
Scientific Programming 10 (2002) 303–317 303
IOS Press

The XCAT Science Portal

Sriram Krishnana, Randall Bramleya, Dennis Gannona, Rachana Ananthakrishnana,

Madhusudhan Govindarajua, Aleksander Slominskia, Yogesh Simmhana, Jay Alamedab,

Richard Alkirec, Timothy Drewsc and Eric Webbc

aDepartment of Computer Science, Indiana University, Bloomington, IN 47404, USA

Tel.: +1 812 855 8305; Fax: +1 812 855 4829; E-mail: srikrish@cs.indiana.edu
bNational Center for Supercomputing Applications, Champaign, IL 61820, USA

Tel.: +1 217 244 4696; Fax: +1 217 244 2909; E-mail: jalameda@ncsa.uiuc.edu
cDepartment of Chemical Engineering, University of Illinois, Urbana, IL 61801, USA

Tel.: +1 217 333 0063; Fax: +1 217 333 5052; E-mail: r-alkire@uiuc.edu

Abstract. This paper describes the design and prototype implementation of the XCAT Grid Science Portal. The portal lets grid

application programmers script complex distributed computations and package these applications with simple interfaces for others

to use. Each application is packaged as a notebook which consists of web pages and editable parameterized scripts. The portal

is a workstation-based specialized personal web server, capable of executing the application scripts and launching remote grid

applications for the user. The portal server can receive event streams published by the application and grid resource information

published by Network Weather Service (NWS) [35] or Autopilot [16] sensors. Notebooks can be published and stored in web

based archives for others to retrieve and modify. The XCAT Grid Science Portal has been tested with various applications,

including the distributed simulation of chemical processes in semiconductor manufacturing and collaboratory support for X-ray

crystallographers.

1. Introduction

The concept of a Science Portal was first intro-

duced by the National Computational Science Alliance

(NCSA) as part of a project designed to provide com-

putational biologists with access to advanced tools and

databases that could be shared by a community of users

via web technology. A Science Portal can be broadly

defined as an application specific environment for us-

ing and programming complex tasks involving remote

resources. Over the past year the Science Portal con-

cept has been heavily influenced by the emergence of

the Grid [13] as a computational platform.

A Grid is a set of distributed services and proto-

cols that have been deployed across a large set of re-

sources. These services include authentication, autho-

rization, security, namespaces and file/object manage-

ment, events, resource co-scheduling, user services,

network quality of service, and information/directory

services. Together these services enable applications

to access and manage the remote resources and compu-

tations. Web-based Grid Portals provide mechanisms

to launch and manage jobs on the grid, via the web.

Grid Science Portals are problem solving environments

that allow scientists the ability to program, access and

execute distributed applications using grid resources

which are launched and managed by a conventional

Web browser and other desktop tools. In such portals,

scientific domain knowledge and tools are presented to

the user in terms of the application science, and not

in terms of complex distributed computing protocols.

The system effectively makes the grid into a vast and

powerful computation engine that seamlessly extends

the user’s desktop to remote resources like compute

servers, data sources and on-line instruments.

This paper describes the XCAT Science Portal

(XCAT-SP) which is an implementation of the NCSA

Grid Science Portal concept. XCAT-SP is based on the

idea of an “active document” which can be thought of as

a “notebook” containing pages of text and graphics de-

scribing the science of a particular computational appli-

cation and pages of parameterized, executable scripts.

ISSN 1058-9244/02/$8.00 2002, ACM. Reprinted with permission from Proceedings of ACM Supercomputing 2001, 10–16 November,

Denver, CO, USA. ACM portal: www.acm.org.

304 S. Krishnan et al. / The XCAT Science Portal

These scripts launch and manage the computation on

the grid, and results are dynamically added to the doc-

ument in the form of data or links to output results and

event traces.

XCAT-SP is a tool which allows the user to read,

edit, and execute these notebook documents. The goal

of this research and the focus of this paper is to address

the following set of questions.

– How well does the active document model work

for real scientific applications?

– How does one use scripts to steer computations

from the portal?

– What is a simple and efficient mechanism to store

and retrieve data specific to each application?

– How should the portal be designed to interact with

an event system to receive feedback from the re-

motely executing applications?

– How can a portal use a grid monitoring system to

provide resource utilization information about its

environment?

2. Existing Grid Portals

The area of Grid Portal design is now an extremely

active and important part of the emerging Grid research

agenda. The existing projects can be grouped into three

categories:

– User Portals for simple job submission and track-

ing, file management and resource selection

– Portal Construction Kits, that provide the APIs

necessary for a portal to communicate with Grid

services

– Science Portals, as defined earlier

In the user portal category, the NPACI Hot Page [31]

is the first and most successful system. Other user

portal projects are the European project Unicore [5],

Nimrod-G from Australia [12], and the IPG Launch

Pad, which is the user portal for NASA’s Information

Power Grid [7].

At least three projects provide portal construction

toolkits. The Argonne Commodity Grid (CoG) [20]

toolkit is a Java interface for Globus. GPDK from

Lawrence Berkeley Labs [9] is a JSP API for CoG, and

JiPANG from Tokyo Institute of Technology [28], uses

Sun Microsystem’s Jini [26] to provide an interface to

both CoG and networked solvers like Ninf [29] and

Netsolve [8].

Science Portals have a variety of forms. Some are de-

signed around relatively specific application domains.

For example, the Cactus Portal [19] from the Albert

Einstein Institute was originally designed for black

hole simulations and the ECCE/ELN [30] project from

ORNL, LBNL and PNNL is for Computational Chem-

ical Engineering. The Lattice Portal [23] from Jeffer-

son Labs is a user portal for high-energy physics. One

category of science portals directly addresses the prob-

lem of building multidisciplinary applications. The

Gateway project [6] and the Mississippi project [34]

use CORBA [15] and Enterprise Java Beans (EJB) [27]

to build a three-tier architecture for launching and

scheduling multiple applications. These two projects

also use scripting to orchestrate large, complex appli-

cation scenarios. Another CORBA-based project is

the Rutgers Discover portal [11] which also provides a

good interface for computational steering and collabo-

rations.

3. The XCAT Science Portal

A prototype science portal that tests some of the

features described above has been developed at Indiana

University with the help of the Chemical Engineering

Team from NCSA. The portal differs in its architecture

from the examples described above because it does

not use a centralized web server on a remote machine.

Instead the portal software that runs on each user’s

desktop/laptop has a built-in server. The reason for this

is that the XCAT Science Portal is designed to integrate

the user’s desktop environment with the remote grid

resources. If the portal resides elsewhere, the only

tools the user can use to interact with the Grid is a

Web browser or other HTTP clients. In our model, the

portal server provides a single, local gateway between

the Grid Services and local applications. A local web

browser can still interact with it through HTTP, but

other applications may possibly communicate with it

via local protocols and services, such as COM [25],

.NET [24] and Bonobo/Gnome [1].

As illustrated in Fig. 1, the major components of the

portal server include:

– A Java-based server engine, which spawns off a

set of Java Servlets that manage access to the other

components. The current version runs on Jakarta

Tomcat 4.0, and is deployable as a Web Archive

(WAR) file, and works on various flavors of Win-

dows and Unix.

– A notebook database. A notebook is an active doc-

ument defined by an XML object that describes a

S. Krishnan et al. / The XCAT Science Portal 305

 Web

Browser

Local

Components

 Viz

 Tools

 MyPortal Active Notebook Server

Authentication

 GSI COG

Grid Tools

Script

 Engine

Notebook

Database

 Grid

 Performance

 Monitor
 Channel

Application

 Proxy

Application

 Proxy

Wrapped
Application

Wrapped
Application

 Soap Event

The Grid

Sensors

Machine

 Workstation Environment

Fig. 1. The XCAT Science Portal Architecture.

set of resources used in a computational applica-

tion. It consists of documents, web pages, execu-

tion scripts, and other notebooks.

– A Script Engine that is used to execute com-

plex Grid operations. The scripting is currently

in Jython, a pure Java implementation of the

Python scripting language which has become pop-

ular with many computational scientists. We pro-

vide Jython-based interfaces to the Argonne CoG

toolkit, which in turn, provides access to Globus

functionality and the GSI [21] Grid authentication

mechanisms. It also has an API that allows easy

access to the DOE Common Component Archi-

tecture (CCA) services [22].

– An Event Subsystem that is capable of handling

event messages, which may be generated by grid

resources or user applications.

– A Grid Performance Monitor that provides the

user with a view of available resources, their cur-

rent loads and network loads.

– A Component Browser that uses an SQL Database

backend to provide the user with information about

components which can be deployed. The user

can use this information to write Jython scripts to

create and wire together components.

– A Remote File Management Interface that uses the

GSI enabled FTP service.

3.1. The notebook database

The underlying directory structure of the filesystem

is used as the database to support the portal. The

database stores a notebook corresponding to each com-

putational application. Each notebook is stored as a

directory and each page of the notebook is stored in a

different subdirectory. An XML file containing meta-

data about the notebook and a list of pointers and ref-

erences to the pages in the notebook is also stored in

the local database. Figure 2 shows a snippet of such

an XML file. It describes a notebook session, with

a title Notebook Intro, containing a notebook page,

BigPicture. The complete schemas can be viewed at

http://www.extreme.indiana.edu/an/xsd.

The active document representing a notebook ses-

sion can be converted into a Java Archive (JAR) and

the meta information about the notebook can be stored

306 S. Krishnan et al. / The XCAT Science Portal

<activeNotebook xmlns="http://www.extreme.indiana.edu/an">

<activeNotebookInfo>

<title>Notebook_Intro (session)</title>

<creationDate>Thu Apr 19 10:54:10 EST 2001</creationDate>

<modifiedDate>Thu Apr 19 10:54:18 EST 2001</modifiedDate>

<version>1.0</version>

<id>NotebookIntro.7444</id>

<open>true</open>

<relatedTo>NotebookIntro</relatedTo>

<unsaved>false</unsaved>

</activeNotebookInfo>

<pageContent>

<title>BigPicture</title>

<url>/an/database/notebook/nNotebookIntro.7444/

pBigPicture/big_picture.html</url>

<id>BigPicture</id>

<number>1</number>

<open>false</open>

</pageContent>

</activeNotebook>

Fig. 2. An XML file with notebook metadata.

in a WebDAV [17] server. This meta information in-
cludes the URI for the actual location of the archive.

Notebook users can browse the information about pub-
lished sessions using a WebDAV client. This enables
them to get information like notebook name, author,
abstract etc. about the session before actually decid-
ing to retrieve the archive. The author of the notebook

can decide to set privileges like enabling only read or
allowing updates on the archived session by other au-
thors. The authorization information is stored in the
WebDAV server as an Access Control List. The JAR

can be published into a repository using GSI-enabled
FTP or other file transfer services. Since the JAR cor-

responds to an active document, it is self-sufficient and

can be simply plugged into an authorized user’s local

database, and is ready to use. Thus, the portal users in

a scientific community can collaborate with their peers

by sharing data corresponding to their experiments.

3.2. Grid application scripting

One difference between a user portal and a science

portal is the complexity of the tasks that the portal sup-

ports. A user portal allows users to submit single jobs

to the grid. The portal provides features to make it very

simple to manage the job, providing load-time and run-

S. Krishnan et al. / The XCAT Science Portal 307

The Notebook Database

Notebook Server

 Database Interface

 Notebook 1 Notebook 2 Notebook 3

Page 1 Page 2 Script Page 1 Page 2 Page Script

Fig. 3. The notebook database.

time information, and to help the user select resources
and to monitor the execution of the job. In a science
portal, the applications tend to be more complex. A
single scientific experiment may involve running many
different computational simulations and data analysis
tasks. It may involve coupled multidisciplinary ap-
plications, collaboration, and remote software compo-
nents linked together to form a distributed application.
Often these complex tasks may take a great deal of ef-
fort to plan and orchestrate, and the entire application
may need to be run many times each with a slightly
different set of parameter values. We have found that
the best way to allow this sort of computation to be
carried out is to allow the scientist access to a sim-
ple scripting language which has been endowed with
a library of utilities to manage Grid applications. Fur-
thermore, we provide a simple tool which allows the
scientist to build a web form interface to configure and
launch the scripts. Users of the scripts simply fill in
parameter values to the web form and then click the

Submit button. This launches a script which executes
on the user’s desktop, but manages remote applications
on the grid. Our prototype implementation uses the
Jython language for scripting because it is popular with
scientists and has an excellent interface to Java, and we
make the scripts grid-enabled by providing an API to
Globus Services using the Cog Toolkit.

Figure 4 illustrates a portal interface, which is typi-
cally application-dependent and is configurable by the

users. In the panel on the left, there is a view of an
open notebook session. It consists of a set of pages
and script forms. In this figure, the form for a simple
script which launches a local visualization application
is shown. Parameter values selected by the user from
the form page are bound to variables in the script. By
selecting Edit both the script and the form page may
be edited as shown in Fig. 5. In this case, the script
launches a local program called animator which takes
as a parameter the name of a simulation output file to
animate. In this example the script is trivial, but it is
not much more difficult to write a script to launch an
application on the grid and to manage remote files.

A second form of scripting is used to manage the
local details of the program’s execution on a remote site.
The remote applications are managed by application

managers. In most cases, the applications that the
scientists and engineers want to run on the Grid are not
grid aware, i.e., they are ordinary programs that read
and write data to and from files. In some cases, we have

access to the application source, but often that is not
available – e.g., when using commercial applications
codes. An application manager is an agent process that
helps the application make use of grid services. For
example, the manager can stage input files from remote
locations or invoke post-processing on the application
output when the application has finished. The manager
also serves as an event conduit between the application
and the portal. If the application dies or creates a file,

308 S. Krishnan et al. / The XCAT Science Portal

Fig. 4. Snapshot of XCAT SP.

the manager can send an event back to the portal with

the appropriate message. The application manager is

shown in Fig. 6.

The application manager can also act as a service

broker for the application. The manager can register

itself with the Grid Information Service [14] and ad-

vertise the application’s capabilities. If a user with the

appropriate authorization discovers it, then the man-

ager can launch the application on behalf of the user

and mediate the interaction with the user. For example,

suppose the application is a library for solving sparse

linear systems of equations on a large parallel super-

computer. The manager can export a remote solver

interface that takes a sparse linear system as input and

returns solution vectors and error flags as output. If a

user has a remote reference to the manager, the solver

can be invoked by a remote method call passing a lin-

ear system (or its URI) as a parameter and the solution

vector can be received as a result of the call. This is the

model used by JiPANG to invoke Ninf and Netsolve.

In the XCAT system, the application managers con-

form to the DOE Common Component Architecture

(CCA) specification. XCAT is our implementation of

the CCA specification, built on top of XSOAP (for-

merly SoapRMI [32]), that allows the users to write

CCA compliant components in C++ and Java. The ap-

plication managers are designed to be scriptable com-

ponents, which have one standard port providing the

creator with the ability to download a script which the

component can run. The scripting language and library

used by the component is identical to the language and

library available to the portal engine. The application

managers combine the advantages of a persistent re-

mote shell with that of a remote object which may be

invoked through a well defined set of interfaces. Fur-

thermore, the interfaces that a manager component sup-

ports can change dynamically by simply downloading

a new script. This allows the portal to dynamically

change the behavior of a remote application to suit new

problems or requirements. For a more detailed de-

scription of the Application Manager, including APIs,

consult ProgGrid [4].

XCAT provides a Jython based scripting interface to

instantiate remote components, wire them together us-

ing input and output ports and orchestrate the compu-

tations. The portal uses this scripting interface, whose

API is described in Fig. 8.

S. Krishnan et al. / The XCAT Science Portal 309

Fig. 5. Script page.

Fig. 6. XCAT application managers.

3.3. Event subsystem

The XCAT Science Portal uses the SOAP Events

system [33] to decouple communication between the

scripting engine and the remote jobs launched by the

Fig. 7. Scriptability of application managers.

portal. This decoupling ensures that the remote appli-

cations can continue execution when the portal itself

shuts down. Communication is reestablished seam-

lessly when the portal is restarted. The events that

occur in the interim are stored by a persistent event

310 S. Krishnan et al. / The XCAT Science Portal

def createComponent (componentInfo):

def setMachineName (componentWrapper, machineName):

def setCreationMechanism (componentWrapper, creationMechanism):

def createInstance (componentWrapper):

def connectPorts (outputPortComponent, outputPortName,

inputPortComponent, inputPortName):

def start (componentWrapper, usesPortClassName,

usesPortType, providesPortName):

def kill (componentWrapper, usesPortClassName,

usesPortType, providesPortName):

def invokeMethodOnComponent (componentWrapper, usesPortClassName,

usesPortType, providesPortName,

methodName, methodParams):

Fig. 8. Jython API to XCAT.

channel and can be retrieved by the portal on restart.

A remote job can be an instantiated component that

reads and writes files or a Grid Monitoring Architecture

(GMA) [2] that collects data for fault detection and per-

formance tuning from a computational grid. Such sys-

tems can indicate their progress by sending out events

at regular intervals to interested listeners.

The SOAP Events system is based on XSOAP which

uses HTTP as the network protocol and SOAP 1.1 [3]

compliant XML messages as the wire protocol. By

using XSOAP, the portal can receive events from any

SOAP 1.1 system. As SOAP events are just XML

strings, they can be published by writing preformatted

strings onto a socket, allowing frameworks that use dif-

ferent languages and platforms to publish to the chan-

nel. To make the channel firewall-friendly, we allow

the publishers to “push” events to the channel and the

subscribers to “pull” events from it. Such a model ob-

viates the need for the event channel to initiate the com-

munication with publishers or listeners that may reside

behind firewalls. We simulate asynchronous event no-

tification to the listener by using listener agents (see

Fig. 10). The listener agents constantly query the chan-

nel for newly arrived events and forward these events

to the listener. The agent and the channel use a cookie-

based scheme to monitor the retrieved events. A cookie,
held by the agent, has complete state information about
the progress of the event pull invocation. Using this
cookie, the listener agent can resume the pull in case
the channel fails and is restarted. Publishers use sim-
ilar agents to ensure delivery of events to the channel
so that network outages or failure of the channel do
not prevent the event from being sent. The publisher
agents store the unsent events in a local store and peri-
odically retry publishing them. The listener and pub-
lisher agents can also locate a suitable event channel to
connect to, based on a set of constraints provided by
the listener or publisher application. Event channels
register with a directory service when they start and the
agents use this service to select the channel.

The portal listener registers with the listener agent
running on the local machine using Jython scripts, as
illustrated by snippets of code in Fig. 11. The listener
agent locates the nearest or a well-known SOAP event
channel using the directory service. The listener can
use a filter to restrict the events it receives to those that it
is interested in. This filtering can be based on matching
event attributes or using SQL to query the persistent
channel. Applications can provide information about
the status of their computation by publishing events to
the event channel via the publisher agent.

S. Krishnan et al. / The XCAT Science Portal 311

Fig. 9. Event visualizer showing machine utilization events.

Fig. 10. The event subsystem.

The event channel, in its simplest incarnation is just

a listener and publisher working in tandem. With all

its features enabled, it provides for complex filtering

and querying, persistence to allow retrieval of histori-

cal events and handling of user defined events that the

channel is not aware of.

3.4. The Grid Performance Monitor

The Grid Performance Monitor (GPM) uses the event

subsystem to provide the user with visualization of

available resources and the current and predicted future

loads on these resources. The data for these loads is

obtained from the NWS. The GPM is designed as a thin

layer on top of SoapRMI events and an event channel.

This provides the portal with the flexibility to cooper-

ate and exchange signals/events with a vast variety of

event generators.

The event visualizer component of the GPM sub-
scribes to the event channel through its agent. The vi-
sualizer registers interest only in those events that are
for resource utilization or a related type. Using the
event channel precludes the need for a global registry
of all sensors. Sensors send events to the event channel
at periodic intervals. Detection of a stoppage in events
from a particular sensor can be determined to be due
to the failure of the sensor. Event generators that send
events at irregular intervals can be required to send sim-
ple heart-beat events at regular intervals to indicate that
they are still operational.

Figure 12 shows an example of an XML resource
event. The XML Schema event system lends itself
to extensibility and self-describing event formats, thus
making it possible for the portal to interoperate with
a wide variety of other event systems, including the
NWS, Autopilot sensors. Applications that are aware
of their resource utilizations can also write application-

312 S. Krishnan et al. / The XCAT Science Portal

A specialization of the generic EventListener

class MyEventListener(EventListener, RemoteObject,

SubscriptionRenewListener):

def __init__(self, expID):

constructor code goes here

Code to register with the event channel

def subscribeToListenerAgent(expID, url):

.... # some initialization

create an instance of the EventListener

receiver = MyEventListener(expID)

register with the Listener Agent

agent = Util.getLocalListenerAgent(...params...)

Get first batch of events through agent

result = agent.startPull(timePeriod, filter)

Consume list of events from result.events[]

while (...interested in more events...):

Get next batch of events

result = agent.continuePull(result.cookie)

Consume list of events from result.events[]

Done pulling events

agent.stopPull(result.cookie)

Fig. 11. Subscribing to an event channel.

level resource events, and send it to the event channel.

Thus, the user can not only receive resource utilization

information of the target machines, but also the perfor-

mance information from their executing applications.

3.5. Authentication and security

In the future, the portal is planned to be run in one of

two modes: personal or multiuser. At present, we only

support the personal mode, while work on the multiuser

mode is in progress. In both cases, the authentication

is handled via the Globus GSI. The user can either use

local Globus credentials on the portal’s server via the

Globus CoG Kit, or can remotely upload credentials

into the portal via the MyProxy [10] CoG Kit. The ini-

tial startup screen has text fields for the user to enter in

the appropriate information: his/her Globus credential

password for a local credential, or a server, tag name

and password for a MyProxy credential. In either case,

the portal server loads a GlobusProxy object from the

relevant source for use in authentication and instantia-

tion, on behalf of the user. In the personal mode, only

S. Krishnan et al. / The XCAT Science Portal 313

<MachineUtilizationEvent>

<eventNamespace>http://www.extreme.indiana.edu/soap/

events/resdat#MachineUtilizationEvent

</eventNamespace>

<eventType>resdata.machine.utilization</eventType>

<timestamp>2002-01-07T17:41:28.072Z</timestamp>

<arriveTimestamp>2002-01-07T17:41:29.151Z

</arriveTimestamp>

<source>rainier.extreme.indiana.edu</source>

<handback>resviz_channel</handback>

<cpuUtilization>0.88<cpuUtilization>

<memoryUsed>123988</memoryUsed>

</MachineUtilizationEvent>

Fig. 12. An example XML resource event.

the owner is authorized to run jobs using the portal,
while in the multiuser mode the user can run jobs if
he/she is permitted to use the portal, which can be con-
figured by the portal owner, using some Access Control
List mechanism. If cookies are enabled by the user, the
server sets a cookie object in the user’s browser that
maps the session to the Proxy so that, when the user
leaves the site, his/her identity isn’t lost. This helps the
portal do better session management. Even if the user
has disabled the use of cookies, the portal works fine,
although it loses some of its session tracking capabili-
ties.

4. Sample applications

The XCAT Science Portal has been used for a num-
ber of different applications. It has been used for dis-
tributed simulation of chemical processes in semicon-
ductor manufacturing by a team of Chemical Engineers
at NCSA, for collaboratory support by a team of X-ray
crystallographers at Indiana University, and for Linear
Systems Analysis [4], and Collision Risk Assessment
of Satellites with space debris [4] by the Extreme Com-
puting Lab at Indiana University. We describe two of
the above in the next subsections.

4.1. NCSA Chemical Engineering

The work done with the Chemical Engineering team

from NCSA is an example of the kind of science prob-

lems the portal is intended to solve. The simulation

models the process of copper electrodeposition in a

submicron sized trench which is used to form the inter-

connection on microprocessor chips. The simulation

consists of two linked codes. One consists of a con-

tinuum model of the convective diffusion processes in

the deposition bath adjacent to the trench. The second

consists of a Monte Carlo model of events that occur

in the near-surface region where solution additives in-

fluence the evolution of deposit shape and roughness

during filling of the trench. The codes communicate by

sharing data files about common boundary conditions.

Figure 13 shows the coupled codes and the filter that

is added to insure stability of the linked computational

system.

The codes are run separately on the Grid. The trans-

fer of files is done using grid based file-management

and transfer utilities. The interface to the Grid is pro-

vided by “Application Managers”. As described be-

fore, these are wrappers which provide access to grid

services such as GSI, grid-events, etc. to the codes and

314 S. Krishnan et al. / The XCAT Science Portal

Fig. 13. Linked chemical engineering codes.

 Science Portal

Application

 Manager

Application

 Manager

 Monte Carlo

 Simulation

 Continuum

 Simulation

Grid
File Management

file file

Fig. 14. Chemical engineering application setup.

make them grid-aware. Each execution is set-up and

controlled from the controlling Jython script which runs

inside the portal. The primary mechanism for getting

feedback is the event system. Grid file-management

tools can be used to transfer output files which are gen-

erated. Events which come back from the applications

are handed off to event handlers which have been reg-

istered, or are logged. Special events could be used to

trigger off event handlers which can change or control

the course of the execution.

This application illustrates several interesting sce-

narios in collaboration. The experiment is set up by the

chemical engineers using the tools provided in the por-

tal. Simple web forms are created for parameter input

which will control the experiment. An example of one

such form is shown in Fig. 15. Subsequent users do not

need to know about these parameters or the mechanics

of the grid computation. They will interact with only

the portal web interface and event notification mecha-

nisms.

S. Krishnan et al. / The XCAT Science Portal 315

Fig. 15. Parameter form.

4.2. IU Xports project

A second application is a collaboratory for X-ray

crystallographers using the beam lines at Argonne’s

Advanced Photon Source (APS) and Lawrence Berke-

ley’s Advanced Light Source (ALS). This work will al-

low users at remote laboratories to send sample crystals

to the beam lines, collaborate with the scientists prepar-

ing and mounting the sample, then to receive initial im-

ages of the execution, over the network. They can then

dynamically upload new control parameters or, if the

sample appears flawed, terminate the run. In addition to

large amounts of data (up to a Terabyte/day) and num-

bers of files (1–3 per second) this application requires

multiple video streams, accessing high-speed research

networks, and synchronous geographically distributed

collaboration.

The portal was used to launch part of the experi-

mental setup from the client site. Using the Jython

controlling script and the Java Application Managers,

local applications were launched and controlled. The

setup of the experiment closely resembled that of the

Chemical Engineering one. Events were used to get
feedback on the progress of the execution.

5. Conclusions

This paper has described the XCAT Science Portal
system. The contributions of this research project in-

clude

– providing a generic programming tool for grid ap-
plication designers that allows them to script com-

plex applications, and access them using a simple
forms based web browser interface.

– providing an “active document” model for pack-
aging applications for collaborative purposes.

– demonstrating how a grid event system can be in-

tegrated into both the grid applications and re-
source monitoring to provide the user with impor-
tant feedback about the runtime behavior of his or
her applications.

– showing that a distributed software component ar-
chitecture (in this case the DOE CCA model) can

316 S. Krishnan et al. / The XCAT Science Portal

be used as an effective tool to manage distributed

applications based on legacy software, which is

not grid-aware.

6. Future work

Future work includes integration of the resource and

component directory services with the Grid Forum stan-

dards for information services and with the emerging

work on the Web Service Directory Language (WSDL)

that is being advocated by industry groups. In addition,

we are building interfaces to intelligent resource bro-

kers and building components that are capable of adapt-

ing to available grid resources. We are working on the

multiuser version of the portal, and trying to use it for

the Grid Access Portal for Physics Applications [18].

We are also working on an secure implementation of

SOAP, which will be built using GSI and Secure Sock-

ets. We plan to integrate it with a multiprotocol mes-

saging architecture, which is capable of switching be-

tween SOAP and binary protocols, depending upon the

performance needs of the user.

Acknowledgements

The authors would like to thank the reviewers and

the members of the Extreme Computing Laboratory,

Indiana University for their insightful comments. In

particular, we are grateful to Kenneth Chiu, Al Rossi

and Shava Smallen, who are current staff members at

the Extreme Lab, and to Venkatesh Choppella, Rahul

Indurkar, Nirmal Mukhi, Benjamin Temko and Juan

Villacis, who have been past members of the project

group.

This research was supported by NSF grants 4029710

and 4029713, NCSA Alliance, and DOE2000.

References

[1] GNOME, visited 4-1-2001. www.gnome.org.

[2] Brian Tierney et al., White paper: A grid monitoring service

architecture (draft), visited 03-10-01. http://www-didc.lbl.

gov/GridPerf/papers/GMA.pdf.
[3] D. Box et al., Simple Object Access Protocol 1.1. Technical re-

port, W3C, 2000. http://www.w3.org/TR/2000/NOTE-SOAP-

20000508/.

[4] Dennis Gannon et al., Programming the Grid: Distributed

Software Components, P2P and Grid Web Services for Sci-

entific Applications, Journal of Cluster Computing (2002), to

appear.

[5] Dietmar Ervin et al. ,The Unicore HPC Portal, visited 04-25-

2001. http://www.unicore.de/.

[6] Geoffrey Fox et al., The Gateway Computational Web Portal,

visited 04-27-01. http://www.gatewayportal.org/.

[7] George Myers et al., The NASA Information Power Grid

(IPG) Launch Pad Portal, visited 04-27-2001. http://www.

ipg.nasa.gov/.
[8] Jack Dongarra et al., Netsolve, visited 04-27-01. http://www.

cs.utk.edu/netsolve/.

[9] Jason Novotny et al., The grid portal development kit (gpdk)

project, visited 04-01-01. http://dast.nlanr.net/Features/

GridPortal/.

[10] Jason Novotny et al., Myproxy, visited 04-12-01. http://

dast.nlanr.net/Features/MyProxy/.

[11] Manish Parashar et al., DISCOVER, visited 04-27-01. http://
www.discoverportal.org/.

[12] Rajkumar Buyya et al., Nimrod, A Tool for Distributed

Parametric Modelling, visited 04-25-2001. http://www.csse.

monash.edu.au/ davida/nimrod.html/.

[13] Ian Foster and Carl Kesselman, The GRID: Blueprint for a

New Computing Infrastructure, Morgan-Kaufmann, 1998.

[14] Grid Forum Information Services Working Group, GGF

GIS Working Group Charter, visited 06-29-01. http://www-
unix.mcs.anl.gov/gridforum/gis/.

[15] Object Management Group, The Common Object Request

Broker: Architecture and specifi-cation, July 1995. Revision

2.0.

[16] Pablo Group, AutoPilot: Real-Time Adaptive Resource

Control, visited 04-01-2001. http://www-pablo.cs.uiuc.edu/

Project/Autopilot/AutopilotOverview.htm.

[17] IETF. WebDav, visited 8-20-01. http:// www.ics.uci.edu/ejw/
authoring/.

[18] Indiana University, The grid access portal for physics applica-

tions, visited 08-14-01. http://lexus.physics.indiana.edu/ gri-

phyn/grappa/.

[19] Albert Einstein Institute, Cactus, visited 04-27-01. http://

www.cactuscode.org/.

[20] Argonne National Lab, CoG, visited 04-12-2001. http://
www.globus.org/cog.

[21] Argonne National Lab, GSI, visited 04-12-2001. http://www-

fp.globus.org/security/v1.1/.

[22] Argonne National Laboratory, Indiana Univeristy, The Ad-

vanced Computing Laboratory at Los Alamos National

Laboratory, Lawrence Livermore National Lab, and Uni-

veristy of Utah. Common Component Architectue, visited

1-10-2000. http://z.ca.sandia.gov/ cca-forum see also http://
www.extreme.indiana.edu/ccat.

[23] Jefferson Labs, Lattice Portal, visited 04-27-01. http://lqcd.

jlab.org/.

[24] Microsoft, .NET framework, visited 02-10-01. http://www.

microsoft.com/net/.

[25] Microsoft, COM, visited 4-2-2001. http://www.microsoft.

com/com.

[26] Sun Microsystems, Jini, visited 3-1-2001. http://www.sun.
com/jini.

[27] Sun Microsystems, EJB, visited 7-15-99. http://java.sun.com/

products/ejb/index.html.

[28] Tokyo Institute of Technology, JiPang: A Jini-based Com-

puting Portal System, visited 04-27-01. http://matsu-www.

is.titech.ac.jp/suzumura/jipang/.

[29] Tokyo Institute of Technology, Ninf, visited 04-27-01. http://

ninf.etl.go.jp.
[30] ORNL, LBNL, and PNNL, The DOE2000 Electronic Note-

S. Krishnan et al. / The XCAT Science Portal 317

book, visited 04-27-01. http://www.emsl.pnl.gov:2080/docs/

collab/research/ENResearch.html.

[31] San Diego Supercomputer Center (SDSC), the University of

Texas (UT), and the University of Michigan (UM). NPACI

Hot Page, visited 04-25-2001. https://hotpage.npaci.edu/.

[32] A. Slominski, M. Govindaraju, D. Gannon and R. Bram-

ley, Design of an XML based Interoperable RMI System:
SoapRMI C++/Java 1.1, in: Proceedings of the International

Conference on Parallel and Distributed Processing Techniques

and Applications, Las Vegas, June 25–28, 2001, pp. 1661–

1667.

[33] Aleksander Slominski, Madhusudhan Govindaraju, Dennis

Gannon, and Randall Bramley. SoapRMI Events: Design and

Implementation. Technical Report TR-549, Indiana Univer-

sity, May 2001.

[34] Mississippi State University, The Mississippi Computational

Web Portal, visited 04-27-01. http://WWW.ERC.MsState.

Edu/labs/mssl/mcwp/.

[35] Rich Wolski, Neil T. Spring and Jim Hayes, The Network
Weather Service: A Distributed Resource Performance Fore-

casting Service for Metacomputing, Journal of Future Gen-

eration Computing Systems (1999), also UCSD Technical Re-

port Number TR-CS98-599, September, 1998.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

