
The Xilinx Design Language (XDL):
Tutorial and Use Cases
Christian Beckhoff, Dirk Koch, and Jim Torresen

Department of Informatics, University of Oslo, Norway
Email: {dirk, christian}@recobus.de, jimtoer@ifi.uio.no

Abstract—With the Xilinx Design Language (XDL), the FPGA
vendor Xilinx offers a very powerful interface that provides
access to virtually all features of their devices. This includes on
one side the generation of complete device descriptions containing
information about the FPGA primitives and the routing fabric.
On the other side, XDL can be used to constrain systems or to
directly implement modules or macros for Xilinx FPGAs.
In this paper, we will provide documentation on the language
and reveal several use cases for this language.

I. INTRODUCTION

Despite its powerful capabilities, only a few projects in
the field of reconfigurable computing use the Xilinx Design
Language XDL as an interface to the Xilinx vendor tools. In
the following, we give an overview of related projects. Based
on their objectives, the projects can be classified into three
different groups:

1) Macro generation: Several projects use XDL as an
interface to create regular structured macros in the
field of reconfigurable computing (or to build time to
digital converters). Contributing work can be found
in [1], [2], [3], and [4]. Macro generation also includes
the generation of special blocker macros for constraining
the routing of designs, see [1] and [2].

2) Provide an API to XDL: Other projects provide an API
to read, manipulate, and write XDL thus hiding syntactic
details from the user, see [5], [6], and [7]. The APIs
are intended to be used for CAD tool development.

3) Documentation: Xilinx offers a brief documentation
in [8], more detailed information on older devices can be
found in [9], [10]. This work provides the most recent
documentation on XDL.

The three objectives together with their contributing publi-
cations are summarized in Table I. Most papers in the fields
1), 2), and 3) provide a only brief overview to XDL and many
important details are omitted. In addition, the publications
assigned to objective 3) were published years ago and refer to
older FPGA families. A comprehensive and recent overview of
XDL is missing. The intention of this paper is to close this gap
and to provide information needed to implement own macros
or to integrate custom tools into the Xilinx vendor tools.

We will continue the paper with presenting XDL fundamen-
tals in Section II. After this, in Section III, we will continue
with a presentation of XDL use cases. Then, we will discuss
common pitfalls and issues related to XDL in Section IV and
finally conclude the paper.

Objective Contributing Projects
Macro generation ReCoBus-Builder [1], GoAhead [2],

Busmacro Generator [3], and DHHarMa [4]
Provide an API to XDL RapidSmith [5], Torc [6],

and FPGA Analysis Tool [7]
Documentation Xilinx [8], Hoplite [9], Wire database [10],

and this work

TABLE I
ALL XDL RELATED RESEARCH PROJECTS CAN BE CATEGORIZED INTO

THREE GROUPS BASED ON THEIR OBJECTIVE: 1) MACRO GENERATION, 2)
PROVIDE AN API TO XDL, AND 3) DOCUMENTATION

II. XDL FEATURES

With XDL, Xilinx provides a human readable view to both
1) the resources available on FPGAs and 2) to FPGA netlists
(e.g. complete systems, modules, or hard macros). Although
provided in the same language, both views differ in syntax
and structure, as revealed in the following.

A. XDL resource descriptions

A resource description for any Xilinx FPGA can be gen-
erated with the use of the command line tool xdl, e.g. xdl
-report -pips -all_conns xc6slx16. The sizes of
the generated resource descriptions vary from a few megabytes
for smaller and older devices up to several gigabytes for recent
devices1.

Xilinx FPGAs consist of an array of tiles as depicted in
Figure 1. There are several different tile types. Any user logic
is implemented in tiles called Configurable Logic Blocks. A
CLB consists of two slices containing the look-up tables (see
Figure 3 for an example of two CLBs).

On its left hand side, each CLB has an interconnect tile. An
interconnect tile consists of a switch matrix providing access to
the routing fabric of the FPGA and is used to connect different
CLBs. Although a CLB and its neighboring interconnect tile
belong together, they are separated into two distinct tiles within

1The size of XDL resource descriptions is huge because the information is
printed separately for each tile (e.g., a CLB), despite that there exist only very
few different kinds of tiles. In order to reduce the memory requirements in a
custom tool, groups of identical tiles can be automatically identified when
parsing in an XDL description and replaced by references. For example,
after parsing the 5 GB XDL resource description of an xc5vlx110t device
(the FPGA of the XUPV5 board) into internal data structures, our tool
GoAhead consumes around 190 MB of program memory. Storing the device
description in our own format takes 28 MB on disk while preserving virtually
all information.

an XDL description2. Besides CLBs and interconnect tiles,
further tile types are available such as clock tiles, block ram
tiles, and I/O tiles with each tile type having its own specific
coordinate system.

The tiled structure of an FPGA is reflected in the structure
of its XDL resource description as depicted in Listing 1. Each
resource description is headed with the device and family of
the FPGA. After the header, the tile section follows containg
a description for each tile. The tile section starts first with
a tiles statement holding the the X and the Y dimension
of the array of tiles. The remaining part of the tile section is
structured hierarchically.

Within the tiles section, each tile of the FPGA is described
with a single node, whereat each node provides a unique pair
of coordinates for a global X-Y coordinate system. The X-Y
coordinates are followed by a tile name and a tile type. The
tile name contains again two X-Y coordinates for the tile type
specific coordinate system. Hence, a tile can be addressed by
two pairs of coordinates. One pair points into the global and a
second pair points into a tile type specific coordinate system.

For example the tile 4 5 INT_X1Y61 in line 16 in
Listing 1 describes an interconnect tile with the X-Y co-
ordinates (4, 5) pointing into the global coordinate system
and the interconnect tile specific coordinates (1, 61) pointing
into the CLB specific coordinate system. The placement of
INT_X1Y61 into both coordinate systems is depicted in
Figure 1.

Listing 1. An hierarchical XDL resource description of a Spartan-6 FPGA
consisting of a header, a tile section containing 73×62 nodes each describing
one tile of the FPGA, and a trailing device summary.
1 # header
2 (xdl_resource_report v0.2 xc6slx16csg324-3 spartan6
3 # dimension
4 (tiles 73 62
5 ...
6 # configurable logic block with two slices
7 (tile 4 6 CLEXL_X1Y61 CLEXL 2
8 (primitive_site SLICE_X0Y61 SLICEL internal 45
9 (pinwire A1 input L_A1)

10 ...
11 (primitive_site SLICE_X1Y61 SLICEX internal 43
12 ...
13 (pinwire D output XX_D)
14 ...
15 # interconnect tile
16 (tile 4 5 INT_X1Y61 INT 1
17 ...
18 (wire EE2B0 2
19 (conn CLEXM_X2Y61 CLEXM_EE2M0)
20 (conn INT_BRAM_X3Y61 EE2E0)
21 ...
22 # switch matrxi multiplexers
23 (pip INT_X1Y61 EE2E0 -> EE2B0)
24 (pip INT_X1Y61 EE4E0 -> EE2B0)
25 (pip INT_X1Y61 EL1E_S0 -> LOGICIN_B9)
26 ...
27 # summary
28 (summary tiles=4526 sites=5378 sitedefs=46
29 numpins=157962 numpips=5782505))

2In older FPGA devices such as Virtex-II and Spartan-3, the CLB and
the interconnect tile were merged into a single tile. Since Virtex-4 FPGAs
however, interconnect tiles and CLB are split.

global coordinatestile type specific coordinates

global coordinate system

tile type specific coordinate system

selected tile: INT_X1Y61

CLEXM_X2Y61

INT_BRAM_X3Y61

CLEXM_X1Y61

Fig. 1. Spartan-6 FPGA as an array of tiles. Each tile is colored according
to its tile type (cyan for CLBs, orange for interconnects tile, green for
I/O tiles, and brown for block ram tiles). The interconnect tile tile 4 5
INT_X1Y61 in the upper left corner of a FPGA is selected. The global and
tile type specific coordinates of the selected tile are given in the footer. The
global coordinate system originates in the upper left corner while the tile
specific coordinate system originates in the lower left corner of the FPGA.
The selected interconnect is used to connect CLEXL_X1Y61 with other tiles,
e.g. CLEXL_X2Y61 and INT_BRAM_X3Y61.

The tile INT_X1Y61 is used to connect CLEXL_X1Y61
to other CLBs. Therefore, the tile global coordinates of tile
CLEXL_X1Y61 (see line 7 in Listing 1) point directly left of
tile INT_X1Y61.

Each node in the tile section may contain further hierar-
chies, e.g. the CLB CLEXL_X1Y61 contains two slices, in
XDL referred to as primitive sites. The number of
sub nodes at any level of the hierarchy is denoted by the
number after the tile type. For example, CLEXL_X1Y61 of
type CLEXL contains the two slices i.e. SLICE_X0Y61 and
SLICE_X1Y61. In Spartan-6 FPGAs there are three types
of slices: SLICEL, SLICEX and SLICEM. Slices of type
SLICEX only contain look-up tables and flip-flops, while
SLICEL additionally provide carry-chains. Slices of type
SLICEM also provide lookup-up tables, flip-flops, and carry-
chains, the look-up tables however can be used as shift-
registers and distributed memory. The different slices can be
investigated with the FPGA-Editor tool. This also includes
the naming convention for primitive I/O pins. In line 7 of
Listing 1, the CLB CLEXL_X1Y61 contains one SLICEX
and one SLICEL slice. Each of both slices contains further
pinwire nodes which describe input and output ports of the
slice. Slice SLICE_X0Y61 e.g. provides the input port L_A1.

Note that SLICE_X1Y61 of type SLICEX does not provide a
carry-chain, hence it provides less inputs and consequently less
pinwire statements than SLICE_X0Y61 of type SLICEL.

The interconnect tiles describe the FPGA routing archi-
tecture. For example, line 16 in Listing 1 declares an in-
terconnect tile. The routing is described by connection
statements that specify which neighboring CLBs can be
reached from the current interconnect tile. For example,
line 18 in Listing 1 states that the wire EE2B0 connects
the interconnect tile INT_X1Y61 with two other tiles: 1)
with the CLB CLEXM_X2Y61 and 2) with the block ram
tile INT_BRAM_X3Y61 both located east of INT_X1Y61
(see Figure 1 for the placement of CLEXM_X2Y61 and
INT_BRAM_X3Y61).

Wires are named by their direction (e.g., EE for eastwards or
NN towards north, as illustrated in Figure 2) and their routing
distance in terms of tiles. Furthermore, wires are unidirectional
with a begin port denoted by a B and an end port denoted
by a E, see line 23 in Listing 1. As depicted in line 25 in
Listing 1, some wires provide an optional tapped port to a
CLB in the middle of the way to the end port, e.g. the wire
EE1B0 provides the tapped port EL1E_S0 and the end port
EE1E0. The location of the tapped middle port is depicted in
Figure 23.

Furthermore, an interconnect tile describes the adjacency of
the switch matrix by tuples called programmable interconnect
point (PIP) which specify a configurable connection between
a switch matrix input and a switch matrix output. As listed
in lines 23 and 24, a switch matrix multiplexer is denoted by
multiple PIPs (one for each input) for the same output wire,
e.g. the EE2B0 wire may be driven by EE2E0 or EE4E0.
The XDL resource description is closed with a summary
comprising statistics on the total number of tiles or pins.

B. XDL netlist descriptions

In addition to FPGA resource descriptions, XDL can also
be used to implement a complete design as an XDL netlist
description. A user may also convert existing designs into an
XDL netlist description using again the command line, e.g.
xdl -ncd2xdl design.ncd design.xdl. The user
may vice versa also convert an XDL netlist into a design with
xdl -xdl2ncd design.xdl design.ncd. An XDL
netlist description is thus the human readable counterpart of
the binary ncd-format. These two netlist formats describe
an implementation after technology mapping of a design to
the FPGA primitives (e.g., slices and BRAMs). Depending if
place and route has been performed, the netlists can include
placement information of primitives as well as the exact
routing in terms of switch matrix settings.

Although sharing common syntactic elements, a netlist and
a resource description in XDL completely differ in their
structure. An XDL netlist description of a bus macro is
depicted in Listing 2. The netlist description starts with a

3For other FPGAs, including Virtex-II, Spartan-3, or Virtex-5, the begin,
middle and end ports have been named with BEG, MID, and END, as used in
Listing 5

header that introduces the design name and the target device
followed by the body of the design. Inside a design, there may
be several modules declared. In Listing 2, a module named
S6BM is declared. The body of the module comprises 1) ports,
2) instances, and 3) nets.

With the port statement a user may declare ports of his
design. The port statement port "LI(0)" "left" "D1"
in line 4 in Listing 2 declares a port with the identifier LI(0).
The port is located on an instance called left. Here, left
is a slice instantiated in line 8 of Listing 2. The port LI(0)
is mapped to the look-up table input port D1 of that slice.
Note that, we do not specify whether the port is an input or
an output port, instead the direction of the port is implicitly
given by the port itself. In the XDL resource description, the
ports A1 and D1 are both declared as input ports, consequently
A1 and D1 are input ports of the module. More information
about ports is revealed in the FPGA-Editor.

Listing 2. Spartan-6 bus macro implementation in XDL
1 design "S6BusMacro.ncd" xc6slx16cpg196-2 v3.2 ;
2 module "S6BM", "left" cfg "_SYSTEM_MACRO::FALSE";
3 # I/O ports (4 I/Os per direction&side+CLK&reset)
4 port "LI(0)" "left" "D1";
5 port "LI(1)" "left" "A1";
6 ...
7 # component instantiations
8 inst "left" SLICEX,placed CLEXM_X8Y33 SLICE_X11Y33,
9 cfg "A6LUT:left.A6LUT:#LUT:O6=A1 AFFMUX::AX

10 AUSED::0 AFFSRINIT::SRINIT0 AFF:left.AFF:#FF
11 ...
12 D6LUT:left.D6LUT:#LUT:O6=A1 DFFMUX::DX
13 DUSED::0 DFFSRINIT::SRINIT0 DFF:left.DFF:#FF
14 SRUSED::0 SYNC_ATTR::SYNC CLKINV::CLK ";
15 inst "right" SLICEX,placed CLEXL_X9Y33 SLICE_X13Y33,
16 cfg "A6LUT:right.A6LUT:#LUT:O6=A1 ... ";
17
18 # dummy nets for I/O pins
19 net "LI(0)", inpin "left" "D1", ;
20 ...
21 # nets between left and right slice
22 net "l2r_0" ,
23 outpin "left" D , inpin "right" AX ,
24 pip CLEXL_X9Y33 CLEXL_LOGICIN_B6 -> XX_AX ,
25 pip CLEXM_X8Y33 X_D -> CLEXM_LOGICOUT9 ,
26 pip INT_X8Y33 LOGICOUT9 -> ER1B0 ,
27 pip INT_X9Y33 ER1E0 -> LOGICIN_B6 , ;
28 ...
29 endmodule "S6BM" ;

User logic is implemented in slices. Each slice that
is used in a module must be instantiated explicitly with
e.g. inst "left" SLICEX, placed CLEXM_X8Y33
SLICE_X11Y33. An instance declaration starts with the
keyword inst followed by the unique name of instance,
here the instance is called left. The instance name is
followed by instance type, here a slice of type SLICEX
is used. The succeeding keyword placed denotes a fully
placed instance. As an alternative, the keyword unplaced
might be used instead to declare an instance whose placement
is not yet defined. If the slice is placed however, after the
keyword placed the CLB in which the slice is instantiated
must succeed. Each CLB contains two slices, therefore we
must finally specify the slice we want to instantiate, e.g.
SLICE_X11Y33.

Fig. 2. Spartan 6 routing wires.

Each instantiation contains a configuration (cfg) body that
allows the user to configure the slice, e.g. to control multi-
plexers, flip-flops and lookup-tables. For example, the slice
instantiation in line 8 in Listing 2 configures one of the four
lookup tables using: D6LUT:left.D6LUT:#LUT:O6=A1.
Here, the look-up table output is directly connected to
the input port A1. A more complex look-up table func-
tion might use all six inputs and boolean operators (@
for XOR, + for OR, ∗ for AND, and ∼ for NOT), e.g.
LUT:O6=((A1@A2)+(A3@A4)*(A5+∼A6).

Instances are connected via nets. A net is declared with the
keyword net followed by an identifier, e.g. net "l2r_0".
Each net has one outpin and may have several inpins
as depicted in line 21 of Listing 2. Each outpin and each
inpin must be located on an instance, e.g. outpin "left"
D assigns the port D on instance left as a net outport.

The routing from the outpin to the inpins is coded with
PIPs coding a particular multiplexer setting in a switch matrix.
For example, pip INT_X8Y33 LOGICOUT9 -> ER1B0
connects look-up table output LOGICOUT9 with the wire
ER1B0. Several switch matrix multiplexer setting together
form a complete net. Note that it is also possible to completely
omit pip statements in a net and only to declare an outpin
and inpins. Such a net is then fully unrouted.

An XDL description of a module is finally closed with the
endmodule statement in line 29 in Listing 2. After presenting
syntactic details of the resource and netlist descriptions in
XDL, the next Section will present how a user can interface
the Xilinx tool chain with XDL.

III. USE CASES

A. Bus Macro Implementation

Before Xilinx has introduced its fourth generation partial
design flow [11], macros called bus macros have been used
to implement the interfaces between the static system and the
reconfigurable modules that will be swapped at run-time [12].

Fig. 3. Spartan 6 bus macro.

The fundamental requirement among static only systems in
the physical implementation of a reconfigurable system is
the binding of the partial module entity signals to a set of
predefined wires on the FPGA fabric that will act as plugs. By
further separating the partial resources from the resources used
to implement the static system (i.e. defining reconfigurable
regions), run-time reconfigurable systems can be implemented.

The recent design flow provided by Xilinx is based on an
incremental flow where first the static system is implemented
which in particular includes the wires to the reconfigurable
modules located in the partial regions. Starting always from
this system, partial modules are implemented by incremen-
tally adding the module logic and routing to the system by
preserving the initial static system. However, the particular
wire resources crossing the reconfigurable regions cannot be
constrained in this flow which prevents module relocation. Fur-
thermore, a modification in the static system typically changes
the routing to the reconfigurable modules. Consequently, all
reconfigurable modules have to be routed again making this
flow not scaling towards complex systems with many different
modules.

These restrictions can be circumvented by using the bus
macro approach [12]. However, despite that implementing
such macros is trivial, they are not provided by the vendor
for their latest devices. In the following, we will exemplary
present how bus macros can be implemented for Xilinx
Spartan-6 FPGAs using XDL and the FPGA editor. A screen-
shot of the macro is shown in Figure 3. It consists of two slices
(named left and right) and two groups with four wires
each for implementing signals between left and right
(labeled l2r) as well for implementing signals in opposite
direction (labeled l2r respectively).

The macro is symmetric and the two slices are configured
identical as depicted in Figure 4 for right. Input signals
pass a look-up table in route through mode, are then routed
to the entire other slice, and finally connected to a flip-flop in
that slice. The figure contains the XDL statements that set the
configuration of the slice Note that the macro can be easily
adjusted to specific needs. For example, by using the second
output of the LUT and the unused flip-flop, up to four more
signals could be linked between left and right.

Listing 2 shows the XDL code of the macro. After a header
and the port interface, the instantiation of the two slices for
left and right follows. The slice configurations have been
derived using the FPGA editor (see Figure 4).

Fig. 4. Spartan 6 bus macro.

As the look-up tables are only used to connect signals and
not to evaluate logic functions, they have been set in route
through mode. Note that despite the first input is used in each
LUT (i.e., A1, B1, C1, and D1), the used input might differ if
pin swapping is allowed to improve routing. In most cases, this
can be accepted but has to be prohibited for the internal routing
of the macro. This will automatically be the case if the internal
routing is fully specified from an output pin to all inputs and if
this net is not connected to any other logic within the system
(i.e., the driving output pin is not exported as a port). If not
following this rule, the router ignores the specified routing and
puts signal paths in an uncontrolled manner.

The entire internal macro routing paths (starting at line 21 in
the listing) can be determined by rebuilding a routing database
from the FPGA device description as revealed in Section II-A.
This is what some tools provide together with a path search
function. In GoAhead, for example, there is a function to
search for paths between two slice pins and the result can
be directly translated into corresponding PIP statements.

As mentioned in the last paragraph, a user can declare
ports in XDL modules. However, the support varies between
the different ISE versions. While older versions (e.g., ISE
6.3) support the declaration of ports directly in an XDL
specification of a macro, more recent ISE versions however,
drop all the declared ports and generate a design without
any ports. In other words, all recent ISE versions (including
version 12.x and 13.1) will ignore the port declarations in
the beginning of an XDL macro. As a workaround, a user
may generate a FPGA-Editor script as depicted in Listing 3 to
attach the ports to the design after the XDL netlist has been
converted to ncd-format.

However, for each port to be added in the FPGA-Editor
script there must be a dummy net as outlined in line 18 in
Listing 2. This net is only required for the conversion of the
macro as a used primitive pin cannot be simply unconnected.
Within the FPGA editor, these dummy nets are deleted before
adding the macro I/O pins. These pins are specified by select-
ing a primitive pin and applying the add extpin command
(e.g., the clock input of a slice as listed in line 8 to 12 of
the script). Note that it is possible to specify vectorized I/O

symbols by using brackets (as shown in line 18).
After saving the macro in the nmc format it has to be stored

in the project directory of the system and can be instantiated
using HDL design methodology. A VHDL code example is
given in the appendix. Note that the macro could alternatively
be generated completely in the FPGA editor without the need
of the XDL tool. A corresponding FPGA editor script is listed
in the appendix. However, generating macros directly inside
the FPGA editor is more applicable for smaller macros as the
internal routing is more difficult to specify.

Listing 3. The FPGA-Editor script used to add a port to a design create
from an XDL netlist
1 unselect -all
2 select net "LI(0)"
3 select net "LI(1)"
4 ...
5 delete
6
7 unselect -all
8 select pin SLICE_X13Y33.CLK
9 add extpin

10 post attr pin SLICE_X13Y33.CLK
11 setattr pin SLICE_X13Y33.CLK

external_name R_CLK
12 unpost pin "SLICE_X13Y33.CLK"
13
14 unselect -all
15 select pin SLICE_X13Y33.B1
16 add extpin
17 post attr pin SLICE_X13Y33.B1
18 setattr pin SLICE_X13Y33.B1 external_name RI(0)
19 unpost pin "SLICE_X13Y33.B1"
20 ...

When using macros in the HDL flow, their placement
should be specified in the user constraints file (ucf). For
macros being more complex than a single primitive (e.g., a
slice), the placer will typically fail to find a valid placement
position during the map phase. In the XDL specification of
a macro, one primitive is used as a reference point for the
placement of the whole macros and all further primitives are
automatically specified as a relative displacement from the
reference point. Line 2 in Listing 2 defines the slice primitive
left by its symbolic name as the macro reference point.
In the ucf file the placement has to be individually set for
each macro with a location constraint specifying the target
primitive position for the macro reference point, for example
INST macro_label LOC = SLICE_X23Y35;.

B. Routing Constraints

For implementing a reconfigurable system using the bus
macros approach, the macros have to be placed on the border
between the static system and a partial module, as depicted
in Figure 5. This can be accomplished using the location
constraints mentioned in the last paragraph. For further floor-
planning there exist area group and placement prohibit
constraints to seperate primitive regions into the static system
and regions to host patial modules, but there is no counterpart
for routing resources. As a solution, blocker macros can be
generated that occupie a definable set of routing rsources.
A blocker can be transparently concatenated to a design
after the placement step but before the routing step with the

Fig. 5. Constraining the routing in a partial system using blocker macros. a)
static system, b) partial module. The clock net is dyed yellow, blockers gray.

help of XDL. A blocker consists of a primitive instantiations
acting as drivers. The drivers are the starting point of antenna
nets that posses no input pins but contain PIP statements.
These antennas will not be touched by the Xilinx router and
will consequently prevent the usage of the routing resources
included into the antenna set.

The blocker macros can further be used to activate clock
drivers within reconfigurable regions during the implemen-
tation of a static system. This is achieved by adding PIP
statements to the particular clock net as shown in Listing 4.
Note that with the output driving a clock net, the primitive
and consequently the particular global clock net of the FPGA
fabric will be specified (e.g., a BUFG clock driver primitive).
With this technique, multiple different clock nets can be
activated in the partial region. This idea has been derived
from [13].

Listing 4. Spartan-6 bus macro implementation in XDL
1 net "clk_100" ,
2 outpin "clk_generator/PLL1_CLK_BUFG_INST" O,
3 inpin "Hex2Bin_1/HighReg<3>" CLK ,
4 ...
5 # add blocker clock inputs to clock net
6 inpin "SLICE_X10Y22" CLK ,
7 inpin "SLICE_X10Y21" CLK ,
8 ...

C. Clock Remapping
In the last paragraph, we presented how blockers can be

used to drive one or more clock nets into a reconfigurable
region. With the help of the XDL language, it is further
possible to remap a reconfigurable module or any other part
of a system to another clock without affecting the rest of the
system. This can be used in a component-based design flow
to migrate a fully placed and routed module from one system
to another even if they have been implemented using different
global clock networks. A further use case is the adaptation of
the operation speed of some modules by swapping between
two global clock domains. Consequently, no dedicated clock
domain is required to control the clock frequency of a module
which permits to apply this approach fine-grained on many
individual modules.

For remapping a clock, the clock input statements have to
be moved to the new clock net (see Listing 4 for an example).
In addition, the clock select multiplexer configurations have
to be adjusted. This can be done by removing switch matrix
settings (e.g., statements looking like pip INT_X13Y33
GCLK12 -> CLK0, and slice connection wires (e.g., pip
CLEXL_X13Y33 CLEXL_CLK0 -> XX_CLK,) from the
original clock net. In order to set these connections for the new
clock net, the FPGA editor can selectively route the new clock
net which will then add the missing PIP statements without
changing the rest of the clock tree. As an alternative, the slice
connection wire statement can be moved together with the
switch matrix setting to the target clock net while adjusting the
switch matrix setting (e.g., GCLK12 -> CLK0 might become
GCLK3 -> CLK0).

Both the original and the modified system can be analyzed
using the Xilinx timing verification tool. Furthermore, partial
configuration bitfiles for changing between the two systems
can be generated using the differential bitstream option -r in
the bitgen tool. Assuming the existence of the two netlists
and full bitstreams of the two systems, the two following
commands will generate the partial bitfiles:
bitgen change2modified.bit modified.ncd -r start.bit

bitgen change2start.bit start.ncd -r modified.bit

D. Homogeneous Place and Route

The Xilinx vendor tools provide no option to generate
homogeneously arranged physical implementations of any part
of a system. Even if primitives have been regularly placed,
the routing will be irregular as shown in Figure 6a). However,
there exist applications that require a homogeneously arranged
implementation, as shown in Figure 6b). This is in particular
useful for implementing on-FPGA communication architec-
tures for reconfigurable systems (e.g. [14]) or for time to
digital converters (e.g. [4]). For the latter case, the propagation
delay of a signal is used to measure pulses faster than the clock
speed. This is achieved by connecting a signal via a delay
network to multiple flip-flops which sample on the same clock.
Figure 6b) gives an example of a time to digital converter
implemented on a Xilinx Virtex-5 FPGA. The homogeneous
routing ensures a linear latency increase from flip-flop to flip-
flop and a time resolution below 100 ps can be achieved in
practice.

While some Xilinx FPGAs, such as Virtex-II devices, allow
to directly extend a routing path in a homogeneous manner
(e.g., in each switch matrix there exists the PIP S2END0 ->
S2BEG0), this is not directly supported in the Virtex-5 routing
fabric. Searching for such routing paths is non-trivial and can
be automated by tools that build up the routing architecture
of a Xilinx device using a XDL device description in order
to search for homogeneous paths. This feature is provided in
the tools ReCoBus-Builder [1] and GoAhead [2] that provide,
among traditional shortest path routing, search functions for
homogeneous paths. For Virtex-5 FPGAs, a path can be
arranged homogeneously with a repeating sequence over a

Listing 5. Homogeneous delay line routing (line 5. . . 9) for
b)
1net "delay_net" ,
2 outpin S0 C, inpin S1 C3,inpin S2 C5,...
3 pip CLBLL_X19Y99 L_C->SITE_LOGIC_OUTS10,
4 pip INT_X19Y99 LOGIC_OUTS10->SR2BEG1,
5 pip INT_X19Y98 SR2MID1 -> SW2BEG1,
6 pip INT_X19Y97 SW2MID1 -> SR2BEG1,
7 pip INT_X19Y96 SR2MID1 -> SW2BEG1,
8 pip INT_X19Y95 SW2MID1 -> SR2BEG1,
9 pip INT_X19Y94 SR2MID1 -> SW2BEG1,

10 pip INT_X19Y98 SR2MID1 -> IMUX_B8,
11 pip CLBLL_X19Y98 SITE_IMUX_B8 -> L_C3,
12 pip INT_X19Y97 SW2MID1 -> IMUX_B9,
13 pip CLBLL_X19Y97 SITE_IMUX_B9 -> L_C5,
14 ...

Fig. 6. Homogenously routed delay chain for time to digital conversion.

set of two CLBs in each direction. For south direction, for
example, the pips of a homogeneous routing path repeat after
two CLBs. This can be observed in the lines 5 to 9 of Listing 5
where a PIP repeats in every other CLB (i.e. an identical
PIP entry for INT_X(n)Y(m) and INT_X(n)Y(m-2)).
Note that paths could be implement that are identical in
each CLB ((i.e. an identical PIP entry for INT_X(n)Y(m)
and INT_X(n)Y(m-1)); but this would require additional
resources within each CLB (e.g. a LUT in route-through mode
when using a Virtex-5 device). Homogeneous paths can be
found by generating all paths up to a certain depth (in terms
of hops or PIPs) and filtering out the paths that have repeating
PIP entries in consecutive CLBs.

E. Relocation of netlists

Let us assume a fully placed and routed netlist. We can
now iterate through the XDL description of this netlist and
increment all X-Y coordinates we encounter by a given offset
and thus relocate the whole netlist. There are however two
pitfalls to consider. Firstly, we may not arbitrary relocate
the netlist as we have to consider the underlying resource
layout of the FPGA (e.g., the position of block rams and I/O
tiles). Secondly, as depicted in Figure 1, there is a global X-Y
coordinate system and a plethora of coordinate system for all
the different tile types. Hence, for the relocation of a netlist,
we may not add the same increment to the X-Y coordinate of
each tile type. XDL Netlist relocation is a feature provided in
the tool GoAhead.

F. Design merging

In addition to relocating a netlist, a user could also merge
two existing designs given as XDL netlists into a single design
(in case the target platform provides sufficient resources). For
example, a user might want to integrate functionality of two
or more different FPGAs into a larger one. In case the two
netlist use disjoint resources, their XDL descriptions can be
simply concatenated. Let us however assume two fully placed
and routed designs as given in Listing 6.

Listing 6. Two fully placed and routed designs. The identifiers for neither the
instances not the net names are unique both designs. To merge the designs,
we add unique prefixes to each identifier.
1 # design 0
2 inst "logic_inst_0" "SLICEL", placed
3 CLEXM_X5Y74 SLICE_X6Y74,
4
5 net "net_0",
6 outpin "logic_inst_0" AQ,
7 inpin "logic_inst_0" A5,
8 ...
9 # design 1

10 inst "logic_inst_0" "SLICEL", placed
11 CLEXM_X5Y74 SLICE_X6Y74,
12
13 net "net_0",
14 outpin "logic_inst_0" AQ,
15 inpin "logic_inst_0" A3,
16 ...

In order to merge any kind of design, we take advantage of
the possibility to assign symbolic identifier to instances. We
can not simply concatenate the two netlist, as both designs
instantiate the slice SLICE_X6Y74 and further use the same
port AQ on that instance. In addition, the instance names in
both designs are not unique. Furth, the nets in both designs
exhibit a resource conflict. In order to merge the two designs,
we first prefix each identifier in each design with the design
name. Then, we remove any placement information from the
instances and any routing information from the nets. We can
now concatenate the two netlist and convert the netlist to an
completely unplaced and unrouted design. The placement and
routing can now be performed by the Xilinx tools.

We could apply the same scheme for inserting a module into
an existing designs. If necessary, we first prefix all identifiers
to make them unique. Then, we only remove the placement
and the routing information from the module to be inserted
and append the modules netlist to the netlist of the design.
Now, the Xilinx tools only have to place and route the newly
integrated module while the larger design remains unchanged.

Merging design was already suggested in [8]. However, the
designs were considered to use only disjoint resources.

G. Design analysis

For migrating a static only design to deploy partial runtime
configuration, a floorplanning of the system is required [2].
Therefore, we have to determine the resource consumption of
the static modules that we plan to migrate to partial modules.
The resource consumption for a module can be measured in
terms of the number of required look-up tables, block ram
or DSP blocks. To determine the number of required look-
up tables for a given module name, we can simply count the
number of slice instances that contain the given module name.

If we generate the XDL netlist description form an existing
design, the slashes inside the instance names denote the
hierarchy of the instance. Hence, a custom tool might also
deduce a hierarchical design view based on an XDL netlist
description. Let us assume, the instances given in Listing 7.
We can deduce two modules mod_0 and mod_1 instantiated
at top level whereat module mod_0 contains the submodule
mod_01. In total, the design uses four slices.

Listing 7. The instance names in an XDL netlist can be used to deduce the
design hierarchy and the resource consumptions
1 inst "mod_0/logic_inst_0" "SLICEL"
2 ...
3 inst "mod_0/logic_inst_1" "SLICEL"
4 ...
5 inst "mod_0/mod_01/logic_inst_0" "SLICEL"
6 ...
7 inst "mod_1/logic_inst_0" "SLICEL"
8 ...

Note that we may also extract placement information from
the XDL netlist as e.g the tool PlanAhead [15].

IV. COMMON PITFALLS AND ISSUES

The XDL syntax is highly suitable to act as a programming
interface between the Xilinx vendor tools and custom plugins.
Unfortunately, there are several issues to follow in order
to succeed in the implementation of a running system. The
following sections summarize lessons learned by extensively
using XDL for implementing custom tool extensions such as
our tools ReCoBus-Builder and the GoAhead suite.

A. Avoid Hierarchies for Macros

Macros are instantiated like any other module. However,
when instantiating macros in a subhierarchy and depending
on the macro and the Xilinx ISE version, some tools (e.g.,
map) might fail to implement the design. Consequently, all
macros should be instantiated in the top-level design file.

B. Different ISE Versions

Many versions or service packs of the Xilinx ISE tools
behave slightly different and might demand adaptations in the
design flow or might fail in some particular feature. For Virtex-
II and Spartan-3 FPGAs, we found the most stable version of
the Xilinx ISE tools as the ISE version 10.1 service pack 3.
However, when using more complex macros, map might crash.
This behavior applies for the Windows and Linux version of
the tool and under Linux, more complex macros are accepted.

There is unfortunately no general rule and the entire latest
version of the tools are not necessary working more stable.
For example, we found problems in the first generation of
ISE 12.1. In this version, it was not possible to open a saved
design in the FPGA-Editor for further editing it. This is crucial
as this tool provides no undo function. Furthermore, the tools
behave different for different devices and the support for latest
devices was found to take a few releases or service packs to
work stable also for more advanced features. For example, in
ISE 12.3, we found that macro ports can be specified using
vectors for Virtex-5 FPGAs, while the same for Spartan-6
devices let the placer to produce an error during the map
phase. As a workaround, only bit signals have to be used.

V. CONCLUSIONS

With this paper, we provide useful information for design-
ers who want to use the powerful Xilinx Design Language
(XDL) for own tools or advanced system manipulations. We
support this with plenty of practical examples and use cases.
This includes in particular techniques using partial run-time

reconfiguration. Hopefully, the XDL support becomes more
stable in future versions of the Xilinx vendor tools and that
other Vendors provide a similar interface to their tools.

ACKNOWLEDGMENT

This work is supported in part by the Norwegian Research
Council under grant 191156V30

REFERENCES

[1] D. Koch, C. Beckhoff, and J. Teich, “ReCoBus-Builder a Novel Tool
and Technique to Build Statically and Dynamically Reconfigurable
Systems for FPGAs,” in Proceedings of International Conference on
Field-Programmable Logic and Applications (FPL 08), Heidelberg,
Germany, Sep. 2008, pp. 119–124.

[2] Christian Beckhoff, Dirk Koch and Jim Torresen, “Migrating Static
Systems to Partially Reconfigurable Systems on Spartan-6 FPGAs,” 18th
Reconfigurable Architectures Workshop RAW 2011,, May 2011.

[3] Christopher Claus, Bin Zhang, Michael Hübner, Christoph Schmutzler,
Jürgen Becker and Walter Stechle, “An XDL-Based Busmacro Generator
for Customizable Communication Interfaces for Dynamically and Par-
tially Reconfigurable Systems,” Workshop on Reconfigurable Computing
Education at ISVLSI 2007, May 2007.

[4] M. K. Sebastian Korf, Dario Cozzi, “Automatic HDL-based generation
of homogeneous hard macros for FPGAs,” in Proceedings of the 19th
IEEE Symposium Field-Programmable Custom Computing Machines
(FCCM’11). IEEE-CS Press, April 2011.

[5] C. Lavin, M. Padilla, P. Lundrigan, B. Nelson, and B. Hutchings, “Rapid
Prototyping Tools for FPGA Designs: RapidSmith,” in International
Conference on Field-Programmable Technology (FPT’10), December
2010.

[6] N. Steiner, A. Wood, H. Shojaei, J. Couch, P. Athanas, and M. French,
“Torc: Towards an Open-Source Tool Flow,” in Proceedings of the 19th
ACM/SIGDA international symposium on Field Programmable Gate
Arrays (FPGA ’11). ACM, 2011, pp. 41–44.

[7] K. Kepa, F. Morgan, K. Kosciuszkiewicz, L. Braun, M. Hübner, and
J. Becker, “FPGA Analysis Tool: High-Level Flows for Low-Level
Design Analysis in Reconfigurable Computing,” in Reconfigurable Com-
puting: Architectures, Tools and Applications, ser. Lecture Notes in
Computer Science, J. Becker, R. Woods, P. Athanas, and F. Morgan,
Eds. Springer Berlin / Heidelberg, 2009, vol. 5453, pp. 62–73.

[8] Xilinx, Inc., The Xilinx Design Language, Juli 2000, HTML documen-
tation file supplied with ISE Verion 6.3.

[9] Matthew Scarpino, “The Hoplite Guide To Run-Time Reconfigurable-
Computing,” 2008.

[10] Neil Joseph Steiner, “A Standalone Wire Database for Routing and
Tracing in Xilinx Virtex, Virtex-E, and Virtex-II FPGAs,” Master’s
thesis, Virginia Tech, 2002.

[11] Xilinx Inc., “Partial Reconfiguration User Guide,” Dec. 2009, rel 11.4.
[12] P. Lysaght, B. Blodget, J. Mason, J. Young, and B. Bridgford, “Invited

Paper: Enhanced Architecture, Design Methodologies and CAD Tools
for Dynamic Reconfiguration of Xilinx FPGAs,” in Proceedings of
the 16th International Conference on Field Programmable Logic and
Application (FPL), Aug 2006, pp. 1–6.

[13] Xilinx Inc., Two Flows for Partial Reconfiguration: Module Based or
Difference Based, May 2002.

[14] D. Koch, C. Beckhoff, and J. Teich, “A Communication Architecture
for Complex Runtime Reconfigurable Systems and its Implementation
on Spartan-3 FPGAs,” in Proceeding of the ACM/SIGDA international
symposium on Field programmable gate arrays, ser. FPGA ’09. New
York, NY, USA: ACM, 2009, pp. 253–256.

[15] X. Inc., PlanAhead Design Analysis Tool, 2010.

VI. APPENDIX

The scripts to generate the Spartan-6 bus macros are em-
bedded as notes into the PDF document (click on the arrows).

• XDL script
• I/O-pin assignment script for the FPGA editor
• Complete macro generation using FPGA editor
• System with VHDL instantiation template

Sticky Note
Spartan-6 Bus Macro# please save the content of this message box as "bus_macro.xdl"## Tested under ISE 12.3# however, while Macros worked fine with vectorized interfaces on Virtex-5# we found problems on Spartan-6 FPGAs# On the commandlins, the macro is converted with:# xdl -xdl2ncd S6_bus_macro.xdl S6_bus_macro.nmc# After this, we run the FPGA Editor script for adding I/O pins:# fpga_edline -p add_pins.scr# Spartan-6 Bus Macro (4-bit left-to-right and 4-bit right-to-left with output registers)design "C:WORKPaperERSA2011XDLstart.ncd" xc6slx16cpg196-2 v3.2 ;#design "__XILINX_NMC_MACRO" xc6slx16csg324-2;module "S6_bus_macro" "left" , cfg "_SYSTEM_MACRO::FALSE" ; # No Port Definitions for ISE 12.3!!!# port "LI(0)" "left" "D1";# port "LI(1)" "left" "A1";# port "LI(2)" "left" "B1";# port "LI(3)" "left" "C1";# port "LO(0)" "left" "AQ";# port "LO(1)" "left" "BQ";# port "LO(2)" "left" "CQ";# port "LO(3)" "left" "DQ";# port "L_CLK" "left" "CLK";# port "L_RST" "left" "SR";# port "RI(0)" "right" "B1";# port "RI(1)" "right" "C1";# port "RI(2)" "right" "D1";# port "RI(3)" "right" "A1";# port "RO(0)" "right" "AQ";# port "RO(1)" "right" "BQ";# port "RO(2)" "right" "CQ";# port "RO(3)" "right" "DQ";# port "R_CLK" "right" "CLK";# port "R_RST" "right" "SR";inst "left" "SLICEX",placed CLEXM_X8Y33 SLICE_X11Y33 , cfg " A5FFSRINIT::#OFF A5LUT::#OFF A6LUT:left.A6LUT:#LUT:O6=A1 AFF:left.AFF:#FF AFFMUX::AX AFFSRINIT::SRINIT0 AOUTMUX::#OFF AUSED::0 B5FFSRINIT::#OFF B5LUT::#OFF B6LUT:left.B6LUT:#LUT:O6=A1 BFF:left.BFF:#FF BFFMUX::BX BFFSRINIT::SRINIT0 BOUTMUX::#OFF BUSED::0 C5FFSRINIT::#OFF C5LUT::#OFF C6LUT:left.C6LUT:#LUT:O6=A1 CEUSED::#OFF CFF:left.CFF:#FF CFFMUX::CX CFFSRINIT::SRINIT0 CLKINV::CLK COUTMUX::#OFF CUSED::0 D5FFSRINIT::#OFF D5LUT::#OFF D6LUT:left.D6LUT:#LUT:O6=A1 DFF:left.DFF:#FF DFFMUX::DX DFFSRINIT::SRINIT0 DOUTMUX::#OFF DUSED::0 SRUSED::0 SYNC_ATTR::SYNC " ;inst "right" "SLICEX",placed CLEXL_X9Y33 SLICE_X13Y33 , cfg " A5FFSRINIT::#OFF A5LUT::#OFF A6LUT:right.A6LUT:#LUT:O6=A1 AFF:right.AFF:#FF AFFMUX::AX AFFSRINIT::SRINIT0 AOUTMUX::#OFF AUSED::0 B5FFSRINIT::#OFF B5LUT::#OFF B6LUT:right.B6LUT:#LUT:O6=A1 BFF:right.BFF:#FF BFFMUX::BX BFFSRINIT::SRINIT0 BOUTMUX::#OFF BUSED::0 C5FFSRINIT::#OFF C5LUT::#OFF C6LUT:right.C6LUT:#LUT:O6=A1 CEUSED::#OFF CFF:right.CFF:#FF CFFMUX::CX CFFSRINIT::SRINIT0 CLKINV::CLK COUTMUX::#OFF CUSED::0 D5FFSRINIT::#OFF D5LUT::#OFF D6LUT:right.D6LUT:#LUT:O6=A1 DFF:right.DFF:#FF DFFMUX::DX DFFSRINIT::SRINIT0 DOUTMUX::#OFF DUSED::0 SRUSED::0 SYNC_ATTR::SYNC " ; net "LI0", inpin "left" "D1", ; net "LI1", inpin "left" "A1", ; net "LI2", inpin "left" "B1", ; net "LI3", inpin "left" "C1", ; net "LO0", outpin "left" "AQ", ; net "LO1", outpin "left" "BQ", ; net "LO2", outpin "left" "CQ", ; net "LO3", outpin "left" "DQ", ; net "L_CLK", inpin "left" "CLK", ; net "L_RST", inpin "left" "SR", ; net "RI0", inpin "right" "B1", ; net "RI1", inpin "right" "C1", ; net "RI2", inpin "right" "D1", ; net "RI3", inpin "right" "A1", ; net "RO0", outpin "right" "AQ", ; net "RO1", outpin "right" "BQ", ; net "RO2", outpin "right" "CQ", ; net "RO3", outpin "right" "DQ", ; net "R_CLK", inpin "right" "CLK"; net "R_RST", inpin "right" "SR"; net "l2r_0" , outpin "left" D , inpin "right" AX , pip CLEXL_X9Y33 CLEXL_LOGICIN_B6 -> XX_AX , pip CLEXM_X8Y33 X_D -> CLEXM_LOGICOUT9 , pip INT_X8Y33 LOGICOUT9 -> ER1B0 , pip INT_X9Y33 ER1E0 -> LOGICIN_B6 , ;net "l2r_1" , outpin "left" A , inpin "right" BX , pip CLEXL_X9Y33 CLEXL_LOGICIN_B13 -> XX_BX , pip CLEXM_X8Y33 X_A -> CLEXM_LOGICOUT0 , pip INT_X8Y33 LOGICOUT0 -> ER1B1 , pip INT_X9Y33 ER1E1 -> LOGICIN_B13 , ;net "l2r_2" , outpin "left" B , inpin "right" CX , pip CLEXL_X9Y33 CLEXL_LOGICIN_B21 -> XX_CX , pip CLEXM_X8Y33 X_B -> CLEXM_LOGICOUT3 , pip INT_X8Y33 LOGICOUT3 -> ER1B2 , pip INT_X9Y33 ER1E2 -> LOGICIN_B21 , ;net "l2r_3" , outpin "left" C , inpin "right" DX , pip CLEXL_X9Y33 CLEXL_LOGICIN_B28 -> XX_DX , pip CLEXM_X8Y33 X_C -> CLEXM_LOGICOUT6 , pip INT_X8Y33 LOGICOUT6 -> ER1B3 , pip INT_X9Y33 ER1E3 -> LOGICIN_B28 , ;

Sticky Note
net "r2l_0" , outpin "right" B , inpin "left" AX , pip CLEXL_X9Y33 XX_B -> CLEXL_LOGICOUT3 , pip CLEXM_X8Y33 CLEXM_LOGICIN_B6 -> X_AX , pip INT_X8Y33 WL1E0 -> LOGICIN_B6 , pip INT_X9Y33 LOGICOUT3 -> WL1B0 , ;net "r2l_1" , outpin "right" C , inpin "left" BX , pip CLEXL_X9Y33 XX_C -> CLEXL_LOGICOUT6 , pip CLEXM_X8Y33 CLEXM_LOGICIN_B13 -> X_BX , pip INT_X8Y33 WL1E1 -> LOGICIN_B13 , pip INT_X9Y33 LOGICOUT6 -> WL1B1 , ;net "r2l_2" , outpin "right" D , inpin "left" CX , pip CLEXL_X9Y33 XX_D -> CLEXL_LOGICOUT9 , pip CLEXM_X8Y33 CLEXM_LOGICIN_B21 -> X_CX , pip INT_X8Y33 WL1E2 -> LOGICIN_B21 , pip INT_X9Y33 LOGICOUT9 -> WL1B2 , ;net "r2l_3" , outpin "right" A , inpin "left" DX , pip CLEXL_X9Y33 XX_A -> CLEXL_LOGICOUT0 , pip CLEXM_X8Y33 CLEXM_LOGICIN_B28 -> X_DX , pip INT_X8Y33 WL1E3 -> LOGICIN_B28 , pip INT_X9Y33 LOGICOUT0 -> WL1B3 , ;endmodule "S6_bus_macro" ;

Sticky Note
I/O Pin Script for Spartan-6 Bus Macro# please save the content of this message box as "add_pins.scr"# # Help:# run the script from the command line with:# fpga_edline -p add_pins.scrsetattr main edit-mode read-writeopen hm S6_bus_macro.nmcunselect -allselect net "LI0"select net "LI1"select net "LI2"select net "LI3"select net "LO0"select net "LO1"select net "LO2"select net "LO3"select net "L_CLK"select net "L_RST"select net "RI0"select net "RI1"select net "RI2"select net "RI3"select net "RO0"select net "RO1"select net "RO2"select net "RO3"select net "R_CLK"select net "R_RST"# in some ISE versions, we have to delete the dummy nets but not in ISE 12.3 ...#deleteunselect -allselect pin SLICE_X13Y33.CLKadd extpinpost attr pin SLICE_X13Y33.CLKsetattr pin SLICE_X13Y33.CLK external_name R_CLKunpost pin "SLICE_X13Y33.CLK"unselect -allselect pin SLICE_X13Y33.SRadd extpinpost attr pin SLICE_X13Y33.SRsetattr pin SLICE_X13Y33.SR external_name R_RSTunpost pin "SLICE_X13Y33.SR"unselect -allselect pin SLICE_X13Y33.B1add extpinpost attr pin SLICE_X13Y33.B1setattr pin SLICE_X13Y33.B1 external_name RI0unpost pin "SLICE_X13Y33.B1"unselect -allselect pin SLICE_X13Y33.C1add extpinpost attr pin SLICE_X13Y33.C1setattr pin SLICE_X13Y33.C1 external_name RI1unpost pin "SLICE_X13Y33.C1"unselect -allselect pin SLICE_X13Y33.D1add extpinpost attr pin SLICE_X13Y33.D1setattr pin SLICE_X13Y33.D1 external_name RI2unpost pin "SLICE_X13Y33.D1"unselect -allselect pin SLICE_X13Y33.A1add extpinpost attr pin SLICE_X13Y33.A1setattr pin SLICE_X13Y33.A1 external_name RI3unpost pin "SLICE_X13Y33.A1"unselect -allselect pin SLICE_X13Y33.AQadd extpinpost attr pin SLICE_X13Y33.AQsetattr pin SLICE_X13Y33.AQ external_name RO0unpost pin "SLICE_X13Y33.AQ"unselect -allselect pin SLICE_X13Y33.BQadd extpinpost attr pin SLICE_X13Y33.BQsetattr pin SLICE_X13Y33.BQ external_name RO1unpost pin "SLICE_X13Y33.BQ"unselect -allselect pin SLICE_X13Y33.CQadd extpinpost attr pin SLICE_X13Y33.CQsetattr pin SLICE_X13Y33.CQ external_name RO2unpost pin "SLICE_X13Y33.CQ"unselect -allselect pin SLICE_X13Y33.DQadd extpinpost attr pin SLICE_X13Y33.DQsetattr pin SLICE_X13Y33.DQ external_name RO3unpost pin "SLICE_X13Y33.DQ"unselect -allselect pin SLICE_X11Y33.CLKadd extpinpost attr pin SLICE_X11Y33.CLKsetattr pin SLICE_X11Y33.CLK external_name L_CLKunpost pin "SLICE_X11Y33.CLK"unselect -allselect pin SLICE_X11Y33.SRadd extpinpost attr pin SLICE_X11Y33.SRsetattr pin SLICE_X11Y33.SR external_name L_RSTunpost pin "SLICE_X11Y33.SR"unselect -allselect pin SLICE_X11Y33.D1add extpinpost attr pin SLICE_X11Y33.D1setattr pin SLICE_X11Y33.D1 external_name LI0unpost pin "SLICE_X11Y33.D1"unselect -allselect pin SLICE_X11Y33.A1add extpinpost attr pin SLICE_X11Y33.A1setattr pin SLICE_X11Y33.A1 external_name LI1unpost pin "SLICE_X11Y33.A1"unselect -allselect pin SLICE_X11Y33.B1add extpinpost attr pin SLICE_X11Y33.B1setattr pin SLICE_X11Y33.B1 external_name LI2unpost pin "SLICE_X11Y33.B1"unselect -allselect pin SLICE_X11Y33.C1add extpinpost attr pin SLICE_X11Y33.C1setattr pin SLICE_X11Y33.C1 external_name LI3unpost pin "SLICE_X11Y33.C1"unselect -allselect pin SLICE_X11Y33.AQadd extpinpost attr pin SLICE_X11Y33.AQsetattr pin SLICE_X11Y33.AQ external_name LO0unpost pin "SLICE_X11Y33.AQ"unselect -allselect pin SLICE_X11Y33.BQadd extpinpost attr pin SLICE_X11Y33.BQsetattr pin SLICE_X11Y33.BQ external_name LO1unpost pin "SLICE_X11Y33.BQ"unselect -allselect pin SLICE_X11Y33.CQadd extpinpost attr pin SLICE_X11Y33.CQsetattr pin SLICE_X11Y33.CQ external_name LO2unpost pin "SLICE_X11Y33.CQ"unselect -allselect pin SLICE_X11Y33.DQadd extpinpost attr pin SLICE_X11Y33.DQsetattr pin SLICE_X11Y33.DQ external_name LO3unpost pin "SLICE_X11Y33.DQ"unselect -allsave -w hm S6_bus_macro.nmcexit

Sticky Note
FPGA Editor Script for Spartan-6 Bus Macro# It will generate a compleete macro# please save the content of this message box as "gen_S6_bus_macro_no_vec.scr"# # Tested under ISE 12.3# Help:# Start the FPGA__editor # Start a new xc6slx16csg324-2 hardmacro with:# File -> New -> Select Hardmacro with filename S6_bus_macro_no_vec.nmc# run the script with:# Tools -> Scripts -> Playback and select this fileunselect -allselect site 'SLICE_X11Y33'addpost attr comp $COMP_0setattr comp $COMP_0 Name leftunpost comp "left"unselect -allselect comp 'left'post block#setattr comp left Config "AFF:#FF AFFMUX:AX AFFSRINIT:SRINIT0 BFF:#FF BFFMUX:BX BFFSRINIT:SRINIT0 CEUSED:0 CFF:#FF CFFMUX:CX CFFSRINIT:SRINIT0 CLKINV:CLK DFF:#FF DFFMUX:DX DFFSRINIT:SRINIT0 SRUSED:0 SYNC_ATTR:SYNC"setattr comp left Config "A6LUT:#LUT:O6=A1 AFF:#FF AFFMUX:AX AFFSRINIT:SRINIT0 AUSED:0 B6LUT:#LUT:O6=A1 BFF:#FF BFFMUX:BX BFFSRINIT:SRINIT0 BUSED:0 C6LUT:#LUT:O6=A1 CFF:#FF CFFMUX:CX CFFSRINIT:SRINIT0 CLKINV:CLK CUSED:0 D6LUT:#LUT:O6=A1 DFF:#FF DFFMUX:DX DFFSRINIT:SRINIT0 DUSED:0 SRUSED:0 SYNC_ATTR:SYNC"block applyend blockunselect -allselect site 'SLICE_X13Y33'addpost attr comp $COMP_1setattr comp $COMP_1 Name rightunpost comp "right"unselect -allselect comp 'right'post block#setattr comp right Config "AFF:#FF AFFMUX:AX AFFSRINIT:SRINIT0 BFF:#FF BFFMUX:BX BFFSRINIT:SRINIT0 CEUSED:0 CFF:#FF CFFMUX:CX CFFSRINIT:SRINIT0 CLKINV:CLK DFF:#FF DFFMUX:DX DFFSRINIT:SRINIT0 SRUSED:0 SYNC_ATTR:SYNC"setattr comp right Config "A6LUT:#LUT:O6=A1 AFF:#FF AFFMUX:AX AFFSRINIT:SRINIT0 AUSED:0 B6LUT:#LUT:O6=A1 BFF:#FF BFFMUX:BX BFFSRINIT:SRINIT0 BUSED:0 C6LUT:#LUT:O6=A1 CFF:#FF CFFMUX:CX CFFSRINIT:SRINIT0 CLKINV:CLK CUSED:0 D6LUT:#LUT:O6=A1 DFF:#FF DFFMUX:DX DFFSRINIT:SRINIT0 DUSED:0 SRUSED:0 SYNC_ATTR:SYNC"block applyend blockunselect -allselect pin 'SLICE_X11Y33.AX'select -k pin 'SLICE_X13Y33.B'addpost attr net $NET_0setattr net $NET_0 name r2l_0unpost net "r2l_0"unselect -allselect pin 'SLICE_X11Y33.BX'select -k pin 'SLICE_X13Y33.C'addpost attr net $NET_1setattr net $NET_1 name r2l_1unpost net "r2l_1"unselect -allselect pin 'SLICE_X11Y33.CX'select -k pin 'SLICE_X13Y33.D'addpost attr net $NET_2setattr net $NET_2 name r2l_2unpost net "r2l_2"unselect -allselect pin 'SLICE_X11Y33.DX'select -k pin 'SLICE_X13Y33.A'addpost attr net $NET_3setattr net $NET_3 name r2l_3unpost net "r2l_3"unselect -allselect pin SLICE_X11Y33.D select -k pin SLICE_X13Y33.AX addpost attr net $NET_4setattr net $NET_4 name l2r_0unpost net "l2r_0"unselect -allselect pin SLICE_X11Y33.A select -k pin SLICE_X13Y33.BX addpost attr net $NET_5setattr net $NET_5 name l2r_1unpost net "l2r_1"unselect -allselect pin SLICE_X11Y33.B select -k pin SLICE_X13Y33.CX addpost attr net $NET_6setattr net $NET_6 name l2r_2unpost net "l2r_2"unselect -allselect pin SLICE_X11Y33.C select -k pin SLICE_X13Y33.DX addpost attr net $NET_7setattr net $NET_7 name l2r_3unpost net "l2r_3"####### ADD I/O Pins NO VECTORIZATION# For vectorizatin add brackets RI(0)...unselect -allselect pin SLICE_X13Y33.CLKadd extpinpost attr pin SLICE_X13Y33.CLKsetattr pin SLICE_X13Y33.CLK external_name R_CLKunpost pin "SLICE_X13Y33.CLK"unselect -allselect pin SLICE_X13Y33.SRadd extpinpost attr pin SLICE_X13Y33.SRsetattr pin SLICE_X13Y33.SR external_name R_RSTunpost pin "SLICE_X13Y33.SR"unselect -allselect pin SLICE_X13Y33.B1add extpinpost attr pin SLICE_X13Y33.B1setattr pin SLICE_X13Y33.B1 external_name RI0unpost pin "SLICE_X13Y33.B1"unselect -allselect pin SLICE_X13Y33.C1add extpinpost attr pin SLICE_X13Y33.C1setattr pin SLICE_X13Y33.C1 external_name RI1unpost pin "SLICE_X13Y33.C1"unselect -allselect pin SLICE_X13Y33.D1add extpinpost attr pin SLICE_X13Y33.D1setattr pin SLICE_X13Y33.D1 external_name RI2unpost pin "SLICE_X13Y33.D1"unselect -allselect pin SLICE_X13Y33.A1add extpinpost attr pin SLICE_X13Y33.A1setattr pin SLICE_X13Y33.A1 external_name RI3unpost pin "SLICE_X13Y33.A1"unselect -allselect pin SLICE_X13Y33.AQadd extpinpost attr pin SLICE_X13Y33.AQsetattr pin SLICE_X13Y33.AQ external_name RO0unpost pin "SLICE_X13Y33.AQ"unselect -allselect pin SLICE_X13Y33.BQadd extpinpost attr pin SLICE_X13Y33.BQsetattr pin SLICE_X13Y33.BQ external_name RO1unpost pin "SLICE_X13Y33.BQ"unselect -allselect pin SLICE_X13Y33.CQadd extpinpost attr pin SLICE_X13Y33.CQsetattr pin SLICE_X13Y33.CQ external_name RO2unpost pin "SLICE_X13Y33.CQ"unselect -allselect pin SLICE_X13Y33.DQadd extpinpost attr pin SLICE_X13Y33.DQsetattr pin SLICE_X13Y33.DQ external_name RO3unpost pin "SLICE_X13Y33.DQ"

Sticky Note
unselect -allselect pin SLICE_X11Y33.CLKadd extpinpost attr pin SLICE_X11Y33.CLKsetattr pin SLICE_X11Y33.CLK external_name L_CLKunpost pin "SLICE_X11Y33.CLK"unselect -allselect pin SLICE_X11Y33.SRadd extpinpost attr pin SLICE_X11Y33.SRsetattr pin SLICE_X11Y33.SR external_name L_RSTunpost pin "SLICE_X11Y33.SR"unselect -allselect pin SLICE_X11Y33.D1add extpinpost attr pin SLICE_X11Y33.D1setattr pin SLICE_X11Y33.D1 external_name LI0unpost pin "SLICE_X11Y33.D1"unselect -allselect pin SLICE_X11Y33.A1add extpinpost attr pin SLICE_X11Y33.A1setattr pin SLICE_X11Y33.A1 external_name LI1unpost pin "SLICE_X11Y33.A1"unselect -allselect pin SLICE_X11Y33.B1add extpinpost attr pin SLICE_X11Y33.B1setattr pin SLICE_X11Y33.B1 external_name LI2unpost pin "SLICE_X11Y33.B1"unselect -allselect pin SLICE_X11Y33.C1add extpinpost attr pin SLICE_X11Y33.C1setattr pin SLICE_X11Y33.C1 external_name LI3unpost pin "SLICE_X11Y33.C1"unselect -allselect pin SLICE_X11Y33.AQadd extpinpost attr pin SLICE_X11Y33.AQsetattr pin SLICE_X11Y33.AQ external_name LO0unpost pin "SLICE_X11Y33.AQ"unselect -allselect pin SLICE_X11Y33.BQadd extpinpost attr pin SLICE_X11Y33.BQsetattr pin SLICE_X11Y33.BQ external_name LO1unpost pin "SLICE_X11Y33.BQ"unselect -allselect pin SLICE_X11Y33.CQadd extpinpost attr pin SLICE_X11Y33.CQsetattr pin SLICE_X11Y33.CQ external_name LO2unpost pin "SLICE_X11Y33.CQ"unselect -allselect pin SLICE_X11Y33.DQadd extpinpost attr pin SLICE_X11Y33.DQsetattr pin SLICE_X11Y33.DQ external_name LO3unpost pin "SLICE_X11Y33.DQ"save -w hm S6_bus_macro_no_vec.nmcunselect -all

Sticky Note
-- Spartan-6 Bus-Macro instantiation template---- Macro placement positions have to be defined in a UCF file, for example:-- INST "inst_S6_bus_macro_0" LOC = "SLICE_X23Y35"; -- INST "inst_S6_bus_macro_1" LOC = "SLICE_X23Y36";---- For partial designs, set compile option -keep_hierachy-- don't set option -u (trim unconnected signals) in MAP--library IEEE;use IEEE.STD_LOGIC_1164.ALL;entity top_partial is Port (clk : in STD_LOGIC; reset : in STD_LOGIC; LI : in STD_LOGIC_VECTOR (3 downto 0); LO : out STD_LOGIC_VECTOR (3 downto 0); RI : in STD_LOGIC_VECTOR (3 downto 0); RO : out STD_LOGIC_VECTOR (3 downto 0));end top_partial;architecture Behavioral of top_partial iscomponent S6_bus_macro is Port (L_CLK : in STD_LOGIC; L_RST : in STD_LOGIC;-- LI : in STD_LOGIC_VECTOR (3 downto 0);-- LO : out STD_LOGIC_VECTOR (3 downto 0); LI0 : in STD_LOGIC; LI1 : in STD_LOGIC; LI2 : in STD_LOGIC; LI3 : in STD_LOGIC; LO0 : out STD_LOGIC; LO1 : out STD_LOGIC; LO2 : out STD_LOGIC; LO3 : out STD_LOGIC; R_CLK : in STD_LOGIC;-- RI : in STD_LOGIC_VECTOR (3 downto 0);-- RO : out STD_LOGIC_VECTOR (3 downto 0)); RI0 : in STD_LOGIC; RI1 : in STD_LOGIC; RI2 : in STD_LOGIC; RI3 : in STD_LOGIC; RO0 : out STD_LOGIC; RO1 : out STD_LOGIC; RO2 : out STD_LOGIC; RO3 : out STD_LOGIC; R_RST : in STD_LOGIC);end component S6_bus_macro;signal tmp : std_logic_vector(88 downto 0);-- set unused pins to '1' as this is directly supportet for each slice inputsignal partial_from_static : std_logic_vector(7 downto 0) := (others=>'1');signal partial_to_static : std_logic_vector(7 downto 0) := (others=>'1');signal static_from_partial : std_logic_vector(7 downto 0) := (others=>'1');signal static_to_partial : std_logic_vector(7 downto 0) := (others=>'1');-- partial modules bus macros static system-- +------+ -- partial_to_static ----->|LI RO|---> static_from_partial -- | |-- partial_from_static <---|LO RI|<--- static_to_partial-- +------+begin--inst_S6_bus_macro : S6_bus_macro-- Port Map(L_CLK => clk,-- L_RST => reset,-- LI0 => LI(0),-- LI1 => LI(1),-- LI2 => LI(2),-- LI3 => LI(3),-- LO0 => LO(0),-- LO1 => LO(1),-- LO2 => LO(2),-- LO3 => LO(3),-- R_CLK => clk,-- R_RST => reset,-- RI0 => RI(0),-- RI1 => RI(1),-- RI2 => RI(2),-- RI3 => RI(3),-- RO0 => RO(0),-- RO1 => RO(1),-- RO2 => RO(2),-- RO3 => RO(3));inst_S6_bus_macro_0 : S6_bus_macro Port Map(L_CLK => clk, L_RST => reset, LI0 => partial_to_static(0), LI1 => partial_to_static(1), LI2 => partial_to_static(2), LI3 => partial_to_static(3), LO0 => partial_from_static(0), LO1 => partial_from_static(1), LO2 => partial_from_static(2), LO3 => partial_from_static(3), R_CLK => clk, R_RST => reset, RI0 => static_to_partial(0), RI1 => static_to_partial(1), RI2 => static_to_partial(2), RI3 => static_to_partial(3), RO0 => static_from_partial(0), RO1 => static_from_partial(1), RO2 => static_from_partial(2), RO3 => static_from_partial(3));inst_S6_bus_macro_1 : S6_bus_macro Port Map(L_CLK => clk, L_RST => reset, LI0 => partial_to_static(4), LI1 => partial_to_static(5), LI2 => partial_to_static(6), LI3 => partial_to_static(7), LO0 => partial_from_static(4), LO1 => partial_from_static(5), LO2 => partial_from_static(6), LO3 => partial_from_static(7), R_CLK => clk, R_RST => reset, RI0 => static_to_partial(4), RI1 => static_to_partial(5), RI2 => static_to_partial(6), RI3 => static_to_partial(7), RO0 => static_from_partial(4), RO1 => static_from_partial(5), RO2 => static_from_partial(6), RO3 => static_from_partial(7));--inst_S6_bus_macro : S6_bus_macro-- Port Map(L_CLK => clk,-- L_RST => reset,-- LI => LI,-- LO => LO,-- R_CLK => clk,-- R_RST => reset,-- RI => RI,-- RO => RO);end Behavioral;

	I Introduction
	II XDL Features
	II-A XDL resource descriptions
	II-B XDL netlist descriptions

	III Use Cases
	III-A Bus Macro Implementation
	III-B Routing Constraints
	III-C Clock Remapping
	III-D Homogeneous Place and Route
	III-E Relocation of netlists
	III-F Design merging
	III-G Design analysis

	IV Common Pitfalls and Issues
	IV-A Avoid Hierarchies for Macros
	IV-B Different ISE Versions

	V Conclusions
	References
	VI Appendix

