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THE x log x CONDITION FOR GENERAL BRANCHING PROCESSES

PETER OLOFSSON,∗ Rice University

Abstract

The x log x condition is a fundamental criterion for the rate of growth of a general
branching process, being equivalent to non-degeneracy of the limiting random variable.
In this paper we adopt the ideas from Lyons, Pemantle and Peres (1995) to present a
new proof of this well-known theorem. The idea is to compare the ordinary branching
measure on the space of population trees with another measure, the size-biased measure.
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1. Introduction

The x log x condition is a fundamental concept in the theory of branching processes, being
the necessary and sufficient condition for a supercritical branching process to grow as its mean.
In a Galton–Watson process with offspring mean m = E[X ] > 1, let Zn be the number of
individuals in the nth generation and let Wn = Zn/mn . Then Wn is a non-negative martingale
and hence Wn → W for some random variable W . The Kesten–Stigum theorem is as follows.

Theorem 1.1. If E[X log X ] < ∞ then E[W ] = 1; if E[X log X ] = ∞ then W = 0 a.s.

It can further be shown that P(W = 0) must either be 0 or equal the extinction probability
and hence E[X log X ] < ∞ implies that W > 0 exactly on the set of non-extinction (see for
example Athreya and Ney (1972)).

The analogue for general single-type branching processes appears in Jagers and Nerman
(1984) and a partial result for general multitype branching processes in Jagers (1989). Lyons et
al. (1995) give a new, very elegant proof of the Kesten–Stigum theorem based on comparisons
between the Galton–Watson measure and another measure, the size-biased Galton–Watson
measure, on the space of progeny trees. Our aim is to further develop these ideas to general
branching processes. To make this paper self-contained, we give a short review of general
branching processes in the next section. As in the Galton–Watson case, it turns out that a
certain branching process with immigration is crucial in the proof; for that purpose we briefly
discuss processes with immigration in Section 3, following Olofsson (1996).

So called size-biased processes are described in Section 4, and in Section 5 the size-biased
measure on the space of population trees is constructed. Not much effort is then needed to
conclude the proof in Section 6.
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2. The x log x condition for general branching processes

We start by giving a quick description of general branching processes, following Jagers
and Nerman (1984). Individuals are identified by descent; the ancestor is denoted by 0, the
individual x = (x1, . . . , xn) belongs to the nth generation and is the xnth child of the xn−1th
child of . . . of the x1th child of the ancestor. This gives the population space

I =
∞⋃

n=0

Nn ,

the set of all individuals.
With each individual x , we associate its birth-time τx and reproduction process ξx . The ξx

are i.i.d. copies of ξ , where ξ(a) is the number of children an individual begets before age a.
We assume that ξ(0) ≡ 0 and E[ξ(a)] < ∞ for all a ≥ 0. The ancestor is assumed to be born
at time τ0 ≡ 0.

A general branching process (or population) is a probability space (
,A, P), where ω ∈ 


is a tree describing family relations between individuals and their real time evolution, i.e.
reproduction processes. Hence an element ω is of the form (ξx )x∈I . If Q is a probability
measure on the set of realizations of point processes with a finite number of points, then P =
QI , since individual reproductions are i.i.d.

Usually the construction is made more general, taking into account not only the reproduc-
tion of an individual, but rather her entire life. The reproduction process is then considered as
one of many possible random objects on the life space. The simpler description given here is
quite enough for our purposes, though.

To count, or measure, the population, random characteristics are used. A random charac-
teristic is a real-valued process χ , where χ(a) gives the contribution of an individual of age
a. We assume that χ is non-negative and vanishing for negative a (no individual contributes
before her birth). The χ-value pertaining to the individual x is denoted by χx ; the χx , x ∈ I ,
are then i.i.d. random objects. The χ-counted population, Zχ

t is defined as

Zχ
t =

∑
x∈I

χx (t − τx ),

the sum of the contributions of all individuals (at time t the individual x is of age t − τx ). The
simplest example of a random characteristic is χ(t) = IR+(t), which is 0 before you are born
and 1 afterwards. Then Zχ

t is the number of individuals born up to time t .
The growth of the population is determined by the Malthusian parameter, α. Denote the

Laplace transform of ξ by ξλ, i.e.

ξλ =
∫ ∞

0
e−λtξ(dt),

and define the Malthusian parameter through

E[ξα] = 1,

where we assume that 0 < α < ∞, the supercritical case. Also assume that the stable age of
child-bearing, β, defined through

β =
∫ ∞

0
te−αt E[ξ(dt)], (2.1)
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is finite. The fundamental convergence result is

e−αt Zχ
t → E[χα]

αβ
W, (2.2)

as t → ∞. Under different sets of conditions different modes of convergence may be obtained.
We will not mention this further, the emphasis being on the properties of the limiting random
variable W . This variable is the limit of the intrinsic martingale, Wt , introduced in Nerman
(1981). Denote x’s mother by mx and let

It = {x : τmx ≤ t < τx },
the set of individuals whose mothers are born before time t , but who themselves are born after
t . Now let

Wt =
∑
x∈It

e−ατx ,

the individuals in It summed with time dependent weights. If Ft is the σ -algebra generated
by the reproductions of the individuals not stemming from It (the pre-It -σ fields, see Jagers
(1989) for details) then {Wt ,Ft} is a real time non-negative martingale with E[Wt ] = 1.

By (2.2), χ enters asymptotically only through a constant. All the randomness is captured
in W and the x log x theorem now takes the following form.

Theorem 2.1. If E[ξα log+ ξα] < ∞ then E[W ] = 1; if E[ξα log+ ξα] = ∞ then W = 0
a.s.

As in the Galton–Watson case E[W ] = 1 implies that W > 0 on the set of non-extinction.
Also note that in the Galton–Watson case, ξα = Xe−α which gives α = log m and we

recognize the Kesten–Stigum theorem.

3. Processes with immigration

Now consider a general branching process where new individuals v1, v2, . . . immigrate
according to some point process η with points (τv1 , τv2, . . . ). Immigrating individuals initiate
independent branching processes according to the population law P. If we start with no
individuals at time 0 and let Zχ

t (k) denote the process started by vk at time τvk , we can describe
the resulting process, denoted by Z̃χ

t , as the superposition

Z̃χ
t =

η(t)∑
k=1

Zt−τvk
(k), (3.1)

a general branching process with immigration. Considering τvk as vk’s birth time, the defin-
itions of It and Wt remain the same when there is immigration but there is one fundamental
difference. In a process without immigration the sets It , t ≥ 0, are covering in the sense that,
with t1 ≤ t2, It2 stems from It1 , i.e. any individual in It2 either itself belongs to It1 or has an
ancestor in it. When there is immigration this is no longer true since an individual in It2 can
also stem from an individual who immigrated between t1 and t2 and the martingale property
no longer holds. A useful fact is that with the special characteristic

χ∗(t) = eαt
∫

(t ,∞)

e−αuξ(du), t ≥ 0
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(χ∗(t) = 0 for t < 0) we have Wt = e−αt Zχ∗
t . Agree to use the notation W̃t when there is

immigration and Wt when there is not and apply (3.1) to obtain

W̃t =
η(t)∑
k=1

e−ατvk Wt−τvk
.

As mentioned above, this is no longer a martingale. The asymptotics of W̃t in particular and
of Z̃χ

t in general is treated (in the more general context of a multitype process with arbitrary
type space) in Olofsson (1996). From that reference we need only the following lemma.

Lemma 3.1. On {ηα < ∞} there exists an a.s. finite random variable W̃ such that W̃t → W̃
a.s. as t → ∞.

Note that, since η has points (τv1 , τv2 , . . . ), its Laplace transform becomes

ηα =
∫ ∞

0
e−αtη(dt) =

∞∑
k=1

e−ατvk ,

a representation that will be used in what follows.

4. Size-biased processes

A crucial concept for the Lyons–Pemantle–Peres proof is that of size-biased trees. In
the Galton–Watson case these are constructed with the aid of so-called size-biased random
variables which are defined as follows. Let X be a non-negative, integer-valued random
variable with P(X = k) = pk and E[X ] = m. A random variable X̃ is said to have the
size-biased distribution of X if

P(X̃ = k) = kpk

m
.

A size-biased Galton–Watson tree is constructed in the following way. Let X be the number
of children and let X̃ have the size-biased distribution of X . Start with a number X̃0 of
individuals. Pick one of these at random, call her v1 and give her a size-biased number X̃1
of children. Give the other individuals ordinary Galton–Watson descendant trees. Pick one of
v1’s children at random, give her a size-biased number X̃2 of children, give her sisters ordinary
Galton–Watson descendant trees and so on. The resulting tree is called a size-biased Galton–
Watson tree. Indeed, with Wn = Zn/mn , the number of individuals in the nth generation
normed by its expectation, GWn denoting the ordinary Galton–Watson measure restricted to
the n first generations and G̃W n denoting the size-biased measure that arises from the above
construction, the relation

G̃W n = WnGWn, (4.1)

holds. Thus it is the martingale Wn that size-biases the tree and we note that the size-biased
measure G̃W on the set of trees gives mass zero to the set of finite trees, i.e. extinct processes.

General branching processes require a more general concept. For that purpose, note that X̃
has the size-biased distribution of X if and only if

P(X̃ = k) = E

[
X

m
; X = k

]
.
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In a general process X is replaced by the reproduction process ξ , the size of which is properly
measured by its Laplace transform, ξα. We denote by � the set of realizations of point
processes on R+ with a finite number of points, equip it with some appropriate σ -algebra
G and make the following definition.

Definition 4.1. The point process ξ̃ is said to have the size-biased distribution of ξ if

P(ξ̃ ∈ A) = E[ξα; ξ ∈ A],
for every A ∈ G.

An immediate consequence of this definition is the following.

Lemma 4.1. If ξ̃ has the size-biased distribution of ξ then

E[g(ξ̃ )] = E[ξαg(ξ )],
for every measurable function g : � → R.

Proof.

E[g(ξ̃)] =
∫

�

g(γ )E[ξα; ξ ∈ dγ ]

=
∫

�

γ αg(γ )Pξ−1(dγ ) = E[ξαg(ξ )].

Note that a size-biased point process always contains points since

P(ξ̃ (∞) = 0) = E[ξα; ξ(∞) = 0] = 0.

Also note that in the Galton–Watson process, ξ(dt) = δ1(dt)X , and hence ξα = e−α X = X/m
(recall the definition of α which here reduces to me−α = 1).

Size-biased processes are not new in the theory of general branching processes. In fact they
appear automatically in the stable population, described in Jagers and Nerman (1984). We will
return to this fact in the next section.

5. The size-biased measure

Now consider a general branching process without immigration. For a fixed ω ∈ 
, let
[ω]t denote the set of trees that coincide with ω up to time t . If x is an individual in It

then let [ω; x]t denote the set of trees with distinguishable paths, such that the tree is in
[ω]t , the path starts from the root, does not backtrack and goes through x . Assume that
the ancestor reproduces according to γ ∈ � and denote the descendant trees of her children
ω(1), ω(2), . . . , ω(k), where k = γ (∞). Suppose that x belongs to ω(i), i.e. x = iy for some y.
Then clearly the population law P satisfies the recursion

dP[ω]t = Pξ−1(dγ )

γ (t)∏
j=1

dP[ω( j)]t−τ j(γ )

= γ α Pξ−1(dγ )
1

γ α
dP[ω(i)]t−τi(γ )

∏
j �=i

dP[ω( j)]t−τ j(γ )
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where the ‘dγ ’ is understood but suppressed on the left hand side.
We shall in a moment construct a measure P̃∗ on the set of infinite trees with infinite

distinguishable paths, such that

d P̃∗[ω; x]t = γ α Pξ−1(dγ )
e−ατi (γ )

γ α
d P̃∗[ω(i); y]t−τi(γ )

∏
j �=i

dP[ω( j)]t−τ j (γ ). (5.1)

Since τy(ω
(i)) = τx (ω) − τi(γ ) it is easily obtained that

d P̃∗[ω; x]t = e−ατx (ω)dP[ω]t .

The projection P̃ of P̃∗ onto the set of trees then satisfies

d P̃[ω]t =
∑
x∈It

d P̃∗[ω; x]t = Wt(ω)dP[ω]t , (5.2)

which is the analogue of (4.1). The expression for d P̃∗[ω; x]t suggests the following construc-
tion.

Let ξ̃ be a point process which has the size-biased distribution of ξ , i.e.

P(ξ̃ ∈ A) = E[ξα; ξ ∈ A] =
∫

A
γ α Pξ−1(dγ ).

Start with the ancestor, now called v0, give her a reproduction process γ = ξ̃0 where ξ̃0 has
the distribution of ξ̃ . Pick one of the children so that the kth child is chosen with probability
e−ατk (γ )/γ α. Call this child v1, give her a size-biased reproduction ξ̃1 and give her sisters
independent descendant trees, each following the law P. Continue in this way and define the
measure P̃∗ to be the joint distribution of the random tree and the random path (v0, v1, . . . );
then P̃∗ satisfies (5.1).

It should here be noted that the size-biased measure P̃ arises by going backwards in the
stable population described in Jagers and Nerman (1984). Indeed, if we consider Ego as the
ancestor, the process in which her mother was born has the size-biased distribution of the
reproduction process. Continuing backwards in this way, regarding consecutive mothers as the
individuals selected to form the path and aunts as the remaining children, the resulting measure
is P̃ .

The individuals off the path (v0, v1, . . . ) constitute a general branching process with im-
migration (the immigrants being the children of v0, v1, . . . , not v0, v1, . . . themselves). To
describe the immigration process, let I j,k be the indicator of the event that v j−1’s kth child is
not chosen to be v j and denote the kth point in ξ̃ by τk(ξ̃ ). The immigration process η is

η(dt) =
∑
j,k

δτk(ξ̃v j )
(dt − τv j )I j,k,

which has Laplace transform

ηα =
∑
j,k

e−ατv j e−ατk(ξ̃v j ) I j,k .

As in Lyons et al. (1995) the following simple lemma plays a key role.
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Lemma 5.1. Let X1, X2, . . . be non-negative i.i.d. random variables with expectation µ. Then

lim sup
n→∞

Xn

n
=

{
0 if µ < ∞
∞ if µ = ∞.

We can now state the immigration theorem.

Theorem 5.1. Consider a general branching process with immigration process η as above.
If E[log+ ξ̃ α] < ∞, then limt→∞ W̃t exists and is finite a.s. while if E[log+ ξ̃ α] = ∞, then
lim supt→∞ W̃t = ∞ a.s.

Proof. First assume that E[log+ ξ̃ α] < ∞. From the construction of the immigration process
we see that τv j is a sum of j i.i.d. random variables T1, T2, . . . , Tj say, with expectation

E[T1] =
∫

�

∞∑
m=1

τm(γ )
e−ατm (γ )

γ α
γ α Pξ−1(dγ )

=
∫

�

∞∑
m=1

τm(γ )e−ατm (γ ) Pξ−1(dγ ) =
∫ ∞

0
te−αt E[ξ(dt)] = β < ∞,

by (2.1). Hence we have that τv j ∼ β j as j → ∞ so that, for any ε > 0, e−ατv j ≤ (e−α(β−ε)) j

a.s. for j large enough. Now note that

ηα ≤
∑
j,k

e−ατv j e−ατk(ξ̃v j )

=
∞∑

j=1

e−ατv j ξ̃ α
v j

< ∞ a.s.,

since, by Lemma 5.1, the ξ̃ α
v j

grow subexponentially. We can now apply Lemma 3.1 to
conclude that limt→∞ W̃t exists and is finite a.s.

Now assume that E[log+ ξ̃ α] = ∞. Recall the set It and note that if an individual is born
at time t , then all her children belong to It . Since vn ’s kth child is born at time τvn + τk(ξ̃vn )

we obtain

W̃τvn
=

∑
x∈Iτvn

e−ατx

≥ e−ατvn

∞∑
k=1

e−ατk(ξ̃vn ) In,k .

Since, for each n, In,k is zero for only one k, we further obtain that

W̃τvn
≥ e−ατvn (ξ̃ α

vn
− 1)

and by Lemma 5.1, lim supt→∞ W̃t = ∞.
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6. Proof of the x log x theorem

Proof of Theorem 2.1. Let Pt and P̃t be the restrictions of P and P̃ to Ft . Then, by (5.2),

d P̃t

dPt
= Wt .

Now let W = lim supt→∞ Wt (so that it is defined everywhere; clearly W = limt→∞ Wt
P-a.s.) and let E denote expectation with respect to P. The following holds (see Durrett
(1991), p. 210):

P̃ � P ⇐⇒ W < ∞ P̃-a.s. ⇐⇒ E[W ] = 1,

and
P̃ ⊥ P ⇐⇒ W = ∞ P̃-a.s. ⇐⇒ E[W ] = 0.

If E[ξα log+ ξα] < ∞ then, by Lemma 4.1, E[log+ ξ̃ α] < ∞. Therefore W < ∞ P̃-a.s. by
Theorem 5.1 and hence E[W ] = 1.

Conversely, if E[ξα log+ ξα] = ∞ then W = ∞ P̃-a.s. so that E[W ] = 0 and hence
W = 0 P-a.s.
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