
Semantic Web 0 (2015) 1–0 1
IOS Press

The YASGUI Family of SPARQL Clients 1
Editor(s): Eero Hyvönen, Aalto University, Finland
Solicited review(s): Osma Suominen, Aalto University, Finland; Sébastien Ferré, Unversity Rennes 1, France; one anonymous reviewer

Laurens Rietveld a and Rinke Hoekstra a,b

a Department of Computer Science, VU University Amsterdam, The Netherlands
E-mail: {laurens.rietveld,rinke.hoekstra}@vu.nl
b Leibniz Center for Law, Faculty of Law, University of Amsterdam, The Netherlands
E-mail: hoekstra@uva.nl

Abstract. The size and complexity of the Semantic Web and its technology stack makes it difficult to query. Access to Linked
Data could be greatly facilitated if it were supported by a tool with a strong focus on usability. In this paper we present the
YASGUI family of SPARQL clients, a continuation of the YASGUI tool introduced more than two years ago. The YASGUI
family of SPARQL clients enables publishers to improve ease of access for their SPARQL endpoints, and gives consumers of
Linked Data a robust, feature-rich and user friendly SPARQL editor.

We show that the YASGUI family had significant impact on the landscape of Linked Data management: YASGUI components
are integrated in state-of-the-art triple-stores and Linked Data applications, and used as front-end by a large number of Linked
Data publishers. Additionally, we show that the YASGUI web service – which provides access to any SPARQL endpoint – has a
large and growing user base amongst Linked Data consumers.

Keywords: SPARQL, Query formulation, Data Publishing, Linked Data

1. Introduction

Web developers can rely on advanced development
tools such as in-browser debugging, integrated devel-
opment environments, high-level libraries in all but
the most austere programming languages, and increas-
ingly simple and lightweight web-services. These are
essential enablers for broad take up in industry, and
vice versa the use of web technology in industry drives
the development of ever more developer-friendly tools.
Semantic Web and Linked Data technologies have
some catching up to do, and steps in this direction
are under way. An example is the recent start of the
W3C Linked Data Platform working group1 that aims
to bring triple-store querying closer to the RESTful
paradigm.

1This work is an extended version of the YASGUI workshop pa-
per [13]

1See http://www.w3.org/2012/ldp

Several good Linked Data programming libraries
exist, but uptake of these still relies on a thorough
understanding of SPARQL and the other members of
the Semantic Web technology stack. The situation for
SPARQL is worse. Existing SPARQL clients convey a
rather narrow interpretation of what a SPARQL client
interface should do: POST (or GET) a SPARQL query
string to an endpoint URL. As a result, these imple-
mentations do not offer functionality that goes far be-
yond a simple HTML form (see section 2).

The curious developer or potential enthusiast who
wants to have a first taste of Linked Data is easily
scared away by the current set of SPARQL clients.
For Semantic Web developers designing and testing
SPARQL queries is often a cumbersome and painful
experience: “All who know the RDF namespace URI
by heart raise their hands now!”, and “Where is that
Linked Data?”. Many will know the DBpedia endpoint
URL, but can perhaps recall only a handful of end-
points in total.

1570-0844/15/$27.50 c© 2015 – IOS Press and the authors. All rights reserved

Existing clients offer only a small selection of the
features that we, as a community, could offer to both
ourselves as well as new users of Semantic Web tech-
nology. We propose to overcome this hurdle by means
of simple, lightweight and user friendly clients for in-
teracting with Linked Data that integrate with existing
services in the field.

This was our main motivation for designing and
building Yet Another SPARQL GUI (YASGUI), 2 first
introduced in a workshop paper [13]. YASGUI is a
web-based SPARQL client that can be used to query
both remote and local endpoints. It integrates linked
data services and web APIs to offer features such
as auto-completion and endpoint lookup. It supports
query retention – query texts persist across sessions
– and query ‘permalinks’, as well as syntax checking
and highlighting. YASGUI is easy to deploy locally,
and it is robust. Because of its dependency on third
party services, we have paid extra attention to grace-
ful degradation when these services are inaccessible
or produce unintelligible results. The YASGUI family
of SPARQL clients enables publishers to improve ease
of access for their SPARQL endpoints, and gives con-
sumers of Linked Data a robust, feature-rich and user
friendly SPARQL editor.

In [13], we showed the added value of combining
Web 2.0 and Semantic Web technologies [1,3] in this
setting. Two later papers [15,14] relied on client-side
query logs accumulated through YASGUI, to break
Linked Data usage interpretation from the confines of
single-store server side logs (see Section 4).

This paper builds on parts of [13] that illustrate
the premises of this work (see below), but contains
two significant new contributions. Firstly, YASGUI
has grown into a family of reusable components: two
new, fully client side components (YASQE and YASR)
that can be used independently, and a new, more
lightweight version of the full-fledged YASGUI tool.
Secondly, we show that since the 2013 paper, YASGUI
has had considerable impact in the field. Our com-
ponents have found their way into several third-party
tools, and are now incorporated in three popular triple
stores. YASGUI is currently used by several impor-
tant data publishers, and has shown to provide a useful
information source for further research.

Structure of the Paper
This paper is structured as follows. Section 2 is an

updated version of the corresponding section in [13]

2See http://yasgui.org

and provides an overview of the features present in the
current state of the art in SPARQL user interfaces (Ta-
ble 1 reflects the new situation). Section 3 builds on
the description of the original YASGUI of [13] to com-
pare and explain the features and design considerations
of the new YASGUI, YASQE and YASR components.
Impact of the YASGUI family is discussed in Section
4. We conclude in section 5.

2. State of the Art in SPARQL User Interfaces

The features of SPARQL clients can be categorized
under three main headers, syntactic features (auto-
completion, syntax highlighting and validation), appli-
cability features (endpoint or platform dependent/in-
dependent) and usability (query retention, results ren-
dering and download, quick evaluation). Table 1 lists
seventeen SPARQL clients – that range from very ba-
sic to elaborate – and depicts what features they im-
plement. This section describes these features in more
detail, and discusses whether and how the clients of
Table 1 implement these features.

We excluded query interfaces that were not fully re-
producible (SPARQLinG [12], ViziQuer [19], SPAR-
QLViz [6] and NITELIGHT [17]) or only cover a sub-
set of the SPARQL standard (iSPARQL 3)

2.1. Syntactic Features

Most modern applications that feature textual input
support some form of auto-completion. Examples are
the Google website which shows an auto-completion
list for your search query, or your browser which
(based on forms you previously filled in) shows auto-
complete lists for text inputs. One advantage of auto-
completion is that it saves you from writing the com-
plete text. Another advantage is the increase in trans-
parency, as the auto-completion suggestions may con-
tain information the user was not aware of. The lat-
ter is particularly interesting for SPARQL, where users
might not always know the exact namespace prefix
they would like to use, or where the user might not
know all available properties in a triple-store. Several
SPARQL interfaces offer naive auto-completion func-
tionalities, such as the Flint SPARQL Editor4 which
auto-completes SPARQL syntax and functions. Other

3See http://dbpedia.org/isparql/
4See http://openuplabs.tso.co.uk/demos/

sparqleditor

Laurens Rietveld and Rinke Hoekstra / The YASGUI Family of SPARQL Clients 3

Feature

4Store

OpenLink Virtuoso

StarDog

ClioPatria

SNORQL

SPARQLer

Apache Jena

Sesame Workbench

Sesame2 Windows Client

TopBraid Composer

Glint

Twinkle

SparqlGUI

SparQLed

Gosparqled

Squebi

Flint SPARQL Editor

YASGUI Family

Syntactic
features

A
uto-com

pletion
-

-
-

+
-

-
+

-
-

-
-

-
-

+
+

+
+

+
a

Syntax
H

ighlighting
-

-
+

+
-

-
+

+
-

+
+

-
-

+
+

+
+

+

Syntax
V

alidation
-

-
-

+
-

-
+

+
-

-
-

-
-

+
+

-
+

+
a

A
pplicability

features
M

ultiple
E

ndpoints
-

-
-

-
-

-
-

-
+

-
+

+
±

b
-

-
±

b
±

b
+

Platform
independent

+
+

+
+

+
+

+
+

-
+

-
+

-
+

+
+

+
+

A
vailable

as
library

-
-

-
-

-
-

-
-

-
-

-
-

-
+

+
+

+
+

a

U
sability

features
Q

uery
retention

-
-

-
+

-
-

+
+

+
-

+
-

+
-

+
-

-
+

a

File
upload

-
-

+
+

-
-

+
+

±
c

+
-

+
+

-
-

-
-

-
d

R
esults

rendering
-

±
e

+
+

+
±

e
+

+
±

e
+

±
e

±
e

±
e

+
+

+
+

+
a

C
hartV

isualizations
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

+
a

R
esults

dow
nload

+
+

+
+

+
+

+
+

+
+

+
+

+
-

+
+

-
+

E
ndpointSearch

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
+

a
Feature

is
added/im

proved
com

pared
to

the
w

orkshop
version

b
C

an
dealw

ith
a

lim
ited

num
berofendpoints,e.g.only

C
O

R
S

enabled
ones.

cFile
upload

requires
a

localtriple
store

thatim
plem

ents
the

O
penR

D
F

SA
IL

A
PI,e.g.O

penR
D

F
Sesam

e
orO

penL
ink

V
irtuoso.

dFile
upload

is
a

planned
feature,using

cloud
triple-store

services
(e.g.dydra.com

)
eT

he
rendering

does
notuse

hyperlinks
forU

R
Iresources.

Table
1:SPA

R
Q

L
clientfeature

m
atrix

4 Laurens Rietveld and Rinke Hoekstra / The YASGUI Family of SPARQL Clients

interfaces offer more auto-completion functionalities
using external APIs, such as Squebi5 for prefix auto-
completion, and ClioPatria6 and Apache Jena7 for pre-
fix and property/class auto-completions. Editors such
as SparQLed [9] and Gosparqled8 offer even more re-
liable auto-completions of resources, though this re-
quires a dedicated back-end server.

Syntax highlighting is a common functionality for
programming language editors. It allows users to
distinguish between different properties, variables,
strings, etc. The same advantage holds for query lan-
guages such as SPARQL, where you would like to
distinguish between literals, URIs, query variables,
function calls, etc. The few SPARQL editors that sup-
port syntax highlighting are the Flint SPARQL Ed-
itor (or its derivatives) and Squebi, which both use
the CodeMirror JavaScript library9 to bring color to
SPARQL queries.

Most Integrated Development Environments (IDEs)
provide feedback when code contains syntax errors
(i.e. runtime syntax validation). Feedback is immedi-
ate, which means the user can spot syntax errors in
the code without having to execute them. Again, such
functionality is useful for SPARQL editing as well. Im-
mediate feedback on a SPARQL syntax means the user
can spot invalid queries without having to execute it
on a SPARQL endpoint. The quality of such feedback
is often better compared to endpoint error messages:
an IDE can pinpoint the error location in the user in-
terface, where the returned errors from endpoints (de-
pending on the triple-store) can differ greatly in both
specificity and quality. The Flint, SparQLed, Gospar-
qled, Sesame Workbench, Apache Jena and ClioPatria
SPARQL editors support immediate live syntax check-
ing by means of JavaScript SPARQL parsers.

2.2. Applicability Features

There are only six clients that allow access to mul-
tiple endpoints. Most triple-stores provide a client in-
terface, linking to that specific endpoint. They are end-
point dependent. Examples are 4Store [10], ClioPatria,
StarDog10, Apache Jena, OpenLink Virtuoso11, Open-

5See https://github.com/tkurz/squebi
6See http://cliopatria.swi-prolog.org/
7See https://jena.apache.org/
8See https://github.com/scampi/gosparqled
9See http://codemirror.net/
10See http://stardog.com/
11See http://virtuoso.openlinksw.com/

RDF Sesame Workbench [7] and SPARQLer12. More
generic endpoint independent clients are the Sesame2
Windows Client [7], Glint13, Twinkle14 and Sparql-
GUI15. Other applications only provide access to some
SPARQL endpoints. The Flint SPARQL Editor and
Squebi only connect to endpoints that are CORS en-
abled (i.e. support cross-domain JavaScript access).
This is a problem because we observe that 38% of
all available endpoints16 are in-accessible via cross-
domain JavaScript. Other editors support only XML
or JSON as query results, such as SNORQL17 (part of
D2RQ18), which only supports query results in SPAR-
QL/JSON format.

Platform In-dependence increases the accessibility
of a SPARQL client. The user can access the client on
any operating system. Web interfaces are a good ex-
ample, as a site should work on any major browser (In-
ternet Explorer/Firefox/Chrome), and at least one of
these browsers is available for any type of common op-
erating system. Examples are the SPARQL interfaces
of Virtuoso, 4Store and the Gosparqled. Another ex-
ample of multi-platform support is the use of a .jar
file (e.g. Twinkle), as all major operating systems sup-
port java. Examples of single-platform applications are
Sesame2 Windows Client and SparqlGUI: they require
Windows.

Interfaces that are open-source and available as
standalone library, are easy to integrate into other
projects and libraries. Most of the presented interfaces
are either closed source, or not published as an inde-
pendent library. The SPARQL interfaces that do en-
able such re-use, are SparQLed, Gosparqled, Squebi
and the Flint SPARQL Editor.

2.3. Usability Features

Query retention enables re-use of important or often
used queries, and allows users to close the application,
and resume working on the query later.

Quick evaluation or testing of a graph generated
by the user should not require the hassle of installing
a local triple-store. Ideally, this functionality would
be embedded in the SPARQL client application itself.

12See http://www.sparql.org/
13See https://github.com/MikeJ1971/Glint
14See http://www.ldodds.com/projects/twinkle/
15See http://www.dotnetrdf.org/content.asp?

pageID=SparqlGUI
16See sparqles.okfn.org
17See https://github.com/kurtjx/SNORQL/
18See http://d2rq.org/

Laurens Rietveld and Rinke Hoekstra / The YASGUI Family of SPARQL Clients 5

Most applications that require a local installation on
the users computer support this feature, such as Twin-
kle. The Sesame Windows Client supports file uploads
as well, though it requires a local triple-store that im-
plements the OpenRDF SAIL API.

Query results (such as JSON or XML) for SELECT
queries are often relatively difficult to read and in-
terpret, especially for a novice. A rendering method
which is easy to interpret and understand is a table.
All applications except 4Store support the rendering of
query results into a table. Because of the use of per-
sistent URIs, we would expect navigable results for re-
sources, e.g. in the form of drawing the URIs as hy-
perlinks. This feature is not supported by some ap-
plications, such as Virtuoso, Twinkle or SparqlGUI.
SNORQL appears to be the application with the most
elaborate way of visualizing query results: Next to a
simple URI hyper-link button, the user can click on a
link to browse the current endpoint for resources rele-
vant to that URI.

Rendering the results in a tabular fashion might not
suit every use case. Instead, aggregating and visualiz-
ing the SPARQL results as charts may be preferable.
Existing Chart solution exists, such as SgVizler [16]
(which indirectly uses Google Charts and D3.js), but
none of the existing SPARQL editors support such
drawing of charts.

Downloading the results as a file allows for better
re-use of these results. A user might want to avoid run-
ning the same heavy query more than once, and store
the results locally instead. Additionally, the results of
CONSTRUCT queries are often used in other applica-
tions or triple-stores. Saving the user from needing to
copy & paste query results clearly improves user expe-
rience as well. The only applications that do not sup-
port the downloading of results are the Flint SPARQL
editor and SparQLed.

Most of the clients described above are restricted
to one simple task: accessing information behind a
SPARQL endpoint. However, equally important to this
task is assisting the user in doing so. Looking at the
table, the most elaborate editors are Squebi, Flint,
Gosparqled and SparQLed. However, these all fall
short in usability features, and most importantly: the
ability to access any SPARQL endpoint. We conclude
that currently no single endpoint independent, accessi-
ble, user-friendly SPARQL client exists.

Fig. 1. The YASGUI interface

3. The YASGUI Family

The preceding section shows how current SPARQL
clients fall short in supporting Linked Data access.
This is both a publisher and consumer problem. From
a consumer perspective, Linked Data access is difficult
because available SPARQL interfaces simply do not
suffice. Publishers face the problem that no SPARQL
interface libraries exist that would facilitate access and
lower the threshold for the potential users of their data.

This section presents the open source19 YASGUI
family of SPARQL clients, consisting of components
targeted at both publishers and consumers. The main
component is a rewritten, modularized and extended
version of YASGUI, first published in [13]. YAS-
GUI is a user-friendly web-based interface for inter-
acting with any SPARQL endpoint. It is targeted to-
wards consumers of linked data, and is available online
at http://yasgui.org.

For publishers, we provide three JavaScript pack-
ages: the complete YASGUI interface, the part of
YASGUI responsible for writing the SPARQL query
(YASQE, or ‘Yet Another SPARQL Query Editor’),
and the part of YASGUI responsible for visualizing
the SPARQL results (YASR, or ’Yet Another SPARQL
Result-set visualizer). To increase the ease of integra-
tion by publishers and developers, all the JavaScript li-

19See https://github.com/YASGUI

6 Laurens Rietveld and Rinke Hoekstra / The YASGUI Family of SPARQL Clients

braries are available via the NodeJS Package Manager
(NPM), the JavaScript dependency manager Bower,
and via the JsDelivr20 and CDNjs21 Content Delivery
Networks.

Below, we first discuss the YASQE and YASR com-
ponents, the used technology and services, and how
the features of both JavaScript libraries compare to
the tools presented in the previous section. We then
present how both libraries are combined to form the
YASGUI library.

3.1. YASQE

Fig. 2. The YASQE interface

YASQE22 (See Figure 2) is an extensive JavaScript
library, targeted at Semantic Web publishers. YASQE
takes a simple HTML text area, and – with one
JavaScript command – transforms it into a full featured
IDE-like SPARQL query editor.

YASQE is based on the CodeMirror JavaScript li-
brary23, an extensive HTML text editor. Using CodeMir-
ror and the JavaScript SPARQL grammar from the
Flint SPARQL Editor, YASQE is able to tokenize,
highlight, validate, and dissect SPARQL queries. If
needed, users are presented with immediate validation
errors of their queries, and information on the type of
validation error. Additionally, YASQE provides sev-
eral auto-completion services: Full namespace URIs
are completed as you type, using the Prefix.cc web
service. Properties and classes are auto-completed as
well, using the Linked Open Vocabularies [2] (LOV)
API.

Using HTML 5 functionalities, YASQE stores that
application state, making it persistent between user
sessions: a returning user will see the screen as it was
when she last closed the YASQE browser page.

20See http://www.jsdelivr.com/
21See https://cdnjs.com/
22See http://yasqe.yasgui.org
23See http://codemirror.net

Furthermore, YASQE provides query permalink
functionality: For a given query, YASQE generates a
link. Opening the link in a browser opens YASQE with
the specified query filled in. We believe this is a wel-
come feature for people working together with a need
to share queries.

Finally, YASQE has built-in support for submitting
SPARQL queries to endpoints. By providing an ab-
stract layer on top of the HTTP protocol, publishers
and developers do not have to implement their own
(error-prone) HTTP requests to SPARQL endpoints.

YASQE is developed to cater for many different
publishing use cases, where not all features are needed
all the time. To this end, YASQE is both configurable
and extensible. Configurable, because publishers can
toggle any of the above features on or off. And ex-
tensible, e.g. by modifying SPARQL auto-completion
methods. The extendability is concretely illustrated by
the Gosparqled editor,24 which takes YASQE as its
main component, and adds custom auto-completion
functionality.

3.2. YASR

Fig. 3. The YASR interface

The YASR JavaScript library25 (See Figure 3),
aimed at publishers as well, parses and visualizes any
SPARQL query response.

The W3C specifies several SPARQL result formats,
including XML, JSON, CSV, Turtle and RDF/XML.
To decrease the load on the publisher or developer,
YASR consumes any of these data formats, by pars-
ing the results and wrapping them in an internal data
representation. A first parse attempt is based on the
Content-Type specified by the HTTP response. When

24See https://github.com/scampi/gosparqled.
25See http://yasr.yasgui.org

Laurens Rietveld and Rinke Hoekstra / The YASGUI Family of SPARQL Clients 7

such a Content-Type header is missing or appears to be
invalid, YASR tries to parse the SPARQL results on a
best-effort basis.

YASR has to deal with the wide variety of possi-
ble errors returned by endpoints. The SPARQL proto-
col specifies what the endpoint request and response
should look like, but leaves error handling unspecified:
what HTTP error code should be sent by an endpoint,
and how should error messages be communicated? As
a result, triple-stores come with various ways of con-
veying errors. Some endpoints return the error as part
of an HTML page (with the regular 200 HTTP code),
or as a SPARQL query result. Others only return an
HTTP error code, where only some include a reason
phrase together with the error code. The latter is a best
practice for RESTful services. The absence of a stan-
dard, and the failure to adhere to best practices, makes
a generic robust error handling solution messy and dif-
ficult to implement. Developing such a solution re-
quires coding and testing by trial and error. YASR de-
creases the publishers and developers load by wrap-
ping such SPARQL errors in an internal data represen-
tation.

The result of the procedures described above is a
JavaScript library which is capable of handling any
SPARQL response, moving the burden of writing
SPARQL result-set parsers and error handlers away
from the publisher.

As Table 1 shows, most SPARQL clients support
both rendering and downloading of query results to
some extent, which YASR supports as well. Users
are provided with an extensive number of visualiza-
tions: A table renderer for SELECT query responses,
and another renderer for visualizing the raw high-
lighted query response. Next to these two simple vi-
sualizations, YASR supports visualization via Google
Charts, including line, bar and scatter plots, geograph-
ical maps, and several others. YASR supports a pivot-
table functionality as well, allowing users to perform
simple post-processing tasks on the SPARQL results.
This functionality mimics functionality found in office
suites such as Microsoft Excel and OpenOffice Calc, as
users can cross-reference variables, aggregate on e.g.
frequency counts or values, and plot these aggregated
numbers on charts.

Most of the YASR visualizations are available for
download, enabling offline re-use. The download op-
tions include CSV for tabular data, the as-is raw re-
sponse, or the SVG renderings of charts.

Just as YASQE, YASR aims to be as extendable and
configurable as possible. Publishers can easily toggle

several visualizations on and off. Thanks to the mod-
ular architecture of YASR, adding a custom visual-
ization is easy, as developers can ignore the different
SPARQL response serializations and use the internal
YASR response representation directly. This is illus-
trated by the Visu tool26, which extends YASR by in-
corporating Google Chart visualizations. In turn, the
Visu features have been integrated into YASR.

3.3. YASGUI

3.3.1. JavaScript Library
The YASGUI JavaScript library27 (See Figure 1) in-

cludes YASQE and YASR, adds user functionality, and
wraps the libraries in a tabbed graphical user inter-
face. Next to the features described above, YASGUI
includes several usability features described below.

To increase the findability of SPARQL endpoints,
YASGUI uses the SPARQLES [8] service to provide
endpoint search functionality. SPARQLES is a web
service which monitors the up-time and characteris-
tics of SPARQL endpoints, in effect providing a list
of available SPARQL endpoints. However, YASGUI
only uses this information in a static fashion, as SPAR-
QLES does not publish this information dynamically
via e.g. a SPARQL endpoint or regular API. Other ser-
vices and endpoint catalogs exist such as DataHub.io,
but these include endpoints which are often down and
unavailable, and these catalogs do not publish their
data via an API accessible by JavaScript.

YASGUI also supports user-configurable requests.
For instance, some endpoints may only support the
XML results format, or allow the use of additional re-
quest parameters such as the ‘soft-limit’ of 4Store or
different reasoning levels of StarDog. Such endpoints
can only be used to their full potential if users are able
to specify these additional arguments manually. There-
fore, YASGUI supports the specification of an arbi-
trary number of request parameters for every endpoint.

Where YASQE and YASR make the application
states persistent between browser sessions, YASGUI
goes a step further. YASGUI keeps track of queries and
endpoints you have accessed in the past, and allows
you to restore these queries from your local history.

The features described above are all bundled in the
YASGUI JavaScript library. For those publishers that
require more elaborate features going beyond the pos-
sibilities of client-side JavaScript, we provide a server-

26See https://github.com/jiemakel/visu
27See http://doc.yasgui.org

8 Laurens Rietveld and Rinke Hoekstra / The YASGUI Family of SPARQL Clients

side back-end as well. This light-weight back-end is
written in JavaScript and runnable as a NodeJS server.

As mentioned in section 2.2, client-side web ap-
plications such as the FLINT SPARQL Editor are
endpoint independent, but only work for endpoints
that enable Cross-Origin Resource Sharing (CORS)28.
To overcome this limitation, YASGUI (optionally) in-
cludes this server-side proxy to access SPARQL end-
points which are otherwise not accessible via client-
side JavaScript. For endpoints which do support cross
domain JavaScript, YASGUI executes the queries from
the clients side directly.

The YASGUI server also acts as a URL shortener.
Web developers deploying YASGUI can choose to use
this shortener, or configure YASGUI to use one of the
available web URL shorteners. The rational behind a
custom YASGUI shortener is that common web short-
eners can suffer from link rot (they might disappear),
they often require API key access, are not accessible
from client-side JavaScript directly, and often have a
limitation to the number of characters in a URL.

3.3.2. Web Service
Other than enabling Linked Data publishers to im-

prove access to their SPARQL endpoints, we provide a
running YASGUI instance as a web service as well29.
This YASGUI instance, which includes a back-end
server for CORS-disabled endpoints, presents users
with a single usable editor for all SPARQL endpoints.
This web service functions much like a local appli-
cation: just as the regular YASGUI library, it can ac-
cess SPARQL endpoints installed locally. Even more,
in modern browsers, this application is still accessible
when disconnected from the internet.

4. Impact

In our earlier work [13] we voiced our expectation
that YASGUI will fill a void in the tool chain of Linked
Data consumers and publishers. As in the previous sec-
tions, we tried to substantiate this expectation by giv-
ing an in depth comparison with other, similar tools,
and showing that YASGUI is substantially more fea-
ture rich than the competition. Nonetheless, it was just
an expectation: because YASGUI hadn’t been around
for very long, we could not show that this expectation
rang true. This section gives a brief overview of the

28See http://www.w3.org/TR/cors/
29See http://yasgui.org

impact the YASGUI family has had on the landscape
of Linked Data management.

4.1. Integration in Triple-stores

Making YASQE and YASR available as highly con-
figurable, lightweight, JavaScript-based front-ends for
SPARQL interfaces has turned out to significantly
lower the threshold for bundling YASGUI function-
ality with triple stores. YASQE and YASR have now
made their way into three major triple stores:

Apache Jena
Includes both YASQE and YASR in the new
Apache Jena-Fuseki 2 SPARQL interface

OpenRDF Sesame
Includes YASQE as its main query editor.

ClioPatria
Includes both YASQE and YASR as query editor

4.2. Integration in Other Applications

The YASGUI family reduces the effort required
from other developers to program against the idiosyn-
crasies of SPARQL endpoints and SPARQL responses.
It thereby enables developers of SPARQL applica-
tions to kick-start their user interfaces by integrating
or building on top of the YASGUI tools. Until now, we
have been able to find the following usage of our work
in five other applications:

Gosparqled
An extension of YASQE, which provides (via a
back-end server) smart, context-dependent auto-
completions for properties and classes.

Visu
The first library to extend YASR with Google
Chart functionality. Now published together with
the YASQE editor.

Snapper 30

An online Turtle and N-Triples editor, connect-
ing to APIs which implement the SPARQL Graph
Store Protocol. The tool uses several SPARQL
queries to e.g. fetch items for auto-completions.
Snapper allows users to configure such queries by
means of YASQE.

Sefarad 31

A data exploration tool-set which includes a
SPARQL editor for templated SPARQL queries.

30See http://jiemakel.github.io/snapper
31See https://github.com/gsi-upm/Sefarad/

Laurens Rietveld and Rinke Hoekstra / The YASGUI Family of SPARQL Clients 9

This SPARQL editor is based on YASQE and
YASR

Brwsr 32

A lightweight Linked Data browser which incor-
porates YASQE and YASR to provide SPARQL
access

4.3. Publishers

YASGUI components are used by a large number
of publishers, in both open and closed, and non-profit
and for-profit environments. Below we present a (non-
exhaustive) list of Linked Data publishers that use
YASGUI components. We excluded those publishers
that already publish YASGUI components via their de-
fault endpoint interface, as discussed in Section 4.1.

HealthData.gov 33

A US federal government website managed by
the department of Health & Human Services. Ac-
cess to the healthcare data is provided via YAS-
GUI.

Smithsonian 34

The Smithsonian American Art museum pub-
lishes art and artwork collections data as Linked
Open Data [18]. YASGUI is used to provide ac-
cess to the corresponding SPARQL endpoint.

ZBW 35

The German National Library of Economics pro-
vides access to catalog information using YASQE
and YASR.

Linked Open Vocabularies 36

Linked Open Vocabularies is a vocabulary cat-
alog, which publishes their data via SPARQL
endpoint and via regular APIs. As discussed in
section 3, YASQE uses the LOV API for auto-
completion functionality. In turn, LOV uses both
YASQE and YASR to provide access to their
SPARQL endpoint.

LOD Laundromat 37

The LOD Laundromat [4] service crawls the
LOD Cloud, and re-publishes Linked Datasets

32See https://github.com/Data2Semantics/brwsr
33See http://www.healthdata.gov/sparql
34See http://americanart.si.edu/collections/

search/lod/about/sparql.cfm
35See http://zbw.eu/labs/en/blog/

publishing-sparql-queries-live and http:
//zbw.eu/beta/sparql-gui/

36See http://lov.okfn.org/dataset/lov/sparql
37See http://lodlaundromat.org/sparql/

in a canonical compressed N-Triples/N-Quads
format. The corresponding meta-data and prove-
nance are stored in a SPARQL endpoint, and ac-
cessible via both YASQE and YASR.

MetaLex 38

The MetaLex [11] service hosts almost all Dutch
national regulations as Linked Data, and pub-
lishes these via a SPARQL endpoint. The SPARQL
endpoint is accessible via the YASGUI interface.

CEDAR project 39

The CEDAR project publishes Dutch census data
via a SPARQL endpoint, accessible via YASQE
and YASR.

KennisNet
Kennisnet is the public IT partner for educational
organizations in The Netherlands. It uses YAS-
GUI internally for accessing their SPARQL end-
point.

Building Bits 40

A Semantic Web technology company which, for
one of their customers, uses YASQE internally for
accessing their triple-store.

Kennisnet 41

Kennisnet is a Dutch institute responsible for the
basic education IT infrastructure. Some of the
data that Kennisnet manages and publishes are
exposed via regular APIs, but internally accessi-
ble via SPARQL, using YASQE and YASR

4.4. Use by Consumers

Netherlands

United States

France

Germany

United Kingdom

Spain

Italy

Japan

Other

24.8%

24%

23.5%

8.1%

Fig. 4. Locations of YASGUI users

The YASGUI web service is publicly available since
October 2012, and we have gathered usage statistics

38See http://doc.metalex.eu/query
39See http://lod.cedar-project.nl/cedar/data.

html
40See http://www.buildingbits.nl/
41See http://www.kennisnet.nl/

10 Laurens Rietveld and Rinke Hoekstra / The YASGUI Family of SPARQL Clients

from January 2013 onwards. Over this period, we
tracked (if permitted to do so) at least 5.200 unique
visitors from over 80 countries (See figure 4), who ex-
ecuted 90.000 queries on around 600 endpoints.

We observe that the use of the YASGUI web service
is increasing: we tracked 4.300 user sessions in 2013,
which doubled to 8.400 user sessions in 2014. Note
that these are conservative statistics, as only 58% of
the users allowed us to track their information.

4.5. Research Impact

As the USEWOD challenge [5] shows, query logs
enable research in the area of the use of Linked Data.
This challenge distributes server SPARQL query logs
from 6 endpoints (including DBpedia and Bio2RDF),
and has seen an impact beyond the workshop as several
research papers have been published using the USE-
WOD query log collection.

The YASGUI service query logs contribute to this
research area for two reasons. First, the YASGUI logs
are solely written by real persons, allowing us to distin-
guish man-made queries from (routine) machine use.
This is something that cannot be done using server
logs alone. Secondly, the USEWOD logs cover only 6
public endpoints, while the YASGUI logs cover both
open and closed Linked Data; i.e. all endpoints listed
by SPARQLES as well as local, private endpoints.

Using the YASGUI logs, we were able to perform
a preliminary study of the structural properties of the
Linked Data cloud [15]. We also quantified the differ-
ences between server query logs as published by USE-
WOD and the YASGUI query logs [14], and showed
how these server logs are strongly biased by machine
queries, and differ greatly from those written by hu-
mans (i.e. the YASGUI logs). These studies would not
have been possible without YASGUI.

To provide broader access to this unique research as-
set, we made the logs publicly available via the 2015
USEWOD challenge. The USEWOD log collection
now has a more balanced representation of machine
and man-made queries, covering the whole (offline and
online) LOD Cloud.

5. Conclusion

The size and complexity of the Semantic Web make
it difficult to query, and requires tools with a strong fo-
cus on usability. In this paper we presented the state of
the art in SPARQL user interfaces, and showed most of

these are rather austere clients with little focus on us-
ability, extendability, and feature completeness. Most
striking is that their functionality is largely comple-
mentary: we have the SNORQL client for associative
browsing, the Squebi editor for highlighted queries,
several libraries which are accessible as SPARQL in-
terface libraries, and other tools whose major selling
point is access to any SPARQL endpoint. This large
collection of tools, each with their own specific ‘area
of expertise’, makes it hard for consumers to find and
use the right tool for their task, and makes it time
consuming for publishers to improve access to their
SPARQL endpoint. Increasing user accessibility to the
Semantic Web would require a tool-set which com-
bines as much of these features as possible.

This is why we introduced the YASGUI family, tar-
get at both data publishers and data consumers. The
JavaScript libraries of YASQE, YASR and YASGUI
enable data publishers to easily improve access to data.
The YASGUI web service allows Linked Data con-
sumers to access any SPARQL endpoint – both remote
and local –, and includes all the features present in
the JavaScript libraries such as auto-completions, end-
point lookup, persistent user sessions, and syntax vali-
dation. In some areas there is room from improvement:
we plan on extending the visualizations in YASR, and
making them more intuitive to create. Additionally, we
plan to improve the YASQE auto-completions using
the dataset itself, presenting users with more suitable
suggestions.

Since its launch more than two years ago, three
triple-stores integrated YASGUI in their endpoint
front-end, and several developers either adapted or in-
cluded YASGUI components in new Linked Data ap-
plications. A large number of publishers use YASGUI
components as their SPARQL endpoint interface, and
close to a hundred thousand queries have been exe-
cuted via the YASGUI web service on hundreds of
SPARQL endpoints. The logs collected from this web
service proved to be a useful data source for further
research. This shows that the YASGUI family made a
large impact on the landscape of Linked Data manage-
ment.

Acknowledgements

This work was supported by the Dutch national pro-
gram COMMIT.

Laurens Rietveld and Rinke Hoekstra / The YASGUI Family of SPARQL Clients 11

References

[1] Anupriya Ankolekar, Markus Krötzsch, Thanh Tran, and
Denny Vrandecic. The Two Cultures: Mashing up Web 2.0
and the Semantic Web. In WWW ’07: Proceedings of the 16th
international conference on World Wide Web, pages 825–834,
New York, NY, USA, 2007. ACM Press.

[2] Thomas Baker, Pierre-Yves Vandenbussche, and Bernard
Vatant. Requirements for vocabulary preservation and gover-
nance. Library Hi Tech, 31(4):657–668, 2013.

[3] Robert Battle and Edward Benson. Bridging the Semantic Web
and Web 2.0 with Representational State Transfer (REST). Web
Semantics: Science, Services and Agents on the World Wide
Web, 6(1):61–69, February 2008.

[4] Wouter Beek, Laurens Rietveld, Hamid R. Bazoobandi, Jan
Wielemaker, and Stefan Schlobach. LOD Laundromat: A
Uniform Way of Publishing Other People’s Dirty Data. In
Peter Mika, Tania Tudorache, Abraham Bernstein, Chris
Welty, Craig A. Knoblock, Denny Vrandecic, Paul T. Groth,
Natasha F. Noy, Krzysztof Janowicz, and Carole A. Goble, edi-
tors, Semantic Web Conference, volume 8796 of Lecture Notes
in Computer Science, pages 213–228. Springer, 2014.

[5] Bettina Berendt, Laura Hollink, Vera Hollink, Markus Luczak-
Rösch, Knud Möller, and David Vallet. Usage Analysis and the
Web of Data. In ACM SIGIR Forum, volume 45, pages 63–69.
ACM, 2011.

[6] Jethro Borsje and Hanno Embregts. Graphical Query Com-
position and Natural Language Processing in an RDF Visu-
alization Interface. Erasmus School of Economics and Busi-
ness Economics, Vol. Bachelor. Erasmus University, Rotter-
dam, 2006.

[7] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen.
Sesame: A Generic Architecture for Storing and Querying
RDF and RDF Schema. In Ian Horrocks and James Hendler,
editors, The Semantic Web – ISWC 2002, volume 2342 of Lec-
ture Notes in Computer Science, pages 54–68. Springer Berlin
Heidelberg, 2002.

[8] Carlos Buil-Aranda, Aidan Hogan, Jürgen Umbrich, and
Pierre-Yves Vandenbussche. SPARQL Web-Querying Infras-
tructure: Ready for Action? In Harith Alani, Lalana Kagal,
Achille Fokoue, Paul Groth, Chris Biemann, Xavier Parreira,
Josiane, Lora Aroyo, Natasha Noy, Chris Welty, and Krzysztof
Janowicz, editors, The Semantic Web – ISWC 2013, volume
8219 of Lecture Notes in Computer Science, pages 277–293.
Springer Berlin Heielberg, 2013.

[9] Stephane Campinas, Thomas E. Perry, Diego Ceccarelli, Re-
naud Delbru, and Giovanni Tummarello. Introducing RDF
Graph Summary with Application to Assisted SPARQL For-
mulation. In Abdelkader Hameurlain, A Min Tjoa, and Roland
Wagner, editors, DEXA Workshops, pages 261–266. IEEE
Computer Society, 2012.

[10] S. Harris, N. Lamb, and N. Shadbolt. 4store: The design and
implementation of a clustered rdf store. In Proceedings of the
5th International Workshop on Scalable Semantic Web Knowl-
edge Base Systems (SSWS2009), pages 94–109, Chantilly, VA,
USA, 2009.

[11] Rinke Hoekstra. The MetaLex Document Server - Legal Doc-
uments as Versioned Linked Data. In Lora Aroyo, Chris Welty,

Harith Alani, Jamie Taylor, Abraham Bernstein, Lalana Ka-
gal, Natasha Fridman Noy, and Eva Blomqvist, editors, Inter-
national Semantic Web Conference, volume 7032 of Lecture
Notes in Computer Science, pages 128–143. Springer, 2011.

[12] Frederik Hogenboom, Viorel Milea, Flavius Frasincar, and
Uzay Kaymak. RDF-GL: A SPARQL-Based Graphical Query
Language for RDF. In Richard Chbeir, Youakim Badr, Ajith
Abraham, and Aboul-Ella Hassanien, editors, Emergent Web
Intelligence: Advanced Information Retrieval, Advanced In-
formation and Knowledge Processing, pages 87–116. Springer
London, 2010.

[13] Laurens Rietveld and Rinke Hoekstra. YASGUI: Not Just An-
other SPARQL Client. In Philipp Cimiano, Miriam Fernández,
Vanessa Lopez, Stefan Schlobach, and Johanna Völker, editors,
The Semantic Web: ESWC 2013 Satellite Events, volume 7955
of Lecture Notes in Computer Science, pages 78–86. Springer
Berlin Heidelberg, 2013.

[14] Laurens Rietveld and Rinke Hoekstra. Man vs. Machine:
Differences in SPARQL Queries. In Bettina Berendt, Laura
Hollink, Markus Luczak-Rösch, Knud Möller, and David Val-
let, editors, Proceedings of the 4th USEWOD Workshop on Us-
age Analysis and the Web of Data, ESWC, Crete, Greece, 2014.

[15] Laurens Rietveld and Rinke Hoekstra. YASGUI: Feeling
the Pulse of Linked Data. In Krzysztof Janowicz, Ste-
fan Schlobach, Patrick Lambrix, and Eero Hyvönen, editors,
EKAW, volume 8876 of Lecture Notes in Computer Science,
pages 441–452. Springer, 2014.

[16] Martin G. Skjæveland. Sgvizler: A JavaScript Wrapper for
Easy Visualization of SPARQL Result Sets. In Elena Sim-
perl, Barry Norton, Dunja Mladenic, Emanuele Della Valle,
Irini Fundulaki, Alexandre Passant, and Raphaël Troncy, edi-
tors, The Semantic Web: ESWC 2012 Satellite Events, volume
7540 of Lecture Notes in Computer Science, pages 361–365.
Springer Berlin Heidelberg, 2015.

[17] Paul R. Smart, Alistair Russell, Dave Braines, Yannis
Kalfoglou, Jie Bao, and Nigel. Shadbolt. A Visual Approach
to Semantic Query Design Using a Web-Based Graphical
Query Designer. In Aldo Gangemi and Jérôme Euzenat, edi-
tors, Knowledge Engineering: Practice and Patterns, volume
5268 of Lecture Notes in Computer Science, pages 275–291.
Springer Berlin Heidelberg, 2008.

[18] Pedro A. Szekely, Craig A. Knoblock, Fengyu Yang, Xuming
Zhu, Eleanor E. Fink, Rachel Allen, and Georgina Goodlan-
der. Connecting the Smithsonian American Art Museum to
the Linked Data Cloud. In Philipp Cimiano, Oscar Corcho,
Valentina Presutti, Laura Hollink, and Sebastian Rudolph, ed-
itors, ESWC, volume 7882 of Lecture Notes in Computer Sci-
ence, pages 593–607. Springer, 2013.

[19] Martins Zviedris and Guntis Barzdins. ViziQuer: A Tool to
Explore and Query SPARQL Endpoints. In Grigoris Anto-
niou, Marko Grobelnik, Elena Simperl, Bijan Parsia, Dimitris
Plexousakis, Pieter De Leenheer, and Jeff Pan, editors, The
Semanic Web: Research and Applications, volume 6644 of
Lecture Notes in Computer Science, pages 441–445. Springer
Berlin Heidelberg, 2011.

