elaborates the Orion-FE signal and interfaces to SuperModule-BEE. The ‘top PCB’ has large
openings to allow the incoming radiation to pass through and reach the active detecting elements, SDD and scintillator.
An optical filter, not shown in Figure 3, will maintain dark operation condition for the SDD, while ensuring the
maximum transparency for X-rays above 2 keV.

SDD scintillator SDD
Y
X
Csl(Tl)
Direct Scintillation light
detection in Si detection

Figure 5. Pixel detector operation concept

Figure 5 shows the pixel operation concept. Two SDDs are placed at the two opposite sides of a scintillator CsI(TI)
crystal. Low energy radiation (roughly between 2 and 25-30 keV) is detected in the SDD on the top surface of the
Module, while radiation with higher energy reaches the scintillator crystal. While the electron-hole pair creation from X-
ray interaction in Silicon generates a fast signal (about 100 ns rise time), the scintillation light readout by SDD is
dominated by the CslI(TI) fluorescent states de-excitation time. As a consequence, scintillation and SDD signal should be
integrated for different times to maintain the lowest noise and avoid significant ballistic deficit.

The discrimination between signals generated in Si (top SDD) and CsI(TI) is done by the Orion-FE circuitry. The pixel
size determines the position resolution in the detector plane for both direct SDD and scintillation detection. In the
scintillator, the light is diffused/reflected on the crystal walls, and therefore attenuated, before reaching the SDDs. By
weighing the two SDD signals (top and bottom) the scintillation depth in the bar can be evaluated producing a 3-D
position detector.

A single channel Orion-FE ASIC is placed near each SDD anode, minimizing the stray capacitance and
therefore the electronic noise, collects the SDD charge and performs a pre-amplification and buffering of the
signal that is sent to the Orion-BE ASICs placed a few cm below. The signal processing in the Orion-BE (8
pixel) assumes that:

* An X-ray (2-30 keV) will be detected only in the top SDD, the best signal/noise ratio will be achieved
with a short shaping time (typically 1 ps).

* An X-ray (>30 keV) will be detected in time coincidence in both top and bottom SDD; in this case the
signal rise time will be of the order of few ps, due to the scintillation light characteristic timescale. The
best signal/noise ratio will be achieved with a shaping time of the order of 3 us typical.

« Three valid shaped signals (one short top two longer top and bottom) whose amplitude is above the
noise, will be AD converted and digitally time marked inside Orion-BE ASIC.

Proc. of SPIE Vol. 12181 1218126-7

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 08 Nov 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



» The digital signals from the Module’s ASICs will be stored first in the Super-Module and in the
Camera BEE, and then sent to the DHU where the data will be processed (see the XGIS DH-SW block
diagram in Figure 6).

e T
data collection

- “\

Events cleaning — particles rejection

\ J

¥

e ~
Data type discrimination

\l X—raz (Si) I | ~{—raI{Csl) I

Energy calibration — photon lists X & v

LS

( Burst search [ TM data stream

‘
\ SXI burst

Figure 6. Block diagram of the XGIS DH SW

Here X and y-events will be distinguished, and particle generated events will be discriminated on the basis of
the energy deposit and topology of time coincident triggered pixels. Compton events can also be recognized.
DHU will operate GRB search and triggering using essentially two methods based on rate and/or on images
variations:

 The rate trigger method, which operates on the whole XGIS energy range, will compare variations of count
rate in different energy bands, different integration times and different detector areas. Each estimated rate will
be compared with the background rate evaluated dynamically.

» The image analysis operating up to 150 keV will compare images integrated on long time intervals (e.g. 20,
100, 500 s), and one or two energy ranges, with background images evaluated dynamically around the orbit
with the same parameters. For each rate trigger event, the image analysis will be performed in order to get, in
addition to the light curve, also the celestial direction of the event.

4. XGIS OPERATION, INTERFACES AND RESOURCES

XGIS operation modes, that follow THESEUS operational modes, are managed by the DHU as:
e Survey (“burst hunting”) Mode: monitoring and looking, with different methods for GRBs within the FoV
XGIS data will be partially in photon-by-photon mode and partially in time-integrated images and spectra.
e Burst Mode: in case a detected GRB, XGIS switches to the photon-by-photon mode.
e IRT Follow-up Mode: XGIS operates as in Survey Mode.
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e External Trigger Mode: with a GRB observation triggered externally to THESEUS, trigger, XGIS will operate
as in survey mode.
e IRT Observatory Mode: XGIS will operate as in Survey Mode
The data load in Gbit/orbit in one orbit for both XGIS cameras is shown in Table 3. It assumes an average background
rate of about 6 events/cm?/s, a burst average count rate of 10 events/cm?/s, a burst lasting 1000 seconds with a follow up
lasting 420 seconds, and 1 burst/orbit.

Table 2. XGIS data load foreseen for the different THESEUS modes.

Imaging Gamma ph by ph | Total
Survey mode 0.2 2.5 2.7
Follow up mode - 0.3 0.3
Burst mode - 3.6 3.6

The main physical parameters of the XGIS system are summarized in Table 3. The two Cameras are pointed at directions
offset by +20° and —20° with respect to the S/C X-axis. The thermal interfaces with the S/C are a Cold Finger flange
connecting the inside of the camera to the heat pipes coming from the spacecraft XGIS-radiator and the base of the
Titanium support frame bolted to the payload platform. Overall, one camera must dissipate via radiative and conductive
means about 50 W (without contingency). To maintain the temperature of the top SDD around 10 °C, to ensure their best
performances, the Cold Finger should be maintained at 5 °C with the S/C platform at 20 °C. The main thermal interface
of XSU and DHU boxes are their baseplate.

XGIS DHU provides instrument control for the two XGIS Camera units, as well as data processing, time management,
instrument calibration, housekeeping (HK), and the switching of unregulated power. In detail:

*Data Interfaces: The XGIS DHU exchanges data, telecommands, and HK with the two Camera units via a single (cold-
redundant) SpaceWire connection. The XGIS DHU interfaces with the S/IC On-Board Digital Unit and Memory
Management Unit (MMU) through a SVM-mounted SpaceWire Routing Switch. The DHU also receives PPS signals
from the S/C through dedicated low-jitter lines. As the nominal Master DHU, the XGIS DHU also interfaces with the
other I-DHUs. This is achieved by SpaceWire connections through the SpaceWire Router

*Power Interfaces: The XGIS DHU’s receives an unregulated 28 V (TBC) from the S/C primary power line and passes
them two XSUs. DHU is responsible for ON/OFF switching of the power.

Table 3. Size, mass and power budget of the XGIS system (without contingency).

Camera (1 element) XSU (1 DHU Total (whole
element) XGIS)
Size [cm] @ base level 50 x 35x%x22x12 21 x21 %13
56.6
@ mask level 60 x 60
Height 91.8
| Mass[kg] || 66 + 2 (Harness) || 8 | 7 | 159 |
| Power [W] || 50 | 29 I 15 I 173 |
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The main expected performances of the XGIS'6° are summarized in Table 4. The XGIS response as a function of
photon energy and off-axis angle were derived from Monte-Carlo simulations making use of instrument and spacecraft
GEANT4 mass models®6. The particle-induced background level, spectrum and orbital modulation (outside the South
Atlantic Anomaly, SAA) were evaluated by combining these models with the predictions of the ESA-validated trapped

5. EXPECTED PERFORMANCES

proton radiation models for the foreseen altitude and inclination of the THESEUS orhit*®.

Table 4. XGIS main scientific performance characteristics.

Energy Range 2 —150 keV 150 keV - 10 MeV
Field of View ~2sr (imaging, PC) ~6sr
Peak eff. area ~500 cm? ~1000 cm?

Sensitivity
(50, 19)

~10% cgsin 2-30 keV
~3x108 cgs in 30-150 keV

~3x107 cgs in 150 keV — 1 MeV

Angular resolution

<120 arcmin

Source location accuracy | <15 arcmin 90% c.1. in 2-150 keV (SNR > 7)

>10° (exploiting cameras geometry

and misalignment)

Timing accuracy

~7 us

~7 us

Energy resolution

<1200 eV FWHM @ 6 keV

<6 % FWHM @ 500 keV

Effective area [cm?]
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Figure 7. Peak effective are of the XGIS as a function of energy, comparted to that of Swift/BAT and Fermi/GBM.
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Figure 7 shows the XGIS peak effective area as a function of photon energy, compared to those of some of the main
GRB detectors currently operating. As can be seen, the XGIS shows an unprecedented combination of effective area and
energy band, allowing the detection, accurate location and spectral / timing characterization of all classes of GRBs (high-
redshift, under-luminous, ultra-long, classic long and short ones, peculiar short ones like the GRB/GW event of August
17, 2017) and other classes of bright X-ray transients.

The expected XGIS on-axis sensitivity as a function of exposure for different source power-law spectra is shown in the
left panel of Figure 8, whereas the right panel of the same figure shows the source location accuracy as a function of
exposure and for different off-axis angles and assuming a source with 500 mCrab flux in the 2 — 150 keV energy range'®.

XGIS SDD Imaging Sensitivity

10
One unit, on-axis, 5 sigma 3 ] A . + Off-axis = 0.0°
..": ) Power law spectrum _ T =@~ Off-axis = 15.0°
g 10 ERR-2TT h -+ Off-axis = 30.0°
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S 4 8
X 100 4 =
2 10 photon index = 3 3 P
= 3 -
[ — —
> J [p]
)
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g 10 10° 5
i ]
10-“1 L L1l \Illl0 1 L 111 \Il\é)o 1 1 11 II]‘I6‘O0 1 L 1111 101 102 103
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Figure 8. Left: XGIS imaging sensitivity (5o confidence level) as a function of exposure time provided by the SDDs in the
2-30 keV range for a single XGIS unit and sources in the fully coded field of view (the central 10x10 deg? of each unit's
FoV). The different lines refer to sources with a power law spectrum with the indicated photon index. By combining the two
units, the sensitivity plotted here is achieved over a 60x30 deg? Right: XGIS Source Location Accuracy (SLA) as a function
of exposure for a 500 mCrab source detected at different offset angles.

As mentioned in previous sections, during the Phase A study as candidate M5, ESA, together with the Consortium,
developed a sophisticated Mission Observation Simulator (MOS), which allowed to assess in a most reliable way the
expected detection rates of different type of events by the three scientific instruments. The MOS software included, for
each instrument, the FoV, the Field of Regard (FoR), the expected response (as a function of source intensity, off-axis,
spectrum, detection algorithms, etc.), background level and modulation, thermal control, stray-light, Earth, Sun and
Moon avoidance angles, and other constraining factors, as well all operation constraints of the spacecraft itselfs. For the
XGIS, in addition to the above, the detection (“trigger”) sensitivity to GRB included the identification and simulation of
sophisticated trigger algorithms®2° | tested on simulated and real (form current main GRB detectors) images and light
curves. Intensive simulations of the satellite operating in LEO with 4 degrees inclination and different pointing
strategies were performed by assuming a nominal duration of scientific operations of 3.5 years, thus allowing to assess
the compliance of instruments and mission profile with the scientific requirements and optimizing the instruments and
mission design as well as the scientific operation concept.

In Table 5, we report the expected average XGIS detection rates in its imaging FoV (~2sr, location accuracy <15
arcmin), as derived from the MOS, including total long and short GRB rates, high-z GRB rates, and expected
simultaneous detections with a third generation GW detector like Einstein Telescope (ET)356:2L,
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Table 5. XGIS detection rates in its imaging FoV for different classes of GRBs based on ESA/M5 Phase A study Mission
Observation Simulator.

GRB type Detections in 3.5 years
Long ~ 1000

Long at z>6 ~ 65

Short (imaging FoV) ~42

Short (total FoV) ~75

Short with GW counterpart (ET) ~25-35

6. MATURITY AND PERSPECTIVES

Due to the modularity of XGIS, its detector module is the key technological element of the system; its most critical
components such as the SDD and the ASICs, as well the module mechanical design assembly, were significantly
developed during the ESA/M5 Phase-A study of THESEUS. SDDs have been used in many experiments on ground, and
proposed for space mission such as eXTP? and the nano-satellite constellation HERMES?3. Their heritage came from the
long lasting (about 15 years) ReDSoX collaboration, where many iterations in the SDD design were performed by INFN
(Istituto Nazionale di Fisica Nucleare) and produced by FBK ”Fondazione Bruno Kessler”, including the full SDD 64
element XGIS SDD-array. Within the ReDSoX collaboration, the expertise from Polytechnic of Milan and University of
Pavia, allowed the successful development of several mixed-signal ASICs. For THESEUS the ORION ASICs were
already realized and tested®8. SDD and ASIC production was funded by ASI during THESEUS MS5. In the same period
ESA funded the activity to realize and test a complete module prototype with the aim of testing the whole mechanical
design (see Figure 3) that include all the final elements of the module except for the ORION ASIC, then not yet
available, replaced by the LYRA ASIC, from the HERMES project, based on the same philosophy but with reduced
electrical characteristics. XGIS improvements will certainly include the realization of a module with the ORION ASIC.
The possibility to use a more performant scintillator material such as the recently developed GAGG(Ce) (already used in
HERMES) will be also evaluated.

R&D activities during THESEUS Phase A Study as ESA/M5 candidate allowed to reach a TRL of at least 4 for the
ASIC and 5 for the SDD+Csl detection elements (with identified path for reaching TRL 6 by 2024). TDA study by
OHB-I and INAF-OAS, funded by ESA, was dedicated to define requirements, to design, manufacture, and test a XGIS
Detection Module (DM) prototype; achieved maturity level of TRL 4/5. In order to obtain a TRL6, the XGIS DM would
need a more robust mechanical design able to withstand the launch loads and the use of a new ASIC component of the
Orion family*8, designed and produced specifically for the XGIS and currently under testing. Study of Alternative DM
concepts with larger sub-array dimensions and a smaller pixel size to improve spatial resolution and provide polarimetric
capabilities

In conclusion, we remark that an XGIS-like instrument will improve substantially the capability of future missions for
multi-messenger astrophysics and GRB science. In this respect, the modularity of the design grants great flexibility in
adapting the XGIS configuration for specific scientific objectives and available resources (e.g., inclusion in the payload
of a medium / large mission or a dedicated “stand-alone” small satellite). In addition, as described above, the ESA Phase
A study of THESEUS and related TDAs grant an already good TRL level (e.g., detection module prototype, SDD
detectors and specifically designed ASIC already under testing). Preliminary MC simulations have already demonstrated
the possibility of extended capabilities by exploiting 3D detection plane for performing Compton polarimetry and
providing source location outside imaging FoV.
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