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Abstract— In this paper we present the Yale-CMU-Berkeley 

(YCB) Object and Model set, intended to be used for 

benchmarking in robotic grasping and manipulation research. 

The objects in the set are designed to cover various aspects of the 

manipulation problem; it includes objects of daily life with 

different shapes, sizes, textures, weight and rigidity, as well as 

some widely used manipulation tests. The associated database 

provides high-resolution RGBD scans, physical properties and 

geometric models of the objects for easy incorporation into 

manipulation and planning software platforms. A comprehensive 

literature survey on existing benchmarks and object datasets is 

also presented and their scope and limitations are discussed. The 

set will be freely distributed to research groups worldwide at a 

series of tutorials at robotics conferences, and will be otherwise 

available at a reasonable purchase cost. 

Keywords—benchmarking; manipulation; rehabilitation; 

prosthetics; grasping.  

I. INTRODUCTION 

Benchmarks are crucial for the progress of a research field, 
allowing performance to be quantified in order to give insight 
into the effectiveness of an approach. In robotic manipulation, 
benchmarking and performance metrics are challenging due 
largely to the enormous breadth of the application and task 
space for which researchers are working towards. The majority 
of research groups have therefore selected for themselves a set 
of objects and/or tasks that they believe are representative of 

the functionality that they would like to achieve. Unfortunately 
such an approach prevents the analysis of experimental results 
against a common basis, and therefore makes it difficult to 
quantitatively interpret the performance of the described 
approach. 

Object and model sets are generally the fundamental 
elements involved in benchmarks for manipulation. Substantial 
effort has already been put into providing mesh model 
databases of objects (e.g. [1-4], with a thorough overview 
provided in section II), generally for object recognition or 
planning purposes. There have, however, been very few 
instances of proposed object/task sets for which the physical 
objects are available to researchers. Access to the objects is 
crucial to performance benchmarking as many aspects of the 
grasping and manipulation process cannot be modeled, thereby 
requiring experiment to demonstrate success or examine failure 
modes. 

In this paper, we present an object set for robotic grasping 
and manipulation research that is specifically designed to allow 
for widespread dissemination of the physical objects and 
manipulation scenarios. The objects and tools provided were 
selected based on a survey of the most common objects utilized 
in research in robotics, prosthetics, and rehabilitation, along 
with a number of additional practical constraints. Along with 
the physical objects, textured mesh models and high quality 
images are provided together with their physical properties to 
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enable realistic simulations. These models are integrated into 
the MoveIt motion planning tool [5] and the Gazebo simulation 
environment. The set will be freely distributed to research 
groups worldwide at a series of tutorials at robotics 
conferences, and will be otherwise available at a reasonable 
purchase cost. Our goal is to do as much as possible to 
facilitate the widespread usage of a common set of objects and 
tasks in order to allow easy comparison of results between 
research groups worldwide.  

In choosing the set of objects and data provided, a number 
of issues were considered. The objects should span a variety of 
shapes, sizes, weight, rigidity and texture, as well as span a 
wide range of manipulation applications and challenges. Still, a 
number of practical constraints must be considered, including 
the number and size of the objects to allow for easy shipping 
and storage, keeping the overall cost reasonable, providing 
objects that are durable so as to not substantially degrade over 
time or with usage, as well as to choose objects that are likely 
to be available in a similar form in the future. Preliminary data 
in the repository includes high-resolution 3D point cloud data 
with associated meshes and texture (visual) information, object 
mechanical properties such as major dimensions and mass, as 
well as models for integration into planning and simulation 
software, all available at: http://rll.eecs.berkeley.edu/ycb/. We 
expect to continually expand this to not only include additional 
data on the objects, but also to propose benchmarking tasks and 
use protocols to further aid in common performance standards. 
Furthermore, we will create a web portal for the user 
community to engage in this effort, proposing changes to the 
object set and putting forth their own task protocols, among 
others.  

The remainder of this paper is organized as follows: First a 
comprehensive literature survey on object sets and benchmarks 
is presented in Section II. Following that our object set is 
presented and explained in Section III. In Section IV, a use 
case of the proposed object set is demonstrated. In Section VI, 
the paper is concluded with discussions and future work. 

II. RELATED WORK 

The necessity of manipulation benchmarks is highly 
recognized in the robotics community [6-8] and continues to 
be an active topic of discussion at workshops on robotic 
manipulation (e.g. [9]). Prior work on object sets has generally 
involved large datasets of object scans, which are useful for 
many simulation and planning applications, as well as for 
benchmarking in shape retrieval but have limited use in 
experimental work on grasping and manipulation. One key 
factor in prior work is that the vast majority of objects in these 
sets are not easily accessible by other researchers, preventing 
the use of these objects in the manipulation experiments, with 
a few exceptions ([10] provides a shopping list, but it is 
outdated with many dead links, and a commercial kit is 
available in [11], but provides a very limited set of objects and 
is not appropriate for many manipulation applications). The 
current effort is unique in that it both provides a large amount 
of information about the objects necessary for many 
simulation and planning approaches, as well as makes the 

actual objects readily available for researchers to utilize 
experimentally. 

A. Data sets 

For benchmarking in robotic manipulation, specifying an 
object set is essential. Even though there are a large number of 
efforts (e.g. [1, 2, 4, 12-15]) that provide mesh model datasets 
of objects, these datasets have limited utility for manipulation 
benchmarking due to several reasons: First, since most of them 
are not designed specifically for manipulation benchmarking, 
the selected objects do not usually cover the shape variety 
needed for manipulation experiments. Second, in the majority 
of these datasets, the models are without high-quality texture 
information (with BigBIRD [1] and KIT [12] datasets standing 
out as notable exceptions) which is necessary for grasp 
synthesis algorithms which use feature-based methods (e.g. 
[16, 17]). Furthermore, none of these databases provide the 
objects’ physical properties which are necessary to conduct 
realistic simulations.  

Several object sets have been proposed targeting the 
manipulation field: The Columbia Grasp Database [3], the KIT 
Object Models Database [12] and a household objects list 
proposed in [10]. The Columbia Grasp Database (CGD) 
rearranges the object models of the Princeton Shape 
Benchmark (PSB) [18] for robotic manipulation and provides 
mesh models of 8000 objects together with assigned successful 
grasps per model. Such a database is especially useful for 
implementing machine learning based grasp synthesis 
algorithms in which large amounts of labeled data are required 
for training the system. The provided mesh models are without 
textures and the objects are not physically available to the 
researchers. A multi-purpose object set which also targets 
manipulation is the KIT Object Models Database [12] which 
provides stereo images and textured mesh models of 100 
objects. While there are a large number of objects, the shape 
variety is limited, and like the previously mentioned datasets, 
the objects are not easily accessible to other researchers. The 
household objects list [10] provides good shape variety that is 
appropriate for manipulation benchmarking, as well as a 
shopping list for making the objects more easily accessible to 
researchers. Unfortunately, the list is outdated, and most links 
are not accessible. Also, the 3D models of the objects are not 
supplied which prevents the use of the object set in 
simulations. 

B. Benchmarks 

A number of simulation tools have been presented in the 
literature for benchmarking in robotic manipulation. The 
OpenGRASP benchmarking suite [19] presents a simulation 
framework for robotic manipulation. The suite is based on the 
OpenGRASP toolkit [20] which supplies an interface to import 
objects and robot models as well as plugins for actuators and 
tactile sensors. The benchmarking suite provides test cases and 
setups, and a standard evaluation scheme for the resultant 
grasps. So far, a benchmark for grasping known objects has 
been presented using this suite. The VisGraB [21] provides a 
benchmark framework for grasping unknown objects. The 
unique feature of this software is utilizing real stereo images of 
the target objects for grasp synthesis and executing and 
evaluating the result in a simulation environment. 



 
 

Fig. 1: Food items in the YCB Object Set: back row: chips can, 

coffee can, cracker box, box of sugar, tomato soup can; middle row: 

mustard container, tuna fısh can, chocolate pudding box, gelatin box, 
potted meat can; front: plastic fruit (lemon, apple, pear, orange, 

banana, peach, strawberries, plum). 

 

 
 

Fig. 2: Kitchen items in the YCB Object Set: back row: pitcher, 

bleach cleanser, glass cleaner; mıddle row: plastic wine glass, 
enamel-coated metal bowl, metal mug, abrasive sponge; front: 

cooking skillet with glass lid, metal plate, eating utensils (knife, 

spoon, fork), spatula, white table cloth. 

 

 
 

Fig. 3: Tool items in the YCB Object Set: back: power drill, wood 

block; middle row: scissors, padlock and keys, markers (two sizes), 

adjustable wrench, phillips and flat screwdrivers, wood screws, nails 

(two sizes), plastic bolt and nut, hammer; front: spring clamps (four 

sizes). 

 

 
 

Fig. 4: Shape items in the YCB Object Set: back: Mini soccer ball, 

softball, baseball, tennis ball, racquetball, golf ball, front: plastic 

chain, washers (seven sizes), foam brick, dice, marbles, rope, stacking 

blocks (set of 10), credit card blank. 

 

Gripper and hand design is another aspect of robotic 
manipulation which requires benchmarks for evaluating and 
comparing the performance of different gripper designs. In [22, 
23], benchmark tests are proposed for evaluating the ability of 
the grippers to hold an object, but only cylindrical objects are 
used.  

In [24], the authors list a large number of objects utilized in 
the Activities of Daily Living, and evaluate them in terms of 
their physical properties (mass and dimensions) and frictional 
properties with a number of common surfaces. Results 
included a distribution of the amount of force required to 
displace the objects, providing performance benchmarks for 
reaching and grasping. The conclusions of this work are 
considered while designing our object set. 

While developed and used primarily for prosthetics and 
rehabilitation applications, The Southampton Hand Assessment 
Procedure (SHAP) [11] has been frequently considered by 

robotics researchers. The test involves a standard set of objects, 
including some objects of daily living such as a bowl, a drink 
carton, and a jar, together with some geometrical shapes, for 
which subjects must do a variety of manipulation tasks, 
including pouring the drink, opening the jar etc. The test kit is 
available for purchase, but is pricey and limited to only a small 
number of objects and tasks. 

III. THE OBJECT AND DATA SET 

The proposed object set can be seen in Figures 1-7 and 
listed in Table I. In this section, we describe the object set and 
the reasoning behind the choices (section III.A), a description 
of the process and data involved in the scans of the objects 
(III.B), and the models and integration into simulation and 
planning packages (III.C). 



Table I (cont): Object Set Items and Properties 

ID Class Object Mass Dims. (mm) 

49 

T
o
o

l 
It

e
m

s 

S Clamp 19.2g 85 x 65 x 10 

50 M Clamp 59g 90 x 115 x 27 

51 L Clamp 125g 125 x 165 x 32 

52 XL Clamp 202g 165 x 213 x 37 

53 
Mini Soccer 
Ball 

123g 140 

54 Soft Ball 191g 96 

55 Tennis Ball 58g 64.7 

56 Racquetball 41g 55.3 

57 

S
h

a
p

e
 I

te
m

s 

Golf Ball 46g 42.7 

58 Chain 98g 1149 

59 Washers 
[0.1,0.7,1.1,3
,5.3,19,48] g 

[6.4, 10, 13.3, 18.8, 
25.4, 37.3, 51]  

60 Foam Brick 28g 50 x 75 x 50 

61 Dice 5.2g 16.2 

62 Marbles N/A N/A 

63 Rope 18.3g 3000 x 4.7 

64 Cups 
[13,14,17,19,
21,26,28,31,3
5,38] g 

[55x60, 60x62, 
65x64, 70x66, 
75x68, 80x70, 
85x72, 90x74, 
95x76, 100x78] 

65 
Blank Credit 
Card 

5.2g 54 x 85 x 1 

66 Clear Box 302g 292 x 429 x 149 

67 Rope   

68 Box Lid 159g 292 x 429 x 20 

69 
Colored 
Wood Blocks 10.8g 

26 

70 

T
a

sk
 I

te
m

s 

9-Peg-Hole  
Test 

1435g 1150 x 1200 x 1200 

71 Toy Airplane 570g 171 x 266 x 280 

72 Lego Duplo 523g N/A 

73 T-shirt 105g 736 x 736 

74 Magazine 73g 265 x 200 x 1.6 

75 Timer 102g 85 x 80 x 40 

 

Table I: Object Set Items and Properties 

ID Class Object Mass Dims. (mm) 

1 
F

o
o

d
 i

te
m

s 
Chips Can 205g 75 x 250  

2 
Master Chef 
Can 

414g 102 x 139  

3 Cracker Box 411g 60 x 158 x 210 

4 Sugar Box 514g 38 x 89 x 175 

5 
Tomato 
Soup Can 

349g 66 x 101  

6 
Mustard 
Bottle 

603g 58 x 95 x 190 

7 
Tuna fish 
can 

171g 85 x 33 

8 Pudding Box 187g 35 x 110 x 89 

9 Gelatin Box 97g 28 x 85 x 73 

10 
Potted Meat 
Can 

370g 50 x 97 x 82 

11 Banana 66g 36 x 190  

12 Strawberry 18g 43.8 x 55 

13 Apple 68g 75 

14 Lemon 29g 54 x 68  

15 Peach 33g 59 

16 Pear 49g 66.2 x 100 

17 Orange 47g 73 

18 Plum 25g 52 

19 

K
it

c
h

e
n

 I
te

m
s 

Pitcher Base 178g 108 x 235 

20 Pitcher Lid 66g 123 x 48 

21 
Bleach 
Cleanser 

1131g 250 x 98 x 65 

22 
Windex 
Bottle 

1022g 80 x 105 x 270 

23 Wine glass 133g 89 x 137 

24 Bowl 147g 159 x 53 

25 Mug 118g 80 x 82 

26 Sponge 6.2g 72 x 114 x 14 

27 Skillet 950g 270 x 25 x 30  

28 Skillet Lid 652g 270 x 10 x 22 

29 Plate 279g 258 x 24 

30 Fork 34g 14 x 20 x 198 

31 Spoon 30g 14 x 20 x 195 

32 Knife 31g 14 x 20 x 215 

33 Spatula 51.5g 35 x 83 x 350 

34 Table cloth 1315 2286 x 3352 

35 

T
o
o

l 
It

e
m

s 

Power Drill 895g 35 x 46 x 184 

36 Wood Block 729g 85 x 85 x 200 

37 Scissors 82g 87 x 200 x 14 

38 Padlock  304g 24 x 47 x 65 

39 Keys 10.1g 23 x 43 x 2.2 

40 
Large 
Marker 

15.8g 18 x 121 

41 
Small 
Marker 

8.2g 8 x 135 

42 
Adjustable 
Wrench 

252g 5 x 55 x 205 

43 
Phillips 
Screwdriver 

97g 31 x 215 

44 
Flat 
Screwdriver 

98.4g 31 x 215 

45  Nails 
[2,2.7,4.8] 
g 

[4x25, 3x53, 
4x63] 

46  Plastic bolt 3.6g 43 x 15 

47  Plastic nut 1g 15 x 8 

48  Hammer 665g 24 x 32 x 135 

 

 

A. Objects 

We aimed to choose objects that are frequently used in 
daily life, and went through the literature to take into account 
the objects that are frequently used in simulations and 
experiments. In compiling the proposed object and task set, we 
needed to take a number of additional practical issues into 
consideration: 

 Variety: In order to cover as many aspects of robotic 
manipulation as possible, we included objects that 
have a wide variety of shape, size, transparency, 
deformability, and texture. Grasping and manipulation 
difficulty was also a criterion: for instance, some 
objects in the set are well approximated by simple 
geometric shapes and relatively easy for grasp 
synthesis and execution, while other objects have 
higher shape complexity and more challenging for 
grasp synthesis and execution.  

 Use: We included objects that are not only interesting 
for grasping, but also have a range of manipulation 
uses. For example, a pitcher and a cup; nails and a 
hammer; pegs, cloths and rope. We also included 



     
 

Fig. 5: (left) Box-and-blocks test objects: set of 100 wooden cubes, 

two containers and height obstacle (container lid) between them. 

(right) 9-hole peg test: wooden pegs are placed in  

 

  

(a) 
 

 
(b) 

 

Fig. 6: Assembly objects: (a) Toy airplane disassembled (left), 

including toy power screwdriver, and fully assembled (right), (b) 

LEGO Duplo. 

 

widely used standard manipulation tests in 
rehabilitation, such as the box and blocks [25] and 9-
hole-peg test [26] (Fig. 5). Additionally, “assembly” 
items/tasks are included: A set of children’s stacking 
cups and a toy airplane that must be assembled and 
screwed together, and a LEGO Duplo (Fig. 6). As 
above, these tasks are intended to span a wide range of 
difficulty, from relatively easy to very difficult. 
Furthermore, the ability to quantify task performance 
was also prioritized, including aspects such as level of 
difficulty, time-to-completion, and success rate, among 
others.  

 Durability: We aimed for objects that can be useful 
long term, and therefore avoid objects that are fragile 
or perishable. Also, to increase the longevity of the 
object set, we chose the objects that are likely to 
remain in circulation and change relatively little in the 
near future.  

 Cost: We aimed to keep the cost of the object set as 
low as possible to broaden accessibility. We therefore 
selected standard consumer products, rather than, for 
instance, custom-fabricated objects and tests. Current 
cost for the objects is approximately $350. 

 Portability: We aimed to have an object set that fits in 
a large-sized suitcase and be below the normal airline 
weight limit (22kg) in order to allow easy shipping and 
storage. 

After considering these practical issues and reviewing the 
literature, the final objects were selected (Table I, Figs. 1-7). 
The objects in the set can be divided into the following 
categories: food items, kitchen items, tool items, shape items, 
task items. Objects from ID 1 to 18 are the food items, 
containing real boxed and canned items, as well as wooden 
fruits of complex shapes. The objects from ID 19 to 34 are 
kitchen items, containing objects for food preparation and 
serving, as well as glass cleaner and a sponge. The objects 
from 35 to 56 form the tool category, containing not only 
common tools, but also items such as nails, screws, and wood 
to utilize them. The shape items are from ID 57 to 69, which 
span a range of sizes (spheres, cups, and washers), as well as 
compliant objects such as foam bricks, rope, and chain.  

The manipulation task items are the objects with IDs 70 to 75, 
and include two widely used tasks in rehabilitation 
benchmarking (box-and-blocks [25] and 9-hole peg test [26]) 
as well as assembly objects (children’s airplane toy, LEGO), a 
black t-shirt, a magazine and a timer. 

B. Scans 

In order to ease adoption, we collect visual data that is 
commonly required for grasping algorithms and generate 3D 
models for use in simulation. We use the scanning rig used to 
collect the BigBIRD dataset [1]. The rig, shown in Figure 9, 
has 5 RGBD sensors and 5 high-resolution RGB cameras 
arranged in a quarter-circular arc. Each object is placed on a 
computer-controlled turntable, which is rotated by 3 degrees at 
a time, yielding 120 turntable orientations. Together, this yields 
600 RGBD images and 600 high-resolution RGB images. The 
process is completely automated, and the total collection time 
for each object is under 5 minutes. 

We then use Poisson surface reconstruction to generate 
watertight meshes. Currently, the bottoms of the objects are not 
scanned, and therefore the bottoms of the meshes are not 
textured. Afterwards, we project the meshes onto each image to 
generate segmentation masks. Note that Poisson reconstruction 

     
 

 
Fig. 7: Task Items: left: Black t-shirt, right: Timer. 

 



 
 

Fig. 8: BigBIRD Object Scanning Rig: the box contains a computer-

controlled turntable. 

 

       
 

Fig. 9: Point cloud and textural data overlays on two YCB objects: 

mustard bottle and power drill. 

 

fails on certain objects with missing depth data; specifically, 
transparent or reflective regions of objects usually do not 
register depth data. We will later provide better models for 
these objects using algorithms that take advantage of the high-
resolution RGB images for building models. 

In total, for each object, we provide: 

• 600 RGBD images 

• 600 high-resolution RGB images 

• Segmentation masks for each image 

• Calibration information for each image 

• Texture-mapped 3D mesh models 

The object scans can be found at [27]. 

C. Models 

Based on the scans of the objects, there are several ways in 
which object models can be easily integrated into a variety of 
robot simulation packages. For example, in the MoveIt [5] 
simulation package, the mesh can be used as a collision object 
directly. Furthermore, a Unified Robot Description Format 
(URDF) file can be automatically constructed to integrate with 
ROS [28]. This provides a way of specifying mass properties, 
and can link to alternate representations of the mesh for 

visualization and collision. Integration with the OpenRAVE 
[29] simulation package is similarly straight-forward where we 
link to the display and collision meshes from a KinBody XML 
file. Using the scans, we have created URDF and KinBody 
files for all of the objects in the dataset, provided alongside the 
scans at [27]. 

Once in a simulation environment, a variety of motion 
planners and optimizers can use these models either as 
collision or manipulation objects. Some algorithms, such as 
CHOMP [30], require signed-distance fields to avoid collisions 
which can be computed from the included watertight meshes. 
In other cases such as CBiRRT [31] compute collisions directly 
using an optimized mesh collision checker. 

In many cases, collision checking is a computational 
bottleneck for motion planning. Execution time can be reduced 
using a simplified mesh produced either by hand or with 
automatic decimation methods [32]. We have not yet provided 
simplified meshes in this dataset, but view this as an 
opportunity in future work to further explore mesh 
approximation algorithms and their impact on motion planning 
problems using the standardized benchmarks. 

IV. FUNCTIONAL DEMONSTRATION 

Figure 10 demonstrates the entire pipeline. Here, we see the 
HERB [33] robot preparing to grasp the virtual drill object. 
This demonstration uses an integration of ROS and 
OpenRAVE. ROS is used to provide communication between 
the various hardware and software components of the robot, 
while OpenRave handles planning and collision checking. 

Inside OpenRAVE, the HERB robot uses CBiRRT, the 
OMPL [34] library and CHOMP to plan and optimize motion 
trajectories. Using these tools, chains of several actions can be 
executed in sequence. The simulation environment also 
provides a mechanism for incorporating feedback from 
perception systems, which similarly benefit from this dataset. 
The provided images, meshes and physical objects can all be 
used as training data for various object detection and pose 
estimation algorithms, which can then be incorporated into the 
manipulation pipeline. 

Access to both the physical object and a corresponding 
model for simulation is important for developing and testing 
new planning and manipulation algorithms. This dataset vastly 
reduced the time required to set up this example by providing 
access to objects and meshes that have already been prepared 
for this purpose. This removed the burden of scanning or 
modeling new objects and provides benchmark environments 
that streamline experimental design. 

V. CONCLUSION AND FUTURE WORK 

This paper proposes a set of objects and related tasks, as 
well as high-resolution scans and models of those objects, 
intended to serve as a widely-distributed and widely-utilized 
set of standard performance benchmarks for robotic grasping 
and manipulation research. The objects were chosen based on 
an in-depth literature review of other objects and tasks 
previously proposed and utilized in robotics research, with 
additional consideration to efforts in prosthetics and 



      
Fig. 10: (left) Screen-capture from Openrave simulation and planning environment showing the HERB robot planning a grasp of the power 

drill object in the set. (right) actual grasp being executed by the robot on the physical object.  

rehabilitation. Furthermore, a number of practical constraints 
were considered, including a reasonable total size and mass of 
the set for portability, low cost, durability of the objects, and 
the likelihood that the objects would remain mostly unchanged 
in years to come. High-resolution RGBD scans of the objects 
were done and models of the objects have been constructed to 
allow easy portability into simulation and planning 
environments. All of these data are freely available in the 
associated repository [27]. The objects sets will be freely 
distributed to a large number of research groups through 
workshops/tutorials associated with this effort, and will be 
made available to purchase otherwise. 

While a common set of widely-available objects is a much-
needed contribution to the manipulation research community, 
the objects themselves are just the beginning. One major 
missing piece that we are now beginning to address is the 
generation of more detailed tasks and protocols involving the 
objects. While some of these are fairly straight-forward to 
specify (e.g. the box-and-blocks test, which simply examines 
the number of blocks that can be moved from one side to the 
other in a fixed amount of time), many will involve much more 
detail, possibly including specification of not only the task to 
be completed (e.g. simulated meal preparation), but also the 
nature of the system configuration(s) to be utilized (e.g. 
whether the a priori object models should be used during task 
performance). We plan to involve the research community in 
this effort via a web portal and arXiv-style working documents 
for proposed protocols, and will work towards having the 
majority of those protocols come from the user community 
rather than the authors. Additionally, we plan to have on this 
portal a “records” keeping functionality to keep track of the 
current “world records” for the different tasks and protocols, 
along with video and detailed descriptions of the approaches 
utilized, generating excitement, buzz, motivation, and 
inspiration for the manipulation community to compare 
approaches and push forward the state of the art. 

 Other efforts that we plan to undertake include more detail 
about the objects proposed, including information about the 
inertia of the objects, as well as frictional properties between 
the objects and common surfaced. Additionally, we will 
expand our treatment of the modelling of the objects, including 

addressing the tradeoffs between number of “triangles” and the 
reliable representation of the object geometry. Furthermore, 
before final publication and distribution of the object set, we 
will seek additional input from the research community on the 
specific objects in the set.  

It is our hope that this work will help to address the long-
standing need for common performance comparisons and 
benchmarks in the research community and will provide a 
starting point for further focused discussion and iterations on 
the topic. 
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