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Abstract. The XWS (eXtreme WindStorms) catalogue con-

sists of storm tracks and model-generated maximum 3 s

wind-gust footprints for 50 of the most extreme winter wind-

storms to hit Europe in the period 1979–2012. The catalogue

is intended to be a valuable resource for both academia and

industries such as (re)insurance, for example allowing users

to characterise extreme European storms, and validate cli-

mate and catastrophe models. Several storm severity indices

were investigated to find which could best represent a list of

known high-loss (severe) storms. The best-performing index

was Sft, which is a combination of storm area calculated from

the storm footprint and maximum 925 hPa wind speed from

the storm track. All the listed severe storms are included in

the catalogue, and the remaining ones were selected using

Sft. A comparison of the model footprint to station observa-

tions revealed that storms were generally well represented,

although for some storms the highest gusts were underesti-

mated. Possible reasons for this underestimation include the

model failing to simulate strong enough pressure gradients

and not representing convective gusts.

A new recalibration method was developed to estimate

the true distribution of gusts at each grid point and correct

for this underestimation. The recalibration model allows for

storm-to-storm variation which is essential given that differ-

ent storms have different degrees of model bias. The cata-

logue is available at www.europeanwindstorms.org.

1 Introduction

European windstorms are extratropical cyclones with very

strong winds or violent gusts that are capable of produc-

ing devastating socioeconomic impacts. They can lead to

structural damage, power outages to millions of people, and

closed transport networks, resulting in severe disruption and

even loss of lives. For example the windstorms Anatol,

Lothar and Martin that struck in December 1999 inflicted

approximately USD 13.5 billion (indexed to 2012) worth of

damage, and led to over 150 fatalities (Sigma, 2007, 2013).

By cataloguing these events, the intensity, location and fre-

quency of historical windstorms can be studied. This is cru-

cial to understanding the factors that influence their devel-

opment (such as the North Atlantic jet stream or the North

Atlantic Oscillation), and for evaluating and improving the

predictions of weather and climate models.

Publicly available historical storm catalogues, such as

HURDAT (Landsea et al., 2004) and IBTRACS (Levinson

et al., 2010), are widely used in the tropical cyclone com-

munity. These catalogues provide quantitative information

about historical tropical cyclones, including observed tracks

of storm position and intensity. Tropical cyclone catalogues

are an essential resource for the scientific community and

are used to understand how climate variability modulates the

development and activity of tropical cyclones (e.g. Ventrice

et al., 2012) and for evaluating climate models (e.g. Strachan

et al., 2013; Manganello et al., 2012). These catalogues are

also widely used within the insurance and reinsurance indus-

try to assess risks associated with intense tropical cyclones.
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Despite the utility of tropical cyclone catalogues, no com-

parable catalogue of European windstorms currently exists.

One of the last major freely available catalogues was that of

Lamb (1991). This catalogue has not been digitised and is

now long out of date. More recent catalogues only contain

information on storm intensity (Della-Marta et al., 2009),

only pertain to a specific country (e.g. Bessemoulin, 2002),

or are not publicly available. The XWS catalogue, available

at www.europeanwindstorms.org, aims to address this gap,

by producing a publicly available catalogue of the 50 most

extreme European winter windstorms. The catalogue con-

sists of tracks and model-generated maps of maximum 3 s

wind gusts at each model grid point over a 72 h period for

each storm (hereafter the maps are referred to as the storm

footprints, and 3 s wind gusts as gusts).

In order to create the catalogue, several scientific questions

had to be addressed:

1. What is the best method for defining extreme European

windstorms?

2. How well do the model storm footprints compare with

observations, and what are the reasons for any biases?

3. What is the best way to recalibrate the footprints given

the observations?

This paper describes how the above questions were ad-

dressed to produce the XWS catalogue. The paper is struc-

tured as follows: Sect. 2 describes the data and methods used

to generate the storm tracks and footprints, and Sect. 3 de-

scribes the method used to select the 50 most extreme storms.

Section 4 evaluates the storm footprints using weather sta-

tion data, and Sect. 5 describes the recalibration method.

Conclusions and future research directions are discussed in

Sect. 6.

2 Data

This section describes the data sets and models used to pro-

duce the data for the 50 extreme European windstorms in the

XWS catalogue, which consists of:

– tracks of the 3-hourly locations of the maximum

T42 850 hPa relative vorticity, minimum mean sea

level pressures (MSLP) and maximum 925 hPa wind

speed over continental European and Scandinavian land

within a 3◦ radius of the vorticity maximum, from the

ERA Interim reanalysis identified by an automated cy-

clone tracking algorithm (Hodges, 1995, 1999);

– maximum 3 s gust footprints over a 72 h period using the

ERA Interim reanalysis dynamically downscaled using

the Met Office Unified Model;

– recalibrated maximum 3 s gust footprints using Met Of-

fice Integrated Data Archive System (MIDAS) weather

station observations.

The details of the storm tracks and the modelled footprints

will be described below. The details of the recalibration will

be discussed in Sect. 5.

2.1 Storm tracks

Storms are tracked in the European Centre for Medium

Range Weather Forecasts (ECMWF) Interim Reanalysis

(ERA Interim) data set (Dee et al., 2011), over 33 extended

winters (October–March 1979/80–2011/12). The identifica-

tion and tracking of the cyclones is performed following the

approach used in Hoskins and Hodges (2002) based on the

Hodges (1995, 1999) tracking algorithm. This uses 850 hPa

relative vorticity to identify and track the cyclones.

Previous studies (Hodges et al., 2011) have used 6-hourly

reanalysis data, but here 3-hourly data are used to produce

more reliable tracks since some extreme European wind-

storms have very fast propagation speeds. In addition to pro-

ducing 6-hourly reanalyses, the ERA Interim suite produces

two 10-day forecasts initialised at 00Z and 12Z every day

(Berrisford et al., 2011). To create the 3-hourly data set the

outputs valid at 03Z and 09Z from the forecast initialised at

00Z and the outputs valid at 15Z and 21Z from the forecast

initialised at 12Z were combined with the 6-hourly analyses.

Before the identification and tracking progresses the data are

smoothed to T42 and the large-scale background removed as

described in Hoskins and Hodges (2002), reducing the inher-

ent noisiness of the vorticity and making tracking more reli-

able. The cyclones are identified by determining the vorticity

maxima by steepest ascent maximisation in the filtered data

as described in Hodges (1995). These are linked together, ini-

tially using a nearest-neighbour search, and then refined by

minimising a cost function for track smoothness (Hodges,

1995) subject to adaptive constraints on the displacement

distance and track smoothness (Hodges, 1999). These con-

straints have been modified from those used for 6-hourly data

to be suitable for the 3-hourly data. Storms that last longer

than 2 days are retained for further analysis. The algorithm

identified 5730 storms over the 33 yr period in a European

domain defined as 15◦ W to 25◦ E in longitude, 35 to 70◦ N

in latitude; 50 of these storms were selected for the catalogue

as described in Sect. 3.

The MSLP and maximum 925 hPa wind speed associated

with the vorticity maxima are found in post-processing. This

is done by searching for a minimum/maximum within a cer-

tain radius of the vorticity maximum. A radius of 6◦ is used

for the MSLP. For the 925 hPa wind speed, radii of 3, 6 and

10◦ were tested but only the results for 3◦ are given as this

was found to be the best indicator of storm severity (see

Sect. 3.1). For the MSLP the location of the minimum is only

given if it is a true minimum. If not, the MSLP value given is

that at the vorticity centre.
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Figure 1. Domain of model used to generate the footprints (inner

rectangle). The domain has a rotated pole with a longitude of 177.5◦

and latitude 37.5◦, and in the rotated coordinate frame it extends

from −9.36 to 29.58◦ in longitude, and −17.65 to 16.89◦ in lati-

tude, with spacing 0.22◦.

2.2 Windstorm footprints

2.2.1 Dynamical downscaling

To achieve the best storm representation, the highest resolu-

tion hindcast data set available at the Met Office at the time of

starting the project was selected. This data set was generated

by dynamically downscaling ERA Interim (T255 ∼ 0.7◦) to

a horizontal resolution of 0.22◦ (equivalent to ∼ 24 km at the

model’s equator). The 0.22◦ resolution data set covers the

entire ERA Interim period (1979–2012 at the time of mak-

ing this storm catalogue). The atmospheric model used to

perform the downscaling is the Met Office Unified Model

(MetUM) version 7.4 (Davies et al., 2005). The model’s

non-hydrostatic dynamical equations are solved using semi-

Lagrangian advection and semi-implicit time stepping. There

are 70 (irregularly spaced) vertical levels, with the model top

being 80 km.

The downscaled region covers western Europe and the

eastern North Atlantic (hereafter referred to as the “WEuro”

region), and is shown in Fig. 1. The 0.22◦ MetUM grid uses

a rotated pole at a longitude of 177.5◦ and latitude 37.5◦

so that the grid spacing does not vary substantially over the

domain1.

To create the data set, the 0.22◦ MetUM is initialised every

day at 18Z using full-field initial conditions from the recon-

figured ERA Interim analysis at that time. The 0.22◦ MetUM

runs for 30 model hours, using lateral boundary conditions

generated from the ERA Interim 6-hourly analyses. The first

6 h of model output are disregarded due to spin-up, allowing

the model to adjust from the ECMWF IFS (the ECMWF In-

tegrated Forecast System, ECMWF, 2006) initial conditions,

leaving data for 00Z to 00Z on each day. This results in daily

1Using a non-rotated pole would give a grid resolution of 24 km

at the equator but 16 km at 50◦ latitude, but using the rotated pole

the resolution at 50◦ (true) latitude remains at approximately 24 km,

giving a more regular grid spacing.)

24 h forecasts which are combined to create a new, higher-

resolution data set for the entire ERA Interim period. By

re-initialising the 0.22◦ MetUM runs every 24 h, deviations

from ERA Interim in the centre of the model domain should

be minimised.

2.2.2 Creating the windstorm footprints

For this catalogue the footprint of a windstorm is defined as

the maximum 3 s gust at each grid point over a 72 h period

during which the storm passes through the domain. The 72 h

period was centred on the time which the tracking algorithm

identified as having the maximum 925 hPa wind speed over

land2 within a 3◦ radius of the track centre. The 72 h dura-

tion was chosen because it is commonly used in the insurance

industry (Haylock, 2011), although lifetimes of windstorms

can be longer than this. However, by centring the 72 h pe-

riod at the time mentioned above, the footprints should cap-

ture the storms during their most damaging phase. The 3 s

gust has been shown to have a robust relationship with storm

damage (Klawa and Ulbrich, 2003), and is commonly used in

catastrophe models currently used by the insurance industry.

Maximum 3 s gusts at a height of 10 m, which output every

6 h and give the maximum gust achieved over the preceding

6 h period, from the 0.22◦ MetUM data set are used to create

the footprints.

In the MetUM the gusts are estimated using the relation-

ship Ugust = U10m+Cσ , where U10m is the 10 m wind speed

and σ is the standard deviation of the horizontal wind, esti-

mated from the friction velocity using the similarity relation

of Panofsky et al. (1977). C is a constant (although it is modi-

fied over rough terrain) determined from universal turbulence

spectra. The value of C is set so that there is a 25 % chance

that the resulting 3 s wind gust will be exceeded (Lock and

Edwards, 2013; Beljaars, 1987).

It should be noted that there are several other techniques

available for estimating wind gusts, as described in Sheri-

dan (2011), and Born et al. (2012) showed that different pa-

rameterisation schemes can sometimes lead to differences of

up to 10–20 m s−1 in the estimated gust at a particular site.

A commonly used alternative method for predicting gusts is

to use the maximum wind speed at the vertical levels from

which momentum may be transported to the surface (e.g.

Brasseur, 2001). This method is argued to be more physically

based, although it is not clear if the method adds a signifi-

cant improvement to the gust estimates (Sheridan, 2011). Bi-

ases arising from the gust parameterisation are discussed fur-

ther in Sect. “Underprediction of high gusts for low-altitude

stations”.

Footprints were created for each of the 5730 storms identi-

fied by the tracking algorithm applied to ERA Interim (1979–

2012; see Sect. 2.1).

2Land on the ERA Interim grid in the European domain is de-

fined by 15◦ W to 25◦ E and 35 to 70◦ N, excluding Iceland.
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Figure 2. Footprints of storms 4769, 4773, 4782 and 4774 made by

taking the maximum gusts over the whole domain (contaminated).

2.2.3 Footprint contamination

The European extratropical cyclones identified by the track-

ing algorithm are relatively frequent events. Over the 33

extended winters that have been tracked, on average 2.5

events pass through the domain in any given 72 h period.

Furthermore, extratropical cyclones exhibit temporal cluster-

ing (Mailier et al., 2006), which could result in days with

even more storms. The highest number of cyclones passing

through in a single 72 h period is 8, for the period starting at

00Z on 6 February 1985.

Footprints are therefore likely to include gusts from two

or more cyclones. This can create problems when trying to

attribute damage to a particular event. To attempt to iso-

late the footprint to a particular cyclone, all the gusts within

a 1000 km radius3 of the track position at each 6 h time step

are assumed to be associated with that particular cyclone and

all other data are rejected. The “decontaminated” footprint is

then derived by taking the maximum of these gusts at all grid

points where there are data remaining, within the 72 h period

of the cyclone.

Figure 2 shows the footprints for cyclones with track

IDs 4769, 4773, 4782, 4774, centred on times 15Z 17 Jan-

uary 2007, 06Z 18 January 2007, 15Z 18 January 2007 and

3Extratropical cyclones typically have scales of several hundreds

to ∼ 1000 km. By experimenting with radii of 300 to 2000 km,

we found that 1000 km was generally large enough to capture the

high gusts associated with the storms, but small enough to avoid

contamination from other systems.

Figure 3. As Fig. 2, but footprints were decontaminated using the

method described in Sect. 2.2.3. The track of each storm is over-

plotted to show the relationship between storm track and footprint.

18Z 19 January 2007 respectively, derived by taking maxi-

mum gusts at every individual grid point in the whole do-

main (the contaminated footprints). The footprints are almost

indistinguishable, and are dominated by one large event.

Figure 3 shows the footprints for the same cyclones, but cre-

ated using the decontamination method described above. The

new footprints show that cyclone 4769 was in fact a very

weak event over southern France and the Mediterranean Sea,

cyclones 4773 and 4774 are northern storms which did not

make much impact on land, and the dominant event is cy-

clone 4782, centred on 15Z 18 January 2007, which is the

famous storm Kyrill (January 2007).

The uncontaminated footprints are used for the calculation

of the storm severity indices (see Sect. 3), although in the cat-

alogue both the contaminated and uncontaminated footprints

are available.

3 How to select extreme windstorms

Fifty of the most extreme storms of the 5730 identified by

the tracking algorithm (Sect. 2.1) have been selected for the

XWS catalogue. The challenge was to define an index to

quantify the “extremeness” of a storm, on which to base the

storm selection.

A storm can be defined as extreme in many ways – for ex-

ample in terms of a meteorological index, or extreme values

of insured losses i.e. a severe event (Stephenson, 2008). Note

Nat. Hazards Earth Syst. Sci., 14, 2487–2501, 2014 www.nat-hazards-earth-syst-sci.net/14/2487/2014/
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Table 1. The 23 severe storms highlighted by insurance experts from Willis Re in the period 1979–2012. The indices Umax, N , Sft, Sf and

Sf98 are defined in Sect. 3.1. The insured losses (where available) are from Sigma (2004, 2006, 2007, 2009, 2011, 2012, 2013). Losses have

been converted to be indexed to 2012 values.

Name Date of Umax N (25 km Sft Sf Sf98 Insured

Umax (m s−1) grid boxes) (m s−1) (m s−1) (m s−1) loss (USD)

87J 16 Oct 1987 39.53 622 38 424 457 65 338 104.56 6.3 bn

Anatol 3 Dec 1999 39.86 742 47 007 178 48 102 94.62 2.6 bn

Dagmar-Patrick 26 Dec 2011 30.08 65 1 769 600 516 39.43 0.04 bn

Daria 25 Jan 1990 37.92 881 48 047 669 53 068 72.57 8.2 bn

Emma 29 Feb 2008 25.12 768 12 169 633 7874 78.00 1.4 bn

Erwin 8 Jan 2005 39.22 598 36 077 572 40 914 79.23 2.2 bn

Fanny 4 Jan 1998 34.60 297 12 300 569 6296 15.80 –

Gero 11 Jan 2005 39.13 293 17 552 256 23 032 9.96 0.6 bn

Herta 3 Feb 1990 33.16 437 15 936 658 12 733 49.40 1.5 bn

Jeanette 27 Oct 2002 36.92 1497 75 367 239 91 060 219.21 –

Klaus 24 Jan 2009 37.23 472 24 356 496 26 469 140.22 3.5 bn

Kyrill 18 Jan 2007 36.38 1234 59 432 000 8756 164.46 6.7 bn

Lore 28 Jan 1994 31.60 438 13 818 494 4431 54.17 –

Lothar 26 Dec 1999 36.72 380 18 818 478 10 612 69.09 8.0 bn

Martin 27 Dec 1999 37.18 415 21 328 371 24 460 132.26 3.3 bn

Oratio 30 Oct 2000 38.45 645 36 667 755 18 846 56.39 –

Stephen 26 Dec 1998 39.53 317 19 575 792 36 071 10.16 –

Ulli 3 Jan 2012 36.32 397 19 019 179 15 988 14.19 0.2 bn

Vivian 26 Feb 1990 35.16 940 40 864 068 56 775 73.69 5.6 bn

Wiebke 28 Feb 1990 32.24 751 25 163 891 3382 118.11 1.4 bn

Xylia 28 Oct 1998 26.72 295 5 625 905 2680 54.07 –

Xynthia 27 Feb 2010 32.62 666 23 109 656 18 706 138.80 2.9 bn

Yuma 24 Dec 1997 39.92 205 13 039 350 4035 3.33 –

that here severity is defined in terms of total insurance loss,

however other measures are possible such as human mortal-

ity, ecosystem damage, etc. The aim here was to find an op-

timal objective meteorological index that selects storms that

were both meteorologically extreme and severe. Expert elic-

itation with individuals in the insurance industry led to the

identification of 23 severe storms in the period 1979–2012

(Table 1) which would be expected to be included if con-

sidering insured loss only, over the whole European domain.

The most successful meteorological index is considered to be

the one that ranks most of these 23 severe as extreme (defined

as category C storms in Sect. 3.2, Fig. 4a).

3.1 Possible meteorological indices

Meteorological indices from both the track and footprint of

the storm were investigated. Of the track indices (maximum

T42 950 hPa relative vorticity, minimum MSLP, and maxi-

mum intensity of the storm, Umax, defined as the maximum

925 hPa wind speed over European and Scandinavian land

within a 3◦ radius of the vorticity maximum), Umax was

found to perform the best, giving the most storms in cate-

gory C. Radii of 6 and 10◦ were considered, both resulting in

a slightly poorer performance by the index (fewer storms in

category C). From the footprint, the size of the storm (N ) was

considered, defined as the area of the (uncontaminated) foot-

print that exceeds 25 m s−1 over continental European and

Scandinavian land. A threshold of 25 m s−1 was used as it is

recognised as being the wind speed at which damage starts to

occur. In Lamb (1991) it was noted that wind speeds of 38–44

knots (19.5–22.6 m s−1) damage chimney pots and branches

of trees and wind speeds of 45–52 knots (23.1–26.8 m s−1)

uproot trees and cause severe damage to buildings.

Indices Umax and N can be combined to form a storm

severity index (SSI). Numerous SSIs have been developed

with their uses ranging from the estimation of the return pe-

riod of windstorms over Europe (Della-Marta et al., 2009)

to understanding how windstorms will change under anthro-

pogenic climate change (Leckebusch et al., 2008). An SSI

was used to rank the storms in the catalogue of extreme

storms over the North Sea, British Isles and Northwest Eu-

rope by Lamb (1991). The SSI used by Lamb (1991) is based

on the greatest observed wind speed over land (Vmax), the

area affected by damaging winds (A) and the overall dura-

tion of occurrence of damaging winds (D). Damaging winds

were defined as those in excess of 50 knots (25.7 m s−1):

SLamb = V 3
maxAD.

The cube of the wind speed is a measure of the advection of

kinetic energy and is used to model wind power and damage

www.nat-hazards-earth-syst-sci.net/14/2487/2014/ Nat. Hazards Earth Syst. Sci., 14, 2487–2501, 2014
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Figure 4. (a) Conceptual diagram of meteorological extremity and severity. All 5730 storms can be classified into one of four categories:

severe and not meteorologically extreme (category A), meteorologically extreme and not severe (category B), severe and meteorologically

extreme (category C) and not severe and not meteorologically extreme (category D). The number of storms in category A, B and C must total

50 (nA + nB + nC = 50), with the remaining 5680 (5370–50) storms being in category D. (b) The number of storms in category C (nC) for

the top nB + nC storms, for index Sft.

(Lamb, 1991, p. 7). A similar SSI can be derived by com-

bining the track index U3
max (intensity) and footprint index N

(area), and assuming that the duration of all storms is 72 h in

accordance with the insurance industry definition of an event

(Haylock, 2011):

Sft = U3
maxN.

An alternative to Umax can be calculated from the footprint

rather than the track, by taking the mean of the excess gust

speed cubed at grid points over European and Scandinavian

land. Combining with index N , this gives an SSI calculated

from the footprint only:

Sf =

(

1

N

∑

land,ui>25

(ui − 25)3

)

N =
∑

land,ui>25

(ui − 25)3,

where ui is the maximum gust at grid point i in the foot-

print. A relative local 98th percentile threshold can be used

as an alternative to the fixed threshold, as in Klawa and

Ulbrich (2003). This threshold implies that at any location

storm damages are assumed to occur on 2 % of all days. This

adaptation to wind climate can also be expected to affect the

degree to which damage increases with growing wind speed

in excess of the threshold value, hence the normalised rather

than absolute winds are used. In Klawa and Ulbrich (2003)

weather station data are used, but an equivalent SSI can be

calculated from the footprint to quantify the advantage of us-

ing a relative threshold when predicting severity:

Sf98 =
∑

land,ui>u98,i

(

ui

u98,i

− 1

)3

, (1)

where u98,i is the 98 % quantile of maximum gust speeds

during the period 1979–2012 at grid point i. In Klawa and

Ulbrich (2003) the summand in Eq. (1) is multiplied by pop-

ulation density to calculate a loss index, but here the aim is

to find a purely meteorological index for storm severity.

It should be noted that all of the indices investigated here

are a function of gust or wind speed and area only. Duration

of high winds and gusts may also relate to storm damage, so

incorporation of this into the indices could be investigated in

the future.

3.2 Results

The indices presented in Fig. 5 are related to one another.

A positive association exists between Umax and N and be-

tween Sft and Sf98. Sft has a stronger dependence on N than

Umax and the strongest extremal dependence exists between

Sft and N . The 23 most severe storms are in the top 18 %,

7 %, 5 %, 10 % and 16 % of storms when ranked according

to Umax, N , Sft, Sf (not shown) and Sf98 respectively, hence

severe storms are best characterised by a high value of Sft

(Fig. 5e–h).

The catalogue will comprise of the 23 severe storms and

27 storms which are extreme in the optimal meteorological

index. The intercept of the number of the 23 severe storms iin

the top nB +nC storms and y = x −27 identifies the number

of storms in category C such that 50 storms are selected for

the catalogue (Fig. 4b). Umax, N , Sft, Sf and Sf98 give 15, 15,

17, 10 and 13 storms in category C respectively (Table 2).

The use of the relative threshold index Sf98 results in more

storms in category C than the fixed threshold equivalent, Sf.

The index Sft, however, maximises the number of storms in

category C and therefore is the most successful index at iden-

tifying both meteorologically extreme and severe storms.

Nat. Hazards Earth Syst. Sci., 14, 2487–2501, 2014 www.nat-hazards-earth-syst-sci.net/14/2487/2014/
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Figure 5. The relationship of Umax with N , and Sft with Umax, N ,

and Sf98 for the top 20 % of storms: (a–d) plot the logarithm of

each index, and (e–h) plot the rank of each storm in each index.

Solid black points show the 23 most severe storms.

The location of the 50 storms selected by Umax, N and Sft

are broadly similar, concentrated around the UK and North-

ern Europe (Fig. 6a–c). These are Atlantic storms which are

strong and well represented in the reanalysis data. Indices Sf

and Sf98 select very similarly located storms (Fig. 6d). They

both select “meteorologically extreme and not severe” (cate-

gory B) storms that are located in the Mediterranean which

are generally weaker and less well represented by the reanal-

ysis data due to their small scale (Cavicchia et al., 2013). Of

the 27 category B storms selected by Sft, 10 are also selected

by Umax, 9 by N and 4 by both Umax and N , demonstrating

that Sft selects an almost even combination of large-area and

intense wind speed storms.

Indices Umax, N , Sft, Sf (not shown) and Sf98 select events

from 29, 26, 27, 30 and 30 yr out of the 33 yr period 1979–

2012 respectively, hence all indices represent the period

Table 2. The number of storms in categories A, B and C for each in-

dex, where category A storms are severe and not meteorologically

extreme, category B storms are meteorologically extreme and not

severe, and category C storms are severe and meteorologically ex-

treme. The remaining 5680 storms are in category D (not severe and

not meteorologically extreme).

Index nA nB nC

Umax 8 27 15

N 8 27 15

Sft 6 27 17

Sf 13 27 10

Sf98 10 27 13

Index and severity independent

(worst case) 23 27 0

Index and severity perfectly dependent

(best case) 0 27 23

spanned by the XWS catalogue well (Fig. 7). A similar trend

exists within the time series for all five indices, with more

storms selected in the period 1985–1995 and fewer in the pe-

riod 2000–2010 (Fig. 7).

In summary, the index Sft is the most successful index at

identifying severe storms. It depends on both the area and

maximum wind speed intensity of the storm. The index Sft

selects storms located over the UK and Northern Europe and

samples storms over the full time period of the XWS cat-

alogue, hence giving a good representation of the meteoro-

logically extreme and severe Atlantic storms that occurred

throughout the period. For these reasons Sft is the meteoro-

logical index used to select the 50 storms for the XWS cat-

alogue. It is, however, worth mentioning that for specific re-

gions or countries the performance of each index could be

quite different; for example Sf98 may perform better due to

using local thresholds, and perhaps storm area (N ) may be

less important.

4 Evaluation of MetUM windstorm footprints

Observational data were extracted from the MIDAS

database. For each of the selected storms, all stations roughly

within the WEuro domain which recorded maximum gusts

during the 72 h period were used to evaluate the MetUM

windstorm footprints. The gust data were a mixture of 1-,

3- and 6-hourly maximum gusts.

Example observational footprints for the storms Jeanette

(October 2002) and Kyrill (January 2007) are shown in

Fig. 8a and d. The observational footprints are defined in

the same way as the model footprints, plotting the maxi-

mum gust over the same 72 h period, but instead of a grid-

ded map they show the maximum gust recorded at the lo-

cations of each station. A quick inspection of the footprints

shows that the model and observations agree on the regions
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Figure 6. The location of the centre of 850 hPa relative vorticity when the maximum wind speed over land (Umax) occurs for the 50 storms

selected by (a) Umax, (b) N , (c) Sft (d) Sf98.

Figure 7. The number of events in each winter for the 50 storms

selected using (a) Umax, (b) N , (c) Sft and (d) Sf98.

where the high gusts occur, although it is difficult to confirm

the exact affected region given the irregular locations of the

observations.

Figure 8c and f shows scatter plots of model maximum

gusts against observed maximum gusts for all of the stations

in the observational footprint for each storm. The MetUM

maximum gusts for each specific station location were cal-

culated using bilinear interpolation between grid points.

The scatter plots show that the gusts are scattered about

the y = x line, meaning that in general the model gusts are

in agreement with the observations. This result is especially

impressive when considering that the model gusts have sim-

ply been interpolated from a ∼ 25 km grid to a specific loca-

tion without applying any corrections. For the 50 storms in

the catalogue, the mean root mean square (rms) error in the

model gusts is 5.7 m s−1 (for stations at altitudes less than

500 m, and removing gusts for which the observations read

0 m s−1 which are believed to be erroneous).
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Figure 8. (a) and (d): Observational footprints for the storms Jeanette (October 2002) and Kyrill (January 2007); (b) and (e): corresponding

model footprints for the same storms; (c) and (f): plot of model gust vs. observational gust for each of the stations plotted in the observational

footprint. Gusts from stations with altitudes greater than 500 m are plotted in red, and those with altitude ≤ 500 m are plotted in blue. The

solid line represents y = x; (g) shows the low-altitude data from plots (c) and (f) overlain, with contours representing the density of points

(number of stations per 2 m s−1 × 2 m s−1 box) for easy comparison. Contour levels go from 5 to 35 stations per box in steps of 5.

However, two problems with the model are apparent from

these scatter plots:

– For all storms there is a more dispersed population sep-

arate from the general population, below the y = x line.

It was found that these points are mostly from stations

with altitudes greater than ∼ 500 m (plotted in red).

– For a number of storms the plots of model vs. ob-

served gusts appears to deviate from the y = x line,

flattening off for observed gust speeds of greater than

∼ 25 m s−1, showing that the model is underpredicting

extreme gusts. In Fig. 8 this can be seen for the storm

Kyrill, although the problem is not so severe for the

storm Jeanette.

The first issue has been noted previously, and is a common

issue with climate and numerical weather prediction mod-

els (e.g. Donat et al., 2010; Howard and Clark, 2007). It is

caused by the use of an effective roughness parameterisation,

which is needed to estimate the effect of subgrid-scale orog-

raphy on the synoptic scale flow; however, it causes unreal-

istically slow wind (and hence gust) speeds at 10 m.

In Howard and Clark (2007) a method was proposed to

correct for this effect, by estimating a reference height, href,

above which the wind speeds are unaffected by the surface,

and then assuming a log-profile to interpolate wind speeds

back down to 10 m, using the local vegetative roughness, z0,

rather than the effective roughness.

In this model only wind speeds on seven model levels were

archived, which means that the estimation of wind speeds

at href could be subject to large errors. Nevertheless, apply-

ing the correction to the storm Kyrill gave a clear improve-

ment to the maximum 10 m winds for high-altitude locations,

although the underestimation of extreme gust at lower al-

titudes remained (plot not shown). For this calculation href
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was estimated from orographic data at the resolution of

the MetUM, but it is possible to estimate href from finer-

resolution data (as was done in Howard and Clark, 2007),

which may further improve the correction.

It would be desirable to apply this correction to all of

the storms in the catalogue, although the extraction of the

archived data on all model levels is a time-consuming and

costly process and cannot be done at present. Instead, alti-

tude is used as a covariate in the recalibration model (see

Sect. 5), so this bias should be corrected.

Underprediction of high gusts for low-altitude stations

Possible reasons for the underprediction of high gusts for

low-altitude stations described above include (i) the gust pa-

rameterisation scheme used, and (ii) whether the model can

reproduce the strong pressure gradients. It is unlikely that

the underprediction is dependent on the storms’ locations

because the storms Jeanette and Kyrill passed through simi-

lar areas and have very similar observational footprints, yet

Fig. 8g shows that the underforecasting in Kyrill is much

more pronounced.

Regarding point (i), the gust parameterisation scheme

should take into account the subgrid-scale and sub-time-step

processes that lead to gusts. The parameterisation scheme

used for this work is classed as non-convective (Sheridan,

2011), yet for some of the storms strong convective activ-

ity has been identified: the storm Kyrill featured strong con-

vection along the cold front, which led to heavy precipita-

tion, strong convective gusts and even tornadoes (Fink et al.,

2009). In order to correct for this either convective gusts

should be included in the parameterisation scheme, or a high-

resolution model which explicitly resolves convection should

be used.

However, for some storms it appears that the underesti-

mation of gusts stems from an underlying problem with the

10m winds. Fig. 9a shows a scatter plot of model against ob-

servational gusts and Fig. 9b shows model error in the max-

imum gusts against the model error in the maximum 10 m

10 min mean winds4 at low-altitude (≤ 500 m) stations which

recorded both these measures, for the storm Anatol (Decem-

ber 1999). The stations which recorded gusts greater than

25 m s−1 (which, as for Kyrill, is approximately when the

model begins to systematically underpredict the gusts for this

storm) are highlighted in green. Apart from a few outliers, in

4For the observations the maximum 10 min mean winds are

the maximum of the instantaneous 10 min mean winds which are

recorded every 1, 3, or 6 h depending on the station. The model

maximum wind speeds are the maximum of the instantaneous 10 m

wind speeds which are output every 6 h. Since the model time step is

10 min, the model wind speeds should be comparable to the 10 min

mean observed wind speeds. The true maximum wind speeds of

both the observations and model may be underestimated, but given

the strong correlation between error in maximum gusts and error in

maximum wind speeds this does not appear to be significant.

Fig. 9b all points lie approximately on the y = x line, and the

behaviour of the gust errors > 25 m s−1 is similar to that of

gust errors ≤ 25 m s−1. The correlation coefficient between

gust and wind errors, r , is 0.57 for stations which recorded

gusts greater than 25 m s−1 (after removing outliers with gust

and wind errors greater than 30 m s−1). This strong relation-

ship indicates that for this case the errors in the underlying

winds have a significant contribution to the gust errors.

To investigate whether the underprediction of the 10 m

winds (leading to the underprediction of gusts) is due to the

underestimation of strong pressure gradients (point (ii)), the

observed and modelled minimum MSLP for the storm Ana-

tol were compared.

Figure 10d shows the observed minimum MSLP (over the

same 72 h period over which the maximum gusts were taken)

recorded at all stations where data were available. The mini-

mum MSLP from the model over the same period is shown in

Fig. 10e, and the model MSLP error (model minimum MSLP

– observed minimum MSLP) in Fig. 10f.

These plots show that Anatol deepened earlier (further

west) than the model predicted, and so the depth of the min-

imum MSLP over the UK is underestimated. The model and

observations appear to agree on the location of an MSLP

minimum over Denmark, southern Sweden, and extending

into the Baltic states, although again the minimum over Den-

mark is underestimated.

A possible reason for failure of the model to capture the

low over the UK is that the western boundary of the WEuro

domain is too far east to capture the early stages of this storm

well. If the storm develops outside the western boundary,

when it enters the domain the 0.22◦ MetUM is only being

driven at the boundaries, so it may not simulate a low as ex-

treme as in the reanalysis data. When the MetUM is reini-

tialised (every 24 h) with the storm already within the domain

it then has the initial conditions to develop into an extreme

event. This is expected to be more of a problem for rapidly

moving storms which can travel quite far into the domain

before reinitialisation. There is also the possibility that even

once a cyclone has been correctly initialised, its track and

intensity could deviate from observations over the next 24 h.

The observational and model footprints of Anatol are

shown in Fig. 10a and b, and the model gust error for sta-

tions with altitudes ≤ 500 m is shown in Fig. 10c. These plots

show that the main regions where the model gusts are under-

estimated are over the UK, Denmark and northern Germany,

just to the south of the regions where the model failed to re-

produce the depth of the central MSLP, i.e. in regions where

the model pressure gradients would be underestimated.

Figure 10g shows the maximum model geostrophic

winds against maximum observed geostrophic winds5 for

5For Fig. 10c, the observed geostrophic winds were estimated by

reconstructing the observed 6-hourly mean sea level pressure field

by bilinearly interpolating MSLP station recordings. The instanta-

neous geostrophic winds could then be estimated from ∂P/∂x and
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Figure 9. (a) Scatter plot of model gust against observed gust for the storm Anatol, for stations with altitudes ≤ 500 m only. (b) Plot of error

in model gust (model gust – station gust) vs. error in model wind at each of the stations that recorded both gusts and winds also for Anatol.

In both plots points representing stations which recorded gusts greater than 25 m s−1 are plotted in green, and the solid line represents y = x.

Figure 10. Case study for the storm Anatol: (a) observational footprint; (b) model footprint; (c) map of model gust error (observed – model

gust); (d) minimum MSLP at observational stations; (e) minimum MSLP from the model; (f) map of model MSLP error (model – observed

MSLP) for stations with altitudes ≤ 500 m; (g) maximum model geostrophic wind against maximum “observed” geostrophic wind. Each

point represents the maximum geostrophic winds at the location of a station with altitude ≤ 500 m which recorded gusts during this storm.

Points representing the locations of stations which recorded gusts > 25 m s−1 are highlighted in green, and the solid line represents y = x;

(h) as in (g) but for the storm Jeanette for comparison.
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Figure 11. Recalibrated footprints for Jeanette (row 1) and Kyrill (row 2). Column 1 shows observed against raw MetUM maximum gusts

for stations across Europe. As an example, the recalibrated mean (—), 95 % confidence (- - -) and 95 % prediction (· · · ) intervals based on

a station located in London are superimposed. The y = x line is plotted in grey. Column 2 shows the mean recalibrated footprint, column 3

its ratio to the original footprint and columns 4 and 5 the 2.5 and 97.5 % prediction bounds, respectively.

the locations of the stations with altitude ≤ 500 m which

recorded gusts for this storm. The geostrophic winds cor-

responding to the locations of the stations which recorded

gusts > 25 m s−1 are highlighted in green. This plot shows

that the model tends to underpredict geostrophic winds above

approximately 40 m s−1, and that many of the locations of

the underpredicted geostrophic winds correspond to loca-

tions where gusts > 25 m s−1 were recorded. For compari-

son Fig. 10h shows the maximum model geostrophic winds

against maximum observed geostrophic winds for Jeanette,

where, unlike for Anatol, the model reproduces the tight

pressure gradients and high geostrophic winds.

We conclude that the underestimation of strong gusts

(> 25 m s−1) apparent in some storms can be due to several

mechanisms, including the underestimation of convective ef-

fects and strong pressure gradients. It would not make sense

to apply a “universal” correction to all storms, since the prob-

lem varies from storm to storm. The recalibration method

described below (Sect. 5) takes into account storm-to-storm

variation.

5 Footprint recalibration

This section introduces a statistical method for “recalibrat-

ing” windstorm footprints, where recalibration describes es-

timating the true distribution of wind gusts, given the 0.22◦

∂P/∂y in the usual way. The maximum geostrophic winds for both

model and observations were estimated by taking the maximum of

the 6-hourly instantaneous geostrophic winds.

MetUM output. The proposed method is based on polyno-

mial regression between transformed gust speeds: the re-

sponse variable represents station observations and the ex-

planatory variable the MetUM output. All station data within

the footprint’s domain are used, ranging between storms

from 154 to 1224 stations, depending on data availability.

Gusts above 20 m s−1 are recalibrated. Where MetUM gusts

do not exceed 20 m s−1, the recalibrated footprint uses the

original MetUM output. By assuming that the observations

are representative of the true gusts, the regression relation-

ship gives an estimate of the distribution of true gusts given

the MetUM’s output.

A random effects model (Pinheiro and Bates, 2000) is used

to allow multiple windstorm footprints to be recalibrated si-

multaneously, which is achieved by associating a separate

random effect with each storm. This model is based on an

underlying polynomial relationship between observed and

MetUM-simulated gusts, from which storm-specific relation-

ships deviate according to some distributional assumptions

and location-specific covariates. The random effects capture

unmodelled differences between storms, one example being

whether a storm has a sting jet (Browning, 2004). Not only

does this allow a specific storm’s footprint to be recalibrated,

but storms without observational data can too, by integrat-

ing out the random effects, though this latter feature is not

utilised here.
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Table 3. Parameter estimates and standard errors for the mean function described in Sect. 5.

Parameter logσ β0 β1 β2 γelev,0 γlon,0 γlat,0 γlon:lat,0

Estimate −1.6023 −1.3411 1.8340 −0.1266 0.0056 0.1382 −0.8135 0.2734

Standard error 0.0007 0.0007 0.0007 0.0008 0.0007 0.0007 0.0007 0.0007

Parameter γelev,1 γlon,1 γlat,1 γlon:lat,1 γelev,2 γlon,2 γlat,2 γlon:lat,2

Estimate −0.0030 −0.1506 0.5199 −0.1883 0.0004 0.0292 −0.0832 0.0321

Standard error 0.0006 0.0007 0.0007 0.0007 0.0002 0.0008 0.0007 0.0007

Statistical model specification

The notation adopted is that Yj (s) is the observed maximum

gust for storm j , j = 1, . . . ,J , at location s, and Xj (s) is

the corresponding MetUM output, noting that only Xj (s) >

20 m s−1 are modelled. Gusts are log-transformed. The ran-

dom effects model then has the formulation

logYj (s) ∼ N
(

mj (logXj (s),z(s)),σ
2
)

,

where z(s) is a vector of known covariates for location s, and

σ 2 is a variance parameter. This assumes that for storm j ,

log observed gusts are normally distributed with mean mj ,

which is a function of MetUM gust, location and elevation,

and variance σ 2. The mean, mj (logXj (s),z(s)), has the lin-

ear form

2
∑

k=0

(

βk + bj,k + zT(s)(γk + cj,k)
)

{logXj (s)}
k,

where (bj,0,bj,1,bj,2)
T ∼ MVN

(

(0,0,0)T,6b

)

(where

MVN means multi-variate normal distribution),

(cj,0,cj,1,cj,2)
T ∼ MVN

(

(0, . . . ,0)T,6c

)

, β0, β1, β2,

γ0, γ1 and γ2 are regression coefficients and 6b and 6c

are covariance matrices. Maximum likelihood is used to

estimate β0, β1, β2, γ 0, γ 1, γ 2, σ 2, 6b, and 6γ .

Let zT(s) = (elevation(s), lon(s), lat(s), lon(s)lat(s))

(where lon(s) and lat(s) represent standardised longitudes

and latitudes with mean zero and unit variance, respectively),

so that γ k = (γelev,k,γlon,k,γlat,k,γlon:lat,k)
T for k = 0,1,2.

This formulation allows the mean relationship to vary with

elevation and location in a sufficiently robust way. Various

combinations of the included covariates were tested, though

those used in the presented model were found to perform

best based on the Akaike Information Criterion. However,

more complex relationships could be captured with covari-

ates related to pressure fields or coastal proximity. Due to

insufficient data, and the desire for parsimony, these were

not tested here.

Parameter estimates (excluding those of 6b and 6c) are

shown in Table 3 together with standard errors. Figure 11

shows the resulting recalibrated footprints for the storms

Jeanette and Kyrill. Column 1 of Fig. 11 shows that the recal-

ibrated gusts are more consistent with the observations than

originally simulated by the MetUM, which are in general

negatively biased (column 3), though predictions are accom-

panied by relatively large uncertainty (prediction intervals,

column 1; columns 4 and 5). The example mean relation-

ships, for a station located in London, between MetUM and

observed gust plotted in column 1 of Fig. 11 (solid lines),

show that for the storm Kyrill, where the MetUM gusts were

significantly underestimated, the mean increases above the

y = x line for MetUM gusts of ∼ 25 m s−1, so recalibra-

tion results in an increase in gust speed. For Jeanette the

MetUM gusts compared better to observations, so the mean

lies close to the y = x line and even shows a slight decrease

for high MetUM gusts. This shows the importance of includ-

ing storm-to-storm variation when recalibrating footprints.

The choice of threshold above which to recalibrate the

MetUM’s gusts is arbitrary; 20 m s−1 was chosen here as it

retained sufficient data to give a reliable statistical model,

while ensuring that gusts were “extreme”. To improve con-

sistency between the raw and recalibrated footprints at the

20 m s−1 threshold, non-exceedances are also used in model

estimation, but downweighted exponentially according to the

deficit between MetUM-simulated gusts and 20 m s−1. How-

ever, little appreciable difference in predictions was found for

thresholds in the range 15–25 m s−1.

6 Conclusions

We have compiled a catalogue of 50 of the most extreme

winter storms to have hit Europe over the period October–

March 1979–2012, available at www.europeanwindstorms.

org. The catalogue gives tracks, model-generated maximum

3 s gust footprints and recalibrated footprints for each storm.

The tracking algorithm used was that of Hodges (1995,

1999), which identified 5730 storms in the catalogue period.

To select the storms for the catalogue several meteorologi-

cal indices were investigated. It was found that the index Sft,

which depends on both storm area and intensity, was the most

successful at characterising 23 severe storms highlighted by

the insurance industry. The 50 storms chosen for the cata-

logue are the 23 severe storms plus the top 27 other storms

as ranked by Sft. Using an index with a relative threshold

would result in more Mediterranean storms being selected,

which are not the focus of this catalogue.
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The severe storms ranked highly (in the top 18 %) in all

meteorological indices investigated. The choice of index is

sensitive to the given list of severe storms, which may be

biased or incomplete. If loss data were available for many

storms this may improve the comparison of the indices.

The model used to generate the storm footprints is the

Met Office Unified Model (MetUM) at 0.22◦ resolution. The

MetUM footprints compare reasonably well to observations,

although for some storms the highest gusts are underesti-

mated. Reasons for this include the model not representing

convective gusts and underestimating strong pressure gradi-

ents. The latter is possibly an effect of the western domain

boundary being close to continental Europe. In addition, in-

creasing the reinitialisation frequency (currently every 24 h)

may also reduce model biases, although this would increase

computational expense.

The MetUM footprints have large errors for gusts at alti-

tudes greater than 500 m due to the orographic drag scheme.

A correction can be applied for this, but it has not been ap-

plied in this version of the catalogue.

A new recalibration method was developed to correct for

the underestimation of high gusts. The method allows for

storm-to-storm variation. This is necessary because not all

storms suffer the same biases. The method gives an estimate

of the true distribution of gusts at each MetUM grid point,

therefore also quantifying the uncertainty in gusts.

We intend to update the catalogue yearly to include recent

events. Possible future plans include extending the catalogue

back in time by performing tracking and downscaling to the

20th century reanalysis data set (Compo et al., 2011), and in-

cluding tracks and footprints derived from different tracking

algorithms and atmospheric models. Further improvements

to the recalibration include recognition of spatial features

of the windstorms, using Gaussian process kriging methods,

and using high-resolution altitude data as a way to statisti-

cally downscale the footprints.
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