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§0. Introduction. Let (M,g) be ann-dimensional, compact, smooth, Riemannian
manifold without boundary. Forn= 2, we know from the uniformization theorem of
Poincaré that there exist metrics that are pointwise conformal tog and have constant
Gauss curvature. Forn≥ 3, the well-known Yamabe conjecture states that there exist
metrics that are pointwise conformal tog and have constant scalar curvature. The
answer to the Yamabe conjecture is proved to be affirmative through the work of
Yamabe [39], Trudinger [38], Aubin [1], and Schoen [31]. See Lee and Parker [23]
for a survey. See also Bahri and Brezis [3] and Bahri [2] for works on the Yamabe
problem and related ones. Forn ≥ 3, let g̃ = u4/(n−2)g for some positive function
u > 0 onM; the scalar curvatureRg̃ of g̃ can be calculated as

Rg̃ = u−((n+2)/(n−2))
(
Rgu− 4(n−1)

n−2 �gu

)
,

whereRg denotes the scalar curvature ofg. Therefore, the Yamabe conjecture is
equivalent to the existence of a solution to

−Lgu= Ru(n+2)/(n−2), u > 0, in M,(0.1)
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whereLg =�g−c(n)Rg, c(n)= (n−2)/(4(n−1)), andR = 0 or±n(n−2).
Consider

Q(ϕ)=
∫
M

(|∇gϕ|2+c(n)Rgϕ
2
)(∫

M
|ϕ|2n/(n−2))(n−2)/n ,

for ϕ ∈H 1(M)\{0}. It is clear that up to some harmless positive constant, a positive
critical point of the functionalQ is a solution of (0.1).
The Sobolev quotient is given by

Q(M,g)= inf {Q(ϕ) | ϕ ∈H 1(M)\{0}}.
It is clear thatQ(M,g) is positive if the first eigenvalue of−Lg is positive, negative
if the first eigenvalue of−Lg is negative, and zero if the first eigenvalue of−Lg is
zero.
Yamabe attempted in [39] to prove thatQ(M,g) is always achieved. However,

in [38] Trudinger pointed out that Yamabe’s proof was seriously flawed and also
corrected Yamabe’s proof in the caseQ(M,g)≤ 0.
It is not difficult to see that, for all(M,g), we have

Q(M,g)≤Q(Sn,g0),

where(Sn,g0) denotes the standardn sphere. It was proved by Aubin [1] thatQ(M,g)

is attained if

Q(M,g) < Q
(
Sn,g0

)
.(0.2)

In the same paper, Aubin also verified (0.2) forn≥ 6 andM not locally conformally
flat by choosing test functions supported near a point where the Weyl tensor does
not vanish. This confirms the Yamabe conjecture whenn ≥ 6 andM is not locally
conformally flat. The remaining cases are more difficult since the local geometry does
not contain sufficient information to conclude (0.2). In [31], Schoen established (0.2)
by constructing global test functions in the remaining cases based on the positive mass
theorems of Schoen and Yau (see [35], [36]). The answer to the Yamabe conjecture
was then proved to be affirmative.
More recently, Schoen has obtained compactness results for the Yamabe problem.

He proved in [34] that when(M,g) is locally conformally flat but not conformally
equivalent to the standard sphere, then all solutions to (0.1) stay in a compact set of
C2(M) and the total degree of all solutions is equal to−1. In the same paper, he also
announced, with indication of the proof, the same result for general manifolds (see
[32] for more details). This is much stronger than the existence results.
Analogues of the Yamabe problem for compact Riemannian manifolds with bound-

ary have been studied by Cherrier, Escobar, and others. In particular, Escobar proved
in [14] that a large class of compact Riemannian manifolds with boundary are con-
formally equivalent to one with constant scalar curvature and zero mean curvature on
the boundary.
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From now on in this paper,(M,g) denotes some smooth compactn-dimensional
Riemannian manifold with boundary unless we specify otherwise. We useLg to
denote�g−c(n)Rg, c(n) to denote(n−2)/(4(n−1)), Bg to denote(∂/∂ν)+((n−
2)/2)hg, ν to denote the outward unit normal on∂M with respect tog, andhg to
denote the mean curvature of∂M with respect to the inner normal (balls inRn have
positive mean curvatures). LetH denote the second fundamental form of∂M in
(M,g) with respect to the inner normal; we denote the traceless part of the second
fundamental form byU :

U(X,Y )=H(X,Y )−hgg(X,Y ).

Definition 0.1. A point q ∈ ∂M is called an umbilic point ifU = 0 at q. ∂M is
called umbilic if every point of∂M is an umbilic point.

Let u > 0 be some positive function onM, let g̃ = u4/(n−2)g, and calculate the
mean curvaturehg̃ as

hg̃ = 2

n−2u
−(n/(n−2))Bgu.

Remark 0.1. The notion of an umbilic point is conformally invariant; namely, if
q ∈ ∂M is an umbilic point with respect tog, it is also an umbilic point with respect
to ϕ4/(n−2)g for any positive smooth functionϕ onM.

Consider the following eigenvalue problem on(M,g):{
−Lgϕ = λϕ, in M◦,
Bgϕ = 0, on ∂M,

(0.3)

whereM◦ =M \∂M denotes the interior ofM. Letλ1(M) denote the first eigenvalue.
It is well known that

λ1(M)= min
ϕ∈H1(M)\{0}

∫
M

(|∇ϕ|2+c(n)Rgϕ
2
)+((n−2)/2)∫

∂M
hgϕ

2∫
M

ϕ2
.

We say that a manifoldM is of positive (negative, zero) type ifλ1(M) > 0 (< 0,=
0). This notion is conformally invariant. As is well known, the existence problems
are more difficult for manifolds of positive type. In this paper, we mainly treat this
case, though we also include some results for other cases.
Letting (M,g) be a manifold of positive type, we consider forc ∈ R,{

−Lgu= n(n−2)u(n+2)/(n−2), u > 0, in M◦,
Bgu= cun/(n−2), on ∂M.

(0.4)

Let�c denote the set of solutions of (0.4) inC2(M).
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The geometric meaning of (0.4) is thatu is a solution of (0.4) if and only if, up to
some harmless positive constant, the scalar curvature ofg̃ = u4/(n−2)g is 1 and the
mean curvature of̃g on ∂M is c.
Consider

Q(ϕ)=
∫
M

(|∇gϕ|2+c(n)Rgϕ
2
)+((n−2)/2)∫

∂M
hgϕ

2(∫
M
|ϕ|2n/(n−2))(n−2)/n ,

for ϕ ∈ H 1(M)\{0}. It is clear that, up to some harmless positive constant,ϕ ∈�0

for any positive critical point of the functionalQ.
The Sobolev quotient is given by

Q(M,g)= inf
{
Q(ϕ) | ϕ ∈H 1(M)\{0}

}
.

It is clear thatQ(M,g) is positive if the first eigenvalue of−Lg is positive, negative
if the first eigenvalue of−Lg is negative, and zero if the first eigenvalue of−Lg is
zero.
Cherrier proved in [10] that, similar to the Yamabe problem,Q(M,g) is achieved

if

Q(M,g) < Q
(
Sn+,g0

)
,(0.5)

where(Sn+,g0) denotes the standard half sphere. In the same paper, he also showed
the regularity of solutions to such problems. For a large class of manifolds, Escobar
established (0.5) in [14], thus showing�0 �= ∅. More recently, Escobar showed in
[15] that, under the same hypotheses as in [14], there existc+ > 0 andc− < 0 such
that�c+ �= ∅ and�c− �= ∅. Naturally, one wonders whether�c �= ∅ for all c ∈ Rn.
Our next theorem suggests that it is probably the case.

Theorem 0.1. For n≥ 3, let (M,g) be a smooth, compact,n-dimensional, locally
conformally flat Riemannian manifold of positive type with umbilic boundary. Then,
for all c ∈ R,�c �= ∅. Furthermore, if(M,g) is not conformally equivalent to the
standard half sphere, then, for allc > 0, there existsC = C(M,g,c) such that for all
u ∈ ∪|c|≤c�c we have

1

C
≤ u(x)≤ C, ∀x ∈M; ‖u‖C2(M) ≤ C.

In fact, we establish a slightly stronger compactness result.
Consider forc ∈ R, 1< p ≤ (n+2)/(n−2),{

−Lgu= n(n−2)up, u > 0, in M◦,
Bgu= cu(p+1)/2, on ∂M.

(∗)p,c

Let�p,c denote the set of solutions of(∗)p,c in C2(M).
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Theorem 0.2. For n≥ 3, let (M,g) be a smooth, compact,n-dimensional, locally
conformally flat Riemannian manifold of positive type with umbilic boundary. We
assume that(M,g) is not conformally equivalent to the standard half sphere. Then,
for any c > 0, there exist constantsδ0 = δ0(M,g,c) > 0 andC = C(M,g,c) > 0
such that, for all

u ∈ (∪((n+2)/(n−2))−δ0≤p≤(n+2)/(n−2)∪|c|≤c�p,c

)∪(∪1+δ0≤p≤(n+2)/(n−2) �p,0
)
,

we have

1

C
≤ u(x)≤ C, ∀x ∈M; ‖u‖C2(M) ≤ C.(0.6)

In view of Theorems 0.1 and 0.2 and the results in [34], we propose the following
two conjectures.

Conjecture 1. Let (M,g) be a smooth, compactn-dimensional Riemannian
manifold with boundary of positive type. Then, for allc ∈ R,�c �= ∅.

Conjecture 2. Let (M,g) be a smooth, compactn-dimensional Riemannian
manifold with boundary of positive type that is not conformally equivalent to the stan-
dard half sphere. Then, for allc > 0, there exist positive constantsδ0 = δ0(M,g,c)

andC = C(M,g,c) > 0 such that, for all

u ∈ (∪((n+2)/(n−2))−δ0≤p≤(n+2)/(n−2)∪|c|≤c�p,c

)
,

we have (0.6).

Remark 0.2. In another paper [19], we confirm Conjecture 1 for all manifolds
of positive type with dimension 5 or higher and boundary not totally umbilic. The
remaining cases are discussed in [20].

Remark 0.3.Due to the results in Section 5, we can deduce Conjecture 1 from
Conjecture 2. Namely, Conjecture 2 is a stronger one.

To prove Theorems 0.1 and 0.2, we establish compactness results for all solutions
of (∗)p,c and then show that the total degree of all solutions to (0.4) is equal to−1.
The heart of the matter is some fine analysis of possible blow-up behavior of solutions
of (0.4) which, together with the positive mass theorem of Schoen and Yau, implies
energy-independent estimates of all solutions to(∗)p,c.
When (M,g) is ann-dimensional (n ≥ 3) compact locally conformally flat Rie-

mannian manifold without boundary, such fine analysis and energy-independent es-
timates were obtained by Schoen in [34] for solutions to

−Lgu= n(n−2)up, u > 0, in M,

where 1< 1+ε0 ≤ p ≤ (n+2)/(n−2). Forn= 3, Schoen and Zhang established in
[37] such fine analysis and energy-independent estimates for solutions to

−Lgu=K(x)up, u > 0, in M,
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where 1< 1+ ε0 ≤ p ≤ 5, K > 0 is some positive function inC2(M), andM is
locally conformally flat.
Along the approach initiated by Schoen, the second author extended in [25] and

[26] the above-mentioned results of Schoen and Zhang to dimensionn = 4, as well
as to dimensionn ≥ 5 under a suitable(n−2)-flatness hypothesis ofK near critical
points ofK. He also established in [24] such fine analysis and energy-independent
estimates in dimensionn= 3 for solutions to{

−Lgu=Kup, u > 0, in M◦,
Bgu= 0, on ∂M,

where 1< 1+ε0 ≤ p ≤ 5,K > 0 is some positive function inC2(M),M is locally
conformally flat, and∂M is umbilic. See Brezis, Li, and Shafrir [5], Chang, Gursky,
and Yang [7], Chen and Lin [9], and Li and Zhu [28] for related results.
The starting point of most of the above-mentioned results on fine asymptotic anal-

ysis and energy-independent estimates is the following Liouville-type theorem inRn

(n≥ 3) of Caffarelli, Gidas, and Spruck [6], which asserts that any solution of
−�u= n(n−2)u(n+2)/(n−2), u > 0, in Rn

is of the form

u(x)=
(

λ

1+λ2|x−x|2
)(n−2)/2

for someλ > 0 andx ∈ Rn (see also Chen and Li [8] for a more direct proof). Under
an additional hypothesis thatu(x)=O(|x|2−n) for largex, the above Liouville-type
theorem was obtained by Obata [30] and Gidas, Ni, and Nirenberg [16].
To establish results on fine asymptotic analysis and energy-independent estimates

to solutions of(∗)p,c, one needs to establish some Liouville-type theorem in the half
spaceRn+ (n≥ 3). This was carried out by the second author and Zhu in [27], where
they proved that any solution of−�u= n(n−2)u(n+2)/(n−2), u > 0, in Rn+,

∂u

∂xn
= cun/(n−2), on ∂Rn+,

is of the form

u
(
x′,xn

)= ( λ

1+λ2
∣∣(x′,xn)−(x′,xn

)∣∣2
)(n−2)/2

for someλ > 0,x′ ∈ Rn−1, andxn = (n−2)λ−1c. Under an additional hypothesis that
u(x)=O(|x|2−n) for largex, the above Liouville-type theorem inRn+ was obtained
by Escobar in [12].
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Our proof of Theorems 0.1 and 0.2 goes along the lines of [25] and [32]. The
main difficulties we need to overcome here are caused by the nonlinear boundary
term cun/(n−2) in (0.4). In §1, we make some preliminary reductions based on the
Liouville-type theorems of Caffarelli, Gidas, and Spruck inRn and of Li and Zhu in
Rn+, and we state various propositions that we prove later on. Proposition 1.2 rules out
the possibility of bubble accumulations and therefore establishes that only isolated
blow-up points (see Definition 1.1) may occur. Proposition 1.3 asserts that isolated
blow-up points are actually isolated simple blow-up points (see Definition 1.2). Ge-
ometrically, an isolated simple blow-up point corresponds to one sphere only. To
establish Propositions 1.2 and 1.3, we need to have good enough estimates for iso-
lated simple blow-up points. These are stated as in Proposition 1.4. In deriving these
estimates, a basic role is played by Harnack inequalities, which include the usual
Harnack inequality and one involving boundaries (Lemma A.1). Another important
role is played by Pohozaev identities. In §2, we establish Proposition 1.4 where,
among other things, we need to construct suitable barrier functions in the proof of
Lemma 2.2 to handle boundaries. Proposition 1.3 is proved in §3 and Proposition 1.2
in §4. In §5, we first establish the crucial compactness results, Theorem 0.2, by uti-
lizing Propositions 1.1–1.4 and the positive mass theorem of Schoen and Yau. Then
we use Leray-Schauder degree theory to establish the existence results stated in The-
orem 0.1. In fact, we show that the total degree of all solutions is equal to−1. The
above analysis carried out here is for locally conformally flat manifolds with umbilic
boundaries. In the next paragraph, we give some more detailed description of the
proof of Theorems 0.1 and 0.2.
We establish Theorem 0.2 by a contradiction argument. Supposing the contrary of

Theorem 0.2, we find, in view of Theorem 1.1, sequences|ci | ≤ c, pi ≤ (n+2)/(n−
2), pi → (n+2)/(n−2), andui ∈�pi,ci such that

max
M

ui →∞.

It follows from Propositions 1.1–1.4 that, after passing to a subsequence,{ui} has
N(1 ≤ N < ∞) isolated simple blow-up points, denoted as{q(1), . . . ,q(N)}. Let
{q(1)

i , . . . ,q
(N)
i } denote the local maximum points as described in Definition 1.1. It

follows from Proposition 1.4 and standard elliptic theories that

ui

(
q
(1)
i

)
ui → h, in C2

loc

(
M \{q(1), . . . ,q(N)

})
.

Using the hypothesisλ1(M) > 0, we have

h=
N∑
l=1

alG
(·,q(l)

)
, onM,

whereal > 0,∀l, andG(·,q(l)) denotes Green’s function of−Lg with respect to zero
Neumann boundary conditions and centered atq(l). Using the positive mass theorem
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of Schoen and Yau, we know that in a good coordinate system centered atq(1),

h(x)= a1|x|2−n+A+O(|x|),
whereA > 0 is some positive constant. Applying the Pohozaev identity inBσ (q

(1))

for σ > 0 small, we obtain a contradiction fori large by using the estimates we
derived for isolated simple blow-up points.
The compactness part of Theorem 0.1 is contained in Theorem 0.2. To establish the

existence part of Theorem 0.1, we use Theorem 0.2 and the Leray-Schauder degree
theory as follows.
Without loss of generality, we assumeRg > 0 andhg ≡ 0. Letϕ1 > 0 denote the

eigenfunction associated with the first eigenvalueλ1(M) satisfying

‖ϕ1‖2≡
∫
M

(∣∣∇gϕ1
∣∣2+c(n)Rgϕ

2
1

)= 1.
For 0< α < 1, let C2,α(M)+ = {u ∈ C2,α(M) : u > 0 onM}. We define, for

1≤ p ≤ (n+2)/(n−2) andc ∈ R, a mapTp,c : C2,α(M)+ → C2,α(M) as follows:
u= Tp,cv if and only if −Lgu= n(n−2)vp, in M,

∂gu

∂ν
= cv(p+1)/2, on ∂M.

It follows from standard elliptic theories and the hypothesisλ1(M) > 0 that Tp,c

is well defined and is a compact operator. It is clear that�c �= ∅ if and only if
T((n+2)/(n−2)),c has a fixed point. Due to our a priori estimates, we can use the Leray-
Schauder degree theory to show thatT((n+2)/(n−2)),c has a fixed point for allc ∈ R.
For- > 1, letD- denote the the following bounded and open subset ofC2,α(M)+:

D- =
{
v ∈ C2,α(M) : ‖v‖C2,α(M) < -,min

M
v >

1

-

}
.

SinceTp,c is compact, we can define the Leray-Schauder degree of Id−Tp,c inD-

with respect to 0∈ C2,α(M), denoted by deg(Id−Tp,c,D-,0), provided that 0 does
not belong to(Id−Tp,c)(∂D-). It follows from Theorem 0.2 that, for- large enough,
0 does not belong to(Id−T((n+2)/(n−2)),tc)(∂D-) for all 0≤ t ≤ 1. It follows then
from the homotopy invariance of the Leray-Schauder degree that

deg
(
Id−T((n+2)/(n−2)),c,D-,0

)= deg(Id−T((n+2)/(n−2)),0,D-,0
)
.

To evaluate deg(Id−T((n+2)/(n−2)),0,D-,0), we introduce, for 0< α < 1 and
1≤ p ≤ (n+2)/(n−2), another mapFp : C2,α(M)+ → C2,α(M) by

Fp(v)= v−(−Lg

)−1(
E(v)vp

)
,



THE YAMABE PROBLEM 497

where(−Lg)
−1 denotes the inverse operator of−Lg with respect to the zero Neu-

mann boundary condition andE(v) = ∫
M
(|∇gv|2+ c(n)Rgv

2). It is easy to see
from standard elliptic theories thatFp is of the form Id+compact, and therefore
deg(Fp,D-,0) is well defined provided 0 does not belong toFp(∂D-). It follows
from the a priori estimates we derived that 0 does not belong toFp(∂D-) for all
1 ≤ p ≤ (n+2)/(n−2). Consequently, by the homotopy invariance of the Leray-
Schauder degree,

deg(Fp,D-,0)= deg(F1,D-,0), ∀1≤ p ≤ n+2
n−2.

A direct calculation shows that

deg(F1,D-,0)=−1.

Making another homotopy, we also obtain

deg
(
Id−T((n+2)/(n−2)),0,D-,0

)= deg(F(n+2)/(n−2),D-,0
)
.

Combining the above, we have

deg
(
Id−T((n+2)/(n−2)),c,D-,0

)=−1,
from which we conclude that�c �= q∅ for all c ∈ R.
We also present some existence and compactness results for manifolds of negative

type. Let(M,g) be a compactn-dimensional Riemannian manifold of negative type.
Consider forc ∈ R, 1< p ≤ (n+2)/(n−2),{

−Lgu=−n(n−2)up, u > 0, in M◦,
Bgu= cu(p+1)/2, on ∂M.

(0.7)

Let �̃p,c denote the set of solutions of (0.7) inC2(M) and let�̃c = �̃((n+2)/(n−2)),c.

Theorem 0.3. For n ≥ 3, let (M,g) be a smooth, compactn-dimensional Rie-
mannian manifold of negative type. Theñ�c �= ∅ for all c < n− 2. Furthermore,
for all ε > 0, there exist constantsδ0 = δ0(M,g,ε) > 0 and C = C(M,g,ε) >

0 such that, for allu ∈ (∪((n+2)/(n−2))−δ0≤p≤(n+2)/(n−2) ∪−(ε)−1≤c≤n−2−ε �̃p,c)∪
(∪1+δ0≤p≤(n+2)/(n−2)�̃p,0), we have

1

C
≤ u(x)≤ C, ∀x ∈M; ‖u‖C2(M) ≤ C.(0.8)

The above theorem is established in §6.
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§1. Reductions. We point out that ifp stays strictly below the critical exponent
(n+2)/(n−2) and strictly above 1, the compactness of solutions to(∗)p,c is a much
easier matter, since it follows directly from the nonexistence of positive solutions to
the global equation which one arrives at after a rather standard blow-up argument.
The following theorem, not stated in its general form to includec �= 0, is enough for
us in establishing Theorems 0.1 and 0.2.

Theorem 1.1. Let (M,g) be a smooth, compactn-dimensional Riemannian man-
ifold with boundary. Then, for anyδ1> 0, there existsC = C(M,g,δ1) such that, for
all u ∈ ∪1+δ1≤p≤((n+2)/(n−2))−δ1�p,0, we have

1

C
≤ u(x)≤ C, ∀x ∈M; ‖u‖C2(M) ≤ C.

Proof. Suppose that the theorem were false. Then, in view of the Harnack in-
equality, Lemma A.1, and standard elliptic estimates, we could find sequences{pi}
and{ui} ∈�pi,0 satisfying

lim
i→∞pi = p ∈

(
1,

n+2
n−2

)
and

lim
i→∞maxM

ui =∞.

Let qi be a maximum point ofui and letx be a geodesic normal coordinate system
in a neighborhood ofqi given by exp−1qi

. We writeui(x) for ui(expqi (x)). We rescale
x by y = λix with λi = u

(pi−1)/2
i (qi)→∞, and define
v̂i (y)= λ

−(2/(pi−1))
i ui

(
λ−1i y

)
.

Clearly, v̂i (0) = 1,0 ≤ v̂i ≤ 1. Let δ > 0 be some small positive number inde-
pendent ofi. We write g(x) = gab(x)dx

adxb in exp−1qi
(Bδ(0)). Defineg(i)(y) =

gab(λ
−1
i y)dyadyb. Thenv̂i satisfies−Lg(i) v̂i = n(n−2)v̂pi

i . If ∂M∩exp−1qi
(Bδ(0)) �=

∅, the boundary condition of̂vi is Bg(i) v̂i = 0. ApplyingLp-estimates and Schauder
estimates, we know that, after passing to a subsequence and a possible rotation of
coordinates,T = lim i→∞ d(qi,∂M) for some 0≤ T ≤∞, andv̂i converges to a limit
v̂ in C2-norm on any compact subset of{y ∈ Rn : yn ≥−T }, wherev̂ > 0 satisfies

−�v̂ = n(n−2)v̂p, in yn >−T ,

− ∂v̂

∂yn
= 0, on yn =−T , in the case ofT <∞,

v̂(0)= 1, v̂ ≥ 0.
(1.1)

It follows from the Liouville-type theorem of Gidas and Spruck [17] (see also [6]
and [8]) that (1.1) has no solution. This is a contradiction. Thus, we have established
Theorem 1.1.
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The compactness of solutions to(∗)p,c is much more difficult to prove when allow-
ingp ≤ (n+2)/(n−2), since the corresponding global equation does have solutions.
On the other hand, due to the Liouville-type theorems of Caffarelli-Gidas-Spruck
[6] in Rn and Li-Zhu [27] in the half spaceRn+, we have the following proposition,
similar to Lemma 3.1 of Schoen-Zhang [37]. This proposition gives a preliminary
description of large solutionsu of (∗)p,c. Roughly speaking, for suchu, one can find
a finite collection of disjoint ballsBr1(q1), . . . ,BrN (qN) (N may depend onu) inside
whichu is very well approximated in strong norms by standard bubbles. Furthermore,
u satisfiesu(q)≤ C1[d(q, {q1, . . . ,qN })]−(2/(p−1)) for all q in M, whereC1 is some
positive constant independent ofu.

Proposition 1.1. Let (M,g) be a smooth, compactn-dimensional Riemannian
manifold with boundary. For anyc > 0 and any givenR ≥ 1, 0 < ε < 1, there
exist positive constantsδ0 = δ0(M,g,c,R,ε), C0 = C0(M,g,c,R,ε), and C1 =
C1(M,g,c,R,ε) such that, for allu ∈ ∪((n+2)/(n−2))−δ0≤p≤(n+2)/(n−2) ∪|c|≤c �p,c

withmaxM u≥ C0, there exist{q1, . . . ,qN } ⊂M, with N ≥ 1 such that the following
statements are true.

(i) Eachqi is a local maximum point ofu in M and

Bri (qi)∩Brj (qj )= ∅, for i �= j,

where ri = Ru−((p−1)/2)(qi), and Bri (qi) denotes the geodesic ball in(M,g) of
radiusri and centered atqi .
(ii) Either qi ∈M◦,∥∥∥∥∥u−1(qi)u

(
expqi

(
y

u(p−1)/2(qi)

))
−
(

1

1+|y|2
)(n−2)/2∥∥∥∥∥

C2
(
BM
2R(0)
) < ε,

or qi ∈ ∂M, and∥∥∥∥∥∥u−1(qi)u
(
expqi

(
y

u(p−1)/2(qi)

))
−
(

λc

1+λ2c
(|y′|2+|yn+ tc|2

))(n−2)/2
∥∥∥∥∥∥
C2
(
BM
2R(0)
)< ε,

whereBM
2R(0) = {y ∈ TqiM : |y| ≤ 2R, and u−((p−1)/2)(qi)y ∈ exp−1qi

(Bδ(qi))},
y = (y′,yn), λc = 1+(c/(n−2))2, andtc = (c/(n−2)λc).
(iii) d2/(p−1)(qj ,qi)u(qj ) ≥ C0, for j > i, while u(q) ≤ C1[d(q, {q1, . . . ,

qN })]−(2/(p−1)), for all q ∈ M, whered(·, ·) denotes the distance function in met-
ric g.

The proof of Proposition 1.1 follows from the next lemma.

Lemma 1.1. Let (M,g) be a smooth, compactn-dimensional Riemannian man-
ifold. Given anyR ≥ 1, 0 < ε < 1, c > 0. Then there exist positive constants
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δ0= δ0(M,g,R,ε,c) andC0= C0(M,g,R,ε,c) such that, for any compactK ⊂M

and anyu ∈ ∪((n+2)/(n−2))−δ0≤p≤(n+2)/(n−2)∪|c|≤c �p,c with

max
q∈M\K

d2/(p−1)(q,K)u(q)≥ C0,

the following holds.
There existsq0 ∈ M \K, which is a local maximum point ofu in M, and either

q0 ∈M◦,∥∥∥∥∥u−1(q0)u
(
expq0

(
y

u(p−1)/2(q0)

))
−
(

1

1+|y|2
)(n−2)/2∥∥∥∥∥

C2
(
BM
2R(0)
) < ε,(a)

or q0 ∈ ∂M and

∥∥∥∥∥∥u−1(q0)u
(
expq0

(
y

u(p−1)/2(q0)

))
−
(

λc

1+λ2c
(|y′|2+|yn+ tc|2

))(n−2)/2
∥∥∥∥∥∥
C2
(
BM
2R(0)
)< ε

(b)

whereBM
2R(0), λc, and tc are as in Proposition 1.1,d(q,K) denotes the distance of

q to K, andd(q,K)= 1 if K = ∅.

Proof of Lemma 1.1.Suppose no suchδ0 andC0 exist for someR,ε, andc. Then
there exist compactKi ⊂M, ((n+2)/(n−2))−1/i ≤ pi ≤ (n+2)/(n−2), |ci | ≤ c,
and solutionsui of (∗)pi ,ci , such that maxq∈M\Ki

d2/(pi−1)(q,Ki)ui(q)≥ i, and noq0
as in Lemma 1.1 exists. It is easy to deduce from the Hopf lemma thatui > 0 inM. Let
q̂i ∈M \Ki be such thatd2/(pi−1)(q̂i ,Ki)ui(q̂i)=maxq∈M\Ki

d2/(pi−1)(q,Ki)ui(q).
Let x be a geodesic normal coordinate system in a neighborhood ofq̂i given by
exp−1

q̂i
. We writeui(x) for ui(expq̂i (x)) and denoteλi = u

(pi−1)/2
i (q̂i ). We rescalex

by y = λix, and define

v̂i (y)= λ
−(2/(pi−1))
i ui

(
λ−1i y

)
.

In exp−1
q̂i

(Bδ(q̂i)), write g(x) = gab(x)dx
adxb. Defineg(i)(y) = gab(λ

−1
i y)dyadyb.

Then−Lg(i) v̂i = n(n−2)v̂pi

i . Fix some small positive constantδ > 0 independent of

i. If ∂M∩Bδ(q̂i) �= ∅, we may assume, by takingδ smaller, that exp−1q̂i
(∂M)∩Bδ(0)

has only one connected component and may be arranged to let the closest point
on exp−1

q̂i
(∂M) ∩ Bδ(0) to zero be at(0, . . . ,0,−ti ) and exp−1

q̂i
(∂M) ∩ Bδ(0) :=

∂ ′BM
δ (0) be represented as a graph over(x1, . . . ,xn−1) with horizontal tangent plane

at (0, . . . ,0,−ti ) and uniformly bounded second derivatives. The boundary condi-
tion for ui translates intoBg(i) v̂i = ci v̂

(pi+1)/2
i . Note thatλid(q̂i ,Ki) → ∞, and
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for |y| ≤ (1/4)λid(q̂i ,Ki) with x = λ−1i y ∈ exp−1
q̂i

(Bδ(q̂i)), we haved(x,Ki) ≥
(1/2)d(q̂i ,Ki); therefore,(

1

2
d
(
q̂i ,Ki

))2/(pi−1)
ui(x)≤ d

(
x,Ki

)2/(pi−1)ui(x)≤ d
(
q̂i ,Ki

)2/(pi−1)ui

(
q̂i
)
,

which implies, for all|y| ≤ (1/4)λid(q̂i ,Ki) with λ−1i y ∈ exp−1
q̂i

(Bδ(q̂i)), that

v̂i (y)≤ 22/(pi−1) ≤ 22/(p0−1).(1.2)

Standard elliptic theories imply that there exists a subsequence, still denoted asv̂i ,
such thatT = lim λid(q̂i ,∂M) for some 0≤ T ≤∞, c = lim ci for somec ∈ R, and
v̂i converges to a limit̂v in C2 norm on any compact subset of{y = (y1, . . . ,yn) ∈
Rn : yn ≥−T }, wherev̂ > 0 satisfies−�v̂ = n(n−2)v̂(n+2)/(n−2), in yn >−T ,

− ∂v̂

∂yn
= cv̂n/(n−2), on yn =−T , in the case ofT <∞.

(1.3)

By the Liouville-type theorems of Caffarelli, Gidas, and Spruck [6] inRn, and of Li
and Zhu [27] inRn+, we havev̂(y) = (λ/(1+λ2|y− ŷ|2))(n−2)/2 for someŷ ∈ Rn,
λ > 0, and ŷn = −T − (n− 2)−1λ−1c in the case ofT < ∞. Since 1= v̂(0) =
(λ/(1+λ2|ŷ|2))(n−2)/2, we haveλ ≥ 1 and|ŷ| ≤ 1. WhenT =∞, we obtain from
(1.2) thatv̂(y) ≤ 2(n−2)/2 for all y ∈ Rn, and thusλ ≤ 2. WhenT <∞, we take
y = (ŷ′,−T ) in (1.2) and obtain, together withλ≥ 1, thatλ≤ 2+2c2/(n−2).
In the following we only considerT <∞ and divide the rest of the proof into three

cases. The caseT =∞ can be handled similarly to case 1.
Case 1.c < 0. In this case, we see from the explicit form ofv̂ and the boundary con-

dition in (1.3) thatŷn >−T . It follows that there existyi → ŷ which are local maxi-
mum points ofv̂i (y) such that̂vi(yi)→ λ(n−2)/2=maxv̂. Defineqi = expq̂i (λ−1i yi);
thenqi ∈M◦ \Ki is a local maximum point ofui , and, if we repeat the scaling with
qi replacingq̂i , we will obtain a new limitv. Because of the new normalization,
v(y)= (1/(1+|y|2))(n−2)/2. We redefineT = lim d(qi,∂M)λi . Using the boundary
condition forv, we getT =−(c/(n−2)). Thus, for sufficiently largei,∥∥∥∥∥u−1i (qi)ui

(
expqi

(
y

u
(pi−1)/2
i (qi)

))
−
(

1

1+|y|2
)(n−2)/2∥∥∥∥∥

C2
(
BM
2R(0)
) < ε.

This shows that, for largei, ui satisfies (a). This contradicts the contradiction hypoth-
esis we start with.

Case 2.c = 0. In this case,̂yn =−T . It follows that there existyi → ŷ which are
local maximum points of̂vi . We can argue, as in case 1, to reach a contradiction.
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Case 3.c > 0. In this case,̂yn < −T . It follows that there existsyi ∈ ∂ ′BM
λiδ

(0)
that is a local maximum point of̂vi such thatyi → (ŷ′,−T ). If we redo the rescaling
with respect toqi = expq̂i (λ−1i yi) ∈ ∂M, we obtain a limit

v(y)=
(

λ

1+λ2
(|y′|2+|yn+ tc|2

))(n−2)/2
,

where(n− 2)λtc = c andλ = 1+ λ2|tc|2. Thus,λ = λc = 1+ (c/(n− 2))2, tc =
λ−1c (c/(n− 2)), and the conclusion of (b) holds. This again contradicts the initial
contradiction hypothesis. We have thus established Lemma 1.1.

Proof of Proposition 1.1. First, we apply Lemma1.1 by takingK = ∅ andd(q,K)

≡ 1 to obtainq1, which is a maximum point ofu, and the conclusion of Lemma 1.1
holds. Next, we takeK1 = Br1(q1), r1 = Ru−((p−1)/2)(q1). If maxq∈M\K1 d

2/(p−1)
(q,K1)u(q) ≤ C0, we stop. Otherwise, we obtainq2 given by Lemma 1.1. It is
clear from the lemma thatBr1(q1)∩Br2(q2) = ∅, sinceε > 0 can be made very
small from the beginning. We continue this process. The process will stop after
a finite number of steps, since there exists some dimensional constanta(n) > 0
such that

∫
Bri

(qi )
|∇u|2 ≥ a(n). Thus, we obtain{q1, . . . ,qN } ⊂M as in (i) and (ii),

andd2/(p−1)(q,∪N
i=1Bri (qi))u(q) ≤ C0, for anyq ∈M \∪N

i=1Bri (qi). Now, for any
q ∈ M, either q ∈ B2ri (qi) for somei, or d(q,qi) > 2ri, for all 1 ≤ i ≤ N . In
the first case,d(q, {q1, . . . ,qN }) ≤ d(q,qi) < 2ri , so (ii) impliesu(q) ≤ 2u(qi) =
2R2/(p−1)r−(2/(p−1))

i , and so d2/(p−1)(q, {q1, . . . ,qN })u(q) ≤ 2(2R)2/(p−1) ≤
2(2R)2/(p0−1). In the second case,d(q, {q1, . . . ,qN }) ≤ 2d(q,∪N

i=1Bri (qi)), so
d2/(p−1)(q, {q1, . . . ,qN })u(q) ≤ 22/(p−1)C0 ≤ 22/(p0−1)C0. Taking C1 =
max(22/(p0−1)C0,2(2R)2/(p0−1)), we obtain the conclusion of Proposition 1.1.

Though we know from Proposition 1.1 thatu is very well approximated in strong
norms by standard bubbles in disjoint ballsBr1(q1), . . . ,BrN (qN), it is far from the
compactness results we wish to establish. Interactions between all these standard
bubbles have to be analyzed in order to rule out the possibility of blowing-ups.
The next proposition rules out possible accumulations of these standard bubbles,
which implies that only isolated blow-up points (see Definition 1.1) may occur to a
blowing-up sequence of solutions. This proposition plays a crucial role in the proof
of Theorem 0.2, and its proof is much more involved than that of Proposition 1.1.

Proposition 1.2. Let (M,g) be a smooth, compactn-dimensional locally confor-
mally flat Rimannian manifold with umbilic boundary. Given anyc > 0, then for suit-
ably largeR and smallε > 0, there exist positive constantsδ1= δ1(M,g,c,R,ε) and
d = d(M,g,c,R,ε) such that, for allu ∈ ∪((n+2)/(n−2))−δ1≤p≤(n+2)/(n−2)∪|c|≤c�p,c

withmaxM ≥ C0, we have

min
{
d
(
qi,qj

) | 1≤ i,j ≤N,i �= j
}≥ d,
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whereC0 is the constant in Proposition 1.1 andq1, . . . ,qN are the points inM given
by Proposition 1.1.

This proposition is proved in §4. We now begin the process of the reductions. If
Theorem 0.2 were false, then we could find, in view of theLp-estimates, Schauder
estimates, the Harnack inequality, Lemma A.1, and Theorem 1.1, sequences{pi},
{ci}, and{ui} ∈�pi,ci satisfying

n+2
n−2−

1

i
≤ pi ≤ n+2

n−2, lim
i→∞ci = c ∈ R,

and
lim
i→∞maxM

ui =∞.

Fix a largeR and a smallε > 0. Let �(ui) = {qi,1, . . . ,qi,N(i)} be the set of
points selected according to Proposition 1.1. It follows from Proposition 1.2 that
mina �=b d(qi,a,qi,b)≥ d > 0. This shows in particular thatN(i) stays bounded. After
passing to a subsequence, there existN = N(M,g) ≥ 1, q1, . . . ,qN ∈M, such that,
for some 1≤ a ≤ N , qi,a → qa andui(qi,a) →∞, as i →∞. For each sucha,
qi,a → qa is a so-called isolated blow-up point for{ui} defined as follows.

Definition 1.1. Let (M,g) be a smooth, compactn-dimensional Riemannian man-
ifold with boundary, and letr > 0,c > 0, x̄ ∈M, f ∈ C0(Br̄ (x̄)) be some positive
function whereBr̄(x̄) denotes the geodesic ball in(M,g) of radiusr̄ centered at̄x.
Suppose for sequences|ci | ≤ c, pi ≤ (n+2)/(n−2), pi → (n+2)/(n−2), fi → f

in C0(Br̄ (x̄)), {ui} satisfies, forτi = pi−((n+2)/(n−2)), that{
−Lgui = n(n−2)f τi

i u
pi

i , ui > 0 in Br̄(x̄),

Bgui = cif
τi/2
i u

(pi+1)/2
i , on ∂M∩Br̄(x̄),

(1.4)

and there exists a sequence of local maximum points{xi} of ui such thatxi → x̄,
and, for someC > 0,

ui(x)≤ C
[
d(x,xi)

]−(2/(pi−1)), ∀x ∈ Br̄(xi),∀i,

lim
i→∞ui(xi)→∞.

Then we say thatxi → x̄ is an isolated blow-up point of{ui}.
To describe the behavior of blowing-up solutions near an isolated blow-up point,

we define spherical averages ofui centered atxi as follows:

ūi (r)= 1

volg
(
M∩∂Br(xi)

) ∫
M∩∂Br (xi )

ui(z).
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Remark 1.1. Let {xi} and{x̃i} be two sequences tending tox satisfying the prop-
erties in Definition 1.1; thenxi = x̃i for largei.

In the following, we present a Harnack inequality that is used often in treating
isolated blow-up points. We useRn+ to denote the upper half space ofRn and, for
σ > 0 andx ∈ Rn, B+σ (x) = {x = (x1, . . . ,xn) ∈ Rn+||x− x| < σ }, B+σ = B+σ (0),
∂ ′B+σ (x)= ∂B+σ (x)∩∂Rn+, ∂ ′′B+σ (x)= ∂Bσ (x)∩Rn+.
Let fi,hi ∈ C0(B+2 ) satisfy

‖fi‖L∞(B+2 )+‖hi‖L∞(B+2 ) ≤ C,(1.5)

and, for somep0> 1 andc > 0,

p0 ≤ pi ≤ n+2
n−2, |ci | ≤ c.(1.6)

Suppose thatui ∈ C2(B+2 ) is a sequence of solutions to−�ui = fiu
pi

i , ui > 0, in B+2 ,
∂ui

∂xn
= hiu

(pi+1)/2
i , on ∂ ′B+2 .

(1.7)

Lemma 1.2. Assume (1.5), (1.6), and that{ui} satisfies (1.7). Let0 < r < 1/8,

x ∈ B+1/8, and suppose thatxi → x is an isolated blow-up point of{ui}. Then, for all
0< r < r,

sup
B+2r (xi )\B+r/2(xi )

ui ≤ C inf
B+2r (xi )\B+r/2(xi )

ui,

whereC > 0 is some constant independent ofi andr.

Proof. For 0< r < r, we consider̃ui(y)= r2/(pi−1)ui(ry+xi). Thenũi satisfies−�ũi = fi(ry+xi )̃u
pi

i , ũi > 0, in Ai,
∂ũi

∂yn
= hi(ry+xi )̃u

(pi+1)/2
i , on ∂ ′Ai,

whereAi = {y ∈ Rn : 1/3< |y|< 3, ry+xi ∈ Rn+},∂ ′Ai = ∂Ai ∩∂Rn+.
We know from the first property in Definition 1.1 thatũi ≤ C inAi . In view of (1.5)

and (1.6), it follows from the Harnack inequality and Lemma A.1 in the appendix
that

max
Ãi

ũi ≤ Cmin
Ãi

ũi ,

whereÃi = {y ∈ Rn : 1/2< |y| < 2, ry+xi ∈ Rn+}. Lemma 1.2 is thus established.
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In the following, we use the Harnack inequality and Lemma A.1 to derive some

properties of solutions of such equations. Letc ∈ R, f ∈ C1(B+3 ) be some positive
function, 1< pi ≤ ((n+2)/(n−2)), pi → ((n+2)/(n−2)), ci → c, fi → f in

C1(B+3 ). Consider, forτi = ((n+2)/(n−2))−pi ,−�vi = n(n−2)f τi
i v

pi

i , vi > 0, in B+3 ,
∂vi

∂xn
=−cif

τi/2
i v

(pi+1)/2
i , on ∂ ′B+3 .

(1.8)

Lemma 1.3. Suppose that{vi} satisfies (1.8) and{xi} ⊂ B+1 ∪∂ ′B+1 is a sequence

of local maximum points of{vi} in B+3 satisfying{
vi(xi)

}
is bounded,

and, for some constantC1,

|x−xi |2/(pi−1)vi(x)≤ C1, ∀x ∈ B+3 .(1.9)

Then

limsup
i→∞

max
B+1/4(xi )

vi <∞.(1.10)

Proof. Suppose that (1.10) did not hold under the hypotheses of Lemma 1.3. Then,

along a subsequence, we would have, for somex̃i ∈ B+1/4(xi), that

vi(x̃i)= max
B
+
1/4(xi )

vi →∞.

It follows from (1.9) that|x̃i−xi | → 0. Consider, forT̃i = x̃n
i vi(x̃i)

(pi−1)/2,

ξi(z)= vi(x̃i)
−1vi
(
x̃i+vi(x̃i)

−(pi−1)/2z
)
, z ∈ B

−T̃i

vi (x̃i )
(pi−1)/2/8(0),

whereB−T̃i

vi (x̃i )
(pi−1)/2/8(0) = {z ∈ Rn : |z| < vi(x̃i)

(pi−1)/2/8,zn > −T̃i}. We derive
from (1.8) that

−�ξi = n(n−2)f τi ξ
pi

i , ξi > 0,z ∈ B
−T̃i

vi (x̃i )
(pi−1)/2/8(0),

∂ξi

∂zn
=−cif

τi/2ξ
(pi+1)/2
i , z ∈ ∂ ′B−T̃i

vi (x̃i )
(pi−1)/2/8(0),

and
ξi(z)≤ ξi(0)= 1, ∀z ∈ B

−T̃i

vi (x̃i )
(pi−1)/2/8(0),
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where∂ ′B−T̃i

vi (x̃i )
(pi−1)/2/8(0)= {z ∈ Rn : |z|< vi(x̃i)

(pi−1)/2/8,zn =−T̃i}.
Applying Lp-estimates, Schauder estimates, the Harnack inequality, and Lemma

A.1, we have, after passing to a subsequence, that

lim
i→∞
∥∥ξi−ξ

∥∥
C2(Rn

−T̃i
∩BR)

= 0, ∀R > 1,

whereRn

−T̃i
= {z ∈ Rn : zn > −T̃i}, ξ satisfies, forT̃ = lim i→∞ T̃i ∈ [0,∞] and

c = lim i→∞ ci ∈ R, that−�ξ(z)= n(n−2)ξ(z)(n+2)/(n−2), ξ(z) > 0, in Rn

−T̃
,

∂ξ

∂zn
=−cξn/(n−2), on ∂Rn

−T̃
, in the caseT̃ <∞.

It follows that, for allR > 1,

min
B
−T̃i

Rvi (x̃i )
−(pi−1)/2(x̃i )

vi = vi(x̃i) min
B
−T̃i
R (0)

ξi →∞.

Since{vi(xi)} stays bounded, we have, in view of the above, that, for allR > 1,xi does

not belong toB
−T̃i

Rvi (x̃i )
−(pi−1)/2(x̃i) for largei, namely,|x̃i−xi |> Rvi(x̃i)

−(pi−1)/2 for
largei, which violates (1.9). Lemma 1.3 is established.

Definition 1.2. Letxi → x̄ be an isolated blow-up point of{ui} as in Definition 1.1.
We say thatxi → x̄ is an isolated simple blow-up point if for some positive constants
r̃ ∈ (0, r̄) andC̃ > 1, the functionw̄i(r) := r2/(pi−1)ūi(r) satisfies, for largei,

w̄′i (r) < 0 for r satisfyingC̃ui(xi)
−(pi−1)/2 ≤ r ≤ r̃ .(1.11)

Remark 1.2. It is not difficult to see that, for̄x ∈M◦, the notion of isolated simple
blow-up point we introduced here is equivalent to the one introduced by Schoen (see
[25, p. 322]).

The following proposition is established in §3.

Proposition 1.3. Let (M,g) be a smooth, compactn-dimensional locally confor-
mally flat Riemannian manifold with umbilic boundary, and letxi → x̄ be an isolated
blow-up point of{ui}. Then, it is necessarily an isolated simple blow-up point.

Strong estimates can be obtained for isolated simple blow-up points as shown in
the next proposition, which is established in §2.

Proposition 1.4. Let (M,g) be a smooth, compactn-dimensional locally confor-
mally flat Riemannian manifold with umbilic boundary, and letxi → x be an isolated
simple blow-up point of{ui}. Then, for any sequences of positive numbersRi →∞,
εi → 0, there exists a subsequence{uji } (still denoted as{ui}) such that

ri := Riu
−((pi−1)/2)
i (xi)→ 0,
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and either∥∥∥∥∥u−1i (xi)ui

(
expxi

(
y

u
(pi−1)/2
i (xi)

))
−
(

1

1+|y|2
)(n−2)/2∥∥∥∥∥

C2
(
BM
3Ri

(0)
)

+
∥∥∥∥∥u−1i (xi)ui

(
expxi

(
y

u
(p−1)/2
i (xi)

))
−
(

1

1+|y|2
)(n−2)/2∥∥∥∥∥

H1
(
BM
3Ri

(0)
) < εi,

or, xi ∈ ∂M,∥∥∥∥∥∥u−1i (xi)ui

(
expxi

(
y

u
(pi−1)/2
i (xi)

))
−
(

λc

1+λ2c
(|y′|2+|yn+ tc|2

))(n−2)/2
∥∥∥∥∥∥
C2
(
BM
3Ri

(0)
)

+
∥∥∥∥∥∥u−1i (xi)ui

(
expxi

(
y

u
(pi−1)/2
i (xi)

))
−
(

λc

1+λ2c
(|y′|2+|yn+ tc|2

))(n−2)/2
∥∥∥∥∥∥
H1
(
BM
3Ri

(0)
)< εi.

Moreover, for all2ri ≤ d(x,xi)≤ r̃/2,

ui(x)≤ Cui(xi)
−1d
(
x,xi
)2−n(1.12)

whereC is some positive constant independent ofi, and

ui(xi)ui → h, in C2
loc

(
Br̃(x)\{x}

)
,

for someh ∈ C2(Br̃ (x)\{0}) satisfying
Lgh= 0, in Br̃(x)\{x},
h(x)→∞, asx→ x,

Bgh= 0, in Br̃(x)∩∂M if Br̃(x)∩∂M �= ∅.
The following Pohozaev identity (for a proof, see Theorem 1.1 in [25]) is used

often.

Lemma 1.4. Let < be a piecewise smooth bounded domain inRn(n ≥ 3), let
K ∈ C1(<), and letu > 0 be aC2(<) solution of

−�u= n(n−2)Kup,

in <. Then,

n(n−2)
(

n

p+1−
n−2
2

)∫
<

Kup+1+ n(n−2)
p+1

∫
<

x ·∇K(x)up+1

=
∫
∂<

{
x ·ν
(
n(n−2)
p+1 Kup+1− |∇u|2

2

)
+ ∂u

∂ν
x ·∇u+ n−2

2
u
∂u

∂ν

}
,

whereν denotes the unit outer normal of∂<.
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§2. The proof of Proposition 1.4. The following lemma, essentially established
in the proof of Proposition 2.4 in [24], gives some properties of boundary-isolated
blow-up points.

Lemma 2.1. Let (M,g) be a smooth, compact,n-dimensional, locally confor-
mally flat Riemannian manifold with umbilic boundary,r > 0,c > 0, x̄ ∈ ∂M,
f ∈ C1(Br̄ (x̄)) be some positive function. Suppose, for sequences|ci | ≤ c, pi ≤
((n+2)/(n−2)), pi → ((n+2)/(n−2)), fi → f in C1(Br̄ (x̄)), {ui} satisfies (1.4)
with τi = pi − ((n+ 2)/(n− 2)), and xi → x̄ is an isolated blow-up point. Then
{d(xi,∂M)ui(xi)

(pi−1)/2} stays bounded.

Proof. The proof is similar to that of Proposition 2.4 in [24]. For the reader’s
convenience, we include the proof. Since we are assuming thatM is locally confor-
mally flat and∂M is umbilic, and since the form of the equations together with
the boundary conditions are invariant under conformal transformations, we may
work locally and assume thatM = B+2 is equipped with the Euclidean metric,
andxi = (0, . . . ,0,xin) → 0 is an isolated blow-up point wherexin ≥ 0. SetTi =
xinui(xi)

(pi−1)/2. We need to show that

{Ti} stays bounded.(2.1)

We establish the above by a contradiction argument. Suppose the contrary of (2.1).
We consider, for a subsequence along whichTi →∞,

ξi(z)= x
2/(pi−1)
in ui(xi+xinz), z ∈ B−11/xin

,

whereB−11/xin
= B1/xin ∩{z | zn >−1}.

Clearlyξi satisfies

−�ξi(z)= n(n−2)f̃ τi
i ξi(z)

pi , z ∈ B−11/xin
,

∂ξi

∂zn
=−ci f̃

τi/2
i ξ

(pi+1)/2
i , z ∈ ∂ ′B−11/xin

,

|z|2/(pi−1)ξi(z)≤ C, z ∈ B−11/xin
,

lim
i→∞ξi(0)= lim

i→∞T
2/(pi−1)
i =∞,

wheref̃i (z) = fi(xi+xinz) and∂ ′B−11/xin
= {(z1, . . . ,zn−1,−1) : |(z1, . . . ,zn−1,−1)|

< 1/xin}.
It follows that {0} is an interior isolated blow-up point of{ξi}. It follows from

Proposition 3.1 in [25] that it is an interior isolated simple blow-up point of{ξi}. In
turn, it follows from Proposition 2.3 in [25], the Harnack inequality, Lemma A.1, and
standard elliptic estimates that, after passing to a subsequence, we have

ξi(0)ξi(z)→ h(z), in C2
loc

(
Rn
−1\{0}

)
,
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whereRn
−1= {(z1, . . . ,zn) ∈ Rn : zn >−1}, andh is singular near{0} and satisfies−�h(z)= 0, h(z) > 0,Rn

−1\{0},
∂h

∂zn
(z)= 0, ∂Rn

−1.

Extendingh evenly across the hyperplacezn = −1, we derive from Böcher’s
theorem (see e.g., [22]) and the maximum principle that

h(z)= a
(|z|2−n+|z−(0,0,−2)|2−n

)+b,

for some constantsa > 0 andb ≥ 0. Consequently, forA= a|(0,0,−2)|2−n+b > 0,
we have

h(z)= a|z|2−n+A+O(|z|).(2.2)

In the following, we derive a contradiction as in the proof of Proposition 3.1 in [25].
For 0< σ < 1, we apply Lemma 1.4 toξi onBσ to obtain

n(n−2)
(

n

pi+1−
n−2
2

)∫
Bσ

f̃
τi
i ξ

pi+1
i + n(n−2)

pi+1
∫
Bσ

τi f̃
τi−1
i

(
z ·∇f̃i

)
ξ
pi+1
i

=
∫
∂Bσ

B (σ,z,ξi,∇ξi)+ n(n−2)
p+1 σ

∫
∂Bσ

f̃iξ
pi+1
i ,

whereB(σ,z,u,∇u) = ((n−2)/2)u(∂u/∂ν)− (σ/2)|∇u|2+σ(∂u/∂ν)2. Multiply-
ing the above identity byξi(0)2 and sendingi to∞, we obtain, by using Proposi-
tion 2.3, Lemma 2.4, and Lemma 2.7 in [25], that

ξi(0)
2τi

∫
Bσ

f̃
τi−1
i

(
z ·∇f̃i

)
ξ
pi+1
i → 0

and

ξi(0)
2
∫
∂Bσ

f̃iξ
pi+1
i → 0,

which implies ∫
∂Bσ

B
(
σ,z,h,∇h

)≥ 0.
On the other hand, in view of (2.2), a direct computation shows that

lim
σ→0

∫
∂Bσ

B
(
σ,z,h,∇h

)=− (n−2)2
2

A
∣∣Sn−1∣∣,

which contradictsA > 0. Thus, we have established (2.1). The proof of Lemma 2.1
is completed.
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The following lemma is an important step toward establishing Proposition 1.4. The
main difference between this lemma and Proposition 1.4 is that we do not know yet
whether we can takeδi in (2.3) to be equal to zero, which would be the same as
(1.12).

Lemma 2.2. Let (M,g) be a smooth, compactn-dimensional locally conformally
flat Riemannian manifold with umbilic boundary, and letxi → x be an isolated
simple blow-up point of{ui}. Then, for any sequences of positive numbersRi →∞,
εi = ◦(R2−n

i ), there exists a subsequence{uji } (still denoted as{ui}) such that

ri := Riu
−((pi−1)/2)
i (xi)→ 0,

and either∥∥∥∥∥u−1i (xi)ui

(
expxi

(
y

u
(pi−1)/2
i (xi)

))
−
(

1

1+|y|2
)(n−2)/2∥∥∥∥∥

C2
(
BM
3Ri

(0)
)

+
∥∥∥∥∥u−1i (xi)ui

(
expxi

(
y

u
(p−1)/2
i (xi)

))
−
(

1

1+|y|2
)(n−2)/2∥∥∥∥∥

H1
(
BM
3Ri

(0)
) < εi,

or, xi ∈ ∂M,∥∥∥∥∥∥u−1i (xi)ui

(
expxi

(
y

u
(pi−1)/2
i (xi)

))
−
(

λc

1+λ2c
(|y′|2+|yn+ tc|2

))(n−2)/2
∥∥∥∥∥∥
C2
(
BM
3Ri

(0)
)

+
∥∥∥∥∥∥u−1i (xi)ui

(
expxi

(
y

u
(pi−1)/2
i (xi)

))
−
(

λc

1+λ2c
(|y′|2+|yn+ tc|2

))(n−2)/2
∥∥∥∥∥∥
H1
(
BM
3Ri

(0)
)<εi.

Moreover, for allri ≤ d(x,xi)≤ r̃/2,

ui(x)≤ Cu
−λi

i (xi)d(x,xi)
2−n+δi ,(2.3)

whereλi = (n−2−δi)(pi−1)/2−1 for some0< δi =O(R
−1+◦(1)
i ).

Proof. In the case where the blow-up point is an interior point, see Lemma 2.2
in [25]. Thus, we concentrate on the case of a boundary blow-up point. Since we
are assuming thatM is locally conformally flat and∂M is umbilic, we may work
locally and assume thatM = B+2 is equipped with the Euclidean metric, andyi =
(0, . . . ,0,yin)→ 0 is an isolated simple blow-up point for a sequence of solutionsui .
The equation takes the form−�ui = n(n−2)f τi

i u
pi

i , ui > 0, in B+2 ,
∂ui

∂yn
=−cif

τi/2
i u

(pi+1)/2
i , on ∂ ′B+2 ,

(2.4)
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where, as usual,∂ ′B+2 = {(y1, . . . ,yn−1,0) : |(y1, . . . ,yn−1,0)|< 2}.
The proof goes along the lines of the proof of Lemma 2.2 in [25]. The difference is

that we need to find different comparison functions when using the maximum princi-
ple. Arguing as in the proof of Proposition 1.1, it is easy to see that, for any sequences
of positive numbersRi →∞, εi → 0, we have, after passing to a subsequence{uji }
(still denoted as{ui}), that∥∥∥∥∥u−1i (yi)ui

(
yi+u

−((pi−1)/2)
i (yi)y

)−( 1

1+|y|2
)(n−2)/2∥∥∥∥∥

C2
(
BM
3Ri

(0)
)

+
∥∥∥∥∥u−1i (yi)ui

(
yi+u

−((pi−1)/2)
i (yi)y

)−( 1

1+|y|2
)(n−2)/2∥∥∥∥∥

H1
(
BM
3Ri

(0)
) < εi,

or yi ∈ ∂ ′M = {(x′,0) : |x′|< 2}, and∥∥∥∥∥∥u−1i (yi)ui

(
yi+u

−((pi−1)/2)
i (yi)y

)−( λc

1+λ2c
(|y′|2+|yn+ tc|2

))(n−2)/2
∥∥∥∥∥∥
C2
(
BM
3Ri

(0)
)

+
∥∥∥∥∥∥u−1i (yi)ui

(
yi+u

−((pi−1)/2)
i (yi)y

)−( λc

1+λ2c
(|y′|2+|yn+ tc|2

))(n−2)/2
∥∥∥∥∥∥
H1
(
BM
3Ri

(0)
)<εi,

andri = Riu
−((pi−1)/2)
i (yi)→ 0. As a consequence, if we chooseεi = ◦(R2−n

i ),

ui(y)≤ Cui(yi)R
2−n
i , for all

ri

2
≤ |y−yi | ≤ 3ri,(2.5)

and we only need to provide the bound forri ≤ |y − yi | ≤ 1. (We taker̃ = 2 in
the definition of an isolated simple blow-up point for simplicity.) It follows from the
estimate above, Lemma 1.2, and (1.11), that, forri < |y−yi | ≤ 7/4, we have

|y−yi |2/(pi−1)ui(y)≤ C|y−yi |2/(pi−1)ūi(|y−yi |)
≤ Cr

2/(pi−1)
i ūi (ri)

≤ CR
(2−n)/2+◦(1)
i .

Therefore,

u
pi−1
i (y)≤O

(
R
−2+◦(1)
i

)|y−yi |−2, for all ri ≤ |y−yi | ≤ 7

4
.(2.6)

SetTi = yinui(yi)
(pi−1)/2. It follows from Lemma 2.1 that{Ti} stays bounded. Con-

sequently,

|yi | = ◦(ri) and B+1 (0)\B+2ri (0)⊂
{
y : 3

2
ri ≤ |y−yi | ≤ 7

4

}
for largei.(2.7)
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We construct comparison functions and apply Lemma A.2 toui . Consider the
second-order elliptic operatorLi = �+n(n−2)f τi

i u
pi−1
i in B+2 , and the boundary

operatorBi = −(∂/∂yn)−cif
τi/2
i u

(pi−1)/2
i on ∂ ′B+2 . ThenLiui = 0, ui > 0 in B+2 ,

andBiui = 0 on∂ ′B+2 . It follows from Lemma A.2 that the maximum principle holds
for (Li,Bi). Our construction of comparison functions is carried out according to two
different cases.

Case 1.ci ≤ 0. It is clear, in view of (2.7), that
1

10
|y|−2 ≤ |y−yi |−2 ≤ 10|y|−2, in B+1 (0)\B+2ri (0).(2.8)

We can easily derive from (2.6), (2.7), and (2.8) that for 0≤ µ≤ n−2,
Li

(|y|−µ
)= {−µ(n−2−µ)+O

(
R
−2+◦(1)
i

)}
|y|−2−µ

in B+1 (0)\B+2ri (0).
On ∂ ′B+1 (0)\∂ ′B+2ri (0)= {(y1, . . . ,yn−1,0) : 2ri < |(y1, . . . ,yn−1,0)|< 1},

Bi

(|y|−µ
)=−cif

τi/2
i u

(pi−1)/2
i |y|−µ ≥ 0.

SetMi = max∂ ′′B+1 (0) ui and λi = (n− 2− δi)(pi − 1)/2− 1, where∂ ′′B+1 (0) =
{(y1, . . . ,yn) : |(y1, . . . ,yn)| = 1,yn ≥ 0}, and 0< δi = O(R

−2+◦(1)
i ) is chosen so

that−δi(n−2−δi)+O(R
−2+◦(1)
i )≤ 0. Let

ϕi(y)=Mi |y|−δi +Au
−λi

i (yi)|y|2−n+δi −ui(y), in B+1 (0)\B+2ri (0),
whereA will be chosen in a moment. It follows from our computation thatϕi satisfies

Li(ϕi)≤ 0, B+1 (0)\B+2ri (0),
Bi(ϕi)≥ 0, ∂ ′B+1 (0)\∂ ′B+2ri (0),
ϕi ≥ 0, ∂ ′′B+1 (0)∪∂ ′′B+2ri (0),

provided we chooseA large enough so that, on|y| = 2ri , ϕi ≥ 0. Such anA can be
chosen with an absolute bound independent ofi because of (2.5) and the choice of
λi . Then we derive from Lemma A.2 thatϕi(y) ≥ 0 onB+1 (0) \B+2ri (0). Thus, we
use the above estimate, (1.11), and Lemma 1.2 to obtain, forri < θ < 1, that

Mi ≤ Cūi(1)≤ Cθ2/(pi−1)ūi(θ)

≤ Cθ2/(pi−1){Miθ
−δi +Au

−λi

i (yi)θ
2−n+δi

}
.

Choosingθ sufficiently small, but independent ofi, so thatCθ2/(pi−1)−δi < 1/2, we
obtain

Mi ≤ Cu
−λi

i (yi).(2.9)
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Combining (2.9) and the estimateϕi ≥ 0, we have, for some constantC independent
of i, that

ui(y)≤ Cu
−λi

i (yi)|y|2−n+δi , for 2ri ≤ |y| ≤ 1.
Estimate (2.3) follows from the above and (2.8).

Case 2.ci > 0. In this case, we modify|y|−µ by |y|−µ−ε|y|−µ−1yn and obtain,
for all 0≤ µ≤ n−2 andε > 0, that

Bi

(|y|−µ−ε|y|−µ−1yn
)

= |y|−µ−1{ε+O
(
R
−1+◦(1)
i

)}
, ∀y ∈ ∂ ′B+1 (0)\∂ ′B+2ri (0),

and, for ally ∈ B+1 (0)\B+2ri (0), that

Li

(|y|−µ−ε|y|−µ−1yn
)

= |y|−µ−2{−µ(n−2−µ)+ε(µ+1)(n−1−µ)yn/|y|+O
(
R
−2+◦(1)
i

)}
.

Apparently we can find 0< δi = O(R
−1+◦(1)
i ) and 0< εi = O(R

−1+◦(1)
i ) so that,

for all y ∈ ∂ ′B+1 (0)\∂ ′B+2ri (0),

Bi

(|y|−δi −εi |y|−δi−1yn
)≥ 0, Bi

(|y|2−n+δi −εi |y|1−n+δi yn
)≥ 0,

and, for ally ∈ B+1 (0)\B+2ri (0),

Li

(|y|−δi −εi |y|−δi−1yn
)≤ 0, Li

(|y|2−n+δi −εi |y|1−n+δi yn
)≤ 0.

We define inB+1 (0)\B+2ri (0),

ϕi(y)=Mi

(|y|−δi−εi |y|−δi−1yn
)+Au

−λi

i (yi)
(|y|2−n+δi−εi |y|1−n+δi yn

)− 1
2
ui(y),

whereMi andλi are as in case 1. Arguing as in case 1, we obtain the desired upper
bound ofui . We have thus established Lemma 2.2.

Lemma 2.3. Suppose that{ui} satisfies (2.4) andyi → y ∈ B+1 ∪∂ ′B+1 is an iso-
lated simple blow-up point. Then, for any0< σ < r, there existsC > 1 independent
of i such that

n(n−2)
(

n

pi+1−
n−2
2

)∫
B+σ

f
τi
i u

pi+1
i +ci

(
2(n−1)
pi+3 − n−2

2

)∫
∂ ′B+σ

f
τi/2
i u

(pi+3)/2
i

≥ τiui(yi)
(n−2)τi/2

C
.
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Proof. If y ∈ B+1 , the proof follows easily from Lemma 2.2. We assume without
loss of generality thaty = 0 andyi = (0, . . . ,0,yin). SetTi = yinui(yi)

(pi−1)/2, and,
after passing to a subsequence,T = lim i→∞Ti . It follows from Lemma 2.1 that
0≤ T <∞. Consider

ηi(z)= ui(yi)
−1ui

(
yi+ui(yi)

−(pi−1)/2z
)
, z ∈ B

−Ti

ui (yi )
(pi−1)/2/8,

whereB−Ti

ui (yi )
(pi−1)/2/8= {z ∈ Rn : |z|< ui(yi)

(pi−1)/2/8,zn >−Ti}.
It follows thatηi satisfies

−�ηi(z)= n(n−2)f̃ τi
i ηi(z)

pi , ηi(z) > 0, z ∈ B
−Ti

ui (yi )
(pi−1)/2/8,

∂ηi

∂zn
=−ci f̃

τi/2
i η

(pi+1)/2
i , z ∈ ∂ ′B−Ti

ui (yi )
(pi−1)/2/8,

|z|2/(pi−1)ηi(z)≤ C, z ∈ B
−Ti

ui (yi )
(pi−1)/2/8,

ηi(0)= 1 and 0 are local maximum points ofηi,

(2.10)

wheref̃i (z)= fi(yi+ui(yi)
−(pi−1)/2z).

It follows from Lemma 1.3, the Harnack inequality, and Lemma A.1 that{ηi}
is locally bounded. Therefore, for anyRi →∞, we deduce from standard elliptic
estimates that, after passing to a subsequence{uji } (still denoted as{ui}), Ri =
◦(ui(yi)

(pi−1)/2/8) and

‖ηi−η‖
C2
(
B
−Ti
3Ri

)+‖ηi−η‖
H1
(
B
−Ti
3Ri

) < e−Ri ,(2.11)

for someη satisfying
−�η(z)= n(n−2)η(z)(n+2)/(n−2), η(z) > 0, Rn

−T ,
∂η

∂zn
=−cηn/(n−2), ∂Rn

−T ,

η(0)= 1 and 0 are local maximum points,

(2.12)

wherec = lim i→∞ ci ,Rn
−T = {(z1, . . . ,zn) : zn >−T }. It follows from the Liouville-

type theorem in [27] that whenc < 0, T =−(c/(n−2)) > 0, and

η(z)= 1(
1+|z′|2+|zn+(c/n−2)|2)(n−2)/2 ;(2.13)

and whenc ≥ 0, T = 0, and

η(z)=
(

λc

1+λ2c
(|z′|2+|zn+ tc|2

))(n−2)/2
,(2.14)
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whereλc andtc are defined as in Proposition 1.1.
It follows from (2.11) and Lemma 2.2 that∫

B+σ
f τi u

pi+1
i = (1+◦(1))ui(yi)

(n−2)τi/2
∫
B
−Ti
Ri

ηpi+1

= (1+◦(1))ui(yi)
(n−2)τi/2

∫
Rn−T

η2n/(n−2),∫
∂ ′B+σ

f τi/2u
(pi+3)/2
i = (1+◦(1))ui(yi)

(n−2)τi/2
∫
∂ ′B−Ti

Ri

η(pi+3)/2

= (1+◦(1))ui(yi)
(n−2)τi/2

∫
∂Rn−T

η2(n−1)/(n−2).

It follows that

n(n−2)
(

n

pi+1−
n−2
2

)∫
B+σ

f τi u
pi+1
i +ci

(
2(n−1)
pi+3 − n−2

2

)∫
∂ ′B+σ

f τi/2u
(pi+3)/2
i

= (1+◦(1))8(n−1)
(n−2)2ui(yi)

(n−2)τi/2τi
{
2(n−1)(n−2)

∫
Rn−T

η2n/(n−2)

+c

∫
∂Rn−T

η2(n−1)/(n−2)
}
.

(2.15)

Multiplying the first line of (2.12) byη and integrating by parts onRn
−T , we have, in

view of the boundary condition in (2.12), that

n(n−2)
∫
Rn−T

η2n/(n−2)+c

∫
∂Rn−T

η2(n−1)/(n−2) =
∫
Rn−T

|∇η|2> 0.(2.16)

Lemma 2.3 follows from (2.15) and (2.16).

Lemma 2.4. Suppose that{ui} satisfies (2.4) andyi → y ∈ B+1 ∪ ∂ ′B+1 is an
isolated simple blow-up point. Then

τi =O
(
ui(yi)

−2),(2.17)

and therefore,

ui(yi)
τi = 1+◦(1).

Proof. For y ∈ ∂ ′B+1 , we assume, without loss of generality, thaty = 0 and
yi = (0, . . . ,0,yin). Applying Lemma 1.4 toui onB+σ for someσ > 0, we have, in
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view of Lemma 2.2 and the boundary condition ofui in (2.4), that

n(n−2)
(

n

pi+1−
n−2
2

)∫
B+σ

f τi u
pi+1
i

=
∫
∂ ′′B+σ

B(σ,y,ui,∇ui)+ci

∫
∂ ′B+σ

n−1∑
j=1

yj ∂ui

∂yj
+ n−2

2
ui

f τi/2u
(pi+1)/2
i

+◦(ui(yi)
−2)+◦(τi)

=−ci

(
2(n−1)
pi+3 − n−2

2

)∫
∂ ′B+σ

f τi/2u
(pi+3)/2
i +O

(
ui(yi)

−2)+◦(τi),
whereB(σ,y,ui,∇ui) is defined as before, and we have integrated by parts on the
term

∫
∂ ′B+σ
∑n−1

j=1yj (∂ui/∂y
j )f τi/2u

(pi+1)/2
i .

It follows from Lemma 2.3 that

n(n−2)
(

n

pi+1−
n−2
2

)∫
B+σ

f τi u
pi+1
i

+ci

(
2(n−1)
pi+3 − n−2

2

)∫
∂ ′B+σ

f τi/2u
(pi+3)/2
i ≥ τi

C
.

Estimate (2.17) follows from the above two inequalities. Fory ∈ B+1 , we apply the
Pohozaev identity inBσ (yi) and conclude the same way.

Proof of Proposition 1.4.We follow pages 338–341 of [25] with rather obvious
modifications.

§3. The proof of Proposition 1.3. Due to the conformal invariance ofLg and
Bg, Proposition 1.3 follows easily from the next proposition.

Proposition 3.1. Let yi → y ∈ B+1 ∪∂ ′B+1 be an isolated blow-up point of{ui},
solutions of (2.4). Thenyi → y is an isolated simple blow-up point.

If y ∈ B+1 , the conclusion is known (see, for example, Proposition 3.1 in [25]).
We only considery ∈ ∂ ′B+1 . Without loss of generality, we assumey = 0, yi =
(0, . . . ,0,yin), andr = 1/4.
Recall that

ui(r)= 1∣∣∂ ′′B+r (yi)
∣∣
∫
∂ ′′B+r (yi )

ui,

where, as usual,B+r (yi)= {y ∈ Rn+ : |y−yi |< r}, ∂ ′′B+r (yi)= ∂Br(yi)∩Rn+. Also,

wi(r)= r2/(pi−1)ui(r).

Proof of Proposition 3.1.Suppose the contrary; then there exist some sequences
of positive numbers̃ri → 0 andC̃i →∞ satisfyingC̃iui(yi)

−(pi−1)/2 ≤ r̃i such that,



THE YAMABE PROBLEM 517

after passing to a subsequence,

w′i (r̃i )≥ 0.(3.1)

SetTi = yinui(yi)
(pi−1)/2 and, after passing to a subsequence,T = lim i→∞Ti . It

follows from Lemma 2.1 that 0≤ T <∞. Consider
ηi(z)= ui(yi)

−1ui

(
yi+ui(yi)

−(pi−1)/2z
)
, z ∈ B

−Ti

ui (yi )
(pi−1)/2/8,

whereB−Ti

ui (yi )
(pi−1)/2/8 = {z ∈ Rn : |z| < ui(i)

(pi−1)/2/8,zn > −Ti}. It follows thatηi
satisfies (2.10).
It follows from Lemma 1.3, the Harnack inequality, and Lemma A.1 that{ηi} is

locally bounded. LetRi " C̃i ; after passing to a subsequence, as before, we have
(2.11) for someη satisfying (2.12). It follows from the Liouville-type theorem in [27]
that whenc < 0, we haveT = −(c/(n−2)) > 0, andη is given by (2.13); when
c ≥ 0 we haveT = 0, andη is given by (2.14) whereλc and tc are defined as in
Proposition 1.1.
Let s = ui(xi)

(pi−1)/2r, and set

ηi(s)=
1∣∣∂ ′′B−Ti
s (0)

∣∣
∫
∂ ′′B−Ti

s (0)
ηi, η(s)= 1∣∣∂ ′′B−Ti

s (0)
∣∣
∫
∂ ′′B−Ti

s (0)
η.

It follows from (2.11) that, after passing to a subsequence,∥∥∥s2/(pi−1)ηi(s)−s(n−2)/2η(s)
∥∥∥
C2([0,3Ri ])

≤ e−
√
Ri .(3.2)

It is easy to see from the explicit form ofs(n−2)/2η(s) that, for some positive constant
C independent ofi,

d

ds

(
s(n−2)/2η(s)

)≤− s−(n/2)

C
, ∀C ≤ s ≤ 3Ri,

which, together with (3.2), yields

d

ds

(
s2/(pi−1)ηi(s)

)≤− s−(n/2)

C
, ∀C ≤ s ≤ Ri.

Making a change of variables, the above implies

w̄′i (r) < 0, ∀Cui(yi)
−(pi−1)/2 ≤ r ≤ ri,

whereri = Riui(yi)
−(pi−1)/2.

We derive from the above and (3.1) thatr̃i ≥ ri and w̄i has at least one critical
point in the interval[ri, r̃i]. Letµi be the smallest critical point of̄wi in this interval.
It is clear that

r̃i ≥ µi ≥ ri, lim
i→∞µi = 0.
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Considerξi(x)= µ
2/(pi−1)
i ui(µix+yi). SetTi = yin/µi,T = lim i→∞Ti . We have

−�ξi(x)= n(n−2)f̃ τi
i ξi(x)

pi , |x|< r

µi

,xn >−Ti,

∂ξi

∂xn
=−ci f̃

τi/2
i ξi(x)

(pi+1)/2, |x|< r

µi

,xn =−Ti,

|x|2/(pi+1)ξi(x)≤ C, |x|< r

µi

,xn >−Ti,

lim
i→∞ξi(0)=∞,and 0 is a local maximum point ofξi,

r2/(pi+1)ξ i(r) has negative derivative inCξi(0)−(pi−1)/2< r < 1,

d

dr

{
r2/(pi+1)ξ i(r)

}∣∣
r=1= 0,

(3.3)

whereξ i(r) = (1/|∂ ′′B−Ti
r (0)|)∫

∂ ′′B−Ti
r (0)

ξ(r), B−Ti
r (0) = {x ∈ Rn : |x|〈r,xn〉−Ti},

∂ ′′B−Ti
r (0)= ∂B

−Ti
r (0)∩∂B

−Ti
r (0), andf̃i (x)= fi(µix+yi).

If T =∞, we can derive a contradiction exactly the same way as in the proof of
Proposition 3.1 in [25]. If 0< T <∞, we know from Proposition 1.4 that

ξi(0)ξi(x)→ h(x), in C2
loc

(
R

n

−Ti
\{0}),

whereh satisfies −�h= 0, h > 0, in Rn
−T \{0},

∂h

∂xn
= 0, on xn =−T .

Clearly, for some constantA > 0,

h(x)= A
(|x|2−n+|x−(0, . . . ,0,−2T )|2−n

)+b(x),

whereb(x) is some harmonic function onRn. Due to the positivity ofh, lim inf |x|→∞
b(x)≥ 0. Consequently,b(x)≡ b for some constantb ≥ 0. Forσ > 0 small, applying
the Pohozaev identity as usual, we reach a contradiction.
Now we only need to rule out the possibility ofT = 0. Indeed, we know from

Proposition 1.4 that

ξi(0)ξi(x)→ h(x), in C2
loc

(
Rn
−Ti
\{0}),(3.4)

whereh satisfies −�h= 0, h > 0, in Rn+,
∂h

∂xn
= 0, on ∂Rn+\{0}.
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Arguing as before, we have, for some constantsA > 0 andb ≥ 0, that
h(x)= A|x|2−n+b.

Using the last line in (3.3) and (3.4), we have

n−2
2

(−A+b)= d

dr

{
r(2−n)/2+br(n−2)/2

}∣∣
r=1

= d

dr

{
r(n−2)/2

|∂ ′′B+r (0)|
∫
∂ ′′B+r (0)|

h

}∣∣
r=1

= lim
i→∞

d

dr

{
r2/(pi−1)ξi(0)ξ i(r)

}∣∣
r=1

= 0.
Consequently,b = A > 0, and

h(x)= A
(|x|2−n+1).

Set ξ̂i (x) = ξi(x
1, . . . ,xn−1,xn− Ti), f̂i (x) = f̃i (x

1, . . . ,xn−1,xn− Ti), and apply
Lemma 1.4 tôξi onB+σ for σ > 0 small. We have

n(n−2)
(

n

pi+1−
n−2
2

)∫
B+σ

f̂
τi
i ξ̂

pi+1
i

=
∫
∂ ′′B+σ

B
(
σ,x, ξ̂i ,∇ ξ̂i

)+ n(n−2)σ
pi+1

∫
∂ ′′B+σ

f̂
τi/2
i

∣∣ξ̂i∣∣pi+1

+Cτi

∫
B+σ
|x|∣∣ξ̂i∣∣pi+1+ci

∫
∂ ′B+σ

n−1∑
j=1

xj ∂ξ̂i

∂xj
+ n−2

2
ξ̂i

 f̂
τi/2
i ξ̂

(pi+1)/2
i .

We calculate the last term:

∫
∂ ′B+σ

n−1∑
j=1

xj ∂ξ̂i

∂xj
+ n−2

2
ξ̂i

 f̂
τi/2
i ξ̂

(pi+1)/2
i

=
∫
∂ ′B+σ

 2

pi+3
n−1∑
j=1

∂
(
ξ̂
(pi+3)/2
i

)
∂xj

f̂
τi/2
i + n−2

2
f τi/2ξ̂

(pi+3)/2
i


=−
(
2(n−1)
pi+3 − n−2

2

)∫
∂ ′B+σ

f̂
τi/2
i ξ̂

(pi+3)/2
i +O

(
σ

∫
xn=0,|x|=σ

ξ̂
(pi+3)/2
i

)
+O

(
τi

∫
∂ ′B+σ

|x|ξ̂ (pi+3)/2
i

)
.
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Multiplying the above byξi(0)2, and sendingi to ∞, we have, by using (3.4),
Lemma 2.3, and Lemma 2.4, that∫

∂ ′′B+σ
B(σ,x,h,∇h)≥ 0.

This, as usual, contradicts the fact that

lim
σ→0+

∫
∂ ′′B+σ

B(σ,x,h,∇h)=− (n−2)2A
4

∣∣Sn−1∣∣< 0.

Proposition 3.1 is established.

§4. The proof of Proposition 1.2. In this section, we establish Proposition 1.2.

Proof of Proposition 1.2. If the conclusion of Proposition 1.2 does not hold, then
there exist sequences((n+ 2)/(n− 2))− 1/i ≤ pi ≤ ((n+ 2)/(n− 2)), |ci | ≤ c,
ui ∈ �pi,ci such that min{d(qi,a,qi,b)|1≤ a,b ≤ Ni,a �= b} → 0 asi →∞ where
qi,1, . . . ,qi,Ni

are the points determined by Proposition 1.1 foru = ui . Notice that
when we apply Proposition 1.1 to determine these points, we fix some very large
constantR, and then fix some very small constantε > 0 (which may very well
depend onR), and in all the arguments,i is large (which may very well depend
on R andε). Let di = d(qi,1,qi,2) = mina �=b d(qi,a,qi,b), andq0 = lim i→∞ qi,1 =
lim i→∞ qi,2 ∈M. We distinguish two cases.

Case 1.q0 ∈ ∂M.
Case 2.q0 ∈M◦.
Case 2 is simpler to handle and can be ruled out as in [34] or [25, Proposition 4.2]

(see also the argument below).We only work out the detail to rule out case 1. In case 1,
due to the hypothesis thatM is locally conformally flat and∂M is umbilic, we can find
a diffeomorphismϕ : B+2 → BM

δ (q0), ϕ(0)= q0, BM
δ/8(q0)⊂ ϕ(B+1 )⊂ BM

δ/4(q0), and

ϕ∗g = f 4/(n−2)g0, whereg0=∑n
j=1(dxj )2 is the flat metric onB+2 andf ∈ C2(B+2 )

is some positive function. It follows from the conformal invariance ofLg andBg that−�vi = n(n−2)f τi v
pi

i , in B+2 ,
∂vi

∂xn
=−cif

τi/2v
(pi+1)/2
i , on ∂ ′B+2 ,

whereτi = ((n+2)/(n−2))−pi,vi = f ui ◦ϕ.
It follows from property (i) in Proposition 1.1 that, for alla �= b,

Ru
−(pi−1)/2
i (qi,a)≤ d(qi,a,qi,b),

which in turn implies, in view of limi→∞ d(qi,1,qi,2)= 0,
lim
i→∞ui(qi,a)=∞, for a = 1,2,
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and
d(qi,1,qi,2)

2/(pi−1)ui(qi,a)≥ R2/(pi−1) ≥ R(n−2)/2, for a = 1,2.
Due to the factorf , qi,a may not be a local maximum point ofvi anymore, but it

is not difficult to see that for eachqi,a ∈ BM
δ/2(q0), there existsxi,a ∈ B+2 such that,

for largei, ∣∣xi,a−ϕ−1(qi,a)
∣∣ui(qi,a)

(pi−1)/2 ≤ Cε,

xi,a is a local maximum point ofvi,andvi(xi,a)→∞, a = 1,2,(4.1)

d
(
x,∪a{xi,a}

)2/(pi−1)vi(x)≤ C1, ∀x ∈ B+1 ,(4.2)

0< σi := |xi,1−xi,2| ≤ 2min
a �=b

|xi,a−xi,b| → 0,

σ
2/(pi−1)
i vi(xi,a)≥ R2/(pi−1)

C
≥ R(n−2)/2

C
, for a = 1,2,(4.3)

whereC > 1 is some universal constant independent ofε,R, andi.
Without loss of generality, we assume thatxi,1= (0, . . . ,0,xn

i,1). Consider

wi(y)= σ
2/(pi−1)
i vi(xi,1+σiy),

and set, forxi,a ∈ B+1 ,
yi,a = xi,a−xi,1

σi

.

Clearly,


−�wi(y)= n(n−2)f (xi,1+σiy)

τiwi(y)
pi , wi(y) > 0, |y|< 1

σi

,yn >−Ti,

∂wi(y)

∂yn
=−cif (xi,1+σiy)

τi/2wi(y)
(pi+1)/2, |y|< 1

σi

,yn =−Ti,

(4.4)

whereTi = xn
i,1/σi .

It is also clear that

|yi,a−yi,b| = |xi,a−xi,b|
σi

≥ 1, ∀a �= b,(4.5)

and
yi,1= 0, |yi,2| = 1.

After passing to a subsequence, we have

ȳ = lim
i→∞yi,2, |ȳ| = 1.
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The following can be derived easily from (4.3), (4.1), and (4.2):
wi(0),wi(yi,2)≥ C′0,
eachyi,a is a local maximum point ofwi,

min
a
|y−yi,a|2/(pi−1)wi(y)≤ C1, |y| ≤ 1

(2σi)
,yn ≥−Ti,

(4.6)

whereC′0 > 0 is independent ofi. The next lemma follows immediately from
Lemma 1.3.

Lemma 4.1. If along some subsequence both{yi,ai } and{wi(yi,ai )} remain bound-
ed, then along the same subsequence

limsup
i→∞

max
B
−Ti
1/4 (yi,ai )

wi <∞,

whereB−Ti
1/4 (yi,ai )= {y : |y−yi,ai |< 1/4,yn >−Ti}.

In the following, we show that

wi(0),wi(yi,2)→∞.(4.7)

If one of them tends to infinity along a subsequence, say,wi(0)→∞, then{0} is an
isolated blow-up point. According to Proposition 1.3, it has to be an isolated simple
blow-up point. In view of Proposition 1.4, the Harnack inequality, and Lemma A.1,
this implies thatwi tends to zero on any compact subset of(B

−Ti
3/4 (0)∪B

−Ti
3/4 (yi,2))\

{0,yi,2}. This, together with the Harnack inequality and Lemma A.1, implies that
eitherwi is not bounded inB

−Ti
1/4 (yi,2) or wi(yi,2) tends to zero, but we know from

the first line of (4.6) thatwi(yi,2) does not tend to zero. Sowi is not bounded in

B
−Ti
1/4 (yi,2), which in turn implies, in view of Lemma 4.1, thatwi(yi,2)→∞. This

shows that either (4.7) holds or, along some subsequence, both{wi(0)} and{wi(yi,2)}
stay bounded.
On the other hand, if both{wi(0)} and{wi(yi,2)} stay bounded along a subsequence,

then{wi} is locally bounded. This can be seen as follows. Suppose the contrary; then,
in view of Lemma 4.1,wi(yi,ai ) → ∞ along some bounded subsequence{yi,ai }.
So we have an isolated simple blow-up point{yi,ai }. Applying Proposition 1.4, the
Harnack inequality, and Lemma A.1 as before, we deduce thatwi(0)→ 0. This is a
contradiction.
Since {wi} is locally bounded, we deduce by applyingLp estimates, Schauder

estimates, the Harnack inequality, and Lemma A.1 that

lim
i→∞‖wi−w‖

C2(R
n
−Ti
∩BR)

= 0, ∀R > 1,
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where, forT := lim i→∞Ti ∈ [0,∞], w satisfies that−�w = n(n−2)w(n+2)/(n−2), w > 0, in {y ∈ Rn : yn >−T } ,
∂w

∂yn
=−cwn/(n−2), on yn =−T , in the caseT <∞.

(4.8)

All the solutions of (4.8) are classified by Caffarelli, Gidas, and Spruck [6] forT =∞
and by Li and Zhu [27] forT <∞. It is clear from their work that there is no solution
of (4.8) having two distinct local maximum points. However,w apparently has zero
andȳ as its local maximum points. This is a contradiction. We have thus established
(4.7). This, together with the third line in (4.6), implies that both{0} andyi,2→ ȳ

are isolated blow-up points. According to Proposition 1.3, they are isolated simple
blow-up points. We proceed by distinguishing two subcases.

Case 1.1.T = lim i→∞Ti =∞. In this case, we argue as in the proof of Proposi-
tion 4.1 in [25] as follows. We see from (4.4) thatwi(0)wi satisfies


−�
(
wi(0)wi

)= n(n−2)f τiwi(0)1−pi
(
wi(0)wi

)pi , |y|< 1

σi

,yn >−Ti,

∂
(
wi(0)wi

)
∂yn

=−cif
τi/2wi(0)

(1−pi)/2
(
wi(0)wi

)(pi+1)/2, |y|< 1

σi

,yn =−Ti.

(4.9)

We have shown in the above that if{yi,ai } stays bounded along a subsequence, then
after passing to a subsequence eitherwi(yi,ai )→∞ is an isolated simple blow-up
point or {wi} is bounded inB−Ti

1/4 (yi,ai ). Since {0} and {yi,2} are isolated simple
blow-up points, we can derive from Proposition 1.4 and the Harnack inequality that
{wi(0)wi} is locally bounded inRn

−Ti
\ ∪i{yi,ai }. In view of (4.5), we applyLp-

estimates, Schauder estimates, and the Harnack inequality to (4.9) to obtain, after
passing to a subsequence, a set�1⊂ Rn such that

{
0, ȳ} ∈ �1,

min
{|x−y| | x,y ∈ �1

}≥ 1,
lim
i→∞wi(0)wi(y)= h(y), in C2

loc

(
Rn \�1

)
,

h(y) > 0, y ∈ Rn \�1,

h(y) is unbounded near any point in�1,

and
�h(y)= 0, y ∈ Rn \�1.

We then deduce from Böcher’s theorem (see, e.g., [22]) and the maximum principle
that there exists some nonnegative functionb(y) and some positive constantsa1,a2>
0, such that {

b(y)≥ 0, y ∈ Rn \{�1\{0, ȳ}},
�b(y)= 0, y ∈ Rn \{�1\{0, ȳ}},
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and
h(y)= a1|y|2−n+a2|y− ȳ|2−n+b(y), y ∈ Rn \{�1\{0, ȳ}}.

Therefore, for some constantA > 0,

h(y)= a1|y|2−n+A+O(|y|), for y close to zero.

As usual, we derive a contradiction by using Lemma 1.4 as follows. For 0< σ < 1,
we apply Lemma 1.4 towi onBσ to obtain

n(n−2)
(

n

pi+1−
n−2
2

)∫
Bσ

f τiw
pi+1
i + n(n−2)

pi+1
∫
Bσ

τif
τi−1(y ·∇f )w

pi+1
i

=
∫
∂Bσ

B(σ,y,wi∇wi)+ n(n−2)
p+1 σ

∫
∂Bσ

fw
pi+1
i ,

whereB(σ,x,u,∇u) = ((n−2)/2)u(∂u/∂ν)− (σ/2)|∇u|2+σ(∂u/∂ν)2. Multiply-
ing the above identity bywi(0)2 and sendingi to∞, we obtain, by using Proposi-
tion 1.4, that ∫

∂Bσ

B(σ,y,h,∇h)≥ 0,

but a direct computation shows that

lim
σ→0

∫
∂Bσ

B(σ,y,h,∇h)=− (n−2)2
2

A
∣∣Sn−1∣∣,

which contradictsA > 0.
Case 1.2.T = lim i→∞Ti <∞. In this case, we argue similarly to case 1.1 while

using Lemma A.1 and the interior Harnack inequality to obtain a set�1 ⊂ Rn
−T

(Rn
−T := {y ∈ Rn : yn >−T }) such that{0, ȳ} ⊂ �1,

min
{|x−y| | x,y ∈ �1

}≥ 1,
lim
i→∞wi(0)wi(y)= h(y), in C2

loc

(
Rn
−T \�1

)
,

h(y) > 0, y ∈ Rn
−T \�1,

h(y) is unbounded near any point in�1,

and �h(y)= 0, y ∈ Rn
−T \�1,

∂h

∂yn
= 0, y ∈ ∂Rn

−T \�1.

Making an even extension ofh(y) across the hyperplaneyn = −T and arguing as
in case 1.1, we find some nonnegative functionb(y) and some positive constants
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a1,a2> 0 such that {
b(y)≥ 0, y ∈ Rn

−T \
{
�1\{0, ȳ}

}
,

�b(y)= 0, y ∈ Rn
−T \
{
�1\{0, ȳ}

}
,

h(y)= a1|y|2−n+a2|y− ȳ|2−n+b(y), y ∈ Rn
−T \
{
�1\{0, ȳ}

}
.

Therefore, for some constantA > 0,

h(y)= a1|y|2−n+A+O(|y|), for y close to zero.

If T > 0, we derive a contradiction exactly the same way as in case 1.1. IfT = 0,
we set̃wi(y)= wi(y

1, . . . ,yn−1,yn−Ti) and derive a contradiction exactly the same
way as in the proof of Proposition 3.1.

§5. The proof of Theorems 0.1 and 0.2.Let ϕ1 denote the first eigenfunction of
(0.3), and considerg1= ϕ

4/(n−2)
1 g. ThenRg1 > 0 andhg1 ≡ 0. We can work withg1

instead ofg. For simplicity, we still denote it asg. We first establish Theorem 0.2.

Proof of Theorem 0.2.In view of theLp-estimates, Schauder estimates, Harnack
inequality, and Lemma A.1, we only need to establish theL∞-bound ofu. We prove
it by a contradiction argument. Suppose the contrary; then in view of Theorem 1.1,
there exist|ci | ≤ c, pi = ((n+2)/(n−2))−τi , τi ≥ 0,τi → 0, andui ∈�pi,ci such
that

max
M

ui →∞.

It follows from Propositions 1.1–1.4 that, after passing to a subsequence,{ui} has
N(1 ≤ N < ∞) isolated simple blow-up points, denoted as{q(1), . . . ,q(N)}. Let
{q(1)

i , . . . ,q
(N)
i } denote the local maximum points as described in Definition 1.1. It

follows from Proposition 1.4 and standard elliptic theories that

ui

(
q
(1)
i

)
ui → h, in C2

loc

(
M \{q(1), . . . ,q(N)

})
.

It is not difficult to see, using the hypothesisλ1(M) > 0, that

h=
N∑
l=1

alG
(·,q(l)

)
, onM,

whereal > 0,∀l, andG(·,q(l)) denotes Green’s function of−Lg with respect to
zero Neumann boundary conditions centered atq(l). SinceRg > 0, it is clear that
G(·,q(l)) > 0 onM \ {q(l)}. We assume thatq(1) ∈ ∂M, since otherwise it is easier
and can be handled similarly. SinceM is locally conformally flat, we can find a local
conformal diffeomorphismB that mapsBM

δ (q(1)) (δ > 0) intoRn with B(q(1))= 0.
Let g0 denote the flat metric ofRn; thenB∗(g0) = ϕ4/(n−2)g for some positive
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functionϕ. Since∂M is umbilic,B(∂M ∩BM
δ (q(1))) has to be a piece of sphere or

a piece of hyperplane. Since spheres and hyperplanes are locally conformal to each
other, we can assume without loss of generality that∂ ′B+2 (0) ⊂ B(∂M ∩BM

δ (q(1)))

andB(M◦ ∩BM
δ (q(1))) ⊂ Rn+. Since∂ ′B+2 (0) clearly has zero mean curvature in

B
+
2 (0), we know that(∂ϕ/∂ν) = 0 on∂M∩BM

δ (q(1)). Extendingϕ to be a positive
smooth function onM such that(∂ϕ/∂ν)= 0 on∂M, consider the conformal metric
g2= ϕ4/(n−2)g. Then we know thatg2 has the property thathg2 = 0 on∂M, and it is
Euclidean in a neighborhood ofq(1).
Clearly, Green’s function̂G(x,q(1)) of g2 has the following expansion nearq(1):

Ĝ
(
x,q(1))= |x|2−n+A+O(|x|).

It follows from the positive mass theorem of Schoen and Yau [36] (see also the
appendix of [13]) thatA ≥ 0 with equality if and only if(M,g) is conformally
equivalent to the half sphere with the standard metric.
Let vi = (ϕ ◦B)−1ui ◦B−1; thenvi satisfies−�vi = n(n−2)ϕτi v

pi

i , in B+2 (0),
∂vi

∂xn
=−ciϕ

τi/2v
(pi+1)/2
i , on ∂ ′B+2 (0),

whereτi = ((n+ 2)/(n− 2))−pi . We can also deduce thatxi → 0 is an isolated
simple blow-up point of{vi} and

vi(xi)vi → ĥ, in C2
loc

(
B
+
1 (0)\{0}

)
,

whereh(x) = |x|2−n+ Â+O(|x|) for someÂ > 0. Applying the Pohozaev identity
in B+σ as usual, we reach a contradiction. Theorem 0.2 is established.

In the following, we use Leray-Schauder degree theory and Theorem0.2 to establish
the existence part of Theorem 0.1. Apparently, we can assume that(M,g) is not
conformally equivalent to the half sphere with the standard metric since it is trivial
otherwise.
As remarked earlier, we can assume without loss of generality thatRg > 0 and

hg ≡ 0. Consequently,Bg = (∂g/∂ν). We still useϕ1> 0 to denote the eigenfunction
associated with the first eigenvalueλ1(M) satisfying

‖ϕ1‖2≡
∫
M

(|∇gϕ1|2+c(n)Rgϕ
2
1

)= 1.(5.1)

Consider for 1≤ p ≤ (n+2)/(n−2),−Lgv = E(v)vp, v > 0, in M◦,
∂gv

∂ν
= 0, on ∂M,

(5.2)

whereE(v)= ∫
M
(|∇gv|2+c(n)Rgv

2).
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Lemma 5.1. There exists some constantC = C(M,g) > 0 such that for all1≤
p ≤ (n+2)/(n−2) andv satisfying (5.2), we have

1

C
< v < C, onM.(5.3)

Proof. Multiplying (5.2) byv and integrating by parts, we have∫
M

vp+1= 1.(5.4)

Multiplying (5.2) by the first eigenfunction of (0.3) and integrating by parts overM,
we haveE(v) > 0.
Let δ0 be the positive constant in Theorem 0.2. For 1+δ0 ≤ p ≤ (n+2)/(n−2),

we deduce from Theorem 0.2 and Theorem 1.1 that

1

C
≤ E(v)1/(p−1)v ≤ C.(5.5)

It follows easily from (5.4) and (5.5) that 1/C ≤ E(v) ≤ C, which, together with
(5.5), yields (5.3). For 1≤ p ≤ 1+δ0, we apply Lemma A.3 to obtain thatE(v)≤ C,
and then applying standard elliptic estimates to (5.2), we obtain the upper bound in
(5.3). The lower bound follows from the upper bound by using the Harnack inequality
and Lemma A.1.
For 0< α < 1, let C2,α(M)+ = {u ∈ C2,α(M) : u > 0 onM}. We define, for

1≤ p ≤ (n+2)/(n−2), a mapFp : C2,α(M)+ → C2,α(M) by

Fp(v)= v−(−Lg

)−1(
E(v)vp

)
,

where(−Lg)
−1 denotes the inverse operator of−Lg with respect to the zeroNeumann

boundary condition.
For- > 1, letD- denote the following bounded and open subset ofC2,α(M)+:

D- =
{
v ∈ C2,α(M) : ‖v‖C2,α(M) < -,min

M
v >

1

-

}
.(5.6)

It is easy to see from standard elliptic theories thatFp is of the form Id+ compact,
and therefore, we may define the Leray-Schauder degree ofFp in D- with respect to
0∈ C2,α(M), denoted by deg(Fp,D-,0), provided zero does not belong toFp(∂D-).
It follows from Lemma 5.1 that, for- large, zero does not belong toFp(∂D-) for
all 1≤ p ≤ (n+2)/(n−2). Consequently, by the homotopy invariance of the Leray-
Schauder degree (see [29]),

deg(Fp,D-,0)= deg(F1,D-,0), ∀1≤ p ≤ n+2
n−2.(5.7)
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It is easy to see thatF1(v) = 0 if and only if E(v) = λ1 and v = √λ1ϕ1. Set
v =√λ1ϕ1. We calculate the derivative ofF1 atv in the following. Forv ∈ C2,α(M),
we write

v = 〈v,ϕ1〉ϕ1+w,

where〈v,ϕ1〉 :=
∫
M
(∇gv ·∇gϕ1+c(n)Rgvϕ1). It follows that

F ′1(v)v =
d

dt
F1(v+ tv)

∣∣
t=0

= v−(−Lg)
−1{2〈v,v〉v+E(v)v

}
= v− 2

λ1
〈v,v〉v−λ1(−Lg)

−1v.

Let µ≤ 0 be an eigenvalue ofF ′1(v); then for some nonzerov, we have

F ′1(v)v = v− 2

λ1
〈v,v〉v−λ1(−Lg)

−1v = µv.(5.8)

It follows that

∂v

∂ν
= 0.(5.9)

Applying−Lg to (5.8), we have

(1−µ)(−Lgv)= λ1v+2〈v,v〉v.(5.10)

Multiplying the above byv and integrating by parts overM, we have, using (5.9),
that

(1−µ)〈v,v〉 = 2

λ1
〈v,v〉〈v,v〉+λ1

∫
M

vv

= 2〈v,v〉+
∫
M

(−Lgv)v

= 3〈v,v〉,
namely,

(2+µ)〈v,v〉 = 0.
If 〈v,v〉 = 0, we have−Lgv = ((λ1)/(1−µ))v. Sinceµ≤ 0, this implies thatµ= 0
and−Lgv = λ1v. Sinceλ1 is a simple eigenvalue,v is a nonzero multiple ofv.
This violates〈v,v〉 = 0. In the following, we assume that〈v,v〉 �= 0, and therefore,
µ=−2. In turn, it follows from (5.10) that

−3Lgv = λ1v+2〈v,v〉v.
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Multiplying the above byw, integrating by parts overM, and using the fact that
〈w,ϕ1〉 = 0, we have

3〈w,w〉 = λ1

∫
M

w2.

On the other hand, sinceλ1 is the first eigenvalue, we have

〈w,w〉 ≥ λ1

∫
M

w2.

It follows thatw ≡ 0. Therefore, the eigenspace associated withµ = −2 is the one-
dimensional space spanned byϕ1. To sum up, we have shown thatF ′1(v) is invertible
with exactly one simple negative eigenvalue−2. Therefore,

deg(F1,D-,0)=−1.(5.11)

For 1≤ p ≤ (n+2)/(n−2) andc ∈ R, we define an operatorTp,c : C2,α(M)+ →
C2,α(M) as follows:u= Tp,cv if and only if−Lgu= n(n−2)vp, in M,

∂gu

∂ν
= cv(p+1)/2, on ∂M.

It follows from standard elliptic theories and the hypothesisλ1(M) > 0 thatTp,c is
well defined and is a compact operator.
It follows from Theorem 0.2 that, for-c > 2 large enough (depending only on

M,g, andc),{
u ∈ C2,α(M)+ : (Id−T((n+2)/(n−2)),tc

)
u= 0 for some 0≤ t ≤ 1

}
⊂D-c−1.

It follows from the homotopy invariance of the Leray-Schauder degree that, for all
-≥-c,

deg
(
Id−T((n+2)/(n−2)),c,D-c,0

)= deg(Id−T((n+2)/(n−2)),0,D-c,0
)
.(5.12)

For 0≤ s ≤ 1, we defineGs : C2,α(M)+ → C2,α(M) by

Gs(u)= u−(−Lg

)−1{[
n(n−2)s+(1−s)E(u)

]
u(n+2)/(n−2)} ,

where(−Lg)
−1 denotes the inverse operator of−Lg with respect to the zeroNeumann

boundary. Clearly,G1= Id−T((n+2)/(n−2)),0 andG0= F(n+2)/(n−2).

Lemma 5.2. There exists-c > 2 depending only onM,g, and c, such that, for
all -≥-c,

Gs(u) �= 0, ∀0≤ s ≤ 1,u ∈ ∂D-.
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Proof. LetGs(u)= 0 for someu ∈ C2,α(M)+, 0≤ s ≤ 1. Thenu satisfies−Lgu=
[
n(n−2)s+(1−s)E(u)

]
u(n+2)/(n−2), in M,

∂gu

∂ν
= 0, on ∂M.

Multiplying the above equation byu and integrating by parts, we have

E(u)= [n(n−2)s+(1−s)E(u)
]∫

M

u2n/(n−2).(5.13)

We deduce from Theorem 0.2 that for some constantC = C(M,g) > 1,

1

C
≤ [n(n−2)s+(1−s)E(u)

](n−2)/4
u≤ C.(5.14)

It follows from (5.13) and (5.14) that

1

C
≤ E(u)

[
n(n−2)s+(1−s)E(u)

](n−2)/2 ≤ C.

Consequently,
1

C
≤ n(n−2)s+(1−s)E(u)≤ C,

which, in view of (5.14), implies that

1

C
≤ u≤ C, in M.

We can then apply standard elliptic theories to the equation ofu to conclude that for
some-c > 1, u does not belong to∂D- for all -≥-c.

Proof of Theorem 0.1 completed.Using Lemma 5.2 and the homotopy invariance
of the Leray-Schauder degree, we have, for all-≥-c, that

deg
(
Id−T((n+2)/(n−2)),0,D-,0

)= deg(F(n+2)/(n−2),D-,0
)
.(5.15)

Combining (5.12), (5.15), (5.7), and (5.11), we have, for- sufficiently large, that

deg
(
Id−T((n+2)/(n−2)),c,D-,0

)= deg(F(n+2)/(n−2),D-,0
)= deg(F1,D-,0)=−1,

which, in particular, implies that�c∩D- �= ∅. We have thus completed the existence
part of the proof of Theorem 0.1.

§6. Theproof of Theorem0.3.In this section, we establish Theorem0.3. Through-
out this section, we assumeλ1(M) < 0. We first establish estimate (0.8).
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Proof of estimate (0.8).We first show thatu ≤ C in M under the hypothesis.
For all u ∈ ∪1+δ0≤p≤(n+2)/(n−2)�̃p,0, this can be obtained by a blow-up argument
as in the proof of Theorem 1.1 and the well-known fact that�v = vp has no
positive solution inRn for p > 1 (see [4]). To obtain the upper bound ofu for
u ∈ ∪((n+2)/(n−2))−δ0≤p≤(n+2)/(n−2) ∪−(ε)−1≤c≤n−2−ε �̃p,c, we use a contradiction
argument as follows. Suppose the contrary; then there exist sequences{pi}, {ci}, and
{ui} ∈ �̃pi,ci satisfying

n+2
n−2−

1

i
≤ pi → n+2

n−2, ci → c ∈ [−(ε)−1,n−2−ε
]
,

and
lim
i→∞maxM

ui =∞.

By making a conformal transformation using the first eigenfunction associated with
λ1(M), we can assume without loss of generality thatRg < 0 inM andhg ≡ 0 on
∂M. Let xi ∈M be some maximum point ofui , namely,

ui(xi)=max
M

ui →∞.

Since, at an interior local maximum point, one hasc(n)Rgui ≤ −n(n − 2)upi

i ,
we havexi ∈ ∂M for large i. Let y1, . . . ,yn be the geodesic normal coordinates
given by some exponential map expxi

, with (∂/∂yn) = −ν at xi . Considerũi (z) =
ui(xi)

−1ui(expxi (ui(xi)
−(pi−1)/2z)). It is not difficult to see, after passing to a sub-

sequence, that̃ui converges inC2
loc-norm to somẽu satisfying−�ũ=−n(n−2)ũ(n+2)/(n−2), ũ > 0, in Rn+,

∂ũ

∂zn
=−cũn/(n−2), on ∂Rn+,

(6.1)

andũ(0)= 1, ũ ≤ 1 onRn+. Applying the same method in the proof of Theorem 1.1
and Theorem 1.2 in [27] (see also [11]), we see that (6.1) does not have any solution.
This is a contradiction. Thus, we have established the upper bound ofu in (0.8).
The lower bound in (0.8) follows from the upper bound, the Harnack inequality, and
Lemma A.1. The rest of the estimates in (0.8) follow from standard elliptic estimates.

As remarked earlier, we can assume, without loss of generality, thatRg < 0 and
hg ≡ 0. Consequently,Bg = (∂g/∂ν). Throughout the rest of this section, we assume,
without loss of generality, that the metricg has this property. For convenience, we
introduce the following quadratic form:E(u,v) = ∫

M
(∇gu · ∇gv+ c(n)Rguv), and

E(u) = E(u,u). We still useϕ1 > 0 to denote the positive eigenfunction associated
with the first eigenvalueλ1(M) satisfying

E(ϕ1)=
∫
M

(|∇gϕ1|2+c(n)Rgϕ
2
1

)=−1.
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Consider, for 1≤ p ≤ (n+2)/(n−2),−Lgv = E(v)vp, v > 0, in M◦,
∂gv

∂ν
= 0, on ∂M,

(6.2)

whereE(v)= ∫
M
(|∇gv|2+c(n)Rgv

2).

Lemma 6.1. There exists some constantC = C(M,g) > 0 such that, for all1≤
p ≤ (n+2)/(n−2), andv satisfying (6.2), we have

1

C
< v < C.(6.3)

Proof. Multiplying (6.2) byv and integrating by parts overM, we have∫
M

vp+1= 1.(6.4)

Multiplying (6.2) by the first eigenfunction of (0.3) and integrating by parts overM,
we haveE(v) < 0.
Let δ0 be the positive constant in Theorem 0.2. For 1+δ0 ≤ p ≤ (n+2)/(n−2),

we deduce from (0.8) that

1

C
≤ (−E(v)

)1/(p−1)
v ≤ C.(6.5)

It follows easily from (6.4) and (6.5) that 1/C ≤ −E(v) ≤ C, which, together with
(6.5), yields (6.3). For 1≤ p ≤ 1+δ0, we apply Lemma A.4 to obtain 0<−E(v)≤
C. The upper bound in (6.3) then follows from theLp-theory of linear elliptic equa-
tions. The lower bound follows from the Harnack inequality and Lemma A.1.
Let λ1 < λ2 < · · · denote all the eigenvalues of−Lg in (0.3). Pick some constant

A ∈ (−λ2,−λ1). For 0< α < 1 and 1≤ p ≤ (n+ 2)/(n− 2), we defineFp :
C2,α(M)+ → C2,α(M) by

Fp(v)= v−(−Lg+A)−1
[
E(v)vp+Av

]
,

where(−Lg+A)−1 denotes the inverse operator of−Lg+A with respect to the zero
Neumann boundary condition.
For- > 1, letD- ⊂ C2,α(M)+ be given as in (5.6). It follows from Lemma 6.1

that, for- large, zero is not contained inFp(∂D-) for all 1≤ p ≤ (n+2)/(n−2).
Consequently,

deg(Fp,D-,0)= deg(F1,D-,0), ∀1≤ p ≤ n+2
n−2.(6.6)

Proposition 6.1. Suppose thatλ1(M) < 0, hg ≡ 0. Then

deg(Fp,D-,0)=−1, ∀1≤ p ≤ n+2
n−2.
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Proof. It is easy to see thatF1(v)= 0 if and only ifE(v)= λ1 andv =√−λ1ϕ1.
Setv = √−λ1ϕ1. We calculate the derivative ofF1 at v in the following. Forv ∈
C2,α(M), we write

v =−E(v,ϕ1)ϕ1+w.

It follows that

F ′1(v)v =
d

dt
F1(v+ tv)

∣∣
t=0

= v−(−Lg+A)−1
{
2E(v,v)v+E(v)v+Av

}
= v− 2

λ1+A
E(v,v)v−(λ1+A)(−Lg+A)−1v.

Let µ≤ 0 be an eigenvalue ofF ′1(v). Then, for some nonzerov, we have

F ′1(v)v = v− 2

λ1+A
E(v,v)v−(λ1+A)(−Lg+A)−1v = µv.(6.7)

It follows that

∂v

∂ν
= 0.(6.8)

Applying−Lg+A to (6.7), we have

(1−µ)(−Lg+A)v = (λ1+A)v+2E(v,v)v.(6.9)

Multiplying the above byv and integrating by parts overM, we have, using (6.8),
that

(1−µ)E(v,v)+(1−µ)
A

λ1
E(v,v)=

(
λ1+A

λ1

)
E(v,v)+2E(v,v).

It follows that (
2+
(
1+ A

λ1

)
µ

)
E(v,v)= 0.

If E(v,v)= 0, then it follows from (6.9) that

−Lgv =
([
−1+ 1

1−µ

]
A+ λ1

1−µ

)
v.

We see easily from the fact thatµ≤ 0 and−λ2< A <−λ1 thatλ1 ≤ [−1+(1/(1−
µ))]A+(λ1/(1−µ)) < λ2. SinceE(v,v)= 0 andλ1 is a simple eigenvalue, we have
v = 0, which is a contradiction.
On the other hand, ifE(v,v) �= 0, thenµ=−2λ1/(λ1+A) < 0. Multiplying (6.9)

byw and integrating by parts overM, we have, in view ofE(ϕ1,w)= 0, that

(1−µ)

(
E(w,w)+A

∫
M

w2
)
= (λ1+A)

∫
M

w2.
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SinceE(ϕ1,w)= 0, we have

E(w,w)≥ λ2

∫
M

w2.

Using the fact thatµ < 0,−λ2< A <−λ1, we can easily derive from the above that∫
M

w2 = 0, that is,w = 0. This shows thatµ = −2λ1/(λ1+A) is the only negative
eigenvalue ofF ′1(v) having span{ϕ1} as its eigenspace.
The above discussion shows thatF ′1(v) is invertible and the eigenspace ofF ′1(v)

associated with negative eigenvalues is span{ϕ1}. Consequently,
deg(F1,D-,0)=−1.

This completes the proof of Proposition 6.1.

For 1≤ p ≤ ((n+2)/(n−2)),c < n−2, we define an operatorTp,c : C2,α(M)+ →
C2,α(M) by the following:u= Tp,cv if and only if(−Lg+A)u=−n(n−2)vp+Av, v > 0, in M◦,

∂gu

∂ν
= cv(p+1)/2, on ∂M.

Since zero is not an eigenvalue of−Lg+A, Tp,c is well defined. It follows from the
Schauder theory thatTp,c is compact. It follows from (0.8) that, forc < n−2 and
-c > 2 large enough (depending onM,g, andc),{

u ∈ C2,α(M) : (Id−T((n+2)/(n−2)),tc
)
u= 0 for some 0≤ t ≤ 1

}
⊂D-c−1.

Proposition 6.2. Suppose thatλ1(M) < 0, hg ≡ 0, c < n−2. Then, for- large,
we have

deg
(
Id−T((n+2)/(n−2)),c,D-,0

)= deg(F1,D-,0)=−1.
Proof. It follows from the homotopy invariance of the Leray-Schauder degree that

deg
(
Id−T((n+2)/(n−2)),c,D-,0

)= deg(Id−T((n+2)/(n−2)),0,D-,0
)
.

For 0≤ s ≤ 1, we defineGs : C2,α(M)+ → C2,α(M) by

Gs(u)= u−(−Lg+A)−1
{[−n(n−2)s+(1−s)E(u)

]
u(n+2)/(n−2)+Au

}
,

where(−Lg +A)−1 denotes the inverse operator of−Lg +A with respect to the
zero Neumann boundary condition. Clearly,G1 = Id−T((n+2)/(n−2)),0 andG0 =
F(n+2)/(n−2).

Lemma 6.2. For large-,

Gs(u) �= 0, ∀0≤ s ≤ 1,u ∈ ∂D-.
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Proof. If Gs(u)= 0, thenu satisfies−Lgu=
[−n(n−2)s+(1−s)E(u)

]
u(n+2)/(n−2), in M◦,

∂gu

∂ν
= 0, on ∂M.

(6.10)

Multiplying the above equation byϕ1 and integrating by parts overM, we have, using
λ1< 0, thatn(n−2)s−(1−s)E(u) > 0. Multiplying the equation in (6.10) byu and
integrating by parts, we have

E(u)= [−n(n−2)s+(1−s)E(u)
]∫

M

u2n/(n−2).(6.11)

We deduce from (0.8) that

1

C
≤ [n(n−2)s−(1−s)E(u)

](n−2)/4
u≤ C.(6.12)

It follows from (6.11) and (6.12) that

1

C
≤−E(u)

(
n(n−2)s−(1−s)E(u)

)(n−2)/2 ≤ C.

Consequently,
1

C
≤ n(n−2)s−(1−s)E(u)≤ C,

which, in view of (6.12), implies that

1

C
≤ u≤ C.

We can then apply standard elliptic theories to the equation ofu to conclude that, for
some-c > 1, u does not belong to∂D- for all -≥-c.
Using Lemma 6.2 and the homotopy invariance of the Leray-Schauder degree, we

have

deg
(
Id−T((n+2)/(n−2)),0,D-,0

)= deg(F(n+2)/(n−2),D-,0
)
.(6.13)

Combining (6.13), (6.6), and Proposition 6.1, we have

deg
(
Id−T((n+2)/(n−2)),c,D-,0

)= deg(F(n+2)/(n−2),D-,0
)= deg(F1,D-,0)=−1.

We have completed the proof of Proposition 6.2.

Proof of Theorem 0.3.Since we have already established (0.8), we only need to
show that, for allc < n−2, �̃c �= ∅. This follows from Proposition 6.2.
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Appendix

We present three analytical facts used in our arguments. First, we present a Harnack
inequality for divergence form second-order elliptic equations with Neumann-type
boundary condition. Consider

Lu= ∂i
(
aij (x)∂ju+bi(x)u

)+ci(x)∂iu+d(x)u

onB+3 ⊂ Rn,n≥ 2where, as usual,B+3 = {(x = (x1, . . . ,xn) ∈ Rn : |x|< 3,xn > 0}.
For some constant- > 1, the coefficient functions satisfy that

-−1|ξ |2 ≤ aij (x)ξiξj ≤-|ξ |2, ∀x ∈ B+3 ,ξ ∈ Rn,(A.1)

|bi(x)|+|ci(x)|+|d(x)| ≤-, ∀x ∈ B+3 .(A.2)

Lemma A.1. Assume (A.1), (A.2), and|h(x)| ≤ -, ∀x ∈ B+3 . Let u ∈ C2(B+3 )∩
C1(B+3 ) satisfy {

−Lu= 0, u > 0, in B+3 ,

anj (x)∂ju= h(x)u, on ∂ ′B+3 .

Then there existsC = C(n,-) > 1 such that

max
B+1

u≤ Cmin
B+1

u.

Proof. Without loss of generality, we assume thatu > 0 in B
+
3 . For k ≥ k0 > 0,

let η be someC∞ function withη(x) ≡ 0,5/2≤ |x| ≤ 3. Multiplying the equation
by η2uk and integrating by parts, we have, by using the boundary condition ofu, that∫
B+3

aij ∂ju∂i

(
η2uk
)

=
∫
B+3

ci∂iuη
2uk+

∫
B+3

dη2uk+1−
∫
B+3

biu∂i
(
η2uk
)−∫

∂ ′B+3
(h+bn)η

2uk+1.

It is easy to see from (A.1) and (A.2) that

aij ∂ju∂i

(
η2uk
)
≥ k

2-
η2uk−1|∇u|2− C(-)

k
uk+1|∇η|2,∣∣ci∂iuη2uk

∣∣≤ k

8-
η2uk−1|∇u|2+ C(-)

k
η2uk+1,∣∣∣biu∂i (η2uk

)∣∣∣≤ k

8-
η2uk−1|∇u|2+C(-)(1+k)

(
η2+|∇η|2

)
uk+1.
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It follows that

k

4-

∫
B+3

η2uk−1|∇u|2 ≤ C(-)

(
1+k+ 1

k

)∫
B+3

(
η2+|∇η|2)uk+1+2-

∫
∂ ′B+3

η2uk+1.

Setw = u(k+1)/2. It is clear that

|∇(ηw)|2 ≤ 2(η2|∇w|2+w2|∇η|2).
Combining the above two inequalities, we have∫

B+3
|∇(ηw)|2 ≤ C(-,k0)k

2
∫
B+3

(
η2+|∇η|2)w2+C(-,k0)k

∫
∂ ′B+3

(ηw)2.

It follows from the Sobolev embedding theorems that

C(-,k0)k

∫
∂ ′B+3

(ηw)2 ≤ 1

2

∫
B+3
|∇(ηw)|2+C(-,k0)k

2
∫
B+3

(ηw)2.

Combining the above two inequalities, we have∫
B+3
|∇(ηw)|2 ≤ C(-,k0)k

2
∫
B+3

(
η2+|∇η|2)w2.

Using the above and the Sobolev embedding theorems, we have

‖ηw‖L2n/(n−2)(B+3 ) ≤ C(-,k0)k
∥∥(η+|∇η|)w∥∥

L2
(
B+3
), for n≥ 3,

and

‖ηw‖Lp
(
B+3
) ≤ C(-,k0,p)k

∥∥(η+|∇η|)w∥∥
L2
(
B+3
), for n= 2,0< p <∞.

We iterate as usual (see [18, page 197]) and obtain

max
B+1

u≤ C(-,n)‖u‖
L2
(
B+3/2
).

It is also standard that we can then obtain

max
B+1

u≤ C(-,n,p)‖u‖
Lp
(
B+3/2
), ∀p > 0.

It is easy to see thatξ = u−1 satisfies{
−∂i
(
aij (x)∂j ξ−bi(x)ξ

)+(−ci(x)−2bi(x)
)
∂iξ+d(x)ξ ≤ 0, in B+3 ,

anj (x)∂j ξ =−h(x)ξ, on ∂ ′B+3 .
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Substitutingξ for u in the previous argument, we obtain that

max
B+1

ξ ≤ C(-,n,p)‖ξ‖
Lp
(
B+3/2
), ∀p > 0,

namely, (
min
B+1

u

)−1
≤ C(-,n,p)

(∫
B+2

u−p

)1/p
, ∀p > 0.

It is clear that Lemma A.1 will follow if we can show that, for somep > 0,∫
B+2

up

∫
B+2

u−p ≤ C(-,n,p).(A.3)

Forx0 ∈ B+2 ,0< R < 1/10, letη be some smooth cut-off function satisfyingη(x)=
1 for |x − x0| < R, η(x) = 0 for |x − x0| > 2R, and |∇η(x)| ≤ C/R for all x.
Multiplying the equation ofu by v = η2u−1 and integrating by parts, we have∫

B+2R(x0)

aij ∂ju∂iv

=
∫
B+2R(x0)

ci∂iuv+
∫
B+2R(x0)

duv−
∫
B+2R(x0)

biu∂iv−
∫
∂ ′B+2R(x0)

(h+bn)uv.

Arguing as before, we have

aij ∂ju∂iv ≤− 1

2-
η2|∇ logu|2+C(-)|∇η|2,

|ci∂iuv| ≤ 1

8-
η2|∇ logu|2+C(-)η2,

|biu∂iv| ≤ 1

8-
η2|∇ logu|2+C(-)

(
η2+|∇η|2).

It follows that∫
B+2R(x0)

η2|∇ logu|2 ≤ C

∫
B+2R(x0)

(
η2+|∇η|2)+C

∫
∂ ′B+2R(x0)

η2 ≤ CRn−2.

Using Hölder’s inequality, we have∫
B+R (x0)

|∇ logu| ≤ CRn−1.

It follows from the John-Nirenberg estimate (see [18, Theorem 7.21]) that there exists
somep > 0 such that ∫

B+2
e
p

∣∣ logu−(logu)
B
+
2

∣∣
≤ C,
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where(logu)B+2
= (1/|B+2 |)

∫
B+2
logu. Estimate (A.3) can be derived easily as fol-

lows: ∫
B+2

up

∫
B+2

u−p =
∫
B+2

e
p
[
logu−(logu)

B
+
2

] ∫
B+2

e
−p
[
logu−(logu)

B
+
2

]

≤
(∫

B+2
e
p

∣∣logu−(logu)
B
+
2

∣∣)2 ≤ C.

We have thus established Lemma A.1.

Lemma A.2. Let< be a bounded domain inRn with piecewise smooth boundary
∂< = D∪E, V ∈ L∞(<), h ∈ L∞(E). Suppose thatu ∈ C2(<)∩C1(<), u > 0 in
<̄ satisfies �u+V u≤ 0, in <,

∂u

∂ν
≥ hu, onE,

andv ∈ C2(<)∩C1(<) satisfies
�v+V v ≤ 0, in <,
∂v

∂ν
≥ hv, onE,

v ≥ 0, onD,

whereν denotes the unit outer normal ofE. Thenv ≥ 0 in <.

Proof. Letw = v/u; then
�w+2∇u

u
·∇w+�u+V u

u
·w ≤ 0, in <,

∂w

∂ν
+u−1

(
∂u

∂ν
−hu

)
w ≥ 0, onE,

w ≥ 0, onD.

We conclude from the maximum principle thatw ≥ 0; therefore,v ≥ 0.
Lemma A.3. Let (M,g) be a smooth compact Riemannian manifold with first

eigenvalueλ1(M) > 0 and the boundary mean curvaturehg ≡ 0. Let ε0 > 0, and
1≤ p ≤ ((n+2)/(n−2))−ε0. Suppose thatu satisfies

−Lgu= µup, u > 0, in M,
∂gu

∂ν
= 0, on ∂M,∫

M
up+1= 1.
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Then,

0< µ=
∫
M

(|∇gu|2+c(n)Rgu
2)≤ C(M,g,ε0).

Proof. For 1+ ε0 ≤ p ≤ ((n+ 2)/(n− 2))− ε0, it follows from Theorem 1.1
thatC−1 ≤ µ1/(p−1)u ≤ C, which, together with

∫
M

up+1 = 1, immediately gives
the estimate ofµ. Here and in the following,C denotes various positive constants
depending only onε0,M, andg. So we only need to establish the estimate ofµ for 1≤
p ≤ 1+ε0 for smallε0. In the following, we give a proof for 1≤ p ≤ (n/(n−2))−ε0.
Multiplying the equation by the first eigenfunctionϕ1 with the normalization (5.1),
we have

λ1

∫
M

ϕ1u= µ

∫
M

ϕ1u
p.(A.4)

Clearlyµ > 0. Forp = 1, µ = λ1. In the following, we assume 1< p ≤ (n/(n−
2))−ε0. Since 1/C ≤ ϕ1 ≤ C, we derive from (A.4) and Hölder’s inequality that

µ‖u‖p−1Lp ≤ C.(A.5)

From Hölder’s inequality, we have

‖u‖Lp+1 ≤ ‖u‖θLp‖u‖1−θ

L2n/(n−2) ,

whereθ−1 = (1/(p+ 1))− ((n− 2)/2n)−1((1/p)− ((n− 2)/2n)). It is clear that
0< θ < 1,θ−1 ≤ C, and(1−θ)−1 ≤ C. Therefore, by using the Sobolev embedding
theorems, we have that

1= ‖u‖Lp+1 ≤ C‖u‖θLpµ
(1−θ)/2 ≤ C

(
µ‖u‖2θ/(1−θ)

Lp

)(1−θ)/2
.

It follows that

µ‖u‖2θ/(1−θ)
Lp ≥ 1

C
.(A.6)

Combining (A.5) and (A.6), we have

µ1−((1−θ)(p−1)/2θ) ≤ C1+((1−θ)(p−1)/2θ).

Since, for 1≤ p ≤ (n/(n−2))−ε0, we have

1− (1−θ)(p−1)
2θ

≥ δ(ε0) > 0.

The estimate ofµ follows immediately from the above two estimates.

Lemma A.4. Let(M,g) be a smooth compact Riemannian manifold withλ1(M) <

0 andhg ≡ 0. Let ε0> 0 and1≤ p <∞. Suppose thatu satisfies
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−Lgu= µup, u > 0, in M,
∂gu

∂ν
= 0, on ∂M,∫

M
up+1= 1.

Then,

0<−µ=−
∫
M

(|∇gu|2+c(n)Rgu
2)≤−c(n)

∫
M

Rgu
2 ≤ C(M,g).

Proof. It is obvious.
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