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80. Introduction. Let(M, g) be am-dimensional, compact, smooth, Riemannian
manifold without boundary. For = 2, we know from the uniformization theorem of
Poincaré that there exist metrics that are pointwise conformaktad have constant
Gauss curvature. Far> 3, the well-known Yamabe conjecture states that there exist
metrics that are pointwise conformal goand have constant scalar curvature. The
answer to the Yamabe conjecture is proved to be affirmative through the work of
Yamabe [39], Trudinger [38], Aubin [1], and Schoen [31]. See Lee and Parker [23]
for a survey. See also Bahri and Brezis [3] and Bahri [2] for works on the Yamabe
problem and related ones. For> 3, let g = u*/"=? ¢ for some positive function
u > 0 on M; the scalar curvatur&; of g can be calculated as

Rz =u~(("+2/(1=2) (Rgu _ _21) Agu) ,
"o

where R, denotes the scalar curvature gf Therefore, the Yamabe conjecture is
equivalent to the existence of a solution to

(0.2) —Lgu = Ru"t2/=2 4~ 0/in M,
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490 HAN AND LI

whereLy = Ay —c(n)Rg, c(n) = (n—2)/(4(n—1)), andR =0 or +n(n—2).
Consider
Jur (1Ve@l?+c(n)Ry9?)

(fylolr/o-2) =27

for ¢ € HY(M)\ {0}. It is clear that up to some harmless positive constant, a positive
critical point of the functionaD is a solution of (0.1).
The Sobolev quotient is given by

O(M,g) =inf{0(p) | ¢ € H(M)\ {0}}.

Itis clear thatQ (M, g) is positive if the first eigenvalue 6L, is positive, negative
if the first eigenvalue of-L, is negative, and zero if the first eigenvalue-of.; is
zero.

Yamabe attempted in [39] to prove thét(M, g) is always achieved. However,
in [38] Trudinger pointed out that Yamabe’s proof was seriously flawed and also
corrected Yamabe’s proof in the caggM, g) < 0.

It is not difficult to see that, for aiM, g), we have

0(M,g) < Q(S". go),

where(S, go) denotes the standatdsphere. It was proved by Aubin [1] th@i(M, g)
is attained if

(0.2) QM. g) < Q(S". go)-

In the same paper, Aubin also verified (0.2) for 6 andM not locally conformally

flat by choosing test functions supported near a point where the Weyl tensor does
not vanish. This confirms the Yamabe conjecture when 6 andM is not locally
conformally flat. The remaining cases are more difficult since the local geometry does
not contain sufficient information to conclude (0.2). In [31], Schoen established (0.2)
by constructing global test functions in the remaining cases based on the positive mass
theorems of Schoen and Yau (see [35], [36]). The answer to the Yamabe conjecture
was then proved to be affirmative.

More recently, Schoen has obtained compactness results for the Yamabe problem.
He proved in [34] that wheliM, g) is locally conformally flat but not conformally
equivalent to the standard sphere, then all solutions to (0.1) stay in a compact set of
C?(M) and the total degree of all solutions is equaktb. In the same paper, he also
announced, with indication of the proof, the same result for general manifolds (see
[32] for more details). This is much stronger than the existence results.

Analogues of the Yamabe problem for compact Riemannian manifolds with bound-
ary have been studied by Cherrier, Escobar, and others. In particular, Escobar proved
in [14] that a large class of compact Riemannian manifolds with boundary are con-
formally equivalent to one with constant scalar curvature and zero mean curvature on
the boundary.

Q(p) =
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From now on in this pape(M, g) denotes some smooth compaetiimensional
Riemannian manifold with boundary unless we specify otherwise. WeLyst®
denoteA, —c(n)R,, c(n) to denote(n —2)/(4(n — 1)), B, to denote(d/dv) + ((n —
2)/2)hg, v to denote the outward unit normal @/ with respect tog, andi, to
denote the mean curvature @# with respect to the inner normal (balls R have
positive mean curvatures). Léf denote the second fundamental formadff in
(M, g) with respect to the inner normal; we denote the traceless part of the second
fundamental form by

UX,Y)=H(X,Y)—hgg(X,Y).

Definition 0.1. A point g € dM is called an umbilic point iU =0 atg. M is
called umbilic if every point ob M is an umbilic point.

Let u > O be some positive function o#, let § = u* =2, and calculate the
mean curvaturé; as

)

n—2

Remark 0.1. The notion of an umbilic point is conformally invariant; namely, if
q € M is an umbilic point with respect tg, it is also an umbilic point with respect
to 9%/ =2 ¢ for any positive smooth functiop on M.

hg

Consider the following eigenvalue problem @9, g):

—Lep=xp, inM°,

(0.3)
By =0, onoM,

whereM° = M\ oM denotes the interior a¥/. Let A1 (M) denote the first eigenvalue.
It is well known that

2 2 _ 2
AM(M)=  min Ju (VoI + e Ryy )+2((” 2)/2) [ynhe ‘
peHL(M)\(0} Jue

We say that a manifold/ is of positive (negative, zero) typeif (M) >0 (< 0,=
0). This notion is conformally invariant. As is well known, the existence problems
are more difficult for manifolds of positive type. In this paper, we mainly treat this
case, though we also include some results for other cases.

Letting (M, g) be a manifold of positive type, we consider foe R,

—Lou= nn—2u"td/0=2 =0 in M°,

0.4
©0.4) Byu = cu”/(”_z), onoM.

Let . denote the set of solutions of (0.4) @ (M).
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The geometric meaning of (0.4) is thats a solution of (0.4) if and only if, up to
some harmless positive constant, the scalar curvatuge-ofi*/"~?¢ is 1 and the
mean curvature of onaM is c.

Consider

Ju (|vg¢|2+c(”)Rg‘p2) + ((” - 2)/2) faM hg‘Pz

O(p) = 0. |(p|2n/(n_2))(n—2)/n

k]

for ¢ € HY(M)\ {0}. It is clear that, up to some harmless positive constamt,ilo
for any positive critical point of the functionad.
The Sobolev quotient is given by

oM. 9)=int{0) ¢ € H* M)\ ()]

Itis clear thatQ (M, g) is positive if the first eigenvalue of L, is positive, negative
if the first eigenvalue of-L, is negative, and zero if the first eigenvalue-of.; is
zero.

Cherrier proved in [10] that, similar to the Yamabe probleiM, g) is achieved
if

(0.5) O(M.g) < O(S}. o).

where (S, go) denotes the standard half sphere. In the same paper, he also showed
the regularity of solutions to such problems. For a large class of manifolds, Escobar
established (0.5) in [14], thus showinlfp # . More recently, Escobar showed in

[15] that, under the same hypotheses as in [14], there eXist 0 andc™ < 0 such
thatl.+ # @ andJl.- # @. Naturally, one wonders whethgt, £ ¢ for all ¢ € R".

Our next theorem suggests that it is probably the case.

THeEOREM 0.1 Forn > 3, let (M, g) be a smooth, compaet;dimensional, locally
conformally flat Riemannian manifold of positive type with umbilic boundary. Then,
for all ¢ € R, M, # @. Furthermore, if(M, g) is not conformally equivalent to the
standard half sphere, then, for al> 0, there exist€ = C(M, g, ¢) such that for all
u € Uje<zdle we have

1
sSu0=C VreM; lull ey = €.

In fact, we establish a slightly stronger compactness result.
Considerforc e R, 1< p<(n+2)/(n—2),

—Lgu=n(n—2)u?, u>0,inM°,

%k .
*)p.c Bgu =cu(1’+1)/2, onoM.

Let.t, . denote the set of solutions 6f), . in C2(M).



THE YAMABE PROBLEM 493

THEOREM 0.2 Forn > 3, let(M, g) be a smooth, compaect;dimensional, locally
conformally flat Riemannian manifold of positive type with umbilic boundary. We
assume thafM, g) is not conformally equivalent to the standard half sphere. Then,
for anyc¢ > 0, there exist constant& = §g(M,g,c) >0andC = C(M,g,c) >0
such that, for all

U € (Unt2)/(1-2)—b0<p<(n+2)/(n—2) Yle|<eMp.c) U (ULt so<p<(nt2)/(n—2) Mp.0),
we have

1
(0.6) o SUMSC, VxeM;  uliczay < C.

In view of Theorems 0.1 and 0.2 and the results in [34], we propose the following
two conjectures.

ConJECTURE 1. Let (M, g) be a smooth, compaat-dimensional Riemannian
manifold with boundary of positive type. Then, foralf R, it # @.

CONJECTURE 2. Let (M, g) be a smooth, compact-dimensional Riemannian
manifold with boundary of positive type that is not conformally equivalent to the stan-
dard half sphere. Then, for all > 0, there exist positive constantg = o(M, g, ¢)
andC = C(M, g,c) > 0 such that, for all

1 € (U(n42)/(n—2)—s0<p=<(n+2)/(n-2) Yle|<eMp.c)
we have (0.6).

Remark 0.2.In another paper [19], we confirm Conjecture 1 for all manifolds
of positive type with dimension 5 or higher and boundary not totally umbilic. The
remaining cases are discussed in [20].

Remark 0.3. Due to the results in Section 5, we can deduce Conjecture 1 from
Conjecture 2. Namely, Conjecture 2 is a stronger one.

To prove Theorems 0.1 and 0.2, we establish compactness results for all solutions
of (%), . and then show that the total degree of all solutions to (0.4) is equalto
The heart of the matter is some fine analysis of possible blow-up behavior of solutions
of (0.4) which, together with the positive mass theorem of Schoen and Yau, implies
energy-independent estimates of all solutiong«p, ...

When (M, g) is ann-dimensional £ > 3) compact locally conformally flat Rie-
mannian manifold without boundary, such fine analysis and energy-independent es-
timates were obtained by Schoen in [34] for solutions to

—Lou=n(n—-2u”, u>0,inM,

where 1< 14+¢ < p < (n+2)/(n—2). Forn = 3, Schoen and Zhang established in
[37] such fine analysis and energy-independent estimates for solutions to

—Lou=K@u”, wu>0,inM,
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where 1< 1+¢ey < p <5, K > 0 is some positive function i€2(M), and M is
locally conformally flat.

Along the approach initiated by Schoen, the second author extended in [25] and
[26] the above-mentioned results of Schoen and Zhang to dimensiod, as well
as to dimensiom > 5 under a suitablén — 2)-flatness hypothesis & near critical
points of K. He also established in [24] such fine analysis and energy-independent
estimates in dimensiom = 3 for solutions to

—Lou=KuP, u>0,inM°,
Bou =0, onoM,

where 1< 1+¢p < p <5, K > 0 is some positive function i6’2(M), M is locally
conformally flat, and M is umbilic. See Brezis, Li, and Shafrir [5], Chang, Gursky,
and Yang [7], Chen and Lin [9], and Li and Zhu [28] for related results.

The starting point of most of the above-mentioned results on fine asymptotic anal-
ysis and energy-independent estimates is the following Liouville-type theor&h in
(n > 3) of Caffarelli, Gidas, and Spruck [6], which asserts that any solution of

—Au=n(n —Z)M(”"’Z)/("_Z), u>0,inR"

A (n—2)/2
0= g7

for some) > 0 andx € R" (see also Chen and Li [8] for a more direct proof). Under
an additional hypothesis thatx) = O (|x|™") for largex, the above Liouville-type
theorem was obtained by Obata [30] and Gidas, Ni, and Nirenberg [16].

To establish results on fine asymptotic analysis and energy-independent estimates
to solutions of(x) , ., one needs to establish some Liouville-type theorem in the half
spaceR’} (n > 3). This was carried out by the second author and Zhu in [27], where
they proved that any solution of

is of the form

—Au=nn—-2)u"t2/0=2 =0 in R%,
ou

= cu =2, onaR’,
0xy,

is of the form

N (n=2)/2
u(x’,xn) = ——
1422 | (x/, x0) — (¥, %) |

forsomexr > 0,x" € R"~1, andx, = (n —2)A~1c. Under an additional hypothesis that
u(x) = 0(Jx|>™") for largex, the above Liouville-type theorem R’} was obtained
by Escobar in [12].
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Our proof of Theorems 0.1 and 0.2 goes along the lines of [25] and [32]. The
main difficulties we need to overcome here are caused by the nonlinear boundary
term cu’/ =2 in (0.4). In §1, we make some preliminary reductions based on the
Liouville-type theorems of Caffarelli, Gidas, and Spruckifi and of Li and Zhu in
R’ , and we state various propositions that we prove later on. Proposition 1.2 rules out
the possibility of bubble accumulations and therefore establishes that only isolated
blow-up points (see Definition 1.1) may occur. Proposition 1.3 asserts that isolated
blow-up points are actually isolated simple blow-up points (see Definition 1.2). Ge-
ometrically, an isolated simple blow-up point corresponds to one sphere only. To
establish Propositions 1.2 and 1.3, we need to have good enough estimates for iso-
lated simple blow-up points. These are stated as in Proposition 1.4. In deriving these
estimates, a basic role is played by Harnack inequalities, which include the usual
Harnack inequality and one involving boundaries (Lemma A.1). Another important
role is played by Pohozaev identities. In 82, we establish Proposition 1.4 where,
among other things, we need to construct suitable barrier functions in the proof of
Lemma 2.2 to handle boundaries. Proposition 1.3 is proved in 83 and Proposition 1.2
in 84. In 85, we first establish the crucial compactness results, Theorem 0.2, by uti-
lizing Propositions 1.1-1.4 and the positive mass theorem of Schoen and Yau. Then
we use Leray-Schauder degree theory to establish the existence results stated in The-
orem 0.1. In fact, we show that the total degree of all solutions is equalltaThe
above analysis carried out here is for locally conformally flat manifolds with umbilic
boundaries. In the next paragraph, we give some more detailed description of the
proof of Theorems 0.1 and 0.2.

We establish Theorem 0.2 by a contradiction argument. Supposing the contrary of
Theorem 0.2, we find, in view of Theorem 1.1, sequenegs<c, p; < (n+2)/(n—

2), pi — (n+2)/(n—2), andu; € M, ., such that

maxu; — 00.
M

It follows from Propositions 1.1-1.4 that, after passing to a subsequéngehas

N(1 < N < oo) isolated simple blow-up points, denoted @7, ...,¢™}. Let

{ql.(l), ...,ql.(N)} denote the local maximum points as described in Definition 1.1. It

follows from Proposition 1.4 and standard elliptic theories that
1 .
u,-(qi( ))u[ — h, in C%C(M\ {q(l), ...,q(N)}).

Using the hypothesis1 (M) > 0, we have
N
h= ZalG(~,q(1)), onM,
=1

whereq; > 0,VI, andG (-, ¢”) denotes Green’s function efL, with respect to zero
Neumann boundary conditions and centeregl’at Using the positive mass theorem



496 HAN AND LI
of Schoen and Yau, we know that in a good coordinate system centejé€d, at
h(x) = a1lx|*™" + A+ O(x)),

whereA > 0 is some positive constant. Applying the Pohozaev identitg.g ")
for o > 0 small, we obtain a contradiction faérlarge by using the estimates we
derived for isolated simple blow-up points.

The compactness part of Theorem 0.1 is contained in Theorem 0.2. To establish the
existence part of Theorem 0.1, we use Theorem 0.2 and the Leray-Schauder degree
theory as follows.

Without loss of generality, we assunk > 0 andh, = 0. Lety; > 0 denote the
eigenfunction associated with the first eigenvalyéV) satisfying

||¢1||2zfM(|vg¢1|2+c<n)Rg¢§) _1

For0<a < 1, let C24(M)* = {u € C>*(M) : u > 0 onM}. We define, for
1<p<®+2)/(n—2) andc € R, amapT, . : C>*(M)* — C>%(M) as follows:
u =T, v if and only if

—Lgu=n(n—-2)v?, inM,

Ot _ cv P2, onoM.
av
It follows from standard elliptic theories and the hypothesisM) > 0 thatT), .
is well defined and is a compact operator. It is clear thiat= ¢ if and only if
T(n+2)/(n—2)),c has afixed point. Due to our a priori estimates, we can use the Leray-
Schauder degree theory to show tligf 2),,—2)),c has a fixed point for alt € R.
ForA > 1, let D, denote the the following bounded and open subsefcf(M)*:

1
Dp =1 veC>(M): p A,minv > =t
A {U (M) = vl cze ) < i v > A}

SinceT), . is compact, we can define the Leray-Schauder degree-efjd. in D
with respect to G C2%(M), denoted by degdd —Tp.c, Da,0), provided that 0 does
not belong tald -7, ) (0 D). It follows from Theorem 0.2 that, fok large enough,
0 does not belong tdld —T((,42)/(1—2)).:c)(@D) for all 0 < ¢ < 1. It follows then
from the homotopy invariance of the Leray-Schauder degree that

deg(ld —T((n-+2)/(1-2)),c> DA, 0) = deg(ld = T((u+2)/(n-2)),0. D, 0).

To evaluate dedd —7 (n+2)/(n—2)),0. Da,0), we introduce, for O< o < 1 and
1< p < (n+2)/(n—2), another magF, : C2%(M)* — C>%(M) by

F,(v)=v— (—Lg)_l(E(v)vp),
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where(—L,)~! denotes the inverse operator oL, with respect to the zero Neu-
mann boundary condition anfl(v) = fM(|VgU|2 +c(n)Rgv2). It is easy to see
from standard elliptic theories tha, is of the form Id4-compact, and therefore
deqg Fp, D, 0) is well defined provided 0 does not belongAg(dDy). It follows
from the a priori estimates we derived that O does not belong,i@ D) for all

1< p<®m+2)/m—2). Consequently, by the homotopy invariance of the Leray-
Schauder degree,

2
degF,, Da,0) =deg F1, D5,0), V1<p< "+2.
—

A direct calculation shows that
deqg F1, Dy,0) = —1.
Making another homotopy, we also obtain

deg(ld —T((n+2)/(1—2)),0, Da. 0) = deg(F(+2)/(1—2), Da.0).

Combining the above, we have

deg(ld —T((u+2)/(1—2)).c. Da, 0) = —1,

from which we conclude thatl. # ¢ for all c € R.

We also present some existence and compactness results for manifolds of negative
type. Let(M, g) be a compact-dimensional Riemannian manifold of negative type.
ConsiderforceR, 1< p<(n+2)/(n—2),

©0.7) {—Lguz—n(n—Z)up, u>0,inM°,

Bgu = cuPtb/2 onoM.

Let .ANA,,,C denote the set of solutions of (0.7)@ (M) and leti, = .ANA((,,JFZ)/(,I_Z)),C.

Tueorem 0.3 For n > 3, let (M, g) be a smooth, compaet-dimensional Rie-
mannian manifold of negative type. Théty = ¢ for all ¢ < n — 2. Furthermore,
for all € > 0, there exist constantdy = §o(M,g,€) > 0andC = C(M, g,¢) >
0 such that, for a||u~€ (U((n+2)/(n_2))_505175("4_2)/("_2) U—(E)’lfcgn—Z—E ./‘/Lp,c) @]
(Uitso<p=m+2)/(-2Mp,0), We have

1

The above theorem is established in §6.
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81. Reductions. We point out that ifp stays strictly below the critical exponent
(n+2)/(n—2) and strictly above 1, the compactness of solutiongjg . is a much
easier matter, since it follows directly from the nonexistence of positive solutions to
the global equation which one arrives at after a rather standard blow-up argument.
The following theorem, not stated in its general form to inclugé 0, is enough for
us in establishing Theorems 0.1 and 0.2.

THEOREM 1.1 Let(M, g) be a smooth, compagtdimensional Riemannian man-
ifold with boundary. Then, for an$y > 0, there exist€ = C(M, g, §1) such that, for

all u e U1+515p5((n+2)/(n_2))_51Jl/lp,o, we have
1
ESM(X)SC, Vx e M; ||u||cz(M)§C.

Proof. Suppose that the theorem were false. Then, in view of the Harnack in-
equality, Lemma A.1, and standard elliptic estimates, we could find sequémges

and{u;} € M, o satisfying
. 2
lim p;=pe (1, i)
i—00 n—2
and
lim maxu; = oc.

i—oo M

Let ¢; be a maximum point ofi; and letx be a geodesic normal coordinate system
in a neighborhood of; given by ex@l. We writeu; (x) for ui(exp,, (x)). We rescale
x by y=x;x with A; = ulg”"_l)/z(q,-) — 00, and define

A —2/(pi—1 _

Ui(y) :)"i @/(p ))ul()"l ly)
Clearly, 1;(0) = 1,0 < v; < 1. Let§ > 0 be some small positive number inde-
pendent ofi. We write g(x) = ga(x)dx“dx” in exp,1(B;(0)). Define g (y) =
8ab(A; 1 y)dy“dy®. Theni; satisfies—L o 9 = n(n—2)9!" . If IM Nexp, (Bs(0)) #
¢, the boundary condition af; is B, v; = 0. Applying L”-estimates and Schauder
estimates, we know that, after passing to a subsequence and a possible rotation of

coordinatesT =Ilim;_, o d(g;, dM) for some O< T < oo, andy; converges to a limit
{ in C?-norm on any compact subsetfof € R" : y* > —T'}, whered > 0 satisfies

—Ab=n(n—-2)v", iny">-T,

o .
(1.2) ~3 1; =0, ony" = —T,in the case of < oo,
y
0(0) =1, v>0.

It follows from the Liouville-type theorem of Gidas and Spruck [17] (see also [6]
and [8]) that (1.1) has no solution. This is a contradiction. Thus, we have established
Theorem 1.1. O
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The compactness of solutions(tg) , . is much more difficult to prove when allow-
ing p < (n+2)/(n—2), since the corresponding global equation does have solutions.
On the other hand, due to the Liouville-type theorems of Caffarelli-Gidas-Spruck
[6] in R™ and Li-Zhu [27] in the half spacR” , we have the following proposition,
similar to Lemma 3.1 of Schoen-Zhang [37]. This proposition gives a preliminary
description of large solutions of (), .. Roughly speaking, for suah one can find
a finite collection of disjoint ball87,(q1), ..., Bry (¢gn) (N may depend on) inside
whichu is very well approximated in strong norms by standard bubbles. Furthermore,
u satisfiesu(q) < C1ld(q, {q1, . ..,gn )1~ ¥ @=D) for all ¢ in M, whereC; is some
positive constant independent of

ProrosiTION 1.1 Let (M, g) be a smooth, compaet-dimensional Riemannian
manifold with boundary. For an¥ > 0 and any givenR > 1, 0 < € < 1, there
exist positive constant® = 8o(M, g,c, R,¢), Co = Co(M, g,c, R,¢€), and C1 =
C1(M, g,c, R, ¢) such that, for allu € U((n+2)/(n—2))—80<p<(n+2)/(n—2) Y|c|<c Mp,c
with maxy; u > Co, there existq1,...,gn} C M, with N > 1 such that the following
statements are true.

(i) Eachg; is a local maximum point of in M and

By, (gi)NBr;(q;) =9, fori#j,
where7; = Ru=(?=/2(g;), and B, (g;) denotes the geodesic ball itM, g) of

radiusr; and centered a4;.
(ii) Eitherg; e M°,

1 (n—2)/2
u~(gi)u ( exp Y —
’ T \ulr=br2(g) 1+y[?

org; € oM, and

N (n-2)/2
-1 y c

u ulexp,. — <€,
@ ( pql(”(pl)/z(%')>) (1+)»3(|y’|2+|y"+tc|2))

c2(B3 )

<e€,
c?(B%©)

where B, (0) = {y € T, M : |y| < 2R, and u="~D/2(g;)y € exp, (Bs(g))},
Y =0/ "), he = 14(c/(n=2)?, andie = (¢/(n —2)hc).
(i) d?/P~V(gj,qiulg;) = Co, for j > i, while u(g) < Cild(q.{q1, .,

gy D1~ @P=1) for all ¢ € M, whered(-,-) denotes the distance function in met-
ric g.

The proof of Proposition 1.1 follows from the next lemma.

LemmA 1.1 Let (M, g) be a smooth, compaetdimensional Riemannian man-
ifold. Given anyR > 1, 0 < ¢ < 1, ¢ > 0. Then there exist positive constants



500 HAN AND LI

d0=2380(M,g,R,e,c)andCo= Co(M, g, R, €,¢) such that, for any compadf c M
and anyu € Un+2)/(n—2))—s0<p=<(n+2)/(1—2) Yjc|<c M p,c With

max d? P~V (g, K)u(q) = Co,
geM\K

the following holds.
There existgjg € M \ K, which is a local maximum point of in M, and either
qo € M?,

@ |u"(qou (EXqu (—)) - ( ) o
r-1/2 2
uP=D/2(qo) 141yl c2(B40)
or go € M and
(b)
(n—2)/2
u(go)u (equo( 1y2 )) - 2 ;c 2 =
u(P=D12(q) LHRZ(1Y P+ 1y +1c?) c?(BJ40)
2R

whereBé‘fe (0), A, andr,. are as in Proposition 1.14(g, K) denotes the distance of
gtoK,andd(g,K)=1if K =0.

Proof of Lemma 1.1. Suppose no sudy andCp exist for someR, ¢, andc. Then
there exist compad®; C M, (n+2)/(n—2))—1/i < pi < (n+2)/(n—2),|ci| <,
and solutions; of (x) , ,, such that makmdz/(l’i—l)(q, Ku;i(q) =i, and nago
asinLemma 1.1 exists. Itis easy to deduce from the Hopflemmatha0 in M. Let
i € M\ K; be suchthat®Pi=V(g;, K;)u;(g;) = max;ean x, %P~V (q, Ki)u;(q).
Let x be a geodesic normal coordinate system in a neighborhoag given by
f”"fl)/z(c}l-). We rescale

epr_l. We writeu; (x) for ui (€Xp;, (x)) and denoté,; = u
by y = x;x, and define

A —(2/(pi—1 —
Ui(y) Z)\'l @/(p ))ui()\'i 1y)

In exp. *(B5 (@), write g(x) = gap(x)dx“dx". Defineg® (y) = gap (0 1y)dy*dy".
Then—Lgm v, =n(n— 2)6{”‘. Fix some small positive constahit- 0 independent of

i. If aM N Bs(g;) # ¥, we may assume, by takidgsmaller, that exgl(aM) N Bs(0)

has only one connected component and may be arranged to let the closest point
on exg;l(aM) N Bs(0) to zero be at(0,...,0,—#) and ex%l(aM) N Bs(0) :=
8’B§”(O) be represented as a graph oget, ..., x"~1) with horizontal tangent plane

at (0,...,0,—¢) and uniformly bounded second derivatives. The boundary condi-
tion for u; translates intoBg(,->ﬁ,- = c,-f)l.(p"ﬂ)/z. Note thati;d(g;, K;) — oo, and
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for [yl < (L/4%d (@, Ki) with x = 4,y € exp. *(Bs(G:), we haved(x, K;) =
(1/2)d (:, K;); therefore,

1 ) 2/(pi—1) 2/(pi—1) N 2/(pi—1) A
(Ed(%’,Ki)> ui () < d (v, Ki) ™ i) < d (@i, Ki) ™ ui ().

which implies, for allly| < (1/4);d(g;, K;) with A1y € expél(B(;(c},»)), that
(1.2) b (y) < 22/ Pi=D < 22/(po-1),

Standard elliptic theories imply that there exists a subsequence, still denoted as
such thatl’ = lim A;d(g;, M) for some 0< T < o0, ¢ = lim ¢; for somec € R, and

?; converges to a limib in C2 norm on any compact subset pf = (y1,...,y") €

R" . y" > —T}, wheret > 0 satisfies

—AD =n(n—2)f)(”+2)/(n*2)’ iny" > —T,
(1.3) _0 e

ony" = —T,in the case ofl < o0.
ay"

By the Liouville-type theorems of Caffarelli, Gidas, and Spruck [6Rih and of Li
and Zhu [27] inR”, we haved(y) = (/(1+ 12|y — $|2))"~2/2 for somey € R",
A >0,andy" = —T — (n — 2)~1x1¢ in the case ofl < co. Since 1= 4(0) =
(A/(L+22|5]%)"=2/2 we haver > 1 and|y| < 1. WhenT = oo, we obtain from
(1.2) thatd(y) < 2=2/2 for all y € R*, and thusk < 2. WhenT < oo, we take
y = (3/,—T) in (1.2) and obtain, together with> 1, thati < 2+2¢2/(n —2).

In the following we only consideT < oo and divide the rest of the proof into three
cases. The case = oo can be handled similarly to case 1.

Case 1.c < 0. Inthis case, we see from the explicit formbadnd the boundary con-
dition in (1.3) thaty” > —T. It follows that there exisy; — y which are local maxi-
mum points ofj; (y) such that; (yi) — A""~2/2 = maxi. Defineg; = exp,, ;s
theng; € M°\ K; is a local maximum point of;, and, if we repeat the scaling with
gi replacingg;, we will obtain a new limitv. Because of the new normalization,
v(y) = (1/(1+y|%)"=2/2, We redefinel’ = lim d(g;, dM);. Using the boundary
condition forv, we getT = —(c¢/(n—2)). Thus, for sufficiently large,

(n=2)/2
i i)Uui qi ugpi_l)/z(fli) 1+|y|2

This shows that, for large u; satisfies (a). This contradicts the contradiction hypoth-
esis we start with.

Case 2.¢ =0. In this casey™ = —T. It follows that there exisy; — y which are
local maximum points of;;. We can argue, as in case 1, to reach a contradiction.

< €.
c2(B44©)
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Case 3.c¢ > 0. In this casey” < —T. It follows that there existy; € a’Bffg(O)
that is a local maximum point af; such thaty;, — (3’, —T). If we redo the rescaling
with respect taz; = exp;, (Alflyl-) € M, we obtain a limit

( ) 2 (n—2)/2
vy) = s
14+ 22(1y 12+ 1y +1c1?)

where (n — 2)At, = ¢ and i = 1+ A2|7.|2. Thus,A = A, = 14 (¢/(n — 2))?, 1, =
A71(c/(n —2)), and the conclusion of (b) holds. This again contradicts the initial
contradiction hypothesis. We have thus established Lemma 1.1. O

Proof of Proposition 1.1. First, we apply Lemma 1.1 by taking = @ andd (¢, K)
= 1 to obtaingy, which is a maximum point of, and the conclusion of Lemma 1.1
holds. Next, we take&k1 = Br, (q1), 71 = Ru~(P=D/2 (g1). If maxepm k, d P~V
(g, K1u(g) < Co, we stop. Otherwise, we obtaigp given by Lemma 1.1. It is
clear from the lemma thaBr, (q1) N Br,(g2) = ¥, sincee > 0 can be made very
small from the beginning. We continue this process. The process will stop after
a finite number of steps, since there exists some dimensional comrgignt- 0
such thathF’_ @ |Vu|2 > a(n). Thus, we obtaifqa, ...,gn} C M as in (i) and (ii),

andd? P~V (q,UN | By, (gi))u(q) < Co, for anyg € M\ UY_, By, (g;). Now, for any
q € M, eitherq € By, (g;) for somei, or d(q,q;) > 2r;, foralll <i < N. In
the first cased(q, {q1.....qn}) < d(q.q;) < 2r;, so (i) impliesu(q) < 2u(q;) =
12/ (p— Z _
2R2/=VF= @) and so d¥ PV (g, (g1, ..., qvDul@) < 2QR)YP7Y <
2(2R)?Po=D_In the second casei(q.{q1,...,qn}) < 2d(q,UNBr,(g)), SO
d? P D(g{g.....anhulg) < 22/PVCo < 2%WoDCo. Taking €1 =
max(2%/(ro=D ¢y, 2(2R)%/(Po—D) we obtain the conclusion of Proposition 1.1.0]

Though we know from Proposition 1.1 thats very well approximated in strong
norms by standard bubbles in disjoint bafls, (q1), ..., Br, (gn), it is far from the
compactness results we wish to establish. Interactions between all these standard
bubbles have to be analyzed in order to rule out the possibility of blowing-ups.
The next proposition rules out possible accumulations of these standard bubbles,
which implies that only isolated blow-up points (see Definition 1.1) may occur to a
blowing-up sequence of solutions. This proposition plays a crucial role in the proof
of Theorem 0.2, and its proof is much more involved than that of Proposition 1.1.

ProrosiTION 1.2 Let(M, g) be a smooth, compagtdimensional locally confor-
mally flat Rimannian manifold with umbilic boundary. Given any 0, then for suit-
ably largeR and smalk > 0, there exist positive constaris=61(M, g, ¢, R, ¢) and
d=d(M,g,c, R,¢)suchthat, foralu € U(n+2)/(n—2)—81<p<(n+2)/(n—2) Yjc|<e M p.c
with maxy, > Cg, we have

min{d(qi,q;) |11<i,j <N,i#j}>d,
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where(y is the constant in Proposition 1.1 amd, ..., gy are the points inM given
by Proposition 1.1.

This proposition is proved in 84. We now begin the process of the reductions. If
Theorem 0.2 were false, then we could find, in view of thtestimates, Schauder
estimates, the Harnack inequality, Lemma A.1, and Theorem 1.1, sequignges
{ci}, and{u;} € M, ; satisfying

n—2_?5pi5n—2’ iimooci:CER’
and

lim maxu; = oo.

1—> 00
Fix a large R and a smalle > 0. Let $(u;) = {g;1,....qini)} be the set of
points selected according to Proposition 1.1. It follows from Proposition 1.2 that
MiN, -y d(qi.a, qi,p) = d > 0. This shows in particular thal (i) stays bounded. After
passing to a subsequence, there eXist N(M,g) > 1,41,...,qn € M, such that,
for some 1<a < N, qiq = g4 andu;(q; ,) — 00, asi — oo. For each sucla,
gi.a — qaq is a so-called isolated blow-up point far;} defined as follows.

Definition 1.1. Let (M, g) be a smooth, compagtdimensional Riemannian man-
ifold with boundary, and lef > 0,¢ > 0, ¥ € M, f € C°(B;(x)) be some positive
function whereB; (x) denotes the geodesic ball (M, g) of radiusr centered ak.
Suppose for sequences| <<c, p;i < (n+2)/(n—2), pi > m+2)/(n—2), fi —> [
in CO(B:(x)), {u;} satisfies, forr; = p; — (n+2)/(n—2)), that

—Loui =n(n—2) f"ul, u; >0in Bx(%),
Boui = ci f72uP V2 on oM B; (%),

1

(1.4)

and there exists a sequence of local maximum pdigtsof ; such thaty; — x,
and, for some” > 0,

ui(x) < Clde, x)] @7 vx e By, Vi,
I|m u;(x;) — oo.
1—> 00

Then we say that; — x is an isolated blow-up point di;}.

To describe the behavior of blowing-up solutions near an isolated blow-up point,
we define spherical averagesigfcentered ak; as follows:

( )
V Ig (M ( l)) M r(xi)

ui(r) =
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Remark 1.1. Let {x;} and{X;} be two sequences tendingXaatisfying the prop-
erties in Definition 1.1; thew; = X; for largei.

In the following, we present a Harnack inequality that is used often in treating
isolated blow-up points. We ud®’} to denote the upper half space Rf and, for
o >0andx e R", Bf (x) = {x = (x%,...,x") e_R”+||x —X| <o}, Bf = B} (0),
d'Bf(x)=0B}(X)NIR", 3"B} (X) = 9B, (X)NR}.

Let f;,h; € CO(By) satisfy

(15) ||ﬁ||L°°(B;)+”hl”L°°(BZ+) SE,

and, for somepg > 1 andc > 0,

lci| <e.

(1.6) pPo<pi <

Suppose that; € CZ(E) is a sequence of solutions to

an —Au; = fiul", u; >0, in B;r,
. ou; .

L Pit2, ond'BJ.

ox" !

Lemma 1.2 Assume (1.5), (1.6), and thit;} satisfies (1.7). Led <7 < 1/8,
X e Bf/B, and suppose that; — x is an isolated blow-up point dit; }. Then, for all
O<r<r,

sup  u; <C inf ui,
B3, )\ B} p(x0) By, (xi)\Byj(xi)

whereC > 0 is some constant independent aindr.
Proof. For 0< r <7, we considefi; (y) = r%?i=Dy; (ry+x;). Thenu; satisfies
—AU; :ﬁ(ry—}—x,-)ﬁf”, u; >0, in A;,

U D
8y’l’ :h,-(ry—l—x,-)ufp‘ﬂ)/z, ona’'A;,

whereA; ={y e R":1/3 < |y| <3,ry+x; e R} },0'A; =09A; NIR.

We know from the first property in Definition 1.1 tHgt < C in A;. In view of (1.5)
and (1.6), it follows from the Harnack inequality and Lemma A.1 in the appendix
that

maxu; < Cmini;,
Aj Aj
WhereK,- ={yeR":1/2< |yl <2,ry+x; € R}}. Lemma 1.2 is thus established.
O
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In the following, we use the Harnack inequality and Lemma A.1 to derive some

properties of solutions of such equations. ket R, f € Cl(B_;) be some positive
fun@n, l<pi<((n+2)/n—2), pi > (n+2)/(n—2),¢ci > c, fi —> fin
CL(B3). Consider, forr; = (n+2)/(n — 2)) — p;,

—Avizn(n—Z)inrivil’i, v; >0, in B;,
(1.8) v; 5/2. (pi+1)/2 +
PP —ci [y, , ond'Bj.

Lemma 1.3 Suppose thafv;} satisfies (1.8) andlx;} ¢ B Ud’B]" is a sequence
of local maximum points df;} in B; satisfying

{vi(x)} is bounded

and, for some constaitty,

(1.9) lx —x; 1P Dy (x) < €1, Vx € B
Then
(1.10) limsup max v; < oo.

i— 00 Bf/4(xi)

Proof. Suppose that (1.10) did not hold under the hypotheses of Lemma 1.3. Then,
along a subsequence, we would have, for sﬁmerM(xi), that

v; (X;) =7rpax v; — OQ0.
31/4(Xi)

It follows from (1.9) that|¥; —x;| — 0. Consider, forl; = #v; (¥;)7i~1/2,

~ — ~ ~ . P _T'l
£(2) = v (%) "o (R + v (B) " P V2%g), ze BU.()Z.)(,,ﬁl)/z/B(O),

7 i . .
where B, 12,600 = {z € R" : |z] < vi(¥)P~D/2/8,2" > —T;}. We derive

from (1.8) that

i & Di =T
_Aél = n(n_z)frléip ’ Sl > 07Z € Bvi()?i)("i_l)/z/8(0)’
08; , +1)/2 i
1 — _cif‘r,/Zgi(P + )/

az"

=T
» Z€ a/Bvi(}i)(ﬂifl)/Z/S(o)’

and ~
@ <60 =1 VzeB [ 1,0,
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_7 Y -
Wherea,Bu,«(ii)(l’ffl)/z/s(o) ={zeR":|z| <vi(xF)Pi~D/2/8 " = _T;}.

Applying L?-estimates, Schauder estimates, the Harnack inequality, and Lemma
A.1, we have, after passing to a subsequence, that

iimoo l&i—¢ ”CZ(R’iﬂ nBp =0 YR>1,

whereR" ; = {z € R" : 2" > —T;}, € satisfies, forT = lim;_« T; € [0, c0] and
c= |imiﬁolo ¢ €R, that

—A§(@) =n(n =252/ 72 £(z) > 0,inR" .,

d . ~

9 _ —cgM =2 ondR" _,in the casel’ < .

az" -T
It follows that, for allR > 1,

min v =v;(%;) min & — oo.

B LG By (O

Rvi (in*([‘[*l)/
Since{v; (x;)} stays bounded, we have, in view of the above, that, faR all 1, x; does

not belong tOE;Z(i’_)_(m_l)/z(ii) for largei, namely,|%; —x;| > Rv; (%)~ Pi—D/2 for
largei, which violates (1.9). Lemma 1.3 is established. O

Definition 1.2. Letx; — x be anisolated blow-up point §#; } as in Definition 1.1.
We say that; — x is an isolated simple blow-up point if for some positive constants
7 € (0,7) andC > 1, the functionw; (r) := r?/Pi=Dj; (r) satisfies, for large,

(1.11) wj(r) <0 forr satisfyingCu; (x;)~?=Y/2 < < 7.

Remark 1.2. Itis not difficult to see that, fok € M°, the notion of isolated simple
blow-up point we introduced here is equivalent to the one introduced by Schoen (see
[25, p. 322)).

The following proposition is established in §3.

ProrosiTION 1.3 Let(M, g) be a smooth, compagtdimensional locally confor-
mally flat Riemannian manifold with umbilic boundary, anddet> x be an isolated
blow-up point of{u;}. Then, it is necessarily an isolated simple blow-up point.

Strong estimates can be obtained for isolated simple blow-up points as shown in
the next proposition, which is established in §2.

ProposiTION 1.4 Let(M, g) be a smooth, compagtdimensional locally confor-
mally flat Riemannian manifold with umbilic boundary, anddet> x be an isolated
simple blow-up point ofu;}. Then, for any sequences of positive numlgrs> oo,
¢; — 0, there exists a subsequenigsg;, } (still denoted agu;}) such that

ri = R,-u;((p’vfl)/z)(xi) — 0,
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and either

(n—2)/2
u tx)u; (exgcl, (#)) B (1 1 2)
u; (x) + 1yl CZ(B%I_(O))

1 (n—2)/2
ul_—l(xi)u,- exp,, + —(—2>
l ul(p_ )2 (51 1+1yl

+ o
H1(BJ ()
or, X c aMa
—2)/2
“Lxiu; |exp, : > a
u. “(x;j)u; i B
T2 0 )]\ R2 (Y P 1y i) c?(B%. )
3R;
(n—2)/2
+ M_l(x~)u~ exp, M _ Ac < €
ThO)u; ; ul@ﬁb/z(xi) 1+Ag(|y/|2+|yrz+tc|2) Hl(BM (O)) i
3R;

Moreover, for all2r; <d(x,x;) <F7/2,
(1.12) wi (x) < Cui ()Y (x, x;)° "
whereC is some positive constant independent,@&nd
ui(xi)u; — h, in Coo(Br @)\ {x}),
for someh € C2(B;(x) \ {0}) satisfying
h(x) > o0, asx —x,
Bgh =0, in Bp(X)NoM if B;(xX)NOM # ¢.

The following Pohozaev identity (for a proof, see Theorem 1.1 in [25]) is used
often.

LEMMA_1.4. Let Q be a piecev_vise smooth bounded domairRihn > 3), let
K € CX(Q), and letu > 0 be aC?(Q) solution of

—Au=nn—-2)Ku?,
in Q. Then,

-2 -2
n(n—Z)( n_o_n )/ Kup+1_|_n(n—)/x.v[((x)up+l
p+1 2 Q p+1 Q

-2 Vul?2\ 9 -2 9
:/ {x.v(MKup+l_ﬂ>+_ux.w+" _}
90 p+1 2

wherev denotes the unit outer normal 6f2.
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§2. The proof of Proposition 1.4. The following lemma, essentially established
in the proof of Proposition 2.4 in [24], gives some properties of boundary-isolated
blow-up points.

LemMMAa 2.1 Let (M, g) be a smooth, compack-dimensional, locally confor-
mally flat Riemannian manifold with umbilic bounda#y,> 0,¢ > 0, x € M,
f e CL(B;(x)) be some positive function. Suppose, for sequefges: ¢, p; <
(n+2)/(n=2)), pi > (n+2)/(n—2)), f;i > [ in CL(Bx(¥)), {u;} satisfies (1.4)
with t; = p; — (n+2)/(n — 2)), andx; — i is an isolated blow-up point. Then
{d(x;, dM)u; (x;)Pi~D/2} stays bounded.

Proof. The proof is similar to that of Proposition 2.4 in [24]. For the reader’s
convenience, we include the proof. Since we are assuming\thiatlocally confor-
mally flat andaM is umbilic, and since the form of the equations together with
the boundary conditions are invariant under conformal transformations, we may
work locally and assume tha¥ = B; is equipped with the Euclidean metric,
andx; = (0,...,0,xj,) — 0 is an isolated blow-up point wherg, > 0. SetT; =
xinttj (x;)Pi~D/2 \We need to show that

(2.2) {T;} stays bounded.

We establish the above by a contradiction argument. Suppose the contrary of (2.1).
We consider, for a subsequence along wHich> oo,

2/(pi—1 -
g(2) =x7 " Pui(xi+xin2),  z€ B}

whereBI/}Cin = By, N{z | 2" > —1).
Clearlyé; satisfies

—A§() =n(—=2) f&@P, ze By,
9 771/2, (pit+1)/2

Py —ci f;"'7§; ,
2P Dg () < T, ze By

lim £(0) = lim 72?7~ — o,
i—00 i—>oo !

rp—1
z€d Bl/xin’

where f; (z) = fi(x; +Xinz) anda’Bl‘/}Cin ={@E ..., "L = L. L -
< 1/xin}-

It follows that {0} is an interior isolated blow-up point d&;}. It follows from
Proposition 3.1 in [25] that it is an interior isolated simple blow-up point&f. In
turn, it follows from Proposition 2.3 in [25], the Harnack inequality, Lemma A.1, and
standard elliptic estimates that, after passing to a subsequence, we have

£(0)&(z) = h(z), in C3,(R";\{0}),
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whereR" | = {(z},...,2") € R" : 2" > —1}, andh is singular neaf0} and satisfies
—Ah(z) =0, h(z) >0,R";\{0},

5—;(@ =0, 9dR",.

Extending/. evenly across the hyperplacé = —1, we derive from Bdcher’s
theorem (see e.g., [22]) and the maximum principle that

h(z) = a(|z> ™ 412 — (0,0, —2)[>™) +b,

for some constants > 0 andb > 0. Consequently, foA = a|(0,0, —2)|2"+b > 0,
we have

(2.2) h(z) =alz]* "+ A+ 0(z)).

In the following, we derive a contradiction as in the proof of Proposition 3.1 in [25].
For 0O< o < 1, we apply Lemma 1.4 t§ on B, to obtain

n n—2 2T e pit+l n(n—2) Fh—-1 7\ epitl

nn—2) -
3By p+1 3By

whereB(o, z,u, Vu) = ((n —2)/2)u(du/dv) — (6/2)|Vu|? + o (du/dv)2. Multiply-
ing the above identity by, (0)? and sending to oo, we obtain, by using Proposi-
tion 2.3, Lemma 2.4, and Lemma 2.7 in [25], that

5[(0)21'1/ f;ri_l(Z'Vﬁ)sipi—"_l_) 0
Bo
and

502 figh o,

9By

which implies

/ B(U,z,h,Vh) > 0.

3B,

On the other hand, in view of (2.2), a direct computation shows that

2
Iim/ B(o,z,h,Vh):—(n 2 Als™,
3B, 2

o—0

which contradictsA > 0. Thus, we have established (2.1). The proof of Lemma 2.1
is completed. O
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The following lemma is an important step toward establishing Proposition 1.4. The
main difference between this lemma and Proposition 1.4 is that we do not know yet
whether we can také; in (2.3) to be equal to zero, which would be the same as
(1.12).

LEMMA 2.2 Let(M, g) be a smooth, compaatdimensional locally conformally
flat Riemannian manifold with umbilic boundary, and lt— X be an isolated
simple blow-up point ofu;}. Then, for any sequences of positive numbgrs> oo,
€ = o(Rl.Z*”), there exists a subsequengs; } (still denoted aqu;}) such that

ri = Riui_((pi_l)/z)(xi) — 0,

and either

(n=2)/2
u_l(x-)w(exp (—y ))—( 1 )
i M i i—1)/2 2
l T\ ) 1+1yl c?(Bl ©)

y 1 (n—2)/2
u-_l(xi)ui exp. |\ ——5— —< )
' ' ul(pfl)/z(x,‘) 1+]yl?

or, x; € oM,

(n—2)/2
w7 oxui|exp, 4 ke
~L(x;)u; —— _
’ NPV 2ap)) LR 1P+ "+ 1) .
(Bl )

(n—2)/2
et eui[exp Y - he <€
i )i X u(p,-—l)/z(xi) 1+)\g(|y1|2+|yn+[c|2) i-
' Hi{(8%, 0)

+

< €,

Hi(84, 0)

Moreover, for allr; <d(x,x;) <7/2,
(2.3) u; (x) < Cui—)ti (Xi)d(x,Xj)27n+8i,
wherex; = (n —Z—Si)(pi — ]_)/2_ 1 for some0 < §; = 0(R;l+o(1))-

Proof. In the case where the blow-up point is an interior point, see Lemma 2.2
in [25]. Thus, we concentrate on the case of a boundary blow-up point. Since we
are assuming tha¥ is locally conformally flat andM is umbilic, we may work
locally and assume thatf = B; is equipped with the Euclidean metric, apd=
(0,...,0,yin) — Ois an isolated simple blow-up point for a sequence of solutigns
The equation takes the form

—Auizn(n—Z)]‘itiuf)i, u; >0,in B;,
2.4 ou; ) .
(2.4) : Lo f2PY2 ongyBY,
y
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where, as usua’ By = {(y,....»" 1, 0): 1L ...,y 0)| < 2.

The proof goes along the lines of the proof of Lemma 2.2 in [25]. The difference is
that we need to find different comparison functions when using the maximum princi-
ple. Arguing as in the proof of Proposition 1.1, it is easy to see that, for any sequences
of positive numberst; — oo, ¢, — 0, we have, after passing to a subsequgngg
(still denoted agu;}), that

1 (pi—1)/2) e
_ ~((pi—
uy - (viui (yi +u; ()y) = (W)

c2(B%, 0)

1 (pi—D)/2) (=272
_ —((pi—
+ Mi (Yi)bti (yl +”i (yl)y) — (r|y|2> < €,

HY(BY ©)

ory; €M ={(x',0):|x'| <2}, and

N (n—2)/2

-1 —((pi—=1/2) c

u; = (youi(yi+u; »i)y)—

i i l( i i i ) 1+k§(|y’|2+|y"+tc|2) y
(B4, )

N (n—2)/2

4 —((pi=D/2) -

e oui (vi +u; i)y)— o

o l( i+, i ) 1+)Lg(|y/|2+|y"+tc|2) Hl(BM (0)) l
3R,

andr; = R,-ul._((""_l)/z) (y;) — 0. As a consequence, if we choase= o(RiZ_"),
(2.5) ui () = CusODRZ™". forall 3 < [y =yl <3,
and we only need to provide the bound for< |y —y;| < 1. (We takeF = 2 in
the definition of an isolated simple blow-up point for simplicity.) It follows from the
estimate above, Lemma 1.2, and (1.11), thatyfoet |y — y;| < 7/4, we have
ly =il /P Pui(y) < Cly—yil P Vi (ly = yil)
<o)
<c Ri(z_n)/2+0(l)'
Therefore,
—1 240 _ 7
(2.6) ul""(y) < O(R; 2t (l))ly—yil 2, forallr <|y—yil < 7
SetT; = yinu; (y;)?i~D/2, 1t follows from Lemma 2.1 that7;} stays bounded. Con-
sequently,

7
(2.7) lyil =o(r;) and Bf(O)\BZt[(O)C{y:grifly—yiliz} for largei.
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We construct comparison functions and apply Lemma A.Z;toConsider the
second-order elliptic operatdr; = A+n(n— 2)fl.”'uf”'_1 in B;, and the boundary
operatorB; = —(8/8y")—c,-fi”'/zuf."”'fl)/2 ond’By . ThenL;u; =0,u; > 0in By,
andB;u; =0 ona’B;. It follows from Lemma A.2 that the maximum principle holds
for (L;, B;). Our construction of comparison functions is carried out according to two
different cases.

Case l.c; < 0. ltis clear, in view of (2.7), that

1 _ o .
(2.8) oY E S ly—xlT=1017% in B (0)\ B3, (0).
We can easily derive from (2.6), (2.7), and (2.8) that fer 0 <n—2,
Li(1y17) = {~nti—2=m+ 0 (R7>F®) |1y 2n
in Bf(O)\thi (0).
Ond'BY (0\d'B;, (0) = (04 ...y 10 : 2 < |y, y" 10 < 1,
Bi(IyI™) = =i 7 2u” 2y = 0.
Set M; = maxy g+, Ui andi; = (n—2—8)(p; —1)/2—1, whered”B; (0) =
(OGN ) Gy = 1,y" > 0}, and 0< &; = O(R; **°P) is chosen so
that—8; (n —2—8;) + O(R; *7°™) < 0. Let
@i () = Milyl ™5 + Au; ™ () [y2" 0 —ui(y), in B (0)\ B3, (0).
whereA will be chosen in a moment. It follows from our computation thasatisfies

Li(pi) <0, Bf(0)\ B3 (0).
Bi(p) =0, 3'Bf(0)\d'B3. (0),
¢i >0, 3" B (0)UD" B3, (0),

provided we choosd large enough so that, dn| = 2r;, ¢; > 0. Such anA can be

chosen with an absolute bound independent loécause of (2.5) and the choice of
;. Then we derive from Lemma A.2 that(y) > 0 on B (0) \ B;i (0). Thus, we
use the above estimate, (1.11), and Lemma 1.2 to obtain; fop < 1, that

M; < Cii;(1) < Co% i~V 0)
< COHPiVIM 070 AuH (y)o? Y

Choosing sufficiently small, but independent pfso thatCo2/(Pi—D=8 ~ 1/2 we
obtain

(2.9) M; < Cu; ™ ().
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Combining (2.9) and the estimage > 0, we have, for some constafitindependent
of i, that
ui () < Cu; ™ (y)lyl "+, for 2 < |yl < 1.

Estimate (2.3) follows from the above and (2.8).
Case 2.¢; > 0. In this case, we modifijy|* by |y|=* —€|y|"*~1y" and obtain,
forall 0< u <n—2ande > 0, that

Bi(Iy|™* —elyl™*~1ym)

=i Heto (RTFV)]L vy €90\ 0B, (0),

and, for ally € B; (0)\ B;i (0), that

Li(lyl ™ —elyl ™1y
=317 i = 2=t eGu Dn == )" /1yl + 0 (R |

Apparently we can find & 8; = O(R;*"°®) and 0< ¢; = 0(R; ™) so that,
for all y € 8'B; (0)\ 9’ B3, (0),

Bi(lyI ™ =iyl 5" >0, Bi(lyZ" 0 — ey ) > 0,

and, for ally e Bf(O)\B{rl_ 0),

Li(ly ™% —ely 7ty <0, Li(Iy|2" T — ey 7" Hiym) < 0,

We define inB; (0)\ B, ,.(0),

; 1
—0i —0i— —Ai — i l
01 () = Mi (117 —eily 7 ")+ Aw o (127 ey ) = Sui (),

whereM; and; are as in case 1. Arguing as in case 1, we obtain the desired upper
bound ofu;. We have thus established Lemma 2.2. O

LemmA 2.3 Suppose thatu;} satisfies (2.4) ang; — y € B; Ud'B] is an iso-
lated simple blow-up point. Then, for afy o < r, there exist< > 1 independent

of i such that
“2\[ gty (202D _n—2 / FT/2,Pit9)/2
B;r [ l i +3 2 B/BJr i i

(v ) (12T /2
- Tiui (i) .
- C

n
n(n—2)(pi+1—
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Proof. If y e Bf, the proof follows easily from Lemma 2.2. We assume without
loss of generality thaf = 0 andy; = (0, ..., 0, yin). SetT; = yinu; (yi)?~Y/2 and,
after passing to a subsequen@e= lim;_, 7;. It follows from Lemma 2.1 that
0<T < oo. Consider

~1 —(pi—1)/2 ~T;
ni(2) = ui (yi) "u; (yi-l-ui()’i) (pi=D/ Z>, ZEBui(yi)wfl)/Z/s’

,Ti . . —
WhereBin(yi)<Pi—1>/2/8 ={zeR":|z| <uj(y)Pi=V/2/8 " > —T;}.
It follows thatn; satisfies

£Ti i =T;
—Ani (@) =n(n—-2)fni (", ni(x)>0, z¢€ Bui(y[)(Pi—l)/Z/g’

9 71i/2. (pi+1)/2 -
2.10) oz —editm » 2E€TB Lmivg

- ol -1,
|Z|2/(pl l)r]l (Z) S Cs Z€ Bui(yl_)(pifl)/z/S’

7;(0) =1 and 0 are local maximum points of,

where fi(z) = f; (vi +u; (yi)~Pi=D/2).

It follows from Lemma 1.3, the Harnack inequality, and Lemma A.1 thg}
is locally bounded. Therefore, for ar§; — oo, we deduce from standard elliptic
estimates that, after passing to a subsequénge (still denoted as{u;}), R; =
o(ui (yp)Pi~P/?/8) and

(2.11) Ilm—nIICZ(E;@+|Ini—n|IHl(§;1§) <e ',

1

for somen satisfying

—An(2) =n(n—2)n(z)"T2/=2 " p(z) >0, R,
87] n/(n—2 n

(212) ﬁ = —Cn /€ ), aR_T7
n(0) =1 and 0 are local maximum points

wherec =1lim; o c;, R" ; = ((zL,...,2") : 2" > —T}. It follows from the Liouville-
type theorem in [27] that when< 0, T = —(¢/(n —2)) > 0, and

1
(L+12/ 2+ 12"+ (c/n—2)|2) "2/

and wherc > 0,7 =0, and

N (n—2)/2
2.14 )= < ,
@19 1@ (1+A§(|z’|2+|z"+tc|2)>
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wherel. andz. are defined as in Proposition 1.1.
It follows from (2.11) and Lemma 2.2 that

pi+l

Jo
J

/+ fiultt = (14 o(D))u; (i) "2/
Bs

R;

= (L o(@)u;(y)"27/2 | 202,

[ F e < (o)) [ o
9By

- (1+0(1))uf(yi)(”‘2)”/2/R p2n=0/(1=2).
IR"

It follows that

(2.15)
n n—2 il 2h—1) n-2 2 (pi43))2
) _ T, Pit : _ / /2, (Pi
-2 (7 >B;f (g ) i
8(n—1) (1—2)7;/2 2n/(n-2)
= (1+0(D) Ui (Vi) eri12(n—=1)(n—-2) n
(n—2) R,

+Cf n2(n—l)/(n—2)}.
aR" .

Multiplying the first line of (2.12) by and integrating by parts dR" ;,, we have, in
view of the boundary condition in (2.12), that

(2.16) n(n —2)/ p2/ =2 +cf p2= /=2 — / |Vnl? > 0.
R", aR" R™

-T

Lemma 2.3 follows from (2.15) and (2.16). O
LEmMA 2.4, Suppose thafu;} satisfies (2.4) and; — ¥ € B U3'B; is an
isolated simple blow-up point. Then

(2.17) 7 = 0(u; (v)~?),

and therefore,
ui(yi) =1+o(1).

Proof. Fory e 8'B;", we assume, without loss of generality, that= 0 and
yi = (0,...,0,yin). Applying Lemma 1.4 ta,; on B} for somes > 0, we have, in
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view of Lemma 2.2 and the boundary conditiongfin (2.4), that

n n_2 Ti pi+1
n(n_z)(pﬂrl_ 2 ) B;f “

n—1
0 — , .
2/ B(G,y,ui,VMi)—i-Ci/ Z joui I/lz n Mi frl/Zul(P;-&-l)/z
8" BF 3B o
+0(ui(yi)_2)+0(fi)

_ 2n—-1) n-2 /2, (pi+3)/2 2
—_Cz( Di+3 o )/;’B;rf u; +O(’/lz(yz) )+O(Tz)s

whereB(o, y,u;, Vu;) is defined as before, and we have integrated by parts on the

term [y 312 1y1(3ui/3yj)ff,~/2ulgm+1)/2_
It follows from Lemma 2.3 that

n n—2 il
nn—2 — Ty Pit
( )<Pi+1 2 )/B;f !

e 2(n—1)_n—2/ fril2, pit/2 S T
“\ pi+3 2 3’ BF l S c

Estimate (2.17) follows from the above two inequalities. Far B;", we apply the
Pohozaev identity irB, (y;) and conclude the same way. O

Proof of Proposition 1.4. We follow pages 338-341 of [25] with rather obvious
modifications. O

83. The proof of Proposition 1.3. Due to the conformal invariance df, and
B,, Proposition 1.3 follows easily from the next proposition.

ProposiTION 3.1 Lety; — ¥ € B Ud’B; be an isolated blow-up point df;;},
solutions of (2.4). Them; — y is an isolated simple blow-up point.

If ye Bf, the conclusion is known (see, for example, Proposition 3.1 in [25]).
We only considery € a/Bf. Without loss of generality, we assuriye= 0, y; =
©,...,0,yin), andr = 1/4.

Recall that
1

107 B (y)| Jo B (i)
where, as usuaB;t (y;)) = {y e R : |y —yi| <r}, 3"B} () = 3B, (y) NR™. Also,

u;i(r) =

ui’

w; (r) = r? PV ().

Proof of Proposition 3.1. Suppose the contrary; then there exist some sequences
of positive numbers; — 0 andC; — oo satisfyingC,u; (v;)~?~1/2 < such that,
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after passing to a subsequence,
(3.2) w; (7)) = 0.

SetT; = yinu; (y;)?i~Y/2 and, after passing to a subsequerites lim;_ o, 7;. It

follows from Lemma 2.1 that & 7' < oco. Consider

ni(2) = ui ()~ ui (i +ui ()" PY22), ze B,;(T;i)(pfl)/z/g’
WhereBu_i(T;i)(n,-—D/z/s ={z € R":|z] <u;(;)?P~V/2/8,2" > —T;}. It follows thatn;
satisfies (2.10).

It follows from Lemma 1.3, the Harnack inequality, and Lemma A.1 {a} is
locally bounded. LeR; > C;; after passing to a subsequence, as before, we have
(2.11) for some; satisfying (2.12). It follows from the Liouville-type theorem in [27]
that whenc < 0, we havel = —(¢/(n —2)) > 0, andp is given by (2.13); when
¢ > 0 we haveT = 0, andn is given by (2.14) where.. andr. are defined as in
Proposition 1.1.

Lets = u; (x;)?i~D/2r and set

_ 1 1
ni(8) = ————— M §) = ——F—— N
ia//Bs i (o)| 3"B; 1 (0) |3”BS i (0)| 3B 1 (0)
It follows from (2.11) that, after passing to a subsequence,

<e VR

3.2 Hs2/<pifl>—, ) — s —2/25 ’
3.2) 7: (5) 1) c203r,p) =

It is easy to see from the explicit form of:~2/27(s) that, for some positive constant
C independent of,

d . . s—(1/2)
(") < ————, VC<s=3R;,
which, together with (3.2), yields
d -~ s—(1/2)
E(sz/(lh Dﬁi(s))f_ o VC <s <R;.

Making a change of variables, the above implies
wj(r) <0, VCu;i(y)~ "V <r <,

wherer; = Rju; (y;)~Pi=b/2,

We derive from the above and (3.1) that> r; andw; has at least one critical
point in the intervalr;, 7;]. Let u; be the smallest critical point af; in this interval.
It is clear that

Fi > Wi >, lim p; =0.

1—> 00
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Considerg; (x) = 17/ P Pu; (uix +y,). SetT; = yin/pi, T = im0 Ty We have

4

—AE () =n(n—2) f &P, x| < —,x" > =T,

0&; <1, /2 , 7
L= —aff eIy < D = -y
9x B Wi
33 |RPOE@ <C xl< =" > -,
' i

1im &;(0) =o0,and 0 is a local maximum point &f,
11— 00
r?/(PitDE, (r) has negative derivative ig; (0)~7i—D/2 < < 1,

d )=
AP )], =0,

whereg; (r) = (1/1"B; " (O)]) f,, -1 o, §0), B (0) = {x € R" : [x|(r,x") = T3},

0"B;"(0) = 0B, " (0)NdB; " (0), and f; (x) = fi (ix +yi).
If T = o0, we can derive a contradiction exactly the same way as in the proof of

Proposition 3.1 in [25]. If 0< T < oo, we know from Proposition 1.4 that
£(0)& (x) —> h(x), in Co(RLL\{0}),
whereh satisfies

—Ah=0, h=>0,inR"\{0},
ah

ax"

=0, onx"=-T.
Clearly, for some constamt > 0,
h(x) = A(lx[>™" +|x = (0,...,0,=2T)[>") + b(x),

whereb(x) is some harmonic function dR”. Due to the positivity ofz, liminf ;| o
b(x) > 0. Consequentlyz(x) = b for some constarit > 0. Foro > 0 small, applying
the Pohozaev identity as usual, we reach a contradiction.

Now we only need to rule out the possibility @ = 0. Indeed, we know from
Proposition 1.4 that

(3.4) £(0)& (x) — h(x), in Ch (R \1{0}),
whereh satisfies

—~Ah=0, h>0,inRL,

oh
=0, onaRZ\{0}.
o "\ {0}
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Arguing as before, we have, for some constatts 0 andb > 0, that
h(x)=Alx|>" +b

Using the last line in (3.3) and (3.4), we have

{ @-)/2 4 py(1=2/2}

r=1

d F(n=2)/2 |
e — ht|
dr | 18”B; ()| Jyrry |7t

. d i~ =
= lim d—{rz/(pl 1)§i(0)%_i(r)}}r=l

i—oodr

=0.
Consequentlyh = A > 0, and
h(x) = A(jx[2" +1).

Setéi(x) = & (L. "L =), fitx) = fixl .. x""Lx" — T;), and apply
Lemma 1.4 ta;; on B, for o > 0 small. We have

n n—2 PN |
_2 _ _Tl .[71""
nn )(ml . )/B;f, 3

B v M2 [ s
_/ZJI,B:B(U,x,s,,vsl)+—pi+l de ]

1, = 35 n—2 22 (pi+1)/2
£ |pit i —fe | Fu/2gpitd)/
Y T O L

We calculate the last term:

nl 853 2 1)/2
2\ rn22(mit
/H/BJr Z j9si Ei fir/ Ei(p )/
n— £(pit+3)/2
Zf 2 Za(éi )fr,/Z fr,/Zs(Pz+3)/2
gt \ Pi+3 P ax/ i

2n—1 -2 -
_ ( (n-1) n )[ flr,/Zé_(p,+3)/2+ 0 ( / Sl(p,+3)/2)
pi +3 2 8BS x"=0,|x|=0

+O<r/ |x|g<P"+3)/2>.
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Multiplying the above byz;(0)2, and sending to oo, we have, by using (3.4),
Lemma 2.3, and Lemma 2.4, that

/ B(o,x,h,Vh) > 0.
8" BY

This, as usual, contradicts the fact that

. —2)24
lim / B(a,x,h,Vh):—u|S”_l| <0.
o—0t 8//B;r 4
Proposition 3.1 is established. O

84. The proof of Proposition 1.2. In this section, we establish Proposition 1.2.

Proof of Proposition 1.2. If the conclusion of Proposition 1.2 does not hold, then
there exist sequencésn +2)/(n —2)) —1/i < p; < (n+2)/(n—2)), |ci| <,
uj € Mp, c, such that mifd(q; «,qi»)|1 < a,b < Ni,a # b} — 0 asi — oo where
gi1..-..qin; are the points determined by Proposition 1.1 #c& u;. Notice that
when we apply Proposition 1.1 to determine these points, we fix some very large
constantR, and then fix some very small constant- 0 (which may very well
depend onR), and in all the arguments, is large (which may very well depend
on R ande). Letd; = d(gi,1.4qi,2) = MiNyxpd(Gi.a, qip), aNdgo = 1iM; 00 gi 1 =
lim;_ 0 qi2 € M. We distinguish two cases.

Case l.gp e oM.

Case 2.gqp € M°.

Case 2 is simpler to handle and can be ruled out as in [34] or [25, Proposition 4.2]
(see also the argument below). We only work out the detail to rule out case 1. In case 1,
due to the hypothesis thaf is locally conformally flat and M is umbilic, we can find
a diffeomorphisny : Bj — B (q0), ¢(0) = qo, B}a(q0) C @(B) C B}4(q0), and

p*g = f4172 g0, wherego = )_'}_; (dx/)?is the flat metric orBf andf € CZ(B_;F)
is some positive function. It follows from the conformal invariance.gfand B, that
—Av; =n(n—2)f%", inBJ,

I /2, (pi+1)/2 1p+
ax”:_cif v; , Ond'By,

wheret; = (n+2)/(n—2)) — pi, vi = fu;op.
It follows from property (i) in Proposition 1.1 that, for all£ b,

—(pi-1)/2
Ru; P V2(q; ) < d(Gias 4in)s

which in turn implies, in view of lim., . d(gi.1,gi.2) =0,

im wu;(giq) =00, fora=12,
1—> 00
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and
d(qi1,qi2)% P Vu;(gi o) = RYPi=D > R=D/2 " forq=1,2.

Due to the factorf, ¢; , may not be a local maximum point of anymore, but it

is not difficult to see that for eacfy , € Bg"}lz(qo), there exists; , € B; such that,
for largei,

}xi,a - (p_l(CIi,a) |’/li (‘]i,a)(pi_l)/z < Ce,

(4.2) Xi 4 1S a local maximum point ob;, andv; (x; ;) - 00, a=1,2,
(4.2) d(x,Ua{xia)) 7P Puix) < €1, Vx € B,
0 <o;:=|xj1—xi2| <2min|x; o — x; »| = O,
a#b
,_ R2/(pi-)  R(n—2)/2
(4.3) o/ P (xi0) = fora=1,2,

> 9
C - C
whereC > 1 is some universal constant independent,at, andi.
Without loss of generality, we assume thag = (0, ..., 0, xi’fl). Consider

2/(pi—1
w; (y) = o; Py (i1 +0iy),
and set, fow; , € F,
Xia —Xi,1
Yia=—"_—"".
g}

Clearly,
(4.4)

1
—Aw;(y) =nn—-2) f(xj1+o;y)"w; ()P,  w;i(y) >0, [yl < ;,y” > T,

1

ow; (y) ) ) 1
a;n = —cif(ia+oy) P (PR iy < =yt =T,

l

whereT; = x}';/0;.
It is also clear that

|Xi,a — Xi bl -

(4.5) [Yia — yipl = >1, Va#b,

i
and
yi1=0, [yi2l =1.
After passing to a subsequence, we have

y=lim y; 2, Iyl =1
11— 00
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The following can be derived easily from (4.3), (4.1), and (4.2):

w; (0), w; (yi,2) = Cy,
(4.6) eachy; , is a local maximum point ofv;,

. _ 1
minly — y; o[7PYw;(y) < C1, |yl < —=——,y"> T},
a (207)

where C; > 0 is independent of. The next lemma follows immediately from
Lemma 1.3.

Lemma 4.1 If along some subsequence both,, } and{w; (y; 4;)} remain bound-
ed, then along the same subsequence

limsup max w; < oo,

. — T
=00 Bl/4l (Yi,a,-)

where By 4 (ia) =1y : Iy —yia| < 1/4," > —Ti}.

In the following, we show that
4.7) w; (0), wi (yi,2) — oo.

If one of them tends to infinity along a subsequence,®a$)) — oo, then{0} is an
isolated blow-up point. According to Proposition 1.3, it has to be an isolated simple
blow-up point. In view of Proposition 1.4, the Harnack inequality, and Lemma A.1,
this implies thatw; tends to zero on any compact subse(ﬂg/ﬁ" (0 UBQ/Z" 2N\

{0, yi 2}. This, together with the Harnack inequality and Lemma A.1, implies that

eitherw; is not bounded irFI/ﬁ" (yi.2) or w;(yi2) tends to zero, but we know from
the first line of (4.6) thaw; (y; 2) does not tend to zero. Sw; is not bounded in
EI/{{' (yi,2), which in turn implies, in view of Lemma 4.1, that; (y; 2) — oo. This
shows that either (4.7) holds or, along some subsequencefiba®)} and{w; (y; 2)}
stay bounded.

On the other hand, if botfw; (0)} and{w; (v 2)} stay bounded along a subsequence,
then{w; } is locally bounded. This can be seen as follows. Suppose the contrary; then,
in view of Lemma 4.1w;(yi,4;) — oo along some bounded subsequetigg,,}.

So we have an isolated simple blow-up pofmt,,}. Applying Proposition 1.4, the
Harnack inequality, and Lemma A.1 as before, we deduceuth@) — 0. This is a
contradiction.

Since {w;} is locally bounded, we deduce by applyidg estimates, Schauder
estimates, the Harnack inequality, and Lemma A.1 that

lim |Jw; —w = =0, VR>1,
l_)oo“ i ”CZ(RVLTZ-QBR)
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where, forT :=1lim;,_, o T; € [0, o¢], w satisfies that

—Aw=nn—-2w"*t2/"=2 > 0/in {yeR":y" > —T},
(4.8) ow
ay"
All the solutions of (4.8) are classified by Caffarelli, Gidas, and Spruck [6] fer co
and by Li and Zhu [27] fofl < oco. Itis clear from their work that there is no solution
of (4.8) having two distinct local maximum points. Howeverapparently has zero
andy as its local maximum points. This is a contradiction. We have thus established
(4.7). This, together with the third line in (4.6), implies that b¢@h andy; » — ¥
are isolated blow-up points. According to Proposition 1.3, they are isolated simple
blow-up points. We proceed by distinguishing two subcases.
Case 1.1.T =lim;_ » T; = co. In this case, we argue as in the proof of Proposi-
tion 4.1 in [25] as follows. We see from (4.4) that(O)w; satisfies

= —cw"/ "2, ony" = —T,in the cas&l’ < co.

(4.9)
. i 1 "
—A(wi Qwi) = (=2 fHwi O P (wi Qi)™ Iyl < =.y" > =T,
1
a(w; (O)w; . 1
(wza( n)wl) — _cifri/Zwl_ (O)(l—Pi)/Z(wi (O)wi)(pl+l)/2, Iyl < =y = —T..
y o

We have shown in the above that{jf; ,,} stays bounded along a subsequence, then
after passing to a subsequence eitlagfy; ,,) — oo is an isolated simple blow-up
point or {w;} is bounded inBl_/Z" (vi.q;)- Since{0} and {y; 2} are isolated simple
blow-up points, we can derive from Proposition 1.4 and the Harnack inequality that
{wi(O)w;} is locally bounded inR" ;. \ Ui{yi,q}. In view of (4.5), we applyL?-
estimates, Schauder estimates, and the Harnack inequality to (4.9) to obtain, after
passing to a subsequence, a$get- R” such that{O, y} € ¥1,

min{|x—y||x,y e $1} =1,

lim w; Qw; () =h(y), in CR(R"\F1),
h(y) >0, y € R"\ ¥,
h(y) is unbounded near any point y,
and
Ah(y) =0, yeR"\¥1.

We then deduce from Bdcher’s theorem (see, e.g., [22]) and the maximum principle
that there exists some nonnegative functon) and some positive constarts ay >
0, such that

b(y) =0, yeR"\{¥1\{0,3}},
Ab(y) =0, yeR"\{¥1\{0,y}},
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and
h(y) = aily* " +azly—F° " +b(). yeR"\{¥1\{0,7}}.
Therefore, for some constast> 0,

h(y)=a1ly|> " +A+0(ly]), fory close to zero

As usual, we derive a contradiction by using Lemma 1.4 as follows. Fos0< 1,
we apply Lemma 1.4 taw; on B, to obtain

n n—2 41 nmn—2) . 41
_2 _ T P!"l_ oA = ; 7;—1 .V Pz
n(n )<pl~+l 5 )/1st w;t T+ il Baff -V w;

-2 .
=/ By, wiVuw) + - )o/ fwl ™,
9By p+1 9B,

whereB(o, x,u, Vu) = ((n —2)/2)u(du/dv) — (6/2)|Vu|?+ o (du/dv)2. Multiply-
ing the above identity by; (0)2 and sending to oo, we obtain, by using Proposi-
tion 1.4, that

/ B(o,y,h,Vh) >0,
9B,
but a direct computation shows that

(n—2)?
2

Iim/ B(o,y,h,Vh) = — Als'Y,
0By

o—0

which contradictsA > 0.

Case 1.2.T =lim; 5 T; < oo. In this case, we argue similarly to case 1.1 while
using Lemma A.1 and the interior Harnack inequality to obtain ajget RT_T
(R™; :={y eR":y" > —T}) such thaf0, y} C 41,

min{lx—y||x,y e $1} > 1,
lim wi @i () =h(),  in CBo(RT,\1).

h(y) >0, yeRL \J1,
h(y) is unbounded near any point iy,

and
Ah(y) =0, yeR" \Y1,
oh
=0, aR" J\¥1.
ayn ye —T\ 1
Making an even extension @f(y) across the hyperplang’ = —T and arguing as

in case 1.1, we find some nonnegative functiq) and some positive constants
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a1, az > 0 such that

b(y)>=0, yeR";\{#1\{0,3}},
Ab(y) =0, yeR"\{#1\{0,5}}.

h(y) = a1ly|* " +azly— 5% +b(y), yeRL\{¥1\{0.5}}.
Therefore, for some constast> 0,
h(y)=a1ly|*"+A+0(ly]), fory close to zero

If T > 0, we derive a contradiction exactly the same way as in case 171410,
we setiw; (y) = w; (y1, ..., "1, y*—T;) and derive a contradiction exactly the same
way as in the proof of Proposition 3.1. O

85. The proof of Theorems 0.1 and 0.2.Let ¢1 denote the first eigenfunction of
(0.3), and consideg; = <pi’/("72)g. ThenR,, > 0 andhg, = 0. We can work withgy
instead ofg. For simplicity, we still denote it ag. We first establish Theorem 0.2.

Proof of Theorem 0.2.In view of the L”-estimates, Schauder estimates, Harnack
inequality, and Lemma A.1, we only need to establishifebound ofu. We prove
it by a contradiction argument. Suppose the contrary; then in view of Theorem 1.1,
there existc;| <c, pi =((n+2)/(n—2)) —7;, 7, = 0,7; — 0, andy; € M, ., such
that

maxu; — oo.
M

It follows from Propositions 1.1-1.4 that, after passing to a subsequéngehas
N(1 < N < o) isolated simple blow-up points, denoted @g?, ...,¢™}. Let
{q(l), ...,ql.(N)} denote the local maximum points as described in Definition 1.1. It
follows from Proposition 1.4 and standard elliptic theories that

u; (q( ))ul —h, in C%C(M\{q(l),...,q(lv)}).

It is not difficult to see, using the hypothesis(M) > 0, that
N
h= Za,G ), onm,
=1

whereq; > 0,VI, and G(-,¢q") denotes Green’s function 6fL, with respect to
zero Neumann boundary conditions centereg ‘&t SinceR, > 0, it is clear that
G(,q")>0o0onM\{g?®}. We assume that'V € 3M, since otherwise it is easier
and can be handled similarly. Sing£is locally conformally flat, we can find a local
conformal diffeomorphisn® that mapsB (¢V) (8 > 0) into R"” with ®(¢Y) =0
Let go denote the flat metric oR"; then ®*(gg) = ¢/ "2 g for some positive
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function . Sinced M is umbilic, ®(3M N BM (¢V)) has to be a piece of sphere or
a piece of hyperplane. Since spheres and hyperplanes are locally conformal to each
other, we can assume without loss of generality &&5 (0) C ®(@M N BM (1))
and ®(M° N BM(qD)) c R:. Sinced’'B; (0) clearly has zero mean curvature in
B (0), we know that(dg/dv) = 0 on aMNBM(qD). Extendingy to be a positive
smooth function oM such thatdg/dv) =0 onaM, consider the conformal metric
g2 = ¢¥ =2 g Then we know thag, has the property thdt,, = 0 ondM, and it is
Euclidean in a neighborhood gf?.

Clearly, Green’s functioi& (x, ¢V) of g» has the following expansion neaf":

G(x,qP) ="+ A+ 0(IxD.

It follows from the positive mass theorem of Schoen and Yau [36] (see also the
appendix of [13]) thatA > 0 with equality if and only if(M, g) is conformally
equivalent to the half sphere with the standard metric.

Letv; = (9o ®) Lu; o ®~1; thenw; satisfies

—Av; =n(n—2)¢%v, inBJ(0),

I w2 (pi+1D)/2 ' ot
T = —cip" v, , 0Nnd’'B, 0,

wheret; = (n+2)/(n —2)) — p;. We can also deduce that — 0 is an isolated
simple blow-up point ofv;} and

vi(x)vi — h, in CZo(B1 (0)\{0}),

whereh(x) = [x[Z "+ A+ O(|x|) for someA > 0. Applying the Pohozaev identity
in B} as usual, we reach a contradiction. Theorem 0.2 is established. O

In the following, we use Leray-Schauder degree theory and Theorem 0.2 to establish
the existence part of Theorem 0.1. Apparently, we can assume xhat) is not
conformally equivalent to the half sphere with the standard metric since it is trivial
otherwise.

As remarked earlier, we can assume without loss of generalityRhat 0 and
hg = 0. Consequently3, = (3,/dv). We still usep; > 0 to denote the eigenfunction
associated with the first eigenvalug(M) satisfying

(5.1) lp1ll® = /M(|vg<p1|2+c<n)Rg<p%)=1.
Considerfor 1= p < (n+2)/(n—2),

—Lgv=E@v?, v>0,inM°,
(5.2) 0gv
av

whereE (v) = [,,(IV,v|?+c(n) Rgv?).

=0, onoM,



THE YAMABE PROBLEM 527

LemMMA 5.1 There exists some constafit= C(M, g) > 0 such that for alll <
p < (n+2)/(n—2) andv satisfying (5.2), we have

1
(5.3) E<U<C, onM.

Proof. Multiplying (5.2) by v and integrating by parts, we have

(5.4) / vt =1,
M

Multiplying (5.2) by the first eigenfunction of (0.3) and integrating by parts ader
we haveE (v) > 0.

Let 8o be the positive constant in Theorem 0.2. Ferdy < p < (n+2)/(n—2),
we deduce from Theorem 0.2 and Theorem 1.1 that

1
(5.5) c= E)YrDy <.

It follows easily from (5.4) and (5.5) that/T < E(v) < C, which, together with
(5.5), yields (5.3). For k p < 1+§g, we apply Lemma A.3 to obtain th#&t(v) < C,
and then applying standard elliptic estimates to (5.2), we obtain the upper bound in
(5.3). The lower bound follows from the upper bound by using the Harnack inequality
and Lemma A.1.

ForO0<a < 1, let C24(M)* = {u € C>*(M) : u > 0 onM}. We define, for
1<p<(n+2)/(n—2),amapF,: C>*(M)* — C2%(M) by

Fp() =v—(—Lg) “(E@)v?),

where(—L,)~1 denotes the inverse operator-ef. , with respect to the zero Neumann
boundary condition.
For A > 1, let D denote the following bounded and open subsef®f (M)

, 1
(56) DAZ{UECZ’O[(M):||U||C2¢a(M)<A,mA/|[nU>X}.

It is easy to see from standard elliptic theories thatis of the form IcH- compact,
and therefore, we may define the Leray-Schauder degreg wf D, with respect to

0 e C%%(M), denoted by de@,, D, 0), provided zero does not belongkp (9 Dy ).

It follows from Lemma 5.1 that, fo\ large, zero does not belong 1,(d D) for
alll < p <(n+2)/(n—2). Consequently, by the homotopy invariance of the Leray-
Schauder degree (see [29]),

n+2

(5.7) deg F), Dp,0) =degq F1, Dy, 0), VlSPSn_Z-
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It is easy to see thafi(v) = 0 if and only if E(v) = A1 andv = /A1¢1. Set
7 = /A1¢1. We calculate the derivative @, atv in the following. Forv € C%*(M),
we write

v={(v,p1)p1t+w,
where(v, ¢1) := [,,(Vgv- V@1 +c(n) Rguer). It follows that

d
Fi@v = 2 Fi@+1)],_q
=v—(—Lg) " H2(,v)v+ E@)v}

2 _ -1
=v——(U,0)v—A1(—Ly) "v.
Al

Let « < 0 be an eigenvalue df] (v); then for some nonzere, we have
/= 2 — — -1
(5.8) Fl(v)v:v—k—(v,v)v—kl(—Lg) V= uv.
1

It follows that

dv
(5.9) 3= 0.
Applying —L, to (5.8), we have
(5.10) (1— ) (—Lgv) = A1v+2(v, v)v.

Multiplying the above bywv and integrating by parts oved, we have, using (5.9),
that

2
A—w)(v,v) = —(EWEUH-M/ vy
Al

M

:2(i,v)+/ (=Lgv)v
M
= 3(v,v)
namely,
2+ up)(v,v)=0.

If (v,v) =0, we have-L,v = ((A1)/(1—p))v. Sinceu < 0, this implies thaj, =0
and —Lgv = Agv. Sincei; is a simple eigenvalue; is a nonzero multiple ob.

This violates(v, v) = 0. In the following, we assume théi, v) # 0, and therefore,
u = —2.Inturn, it follows from (5.10) that

—3Lgv =A1v+2(v, v)7.
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Multiplying the above byw, integrating by parts oveM, and using the fact that
{w, ¢1) = 0, we have

3(w, w) :Alf w?.
M

On the other hand, sincg is the first eigenvalue, we have

(w, w) > A1/ w2,
M

It follows thatw = 0. Therefore, the eigenspace associated with —2 is the one-
dimensional space spanneddy To sum up, we have shown thEf(v) is invertible
with exactly one simple negative eigenvald@. Therefore,

(5.11) deg F1, Dy, 0) = —1.

Forl<p < ((n+2)/(n—2) andc € R, we define an operatdr, . : c2e(Mmt -
C2%(M) as follows:u = T, v if and only if
—Lou=nn-2p", inM,

8g_u = coPHD/2, onoM.
ov

It follows from standard elliptic theories and the hypothesiéM) > 0 thatT), . is
well defined and is a compact operator.

It follows from Theorem 0.2 that, fon,. > 2 large enough (depending only on
M, g, andc),

{u e C?>(M)T: (1d =T((r+2)/(1—2)),.c) u = O for some O< 1 < 1} C Dp, 1.

It follows from the homotopy invariance of the Leray-Schauder degree that, for all
A Z AC’

(5.12)  deg(ld —T((1+2)/(n—2)).c» Da.. 0) = deg(ld —T((1+2)/(n—2)),0, Da.. 0).
For 0<s < 1, we defineG, : C>* (M)t — C%%(M) by
Gs(w) =u—(—Lg) ™" { [n(n—2)s+ (1—s)E(u)]u<"+2>/<"—2>} ,

where(—L,)~! denotes the inverse operator-ef., with respect to the zero Neumann
boundary. ClearlyG1 = 1d —T((442)/(1—2)),0 aNd Go = F(442)/(n—2)- O

LEMMiS.Z There existsA. > 2 depending only o/, g, and ¢, such that, for
all A > A,
Gs(u)#0, VO<s<1luecdDy.
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Proof. Let G,(u) =0 for someu € C2*(M)T, 0< s < 1. Thenu satisfies
—Lou= [n(n—2)s+(1—s)E(u)]u(”+2)/("*2), in M,

Ogu

=0, onoJM.
ov

Multiplying the above equation by and integrating by parts, we have
(5.13) E@)=[n(n—2)s+(1—s)E)] /Muz"/“’—Z).

We deduce from Theorem 0.2 that for some constast C(M, g) > 1,
(5.14) % <[nr—2s+1—s)Ew]" < c.

It follows from (5.13) and (5.14) that

1

Il < E)[n(n —2)s—l—(l—s)E(u)]("_Z)/2 <cC.

Consequently,
1
I <nn—2)s+1—s)Em) <C,

which, in view of (5.14), implies that
1 .
—<u<C, InM.
c

We can then apply standard elliptic theories to the equationtofconclude that for
someA. > 1, u does not belong té D, forall A > A.. O

Proof of Theorem 0.1 completedJsing Lemma 5.2 and the homotopy invariance
of the Leray-Schauder degree, we have, foralt A, that

(5.15) deg(ld —T((n4+2)/(1—2)),0. Da, 0) = deg(Fn+2)/(1—2). Da,0).
Combining (5.12), (5.15), (5.7), and (5.11), we have, Aosufficiently large, that
deg(ld —T((n+2)/(1-2)).c. Da, 0) = deg(Fu+2),(1—2), Da. 0) = deg F1, D5, 0) = —1,

which, in particular, implies thatl. N D # @. We have thus completed the existence
part of the proof of Theorem 0.1. O

86. The proof of Theorem 0.3.In this section, we establish Theorem 0.3. Through-
out this section, we assume(M) < 0. We first establish estimate (0.8).



THE YAMABE PROBLEM 531

Proof of estimate (0.8).We first show thatx < C in M under the hypothesis.
For allu e U1+50§p5(n+2)/(n_2)ﬂ7t,,,0, this can be obtained by a blow-up argument
as in the proof of Theorem 1.1 and the well-known fact that = v” has no
positive solution inR" for p > 1 (see [4]). To obtain the upper bound ®ffor
U € U(n+2)/(n—2)~8o<p<(n+2)/(n—2) Y_@)-1<c<n—2-z Mp.c, We USE a contradiction
argument as follows. Suppose the contrary; then there exist sequenk€s;}, and
{u;} € M, ., satisfying

n+2 1 n+2

—c<pi—

n—2 i n—2’

¢i—>ce€ [—(E)_l,n—Z—E],

and

lim maxu; = oco.
i—oo0 M

By making a conformal transformation using the first eigenfunction associated with
A1(M), we can assume without loss of generality tRat< O in M andi, = 0 on
oM. Letx; € M be some maximum point af;, namely,

u;(x;) = mMaXul- — 00.

Since, at an interior local maximum point, one hag)R,u; < —n(n — 2)u{”',
we havex; € 9M for largei. Let y1,...,y" be the geodesic normal coordinates
given by some exponential map gxpwith (9/9y") = —v atx;. Consideri; (z) =
ui (xi) " Lui (expy, (ui (x))~Pi=V/22)). It is not difficult to see, after passing to a sub-

sequence, that; converges irC%C—norm to somei satisfying

—Aii = —n(n—2)a"+d/=2 i 0,inR",

6.1 it

D L= /D), onaR”,

az"

andi(0) = 1, < 1 onR’}.. Applying the same method in the proof of Theorem 1.1

and Theorem 1.2 in [27] (see also [11]), we see that (6.1) does not have any solution.

This is a contradiction. Thus, we have established the upper boundiro{0.8).

The lower bound in (0.8) follows from the upper bound, the Harnack inequality, and

Lemma A.1. The rest of the estimates in (0.8) follow from standard elliptic estimates.
O

As remarked earlier, we can assume, without loss of generalityRthat 0 and
hg = 0. Consequently3, = (d,/dv). Throughout the rest of this section, we assume,
without loss of generality, that the metrichas this property. For convenience, we
introduce the following quadratic forne (u, v) = fM(Vgu -Vgv+c(n)Reuv), and
E(u) = E(u,u). We still usep1 > 0 to denote the positive eigenfunction associated
with the first eigenvalu@, (M) satisfying

E(p1) = /M (IVgp1/+c(n) Ref) = —1.
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Consider, forl<s p<(n+2)/(n—2),

6.2 0
(6-2) %Y o, onaM,
ov

whereE (v) = [,,(IVgv|2+c(n) Rev?).

{—Lgv =E®W@)v”, v>0,inM°,

LemMMa 6.1 There exists some constafit= C(M, g) > 0 such that, for alll <
p < (n+2)/(n—2), andv satisfying (6.2), we have

1
(6.3) E<U<C.

Proof. Multiplying (6.2) by v and integrating by parts ovéd, we have

(6.4) / vt =1,
M

Multiplying (6.2) by the first eigenfunction of (0.3) and integrating by parts afer
we haveE (v) < 0.

Let §p be the positive constant in Theorem 0.2. Ferdy < p < (n+2)/(n — 2),
we deduce from (0.8) that
1
C
It follows easily from (6.4) and (6.5) that/C < —E(v) < C, which, together with
(6.5), yields (6.3). For k¥ p < 1+ 80, we apply Lemma A.4 to obtain @ —E (v) <
C. The upper bound in (6.3) then follows from thé-theory of linear elliptic equa-
tions. The lower bound follows from the Harnack inequality and Lemma A.1.

Let 11 < A2 < --- denote all the eigenvalues efL, in (0.3). Pick some constant
A€ (=2, —A1). ForO<a <land 1< p < (n+2)/(n—2), we defineF, :
C2¥(M)t — C%%(M) by

(6.5) <(—E@)"" Yy <c.

Fp(v) =v—(—Lg+A) " E)v” + Av],

where(—L, +A)~! denotes the inverse operator-eL., + A with respect to the zero
Neumann boundary condition.

For A > 1, letDy C C%%(M)* be given as in (5.6). It follows from Lemma 6.1
that, for A large, zero is not contained if,(d D) forall 1 < p < (n+2)/(n—2).
Consequently,

n+2
n—
ProposiTION 6.1 Suppose that1(M) <0, hy =0. Then
n+2

degF,,Dp,00=-1, Vi<p< 5
n_
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Proof. Itis easy to see thafy(v) = 0 if and only if E(v) = A1 andv = «/—A1¢1.
Setv = /—XA1¢1. We calculate the derivative af; at v in the following. Forv €
C2% (M), we write

v=—E(, ¢1)p1t+w.

It follows that
_ d . -
Fi(v)v = EFl(v—Hv)}t:O
=v—(=Lg+A) " Y2E®, v)T+E@)v+ Av)

2
=v— s E@vT- (A1+A)(—Lg+A) " tv.

Let « < 0 be an eigenvalue df] (v). Then, for some nonzeng we have

(6.7) F{(v=v— E@,0)0— (A4 A)(~Lg+A) v = po.

MTA
It follows that
dv
6.8 — =0.
(6.8) w”
Applying —L,+ A to (6.7), we have
(6.9) (1—pu)(—Lg+ A = (A1 +A)v+2E (D, v)v.

Multiplying the above byv and integrating by parts oved, we have, using (6.8),
that

M+A

A
A-wE@, v)+(1_“)A_1E(i’ v) = (

<2+<Lk£>M>E@JO=Q
Al

If E(v,v) =0, then it follows from (6.9) that

1 A
—L,v=(|-14+——|A .
¢ ([ +1—u] +1—u)”

We see easily from the fact that< 0 and—i2 < A < —Aq thatig < [-14+(1/(1—
UNTA+(A1/(1—w)) < A2. SinceE (v, v) = 0 andi1 is a simple eigenvalue, we have
v = 0, which is a contradiction.

On the other hand, if (v, v) # 0, thenu = —2X11/(A1+ A) < 0. Multiplying (6.9)
by w and integrating by parts ovéd, we have, in view of£ (¢p1, w) = 0, that

1—p) (E(w,w)+A/ w2> :(A1+A)/ w?.
M M

) E®,v)+2E(v,v).

It follows that
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SinceE (g1, w) = 0, we have
E(w,w) > )»2/ w2,
M

Using the fact thait < 0, —A2 < A < —\1, we can easily derive from the above that
[M w? = 0, that is,w = 0. This shows that = —2i1/(A1+ A) is the only negative
eigenvalue of] (v) having spafiy:} as its eigenspace.

The above discussion shows tHf(v) is invertible and the eigenspace Bf(v)
associated with negative eigenvalues is $pan Consequently,

deqg F1, Dy,0) =—1.

This completes the proof of Proposition 6.1. O
Forl< p < ((n+2)/(n—2)),c < n—2, we define an operat@y, . : C2%(M)* —
C?%%(M) by the following:u = Tp,cv if and only if
(—Lg+Au=—-nn—-2)v”+Av, v>0,in M°,

Bg_u = cp(PtD/2, onoM.
ov

Since zero is not an eigenvalue-ef., + A, T, . is well defined. It follows from the
Schauder theory thé, . is compact. It follows from (0.8) that, far < n — 2 and
A. > 2 large enough (depending a4, g, andc),

{ue €M) : (1d =T 12)/0-2.16) u = O for some 0= 1 < 1} < D5 ;.

ProposITION 6.2 Suppose that;(M) <0, hy =0, c < n—2. Then, forA large,
we have
deg(Id —T((n4+2)/(1—2)),c» Da,0) = deq F1, Dy, 0) = —1.

Proof. It follows from the homotopy invariance of the Leray-Schauder degree that
deg(ld = T +2)/(n-2)).c- Da- 0) = deg(ld —Tn+2)/(1-2)).0. D4, 0).
For 0<s < 1, we defineG, : C2%(M)* — C%>%(M) by

Gow) =u—(~Lo+ A [ =n(n =25+ Q=) E@]Ju /02 4 Aul,

where (—L, + A)~1 denotes the inverse operator of., + A with respect to the
zero Neumann boundary condition. Cleaty; = Id —T((,12)/(1—2)),0 and Go =
Fut2)/(-2)- [

LemmA 6.2 For large A,

Gs(u)#0, VO<s<1luecdDy.



THE YAMABE PROBLEM 535

Proof. If G,(u) =0, thenu satisfies
—Lou=[—n(n—2s+1—s)E@)]u"+2/®=2 " in M°,

=0, onoJM.
ov

Multiplying the above equation by, and integrating by parts ovéf, we have, using
A1 < 0, thatn(n —2)s — (1—s) E (u) > 0. Multiplying the equation in (6.10) by and
integrating by parts, we have

(6.11) E(u) = [—n(n—Z)s+(1—s)E(u)]/ w2/ n=2).
M

We deduce from (0.8) that

1

(6.12) & =< [ni-2)s- A-s)Ew]"?u<c.

It follows from (6.11) and (6.12) that

(n—2)/2 <C.

% < —E(u)(n(n—Z)s — (1—s)E(u))

Consequently,
1
I <nn—-2)s—(1—s)Em) <C,

which, in view of (6.12), implies that

1

—<u<C.
c U=

We can then apply standard elliptic theories to the equationtofconclude that, for
someA. > 1, u does not belong té D for all A > A..

Using Lemma 6.2 and the homotopy invariance of the Leray-Schauder degree, we
have

(6.13) deg(Id —T((n4+2)/(1—2)),0. DA, 0) = deg(Fn+2)/(1—2). Da,0).
Combining (6.13), (6.6), and Proposition 6.1, we have
deqld —T((1+2)/(1—2)).c: DA, 0) = deg(Fu+2)/(1—2), Da, 0)= deg(F1, Dy, 0)= —1.

We have completed the proof of Proposition 6.2. O

Proof of Theorem 0.3.Since we have already established (0.8), we only need to
show that, for alk < n—2, /M, # @. This follows from Proposition 6.2. O
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APPENDIX

We present three analytical facts used in our arguments. First, we present a Harnack
inequality for divergence form second-order elliptic equations with Neumann-type
boundary condition. Consider

Lu = 0; (aij (x)0ju+b; (x)u) +ci(x)oju+d(x)u

onB CR",n > 2where,asusuaby = {(x = (x1,...,x") e R" : |x| < 3,x" > O}.
For some constamt > 1, the coefficient functions satisfy that

(A1) ATYEP < aij(0)EE; < AlEIZ, Vx € B & eR",
(A.2) |bi ()| + |ci ()| +1d(x)| < A, Vx e B].
Lemma A.1. Assume (A1), (A.2), andi(x)| < A, Vx € B . Letu € C*(BJ)N
C1(BY) satisfy
—Lu=0, u>0,inB§r,
anj(x)9ju =h(x)u, ond'Bj.
Then there exist€ = C(n, A) > 1 such that

maxu < C minu.
By Bf

Proof. Without loss of generality, we assume that- O in E;. Fork > ko > 0,

let n be someC function withn(x) = 0,5/2 < |x| < 3. Multiplying the equation
by n2u* and integrating by parts, we have, by using the boundary conditientbt

/ a,-j 8ju8,- (nzuk)
By

:/ ciaiunzuk+/ dnzuk+l—/ biuai(nzuk)—/ (h+bn)n2uk+1.
BY BY BY B3

3 3

It is easy to see from (A.1) and (A.2) that

k _ Cc(N)
a;jo;ud; (Uzuk) > ﬁnzuk 1|VM|2——k uk v,
k _ C(A)

k
biud; (nPut)| < P VU4 C(A) A+ (12 +1Vn2) bt
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It follows that

k
4A B:;r /33+
Setw = u*+tD/2_|tis clear that

IV(qw)|? < 2(n?|Vw]?+w?[Vyl?).

Combining the above two inequalities, we have

/ V)2 < C(A, ko)k? / (PP +1Vn2)w?+ C(A. ko)k / (nw)2.
By 5 ¥ Bf

B3

It follows from the Sobolev embedding theorems that

1
C (A, ko)k f (qw)? < = / IV (qw) |+ C (A, ko)k? / (nw)?.
&' BF 2 Jpf By

Combining the above two inequalities, we have

/ V)2 < C(A, ko)k? / (2 + V22
B 5

Using the above and the Sobolev embedding theorems, we have

and

Inwl Lo (pg) < C(A ko, K| +1VNDw] 252y, fOrn=2,0<p <o0.

We iterate as usual (see [18, page 197]) and obtain

maxu < C(A,n)|lul
+

B LZ(B;—/Z) )

1

It is also standard that we can then obtain

maxu < C(A,n, p)u]

A 0.
5 LA
1

It is easy to see thdt=u~1! satisfies

— 3 (aij (x)3;€ — b ()E) + (=i (x) = 2b; (1)) +d(0)E <O, in B,

anj(x)0;& = —h(x)&, ond'By.

537

1
K n2uk—1|Vu|25C(A)(1+k+;>/+(n2+|Vn|2)uk+1+2A/ n2uk+L,
B} d
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Substitutingg for u in the previous argument, we obtain that

maxs < C(A,n, p)l§l Vp >0,

G (552)

-1 1/p
<minu> <C(A,n,p) / u )l , Vvp>O.
BY By

Itis clear that Lemma A.1 will follow if we can show that, for sompe- 0,

(A.3) / u”f u P <C(A,n,p).
By  JBy

Forxp € B_gr 0 < R < 1/10, lety be some smooth cut-off function satisfyingx) =
1 for |x — x| < R, n(x) = 0 for |x —xp| > 2R, and |Vn(x)| < C/R for all x.
Multiplying the equation oft by v = n24~1 and integrating by parts, we have

/ aijajuaiv
B3x (x0)

Zf Ciaiuv-i-/ duv—f biuaiv—/ (h+by)uv.
B, (x0) B, (x0) B, (x0) 3’ B (x0)

Arguing as before, we have

namely,

.q. . . 1 2 2 2
ajjojudiv < ﬂn |Vlogu|“+C(A)|Vn]©,
1
|cidiuv| < —n?|Vlogu|*+C(A)y?,
8A
1
|bjud;v| < gnzwmgm%cm)(n%|Vn|2).
It follows that

/ n2|VIogu|25c/ (n2+|Vn|2)+Cf n?<CR'2
B (x0) B3y (x0) &' B3 (x0)

Using Holder’s inequality, we have

/ |Vlogu| < CR" L.
B3 (x0)

It follows from the John-Nirenberg estimate (see [18, Theorem 7.21]) that there exists

somep > 0 such that
/ e”|'°g“7(|°g“)32+i -c
B
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where(logu)B; = (1/|B§F|)f32+ logu. Estimate (A.3) can be derived easily as fol-

lows:
/ Mp/ u—p:/ ep[logu—(logu)Bzr]-/ e—p[logu—(logu)B;]
By B B By

2
< / €p|logu7(|ogu)3;| <cC.
Bf

We have thus established Lemma A.1. O

LeEmMMA A.2. LetQ be a bounded domain iR"” with piecewise smooth boundary
IR=TUZX, V e L¥(Q), h € L®(L). Suppose that € C2(Q)NC(Q), u > 0in
Q satisfies

Au+Vu <0, in€,

ou
— > hu, onx,

andv € C3(Q)NCL(Q) satisfies

Av+Vv <0, ingQ,

ov
— > hv, onx,
av
v>0, onrl,

wherev denotes the unit outer normal &. Thenv > 0in Q.

Proof. Letw =v/u; then

\% A \% .
Aw+2—u~Vw+M-w <0, ingQ,
u u
Jw _1( 0u
—+tu — —hu Jw >0, onx,
v v
w >0, onT.
We conclude from the maximum principle that> 0; thereforep > 0. O

LeEmMma A.3. Let (M, g) be a smooth compact Riemannian manifold with first
eigenvaluer; (M) > 0 and the boundary mean curvatukg = 0. Leteg > O, and
1<p=<((n+2)/(n—2)—eg. Suppose that satisfies

—Lgu =pu?P, u>0,inM,
dolU

2 -0, onaM,

ov

fMul’Jrl =1
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Then,
O<pu= f (IVguI2+c(n)Rgu2) <C(M,zg,€0).
M

Proof. For 14+¢€y < p < ((n+2)/(n — 2)) — €, it follows from Theorem 1.1
that C~1 < p¥/P=Dy < C, which, together withf,, u?*! = 1, immediately gives
the estimate ofx. Here and in the followingC denotes various positive constants
depending only omg, M, andg. So we only need to establish the estimatg &dr 1 <
p < 1+4¢0 for smallep. In the following, we give a proof for ¥ p < (n/(n—2)) —eo.

Multiplying the equation by the first eigenfunctign with the normalization (5.1),
we have

(A.4) )»1/ Q1u =M/ prub.
M M

Clearly u > 0. For p = 1, u = 1. In the following, we assume & p < (n/(n —
2)) —¢p. Since Y C < ¢1 < C, we derive from (A.4) and Hdolder's inequality that

(A5) plull?, b < c.

From Hdlder’s inequality, we have

0 1-6
Nl poer < Nl p 1l 20p—2) s

whered=t = (1/(p+ 1)) — (n — 2)/2n) "1 ((1/p) — ((n — 2)/2n)). It is clear that
0<6<1,06"t<cC,and(1-0)"1 < C. Therefore, by using the Sobolev embedding
theorems, we have that

- 20/(1-6)\1=/2
L= llullpor = Cllullfp /2 < € (el 35/ 4") 7

It follows that

_ 1

(A6) pllal 7/ = =
C

Combining (A.5) and (A.6), we have

le((l*G)(pfl)/%) < 1 (A-0)(p=1)/20)

Since, for 1< p < (n/(n—2)) — €9, we have

1-0)(p—-1
1- % > 8(eo) > O.
The estimate of: follows immediately from the above two estimates. O

LeEmMMA A.4. Let(M, g) be a smooth compact Riemannian manifold witbtV/) <
Oandh, =0. Leteg > 0and1 < p < co. Suppose that satisfies



Then,

THE YAMABE PROBLEM 541

ngu =puuP, u>0,inM,
u

2- -0, ondM,

av

fMu”+1 =1

O<—u= —/M (|Vgu|2+c(n)Rgu2) < —c(n)/MRgu2 <C(M,g).

Proof. It is obvious. O
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