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Abstract 

In this paper, we propose a new method for index- 
ing large amounts of point and spatial data in high- 
dimensional space. An analysis shows that index 
structures such as the R*-tree are not adequate for 
indexing high-dimensional data sets. The major 
problem of R-tree-based index structures is the 
overlap of the bounding boxes in the directory, 
which increases with growing dimension. To avoid 
this problem, we introduce a new organization of 
the directory which uses a split algorithm minimiz- 
ing overlap and additionally utilizes the concept of 
supemodes. The basic idea of overlap-minimizing 
split and supernodes is to keep the directory as hi- 
erarchical as possible, and at the same time to avoid 
splits in the directory that would result in high over- 
lap. Our experiments show that for high-dimen- 
sional data, the X-tree outperforms the well-known 
R*-tree and the TV-tree by up to two orders of 
magnitude. 

1. Introduction 

In many applications, indexing of high-dimensional 
data has become increasingly important. In multimedia da- 
tabases, for example, the multimedia objects are usually 
mapped to feature vectors in some high-dimensional space 
and queries are processed against a database of those feature 
vectors [Fal94]. Similar approaches are taken in many other 
areas including CAD [MG 931, molecular biology (for the 
docking of molecules) [SBK 921, string matching and se- 
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quence alignment [AGMM 901, etc. Examples of feature 
vectors are color histograms [SH 941, shape descriptors 
[Jag 9 1, MG 951, Fourier vectors [WW 801, text descriptors 
[Kuk 921, etc. In some applications, the mapping process 
does not yield point objects, but extended spatial objects in 
high-dimensional space [MN 951. In many of the mentioned 
applications, the databases are very large and consist of mil- 
lions of data objects with several tens to a few hundreds of 
dimensions. For querying these databases, it is essential to 
use appropriate indexing techniques which provide an effi- 
cient access to high-dimensional data. The goal of this paper 
is to demonstrate the limits of currently available index 
structures, and present a new index structure which consid- 
erably improves the performance in indexing high- 
dimensional data. 

Our approach is motivated by an examination of R-tree- 
based index structures. One major reason for using R-tree- 
based index structures is that we have to index not only point 
data but also extended spatial data, and R-tree-based index 
structures are well suited for both types of data. In contrast to 
most other index structures (such as kdB-trees [Rob 811, 
grid files [NHS 841, and their variants [see e.g. SK 90]), 
R-tree-based index structures do not need point transforma- 
tions to store spatial data and therefore provide a better 
spatial clustering. 

Some previous work on indexing high-dimensional 
data has been done, mainly focussing on two different ap- 
proaches. The first approach is based on the observation that 
real data in high-dimensional space are highly correlated 
and clustered, and therefore the data occupy only some sub- 
space of the high-dimensional space. Algorithms such as 
Fastmap [FL 951, multidimensional scaling [KW 781, prin- 
cipal component analysis [DE 821, and factor analysis 
[Har 671 take advantage of this fact and transform data ob- 
jects into some lower dimensional space which can be efti- 
ciently indexed using traditional multidimensional index 
structures. A similar approach is proposed in the SS-tree 
[WJ 961 which is an R-tree-based index structure. The SS- 
tree uses ellipsoid bounding regions in a lower dimensional 
space applying a different transformationin each of the di- 
rectory nodes. The second approach is based on the observa- 
tion that in most high-dimensional data sets, a small number 
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of the dimensions bears most of the information. The 
TV-tree [LJF 941, for example, organizes the directory in a 
way that only the information needed to distinguish between 
data objects is stored in the directory. This leads to a higher 
fanout and a smaller directory, resulting in a better query 
performance. 

For high-dimensional data sets, reducing the dimen- 
sionality is an obvious and important possibility for dimin- 
ishing the dimensionality problem and should be performed 
whenever possible. In many cases, the data sets resulting 
from reducing the dimensionality will still have a quite large 
dimensionality. The remaining dimensions are allrelatively 
important which means that any efficient indexing method 
must guarantee a good selectivity on all those dimensions. 
Unfortunately, as we will see in section 2, currently avail- 
able index structures for spatial data such as the R*-treet do 
not adequately support an effective indexing of more than 
five dimensions. Our experiments show that the perfor- 
mance of the R*-tree is rapidly deteriorating when going to 
higher dimensions. To understand the reason for the perfor- 
mance problems, we carry out a detailed evaluation of the 
overlap of the bounding boxes in the directory of the 
R*-tree. Our experiments show that the overlap of the 
bounding boxes in the directory is rapidly increasing to 
about 90% when increasing the dimensionality to 5. In sub- 
section 3.3, we provide a detailed explanation of the increas- 
ing overlap and show that the high overlap is not an R-tree 
specific problem, but a general problem in indexing high-di- 
mensional data. 

Based on our observations, we then develop an im- 
proved index structure for high-dimensional data, the X-tree 
(cf. section 3). The main idea of the X-tree is to avoid over- 
lap of bounding boxes in the directory by using a new orga- 
nization of the directory which is optimized for high- 
dimensional space. The X-tree avoids splits which would re- 
sult in a high degree of overlap in the directory. Instead of 
allowing splits that introduce high overlaps, directory nodes 
are extended over the usual block size, resulting in so-called 
supemodes. The supernodes may become large and the lin- 
ear scan of the large supemodes might seem to be a problem. 
The alternative, however, would be to introduce high over- 
lap in the directory which leads to a fast degeneration of the 
filtering selectivity and also makes a sequential search of all 
subnodes necessary with the additional penalty of many ran- 
dom page accesses instead of a much faster sequential read. 
The concept of supernodes has some similarity to the idea of 
oversize shelves [GN 911. In contrast to supernodes, over- 
size shelves are data nodes which are attached to internal 
nodes in order to avoid excessive clipping of large objects. 
Additionally, oversize shelves are organized as chains of 
disk pages which cannot be read sequentially. 

We implemented the X-tree index structure and per- 
formed a detailed performance evaluation using very large 

1. According to [BKSS 901, the R*-tree providss a consistently better 
performance than the R-tree [Gut 841 and R -tree [SRF 871 over a 
wide range of data sets and query types. In the rest of this paper, we 
therefore restrict ourselves to the R*-tree. 

Figure 1: Performance of the R-tree 
Depending on the Dimension (Real Data) 

amounts (up to 100 MBytes) of randomly generated as well 
as real data (point data and extended spatial data). Our ex- 
periments show that on high-dimensional data, the X-tree 
outperforms the TV-tree and the R*-tree by orders of mag- 
nitude (cf. section 4). For dimensionality larger than 2, the 
X-tree is up to 450 times faster than the R*-tree and between 
4 and 12 times faster than the TV-tree. The X-tree also pro- 
vides much faster insertion times(about 8 times faster than 
the R*-tree and about 30 times faster than the TV-tree). 

2. Problems of (R-tree-based) Index 

Structures in High-Dimensional Space 

In our performance evaluation of the R*-tree, we 
found that the performance deteriorates rapidly when going 
to higher dimensions (cf. Figure 1). Effects such as a lower 
fanout in higher dimensions do not explain this fact. In try- 
ing to understand the effects that lead to the performance 
problems, we performed a detailed evaluation of important 
characteristics of the R*-tree and found that the overlap in 
the directory is increasing very rapidly with growing di- 
mensionality of the data. Overlap in the directory directly 
corresponds to the query performance since even for simple 
point queries multiple paths have to be followed. Overlap 
in the directory is a relatively imprecise term and there is 
no generally accepted definition especially for the high-di- 
mensional case. In the following, we therefore provide def- 
initions of overlap. 

2.1 Definition of Overlap 

Intuitively, overlap is the percentage of the volume that 
is covered by more than one directory hyperrectangle. This 
intuitive definition of overlap,.is directly correlated to the 
query performance since in processing queries, overlap of 
directory nodes results in the necessity to follow multiple 
paths, even for point queries. 
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Figure 2: Overlap of R*-tree Directory Nodes depending on the Dimensionality 

D&nition Ia (Overlap) 
The overlap of an R-tree node is the percentage of space 
covered by more than one hyperrectangle. If the R-tree 
node contains n hyperrectangles ( R 1, . . , Rn} , the overlap 
may formally be defined as 

II U 
Overlap = 

i,jr {l...n},i+j 
tRinRj) 1 

II 

II 
URi * 

ie {l...n} II 

The amount of overlap measured in definition la is re- 
lated to the expected query performance only if the query 
objects (points, hyperrectangles) are distributed uniformly. 
A more accurate definition of overlap needs to take the actu- 
al distribution of queries into account. Since it is impossible 
to determine the distribution of queries in advance, in the 
following we will use the distribution of the data as an esti- 
mation for the query distribution. This seems to be reason- 
able for high-dimensional data since data and queries are 
often clustered in some areas, whereas other areas are virtu- 
ally empty. Overlap in highly populated areas is much more 
critical than overlap in areas with a low population. In our 
second definition of overlap, the overlapping areas are 
therefore weighted with the number of data objects that are 
located in the area. 

De@ai@on lb (Weighted Overlap) 
The weighted overlap of an R-tree node is the percentage of 
data objects that fall in the overlapping portion of the space. 
More formally, 

I( PIPE u 
i, ja 11 . ..n}. i# j 

(Ri n Rj) 

WeightedOverlap = 
2 

II II * 
PIP E U Ri 

is {l...n} 

1. IAll denotes the volume covered by A. 
2. I Al denotes the number of data elements contained in A 

In definition la, overlap occurring at any point of space 
equally contributes to the overall overlap even if only few 
data objects fall within the overlapping area. If the query 
points are expected to be uniformly distributed over the data 
space, definition la is an appropriate measure which deter- 
mines the expected query performance. If the distribution of 
queries corresponds to the distribution of the data and is non- 
uniform, definition lb corresponds to the expected query 
performance and is therefore more appropriate. Depending 
on the query distribution, we have to choose the appropriate 

definition. 

So far, we have only considered overlap to be any por- 
tion of space that is covered by more than one hyperrectan- 
gle. In practice however, it is very important how many 
hyperrectangles overlap at a certain portion of the space. 
The so-called multi-overlap of an R-tree node is defined as 
the sum of overlapping volumes multiplied by the number of 
overlapping hyperrectangles relative to the overall volume 
of the considered space. 

In Figure 3, we show a two-dimensional example of the 
overlap according to definition la and the corresponding 
multi-overlap. The weighted overlap and weighted multi- 
overlap (not shown in the figure) would correspond to the ar- 
eas weighted by the number of data objects that fall within 
the areas. 

~~ 
II I- 

Figure 3: Overlap and Multi-Overlap of 
2dimensional data 
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2.2 Experimental Evaluation of Overlap in 

R*-tree Directories 

In this subsection, we empirically evaluate the develop- 
ment of the overlap in the R*-tree depending on the dimen- 
sionality. For the experiments, we use the implementation of 
the R*-tree according to [BKSS 901. The data used for the 
experiments are constant size databases of uniformly dis- 
tributed and real data. The real data are. Fourier vectors 
which are used in searching for similarly shaped polygons. 
The overlap curves presented in Figure 2 show the average 
overlap of directory nodes according to definition 1. In aver- 
aging the node overlaps, we used all directory levels except 
the root level since the root page may only contain a few hy- 
perrectangles, which causes a high variance of the overlap in 
the root node. 

In Figure 2a, we present the overlap curves of R*-trees 
generated from 6 MBytes of uniformly distributed point da- 
ta. As expected, for a uniform distribution overlap and 
weighted overlap (definition la and lb) provide the same re- 
sults. For dimensionality larger than two, the overlap (cf. 
Figure 2a) increases rapidly to approach 100% for dimen- 
sionality larger than ten. This means that even for point que- 
ries on ten or higher dimensional data in almost every 
directory node at least two subnodes have to be accessed. 
For real data (cf. Figure 2b), the increase of the overlap is 
even more remarkable. The weighted overlap increases to 
about 80% for dimensionality 4 and approaches 100% for 
dimensionality larger than 6. 

3. The X-tree 

The X-tree (extended node tree) is a new index struc- 
ture supporting efficient query processing of high-dimen- 
sional data. The goal is to support not only point data but also 
extended spatial data and therefore, the X-tree uses the con- 
cept of overlapping regions. From the insight obtained in the 
previous section, it is clear that we have to avoid overlap in 
the directory in order to improve the indexing of high-di- 
mensional data. The X-tree therefore avoids overlap when- 
ever it is possible without allowing the tree to degenerate; 
otherwise, the X-tree uses extended variable size directory 
nodes, so-called supernodes. In addition to providing a di- 
rectory organization which is suitable for high-dimensional 
data, the X-tree uses the available main memory more effi- 
ciently (in comparison to using a cache). 

The X-tree may be seen as a hybrid of a linear array-like 
and a hierarchical R-tree-like directory. It is well established 
that in low dimensions the most efficient organization of the 
directory is a hierarchical organization. The reason is that 
the selectivity in the directory is very high which means that, 
e.g. for point queries, the number of required page accesses 
directly corresponds to the height of the tree. This, however, 

Figure 4: Structure of a Directory Node 

0 Normal Directory Nodes m Supemodes 0 Data Nodes 

Figure 5: Structure of the X-tree 

is only true if there is no overlap between directory rectan- 
gles which is the case for a low dimensionality. It is also rea- 
sonable, that for very high dimensionality a linear 
organization of the directory is more efficient. The reason is 
that due to the high overlap, most of the directory if not the 
whole directory has to be searched anyway. If the whole di- 
rectory has to be searched, a linearly organized directory 
needs less space’ and may be read much faster from disk 
than a block-wise reading of the directory. For medium di- 
mensionality, an efficient organization of the directory 
would probably be partially hierarchical and partially linear. 
The problem is to dynamically organize the tree such that 
portions of the data which would produce high overlap are 
organized linearly and those which can be organized hierar- 
chically without too much overlap are dynamically orga- 
nized in a hierarchical form. The algorithms used in the 
X-tree are designed to automatically organize the directory 
as hierarchical as possible, resulting in a very efficient 
hybrid organization of the directory. 

3.1 Structure of the X-tree * 

The overall structure of the X-tree is presented in Figure 
5. The data nodes of the X-tree contain rectilinear minimum 
bounding rectangles (MBRs) together with pointers to the 
actual data objects, and the directory nodes contain MBRs 
together with pointers to sub-MBRs (cf. Figure 5). The 
X-tree consists of three different types of nodes: data nodes, 
normal directory nodes, and supemodes. Supemodes are 
large directory nodes of variable size (a multiple of the usual 
block size). The basic goal of supernodes is to avoid splits in 
the directory that would result in an inefficient directory 
structure. The alternative to using larger node sizes are high- 
ly overlapping directory nodes which would require to ac- 
cess most of the son nodes during the search process. This, 
however, is more inefficient than linearly scanning the larg- 
er supemode. Note that the X-tree is completely different 
from an R-tree with a larger block size since the X-tree only 
consists of larger nodes where actually necessary. As a re- 
sult, the structure of the X-tree may be rather heterogeneous 
as indicated in Figure 5. Due to the fact that the overlap is in- 

1. In comparison to a hierarchically organized directory, a linearly 
organized directory only consists of the concatenation of the nodes 
on the lowest level of the corresponding hierarchical directory and 
is therefore much smaller. 
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creasing with the dimension, the internal structure of the 
X-tree is also changing with increasing dimension. In Figure 
5, three examples of X-trees containing data of different di- 
mensionality are shown. As expected, the number and size 
of supernodes increases with the dimension. For generating 
the examples, the block size has been artificially reduced to 
obtain a drawable fanout. Due to the increasing number and 
size of supernodes, the height of the X-tree which corre- 
sponds to the number of page accesses necessary for point 
queries is decreasing with increasing dimension. 

Supernodes are created during insertion only if there is 
no other possibility to avoid overlap. In many cases, the cre- 
ation or extension of supernodes may be avoided by choos- 
ing an overlap-minimal split axis (cf. subsection 3.3). For a 
fast determination of the overlap-minimal split, additional 
information is necessary which is stored in each of the direc- 
tory nodes (cf. Figure 4). If enough main memory is avail- 
able, supernodes are kept in main memory. Otherwise, the 
nodes which have to be replaced are determined by a priority 
function which depends on level, type (normal node or su- 
pemode), and size of the nodes. According to our experi- 
ence, the priority function ct . type + cl’. level + c, . size with 

c, >> c, w c, is a good choice for practical purposes. Note that 

the storage utilization of supernodes is higher than the stor- 
age utilization of normal directory nodes. For normal direc- 
tory nodes, the expected storage utilization for uniformly 
distributed data is about 66%. For supemodes of size 
m . BlockSize, the expected storage utilization can be deter- 
mined as the average of the following two extreme cases: 
Assuming a certain amount of data occupies X . m blocks 
for a maximally filled node. Then the same amount of data 

2 

requires X .s blocks when using a minimally filled 

node. On the average, a supernode storing the same amount 

of data requires X.m+X.&),2 = x(“:2m”_z’)) 

blocks. From that, we obtain a storage utilization of 

d(“:2m”_2’)) = x . which for large m is consider- 

ably higher than 66%. For m=5, for example, the storage uti- 
lization is about 88%. 

* 
D=4: 

-Em 
IIIll --- IO m: 
00000000000000000000 

D=8: 
ohllm 
000000000000000000 

D=32: 
-- 
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Figure 6: Various Shapes of the X-tree 
in different dimensions 

There are two interesting special cases of the X-tree: (1) 
none of the directory nodes is a supemode and (2) the direc- 
tory consists of only one large supernode (root). In the first 
case, the X-tree has a completely hierarchical organization 
of the directory and is therefore similar to an R-tree. This 
case may occur for low dimensional and non-overlapping 
data. In the second case, the directory of the X-tree is basi- 
cally one root-supemode which contains the lowest directo- 
ry level of the corresponding R-tree. The performance 
therefore corresponds to the performance of a linear directo- 
ry scan. This case will only occur for high-dimensional or 
highly overlapping data where the directory would have to 
be completely searched anyway. The two cases also corre- 
spond to the two extremes for the height of the tree and the 
directory size. In case of a completely hierarchical organiza- 
tion, the height and size of the directory basically corre- 
spond to that of an R-tree. In the root-supemode case, the 
size of the directory linearly depends on the dimension 

DirSize(D) = 
DatabaseSize 

BlockSize ’ StorageUtil. 
.2 ’ BytesFloat ’ D 

For 1 GBytes of 16-dimensional data, a block size of 
4 KBytes, a storage utilization of 66% for data nodes, and 4 
bytes per float, the size of the directory is about 44 MBytes 
for the root-supernode in contrast to about 72 MBytes for 
the completely hierarchical directory. 

3.2 Algorithms 

The most important algorithm of the X-tree is the inser- 
tion algorithm. The insertion algorithm determines the 
structure of the X-tree which is a suitable combination of a 
hierarchical and a linear structure. The main objective of the 
algorithm is to avoid splits which would produce overlap. 
The algorithm (cf. Figure 7) first determines the MBR in 
which to insert the data object and recursively calls the inser- 
tion algorithm to actually insert the data object into the cor- 
responding node. If no split occurs in the recursive insert, 
only the size of the corresponding MBRs has to be updated. 
In case of a split of the subnode, however, an additional 
MBR has to be added to the current node which might cause 
an overflow of the node. In this case, the current node calls 
the split algorithm (cf. Figure 8) which first tries to find a 
split of the node based on the topological and geometric 
properties of the MBRs. Topological and geometric proper- 
ties of the MBRs are for example dead-space partitioning, 
extension of MBRs, etc. The heuristics of the R*-tree 
[BKSS 901 split algorithm are an example for a topological 
split to be used in this step. If the topological split however 
results in high overlap, the split algorithm tries next to find 
an overlap-minimal split which can be determined based on 
the split history (cf. subsection 3.3). In subsection 3.3, we 
show that for point data there always exists an overlap-free 
split. The partitioning of the MBRs resulting from the over- 
lap-minimal split, however, may result in under-filled nodes 
which is unacceptable since it leads to a degeneration of the 
tree and also deteriorates the space utilization. If the number 
of MBRs in one of the partitions is below a given threshold, 
the split algorithm terminates without providing a split. In 
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int X-DirectoryNode:: insert(DataObject obj, X-Node **new-node) 
1 

SET-OF-MBR *sl, *s2; 
X-Node *follow, *new-son; 
int return-value; 

follow = choose-subtree(obj); /I choose a son node to insert obj into 
return-value = follow->insert(obj, &new-son); // insert obj into subtree 
update-mbr(follow->calc-mbr()); // update MRR of old son node 

if (return-value == SPLIT)( 
add-mbr(new-son-xalc-mbr()); // insert mbr of new son node into current nods 

if (num_ofxnbrsO > CAPACITY){ // overflow occurs 
if tsplit(mbrs, sl, s2) == TRUE){ 

// topological or overlap-minimal split was successful1 
setxnbrs(sl); 
*new-node = new XpirectoryNode(s2); 

return SPLIT; 
I 
else // there is no good split 
t 

*new-node = new X-SuperNode(); 
(*new-node)->s.et-mbrs(mbrs); 

return SUPERNODE; 

1 ) 
) else if (return-value == SUPERNODE){ // node 'follow' becomes a supernode 
. remove~son(follow); 

insert-son(new-son); 
1 

return NO-SPLIT; 
I 

Figure 7: X-tree Insertion Algorithm for Directory Nodes 

this case, the current node is extended to become a super- 
node of twice the standard block size. If the same case occurs 
for an already existing supemode, the supernode is extended 
by one additional block. Obviously, supernodes are only 
created or extended if there is no possibility to find a suitable 
hierarchical structure of the directory. If a supemode is cre- 
ated or extended, there may be not enough contiguous space 
on disk to sequentially store the supernode. In this case, the 
disk manager has to perform a local reorganization. Since 
supemodes are created or extended in main memory, the lo- 
cal reorganization is only necessary when writing back the 
supemodes on secondary storage which does not occur fre- 
quently. 

For point data, overlap in the X-tree directory may only 
occur if the overlap induced by the topological split is below 
a threshold overlap value (MAX_ovERLAp). In that case, 
the overlap-minimal split and the possible creationof a su- 
pemode do not make sense. The maximum overlap value 
which is acceptable is basically a system constant and de- 
pends on the page access time (T&, the time to transfer a 
block from disk into main memory (TT&, and the CPU time 
necessary to process a block (7’~~~). The maximum overlap 
value (MurO’) may be determined approximately by the 
balance between reading a supemode of size 2*BlockSize 

1. Max0 is the probability that we have to access both son nodes 
because of overlap during the search. 

and reading 2 blocks with a probability of Max0 and one 
block with a probability of (I-MaxO). This estimation is 
only correct for the most simple case of initially creating a 
supernode. It does not take the effect of further splits into ac- 
count. Nevertheless, for practical purposes the following 
equation provides a good estimation: 

Max0 .2. (Tro + Tlr + TCPV) + (I- MUXO) . (Tro + TTr + TCPU) 
= T,o+2~U’Tr+7’CPU) 

a Max0 = 
TTr + TCPU 

TIO + TTr + *CPU 

For realistic system values measured in our experi- 
ments (T,c = 20 ms, TT,. = 4 ms, Tcp” = 1 ms), the resulting 
Max0 value is 20%. Note that in the above formula, the fact 
that the probability of a node being in main memory is 
increasing due to the decreasing directory size in case of us- 
ing the supemode has not yet been considered. The-other 
constant of our algorithm (MIN_FANOUT) is the usual 
minimum fanout value of a node which is similar to the cor- 
responding value used in other index structures. An appro- 
priate value of MIN-FANOUT is between 35% and 45%. 

The algorithms to query the X-tree (point, range, and 
nearest neighbor queries) are similar to the algorithms used 
in the R*-tree since only minor changes are necessary in ac- 
cessing supemodes. The delete and update operations are 
also simple modifications of the corresponding R*-tree al- 
gorithms. The only difference occurs in case of an under- 
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boo1 X-DirectoryNode::split(SET-OF-MBR *in, SET-OF-MBR *outl, SET-OF-MBR *out2) 
( 

SET-OF-MBR tl, t2; 
MBR rl, r2; ,' 

// first try topological split, resulting in two sets of MBRs tl and t2 
topological~split(in, tl, t2); 
rl = tl->calc-mbr(); r2 = t2-kcalc-mbr(); 

// test for overlap 
if (overlap(r1, r2 ) > biAX_OVERLAP) 
1 

// topological split fails -> try overlap minimal split 
overlap-minimal-split(in, tl, t2); 

// test for unbalanced nodes 
if (tl->num-of-mbrs() -z MIN-FANOUT 11 t2->num-of-mbrs() < MIN-FANOUT) 

// overlap-minimal split also fails (-> caller has to create supernode) 
return FALSE; 

/ ) ;~~~;n;,~~h;‘“ut2 = t2; 

Figure 8: X-tree Split Algorithm for Directory Nodes 

flow of a supemode. If the supemode consists of two blocks, 
it is converted to a normal directory node. Otherwise, that is 
if the supemode consists of more than two blocks, we reduce 
the size of the supemode by one block. The update operation 
can be seen as a combination of a delete and an insert opera- 
tion and is therefore straightforward. 

3.3 Determining the Overlap-Minimal Split 

For determining an overlap-minimal split of a directory 
node, we have to find a partitioning of the MBRs in the node 
into two subsets such that the overlap of the minimum 
bounding hyperrectangles of the two sets is minimal. In case 
of point data, it is always possible to find an overlap-free 
split, but in general it is not possible to guarantee that the two 
sets are balanced, i.e. have about the same cardinality. 

Definition 2 (Split) 

ThesplitofanodeS = 

1 

{mbrl,...,mbr,} intotwosubnodes 

s, = 
1 

mbr. , . . . . mbr. and 

(S,#0 aLSZ#Oj’sdefinedas 

S, = 
i 
mbri,, . . . . mbri 

52 1 

Split(S) = {(SI, ST)1 S = S, u S, A S, n S, = 0 } . 

The split is called 
(1) overlap-minimal iff ]IMBR(S,) n MBR(S2)11 is minimal 

(2) overlap-free iff jMBR(SI) n MBR(S,)I( = 0 

(3) balanced iff -&IISt(-(&(l&. 

For obtaining a suitable directory structure, we are in- 
terested in overlap-minimal (overlap-free) splits which are 
balanced. For simplification, in the following we focus on 
overlapfree splits and assume to have high-dimensional 

‘uniformly distributed point dam1 It is an interesting obser- 

vation that an overlap-free split is only possible if there is a 
dimension according to which all MBRs have been split 
since otherwise at least one of the MBRs will span the full 
range of values in that dimension, resulting in some overlap. 

Lemma 1 
For uniformly distributed point data, an overlapfree split is 
only possible iff there is a dimension according to which all 
MBRs in the node have been previously split. More 
formally, 

Split(S) is overlap-free ti 
3 de {I, . . . . D} VmbrE S: 

mbr has been split according to d 

Proof (by contradiction): 
7) j 9’ : Assume that for all dimensions there is at least 

one MBR which has not been split in that dimension. This 
means for uniformly distributed data that the MBRs span the 
full range of values of the corresponding dimensions. With- 
out loss of generality, we assume that the mbr which spans 
the full range of values of dimension d is assigned to S1. As 
a consequence, MBR(S,) spans the full range for dimension 
d. Since the extension of MBR(S,) cannot be zero in 
dimension d, a split using dimension d as split axis cannot be 
overlap-free (i.e., MBR(S,) n MBR($) f 0). Since for all 
dimensions there is at least one MBR which has not been 
split in that dimension, we cannot find an overlap-free split. 

99 e 9) : Assume that an overlap-free split of the node is 
not possible. This means that there is no dimension which 
can be used to partition the MBRs into two subsets S, and S2. 
This however is in contradiction to the fact that there is a di- 
mension d for which all MBRs have been split. For uniform- 

1. According to our experiments, the results generalize to real data 
and even to spatial data(cf. section4). 
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split tree 

Node S 

Figure 9: Example for the Split History 

ly distributed point data, the split may be assumed to be in 
the middle of the range of dimension d and therefore, an 
overlap-free split is possible using dimension d.’ H 

According to Lemma 1, for finding an overlap-free split 
we have to determine a dimension according to which all 
MBRs of S have been split previously. The split history pro- 
vides the necessary information, in particular the dimen- 
sions according to which an MBR has been split and which 
new MBRs have been created by this split. Since a split cre- 
ates two new MBRs from one, the split history may be rep- 
resented as a binary tree, called the split tree. Each leaf node 
of the split tree corresponds to an MBR in S. The internal 
nodes of the split tree correspond to MBRs which do not ex- 
ist any more since they have been split into new MBRs pre- 
viously. Internal nodes of the split tree are labeled by the 
split axis that has been used; leaf nodes are labeled by the 
MBR they are related to. All MBRs related to leaves in the 
left subtree of an internal node have lower values in the split 
dimension of the node than the MBRs related to those in the 
right subtree. 

Figure 9 shows an example for the split history of a 
node S and the respective split tree. The process starts with a 
single MBR A corresponding to a split tree which consists of 
only one leaf node labeled by A. For uniformly distributed 
data, A spans the full range of values in all dimensions. The 
split of A using dimension 2 as split axis produces new 
MBRs A’ and B. Note that A’ and B are disjoint because any 
point in MBR A’ has a lower coordinate value in dimension 
2 than all points in MBR B. The split tree now has one inter- 
nal node (marked with dimension 2) and two leaf nodes (A 
and B). Splitting MBR B using dimension 5 as split axis cre- 
ates the nodes B’ and C. After splitting B’ and A’ again, we 
finally reach the situation depicted in the right most tree of 
Figure 9 where S is completely filled with the MI&s A”, B”, 
C,DandE. 

According to Lemma 1, we may find an overlap-free 
split if there is a dimension according to which all MBRs of 
S have been split. To obtain the information according to 
which dimensions an MBR X in S has been split, we only 
have to traverse the split tree from the root node to the leaf 
that corresponds to X. For example, MBR C has been split 

according to dimension 2 and 5, since the path from the root 
node to the leaf C is labeled with 2 and 5. Obviously, all 
MBRs of the split tree in Figure 9 have been split according 
to dimension 2, the split axis used in the root of the split tree. 
In general, all MBRs in any split tree have one split dimen- 
sion in common, namely the split axis used in the root node 
of the split tree. 

Lemma 2 (Existence of an Overlap-free Split) 
For point data, an overlap-free split always exists. 

Proof (using the split history). 

From the description of the split tree it is clear that all 
MBRs of a directory node S have one split dimension in 
common, namely the dimension used as split axis in the root 
node of the split tree. Let SD be this dimension. We are able 
to partition S such that all MBRs related to leaves in the left 
subtree of the root node arecontained in St and all other 
MBRs contained in S2. Since any point belonging to St has 
a lower value in dimension SD than all points belonging to 
S2, the split is overlap-free*. H 

One may argue that there may exist more than one over- 
lap-free split dimension which is part of the split history of 
all data pages. This is true in most cases for low dimension- 
ality, but the probability that a second split dimension exists 
which is part of the split history of all MBRs is decreasing 
rapidly with increasing dimensionality (cf. Figure 10). If 
there is no dimension which is in the split history of all 
MBRs, the resulting overlap of the newly created directory 
entries is on the average about 50%. This can be explained as 
follows: Since at least one MBR has not been split in the split 
dimension d, one of the partitions (without loss of generali- 
ty: S l) spans the full range of values in that dimension. The 
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Figure 10: Probability of the Existence of a Second 
Overlap-free Split Dimension 

1. If the splits have not been performed exactly in the middle of the 2. Note that the resulting split is not necessarily balanced since sorted 
data space, at least an overlap-minimal split is obtained. input data, for example, will result in an unbalanced split tree. 
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Figure 11: Speed-Up of X-tree over R*-tree on Real Point Data (70 MBytes) 

other partition S2 spans at least half the range of values of the 
split dimension d. Since the MBRs are only partitioned with 
respect to dimension d, Sl and S2 span the full range of val- 
ues of all other dimensions, resulting in a total overlap of 
about 50%. 

The probability that a split algorithm which arbitrarily 
chooses the split axis coincidentally selects the right split 
axis for an overlap-free split is very low in highdimensional 
space. As our analysis of the R*-tree shows, the behavior of 
the topological R*-tree split algorithm in high-dimensional 
space is similar to a random choice of the split axis since it 
optimizes different criteria. If the topological split fails, our 
split algorithm tries to perform an overlap-free split. This is 
done by determining the dimension for the overlap-free split 
as described above, determining the split value, and parti- 
tioning the MBRs with respect to the split value. If the result- 
ing split is unbalanced, the insert algorithm of the X-tree 
initiates the creation/extension of a supernode (cf. subsec- 
tion 3.2). Note that for the overlap-minimal split, informa- 
tion about the split history has to be stored in the directory 
nodes. The space needed for this purpose, however, is very 
small since the split history may be coded by a few bits. 

4. Performance Evaluation 

To show the practical relevance of our method, we per- 
formed an extensive experimental evaluation of the X-tree 
and compared it to the TV-tree as well to as the R*-tree. All 
experimental results presented in this sections are computed 
on an HP735 workstation with 64 MBytes of main memory 
and several GBytes of secondary storage. All programs have 
been implemented in C++ as templates to support different 
types of data objects. The X-tree and R*-tree support differ- 
ent types of queries such as point queries and nearest neigh- 
bor queries; the implementation of the TV-tree’ only 
supports point queries. We use the original implementation 

1 We use the original implementation of the TV-tree by K. Lin, H. V. 
Jagadish, and C. Faloutsos [LJF 941. 

of the TV-tree by K. Lin, H. V. Jagadish, and C. Faloutsos 
[LJF 941. 

The test data used for the experiments are real point data 
consisting of Fourier points in high-dimensional space 
(D = 2,4,8, 16), spatial data (D = 2,4,8, 16) consisting of 
manifolds in high-dimensional space describing regions of 
real CAD-objects, and synthetic data consisting of uniform- 
ly distributed points in high-dimensional space (D = 2, 3, 
4,6,8, 10, 12, 14, 16). The block size used for our experi- 
ments is 4 KByte, and all index structures were allowed to 
use the same amount of cache. For a realistic evaluation, we 
used very large amounts of data in our experiments. The to- 
tal amount of disk space occupied by the created index struc- 
tures of TV-trees, R*-trees, and X-trees is about 10 GByte 
and the CPU time for inserting the data adds up to about four 
weeks of CPU time. As one expects, the insertion times in- 
crease with increasing dimension. For all experiments, the 
insertion into the X-tree was much faster than the insertion 
into the TV-tree and the R*-tree (up to a factor of 10.45 fast- 
er than the R*-tree). The X-tree reached a rate of about 170 
insertions per second for a 150 MBytes index containing 16- 
dimensional point data. 

First, we evaluated the X-tree on synthetic databases 
with varying dimensionality. Using the same number of data 
items over the different dimensions implies that the size of 
the database is linearly increasing with the dimension. This 
however has an important drawback, namely that in low 
dimensions, we would obtain only very small databases, 
whereas in high dimensions the databases would become 
very large. It is more realistic to assume that the amount of 
data which is stored in the database is constant. This means, 
however, that the number of data items needs to be varied ac- 
cordingly. For the experiment presented in Figure 13, we 
used 100 MByte databases containing uniformly distributed 
point data. The number of data items varied between.8.3 mil- 
lion for D=2 and 1.5 million for D=16. Figure 13, shows the 
speed-up of the search time for point queries of the X-tree 
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Figure 12: Number of Page Accesses versus CPU-Time on Real Point Data (70 MBytes) 

over the R*-tree. As expected, the speed-up increases with 
growing dimension, reaching values of about 270 for D=16. 
For lower dimensions, the speed-up is still higher than one 
order of magnitude (e.g., for D=8 the speed-up is about 30). 
The high speed-up factors are caused by the fact that, due to 
the high overlap in high dimensions, the R*-tree needs to ac- 
cess most of the directory pages. The total query time turned 
out to be clearly dominated by the I/O-time, i.e. the number 
of page accesses (see also Figure 12). 

Since one may argue that synthetic databases with uni- 
formly distributed data are not realistic in high-dimensional 
space, we also used real data in our experiments. We had 
access to large Fourier databases of variable dimensionality 
containing about 70 Mbyte of Fourier data representing 
shapes of polygons. The results of our experiments (cf. Fig- 
ure 11) show that the speed-up of the total search time for 
point queries is even higher (about 90 for D=4 and about 
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Figure 13: Speed-Up of X-tree over R*-tree on Point 
Queries (100 MBytes of Synthetic Point Data) 

320 for D=8) than the speed-up of uniformly distributed 
data. This result was surprising but corresponds to the high- 
er overlap of real data found in the overlap curves (cf. 
Figure 2). Additionally to point queries, in applications 
with high-dimensional data nearest neighbor queries are 
also important. We therefore also compared the perfor- 
mance of nearest neighbor queries searching for the 10 
nearest neighbors. The nearest neighbor algorithm support- 
ed in the X-tree and R*-tree is the algorithm presented in 
[RKV 951. The results of our comparisons show that the 
speed-up for nearest neighbor queries is still between about 
10 for D=6 and about 20 for D=16. Since the nearest neigh- 
bor algorithm requires sorting the nodes according to the 
min-max distance, the CPU-time needed for nearest neigh- 
bor queries is much higher. In Figure 12, we therefore 
present the number of page accesses and the CPU-time of 
the X-tree and the R*-tree for nearest-neighbor queries. 
The figure shows that the X-tree provides a consistently 
better performance than the R*-tree. Note that, in counting 
page accesses, accesses to supemodes of size s are counted 
as s page accesses. In most practical cases, however, the su- 
pernodes will be cached due to the better main memory 
utilization of the X-tree. For practically relevant buffer siz- 
es (1 MByte to 10 MBytes) there is no significant change of 
page accesses. For extreme buffer sizes of more than 10 
MBytes or less than 1 MByte, the speed-up may decrease. 
The better CPU-times of the X-tree may be explained by 
the fact that due to the overlap the R*-tree has to search a 
large portion of the directory which in addition is larger 
than the X-tree directory. 

Figure 14 shows the total search time of point queries 
depending on the size of the database (D=16). Note that in 
this figure we use a logarithmic scale of the y-axis, since oth- 
erwise the development of the times for the X-tree would not 
be visible (identical with the x-axis). Figure 14 shows that 
the search times of the X-tree are consistently about two or- 
ders of magnitude faster than those of the R*-tree 
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Figure 14: Total Search Time of Point Queries for Figure 16: Comparison of X-tree, TV-tree, and 
Varying Database Size (Synthetic Point Data) R*-tree on Synthetic Data 

(for D=16). The speed-up slightly increases with the data- 
base size from about 100 for 20 MBytes to about 270 for 100 
MBytes. Also, as expected, the total search time of the 
X-tree grows logarithmically with the database size which 
means that the X-tree scales well to very large database siz- 
es. 

We also performed a comparison of the X-tree with the 
TV-tree and the R*-tree. With the implementation of the 
TV-tree made available to us by the authors of the TV-tree, 
we only managed to insert up to 25.000 data items which is 
slightly higher than the number of data items used in the 
original paper [LJF94]. For the comparisons, we were 
therefore not able to use our large databases. The results of 
our comparisons are presented in Figure 16. The speed-up of 
the X-tree over the TV-tree ranges between 4 and 12, even 
for the rather small databases. It is interesting to note that the 
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Figure 15: Speed-Up of X-tree over R*-tree on 
Real Extended Spatial Data 

performance of the R*-tree is better than the performance of 
the TV-tree for D smaller than 16. 

In addition to using point data, we also examined the 
performance of the X-tree for extended data objects in high- 
dimensional space. The results of our experiments are 
shown in Figure 15. Since the extended spatial data objects 
induce some overlap in the X-tree as well, the speed-up of 
the X-tree over the R*-tree is lower than for point data. Still, 
we achieve a speed-up factor of about 8 for D=16. 

5. Conclusions 

In this paper, we propose a new indexing method for 
high-dimensional data. We investigate the effects that occur 
in high dimensions and show that R-tree-based index struc- 
tures do not behave well for indexing high-dimensional 
spaces. We introduce formal definitions of overlap and 
show the correlation between overlap in the directory and 
poor query performance. We then propose a new index 
structure, the X-tree, which uses - in addition to the concept 
of supernodes - a new split algorithm minimizing overlap. 
Supernodes are directory nodes which are extended over the 
usual block size in order to avoid a degeneration of the index. 
We carry out an extensive performance evaluation of the 
X-tree and compare the X-tree with the TV-tree and the 
R*-tree using up to 100 MBytes of point and spatial data. 
The experiments show that the X-tree outperforms the 
TV-tree and R*-tree up to orders of magnitude for point que- 
ries and nearest neighbor queries on both synthetic and real 
data. 

Since for very high dimensionality the supemodes may 
become rather large, we currently work on a parallel version 
of the X-tree which is expected to provide a good perfor- 
mance even for larger data sets and the more time consum- 
ing nearest neighbor queries. We also develop a novel 
nearest neighbor algorithm for high-dimensional data which 
is adapted to the X-tree. 
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