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Abstract—This paper considers the intersection of two comput-
ing trends: (1) Computer architecture design is now constrained
by power, instead of transistor count, which is leading to archi-
tecture heterogeneity and customization. (2) Software developers
increasingly choose managed languages, such as JavaScript,
PHP, Java, and C#. Managed languages require a VM (Virtual
Machine), which executes services such as profiling, compilation,
scheduling, and memory management together with every appli-
cation. The ubiquity of VM services makes them a perfect test
case for potential improvements in energy through the use of
hardware heterogeneity. This paper uses systematic exploration
of hardware features such as frequency and voltage scaling, cache
size, hardware parallelism, and gross microarchitecture design on
the power, and performance of VM services. It thus evaluates this
potential on actual hardware, rather than through simulation.
We study Just-in-Time (JIT) compilation, interpretation, and
memory management. We find that VM services consume around
20% of energy on average. Compared to application code, the
memory manager and interpreter offer substantially different
workloads and do not uniformly benefit from high performance
architectural features. A heterogeneous multicore processor thus
has the potential to substantially improve energy of managed
applications with cores customized for VM services.

I. INTRODUCTION

Computer systems are facing an energy crisis. Moore’s

Law continues, but because Dennard scaling is reaching its

limits, we are confronted with “dark silicon” [1], [2] — the

fraction of on-chip transistors powered at once will decrease

exponentially. For mobile devices, battery life always falls

behind demand. In data centers, the cost of electricity is

now the top budgetary consideration [3]. The EPA estimates

that U.S. data center electricity consumption cost over $4.5

billion in 2006 and projected growth to $7.4 billion in 2011

[4]. Consequently, Google purchases computers with the best

performance per energy (PPE) dollar, rather than the best

absolute performance [5], and the Japanese Green IT Council

promotes PPE as a world standard metric for data center

efficiency [6]. The higher a machine’s PPE is, the more

effectively it uses the available energy budget.
Researchers are proposing to use architecture customization

and heterogeneity to improve PPE [7], [1], [8]. For exam-

ple, some propose a heterogeneous processor that combines

high performance cores with simple cores (low power, low

performance) and then assign critical and non-critical threads

in a multithreaded application accordingly to improve PPE.

Another example of the heterogeneous custom design philos-

ophy is a GPU. The GFLOPs per Watt of an AMD GPU

9270 is about 6 times higher than a general purpose Core

i7-920 [9]. However, finding an appropriate workload is a

necessary first step for hardware customization. This paper

explores whether Virtual Machine (VM) services are a suitable

target for customization.

VM services are an attractive choice because they are

ubiquitous, unlike application specific-functionality, e.g., mpeg

encoding. Programmers are increasingly choosing managed

languages. For example, business applications increasingly use

Java and C#, and the vast majority of client and server side

web applications use JavaScript and PHP. For portability, these

languages require a Virtual Machine execution environment

that executes code via a Just-in-Time (JIT) compiler and/or

an interpreter, and they require garbage collection (GC) to

automatically reclaim memory. VM services typically include

scheduling and profilers as well, but we focus here on JIT, the

interpreter, and GC. Since VM services run together with every

application, if we can customize modern hardware for these

services such that they provide high PPE, we will improve all

managed applications.

We explore our hypothesis using controlled configurations

of stock hardware executing VM services from two Java

Virtual Machines (Jikes RVM and Oracle JDK) and DaCapo

Java Benchmarks [10]. We choose Java because it has mature

VM technology and sophisticated benchmarks. We explore

power, performance, and energy responses on three Intel

microarchitectures: Sandy Bridge Core i7-2600 (32nm) and

Core i3-2120 (32nm), representing high performance designs,

and an Atom D510 (45nm), representing a low power design.

We use the Hall effect sensor methodology of Esmaeilzadeh

et al. [11] and the Sandy Bridge’s on-chip RAPL power

meters [12]. As far as we are aware, no other stock processor

exposes power meters. We configure the BIOS to evaluate

the effect of frequency, CMP (Chip Multiprocessor) core

count, SMT (Simultaneous Multithreading), memory band-

width, cache size, and gross architecture. We compare the

power and performance characteristics of VM services to the

applications they support.

The results show that VM services (interpreter, JIT, and

GC) consume on average around 20% of total energy (ranging

from 10% to 55%), making them a promising target for

specialization. Furthermore, the interpreter and GC workloads

differ substantially from the applications themselves. Modern

high-performance architecture features executing at the highest

frequency with the most hardware parallelism, bandwidth,

and cache all increase the PPE of the JIT and the Java



i7 (32) i3 (32) AtomD (45)

Processor Core i7-2600 Core i3-2600 AtomD510

Architecture Sandy Bridge Sandy Bridge Bonnell

Technology 32nm 32nm 45nm

CMP & SMT 4C2T 2C2T 2C2T

LLC 8MB 3MB 1MB

Frequency 3.4GHz 3.3GHz 1.66GHz

Transistor No 995M 504M 176M

TDP 95W 65W 13W

DRAM Model DDR3-1333 DDR3-1333 DDR2-800

TABLE I
EXPERIMENTAL PROCESSORS

Fig. 1. Power measurement with a Hall effect sensor on Atom

applications themselves. However, many of these hardware

features are PPE inefficient for the GC and interpreter —except

for hardware parallelism, and for GC, memory bandwidth.

Our results indicate that executing VM services on high

performance CPUs is inefficient and that a heterogeneous

processor with a high performance core and customized simple

cores has the potential to improve the PPE of VM services

substantially, and thus the PPE of all managed applications.

The two main contributions of this paper are: (1) The first

evaluation of power, performance, and energy of VM services

as a function of hardware features. (2) The finding that VM

services are promising candidates for hardware heterogeneity

and customization.

II. EXPERIMENTAL METHODOLOGY

HARDWARE. Table I lists characteristics of our three exper-

imental machines. Hardware parallelism is indicated in the

CMP & SMT row as nCmT: the machine has n cores (CMP)

and m simultaneous hardware threads (SMT) on each core.

The Atom and Sandy Bridge families are at the two ends

of Intel’s product line. Atom has an in-order pipeline, small

caches, a low clock frequency, and is low power. Sandy Bridge

is Intel’s newest generation high performance architecture. It

has an out-of-order pipeline, sophisticated branch prediction,

prefetching, Turbo Boost power management, other optimiza-

tions, and large caches. We use two Sandy Bridge machines

to explore hardware variability, such as cache size, within a

family.

POWER MEASUREMENT. This paper uses BIOS configuration,

the Sandy Bridge’s on-chip RAPL (Runtime Average Power

Limit) energy meters [12], and the Hall effect sensor method-

ology developed by Esmaeilzadeh et al. [11].

On the Sandy Bridge, we use Intel’s on-chip RAPL energy

measurement [12]. RAPL is currently only available on In-

tel Sandy Bridge 06 2AH processors. RAPL includes three

principal components: power measurement logic, a power

limiting algorithm, and memory power limiting control. The

power measurement logic uses activity counters and predefined

weights to record accumulated energy in MSRs (Machine

State Registers). The values in the registers are updated every

1msec, and overflow about every 60 seconds [13]. Reading

the MSR, we obtain package, core and uncore energy. We

calculate power as energy / runtime. A key limitation of RAPL

is that it can not measure short events, i.e., less than 1msec.

Unfortunately, the GC and JIT VM services often occur in

phases of less than 1msec.

Figure 1 shows the Pololu’s ACS714 Hall effect linear

current sensor positioned on the mother board between the

power supply and chip. We read the output using an Arduino

board with an AVR microcontroller and a sample rate of

5KHz. We connect a PCI card to the digital input of the

Arduino board to accurately mark the start and end of VM

services. The latency is less then 200µsec. One limitation of

this method is that it includes the voltage regulator’s power

consumption. We compared the Hall effect sensor to RAPL

measurements; power is higher for the Hall effect sensor: 4.8%

average, ranging form 3% to 7%. We thus correct for the

voltage regulator by subtracting 5% from Hall effect sensor

measurements.

We use PPE and energy to calculate efficiency. The Hall

effect sensor measures power, so we calculate energy as the

product of power and running time. RAPL presents measures

of energy directly. PPE is performance / energy, and we

calculate performance as 1 / run time for a given workload.

We compute relative PPE values based on the experiment.

For example, when we compute PPE of hardware feature

A compared to feature B running the same workloads, we

calculate:

PPEA

PPEB
=

workloadA/run timeA

energyA

workloadB/run timeB

energyB

=

run timeB · energyB

run timeA · energyA

BENCHMARKS AND VM SERVICES. We use 10 bench-

marks: bloat, eclipse, and fop (Dacapo-2006); avrora, luin-

dex, lusearch, pmd, sunflow, and xalan (Dacapo-9.12); and

pjbb2005 [10]. Fop, luindex and bloat are single threaded. The

others are multithreaded. These benchmarks are non-trivial

real-world open source Java programs [10]. When using Jikes

RVM we use replay compilation. We follow Blackburn et al.’s

best practices for Java performance analysis [10].

In particular, replay compilation removes the nondeter-

minism of the adaptive optimization system. It gathers a

compilation profile on a previous execution that dictates what

the adaptive compiler chose to do. We execute the benchmark

again, apply the profile all at once on the second iteration, turn

off the JIT, and then execute and measure the application to

produce repeatable results with small variation. Because the

unit of work for the JIT when executing normally is too fine

grained for us to measure, we perform and measure all JIT

work at once from a replay profile. To decrease the effect
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avrora	   eclipse	   lusearch	   pmd	   sunflow	   xalan	   pjbb2005	   bloat	   fop	   luindex	   Avg	  

Energy	  and	  Run,me	  Frac,on	  

ApplicaHon	   JIT	   GC	  

Fig. 2. Fraction of energy and time in the application, JIT, and GC

of GC when measuring the JIT, we use Jikes RVM’s default

generational Immix GC, since it performs the best, and set

the heap size to be 4 times minimum generational Immix GC

size.

We use three stop-the-world full heap GCs (Immix, Mark-

Sweep and SemiSpace) from MMTk in Jikes RVM [14], [15].

These algorithms are highly tuned [16]. We use relatively mod-

est heap sizes: 1.5 times minimum heap size of SemiSpace. We

choose full-heap collectors because concurrent GC is not eas-

ily separable and nursery collections are too short to measure

with current methodologies. Because the GC algorithms differ

in where they put objects and how efficiently they use memory,

the applications’ memory behavior is a function of the GC.

We therefore compute the average application (mutator only)

time over the three GC algorithms. Since all modern GCs

derive from these algorithms, we believe that the results are

representative.

We measure interpreter costs in Oracle HotSpot JDK 1.6.0

because Jikes RVM does not have a bytecode interpreter.

Jikes RVM immediately compiles to machine code and then

adaptively compiles to higher optimization levels. HotSpot

interprets bytecodes and then adaptively compiles to machine

code. The HotSpot experiment uses the default GC (par-

allel copying nursery and serial Mark-Sweep-Compact old

generation) and heap size configured with -server flag.

The interpreter and GC are not separated, we measure them

together.
III. EXPERIMENTAL RESULTS

This section first presents the fraction of total time and

energy spent performing VM services. It then compares the

power, performance, and energy response of the application,

GC, JIT, and interpreter as a function of five hardware features:

frequency scaling, memory bandwidth, cache size, hardware

parallelism, and gross architecture.

VM SERVICES RESOURCE CONSUMPTION. This experiment

computes the fraction of energy and time for the Jikes RVM

VM services on the i7, using generational Immix GC with 1.5

× minimum heap size. Prior work and performance regression

tests shows that this configuration optimizes total time [15],

[16]. Performance is the actual measured time of GC and JIT

using replay with a compilation plan from the first iteration

(start up versus steady state). We use this methodology because

the RAPL is not fine grain enough to measure the JIT in
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Fig. 3. Frequency effect on GC and application

vivo. Since a nursery GC is also too short for RAPL, we

compute GC energy as the difference of total energy and

the average application energy, established by measuring it

with the three full-heap collectors. Figure 2 shows the result.

The JIT consumes between 4 and 30% of all energy; GC

consumes between 1 and 40%; and together they consume

28% on average, a substantial fraction of total energy.

FREQUENCY SCALING. On the i7, we only change frequency,

scaling it from 1.6GHz to 3.4GHz and normalize to 1.6GHz.

Figure 3(a) shows the average effect of frequency on energy,

performance, and power for the GC and application. Increas-

ing frequency increases the power at the same rate for GC

and applications. However, application performance increases
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Fig. 4. Frequency effect on JIT and interpreter

approximatively linearly by 102%, whereas GC performance

increases by 70%, causing GC energy to increase by 49%,

whereas application energy increases by 26%.

Figure 3(b) compares the three collectors’ and applications’

PPE as a function of frequency. Application PPE increases by

60%, whereas GC PPE increases by only 15%. The worst case

is MarkSweep — PPE at 3.4GHz decreases. SemiSpace gains

most benefit from a high clock frequency, but it still benefits

much less than the applications. Relative GC performance

differs by over 22% on average. SemiSpace is worst, then

MarkSweep, and Immix is best [15]. Increasing frequency is

inefficient because GC has poor locality and accesses mem-

ory at a higher rate than the average application. Hardware

performance counters reveal that SemiSpace’s last level (LL)

cache misses per instruction are 3+ times greater than the

applications; Immix GC is 5+ times; and MarkSweep is 10+

times. Figure 3(c) shows the effect of this latency: the relative

number of cycles increases with frequency between 17% to

45% for GC, but only by 5% for applications.

The JIT compiler behavior closely mimics the applications

themselves. JIT is not memory-intensive. Although JIT com-

pilation is parallelizable, Jikes RVM JIT is single threaded.

We thus configure the i7 to be 1C1T for this experiment.

Figure 4(a) shows that the JIT and applications essentially

have the same power, performance, and energy response to

frequency increases.

Figure 4(b) shows the interpreter has even higher perfor-

mance increase and lower energy consumption than normal
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Fig. 6. LL cache size effect on GC and application

applications because it has good cache locality. The memory

and LL cache access rates of the interpreter are 18% and 29%

respectively of the applications. A high clock frequency is

energy-efficient for the JIT, interpreter and applications, but

not for GC on the i7.

MEMORY BANDWIDTH. Figure 5 shows that increasing mem-

ory bandwidth provides substantial performance and conse-

quently energy improvements for memory-bound GC. The

PPE increase for GC ranges from 66% (SemiSpace) to 156%

(MarkSweep) with an average of 200%. For application and

JIT, increasing memory bandwidth increases performance by

only 16% and decreases energy by about 10%, thus PPE in-

creases by 30%. Since the interpreter has good cache locality,

it is insensitive to memory bandwidth changes. Increasing

memory bandwidth disproportionately benefits GC compared

to applications and other services.

LAST-LEVEL CACHE SIZE. One way to use the abundant

transistors on chip is to increase cache size. This experiment

roughly evaluates the cache size effect on GC and applications

using the i7 and i3. We configure them with the same hardware

parallelism (2C2T) and clock frequency (3.4G). Because they

have very similar architectures, the biggest difference is that

the i7’s LL cache is 8MB and i3’s is 3MB. We choose four

benchmarks with large minimum heap sizes of more than

100MB (bloat, eclipse, pmd and pjbb2005) to ensure that

the live object set is significantly larger than LL cache size.

In fact the increase in LL cache size from 3MB to 8MB

is approximately 3% of the average maximum live objects

total size. Figure 6 shows the LL cache size has similar

effects on GC and applications. The three GC algorithms have

about the same response as well (not shown). When the LL
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Fig. 7. Hardware parallelism effect on GC, interpreter and application

cache increases from 3MB to 8MB, the average performance

increase for GC and application is about 6%, and energy

increases by about 5%, and thus there is no significant change

in PPE. Because the interpreter has very good locality, it

benefits the least from an increase in LL cache size and results

a drop in PPE. The interpreter contrasts with the JIT which has

a significant performance gain from an increase in cache size,

mainly due to the size of short lived data structures generated

during code analysis, yielding an increase in PPE of 10%.

GC, interpreter and application show only a modest increase

in performance with a similar increase in energy. Thus, the

increase in cache size, for all except the JIT, is not an effective

use of transistors for these workloads.

HARDWARE PARALLELISM. Esmaeilzadeh et al. show that

hardware parallelism from SMT or CMP benefits simple in-

order cores, and can compensate for a single thread’s per-

formance loss. We study the effects of hardware parallelism

on GC, and interpretation. All the GC algorithms are parallel

and utilize all available hardware parallelism. The JIT is not

included as it is single threaded in Jikes RVM. We use the

multithreaded benchmarks executing on the i7 with 2C1T

and 1C1T at 3.4GHz for CMP, 1C2T and 1C1T for SMT.

VMs adjust software parallelism to the available hardware

parallelism. For instance, the VM allocates thread-specific

resources, such as thread-local allocation blocks, that increase

with the number of threads. This experiment uses energy per

instruction retired and instruction retired per second instead of

total energy and performance to eliminate possible workload

increases at more threads. Figure 7(a) shows increasing the

number of cores improves both GC and multithreaded appli-

cations’ PPE similarly. For GC, doubling the number of cores

decreases energy by 10%, increases performance by 56%, and
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Fig. 8. Gross architecture effect on VM services and application

thus improves PPE by 72%. SMT does not effect PPE as much

as CMP, but effectively decreases energy. SMT requires very

little additional power as compared to CMP, which is important

when the power budget is limited.

The hardware parallelism, incredibly, improves PPE for the

interpreter. Figure 7(b) shows that the use of SMT decreases

the energy by 20% and CMP decreases energy by 25%. The

PPE increases for SMT and CMP are 77% and 146%; both

are much higher than normal application or GC. In summary,

SMT is efficient and CMPs are very efficient for GC, and both

improve PPE for interpreter. These results show that it will be

possible to improve GC and interpreter PPE by adding more

simple cores.

GROSS MICROARCHITECTURE. Figure 8 compares gross mi-

croarchitecture using the AtomD and i3, controlling for

frequency (1.66G for AtomD and 1.6G for i3), hardware

parallelism (2C2T), and memory bandwidth (800 MHz, one

channel). The result suggests that the high performance archi-

tectural features in the i3 are not effective for VM services.

This methodology is not perfect and shows the drawback of

using real hardware versus a simulator, in which the experi-

ment could hold more features constant. The most important

difference in the two machines is their process technology.

Esmaeilzadeh et al. shows that shrinking technology from

45nm to 32nm for the same microarchitecture and controlling

for frequency decreases power by 45% or more, while the

providing the same performance. To estimate the process

effect, we project the AtomD power consumption data to

32nm by multiplying with a projection factor of 55%. Another

important difference is memory hierarchy. Atom has a two

level cache hierarchy and the L2 is 1MB. The i3 has a

three level cache hierarchy and a 3MB L3. However, Section

III shows that the effect of LL cache is a tradeoff between

performance and energy. We thus assume the cache difference

will not significantly affect the PPE value.

Figure 8 shows the average of the three GC algorithms.

Compared to AtomD, the i3 benefits applications more than

VM services. On the i3, application performance increases by

about 200%, energy just increases by 55%, and thus applica-

tion PPE is doubled (100% increase). For the interpreter, the

energy increase is a remarkable 93%, and thus the interpreter’s

PPE increases by only 24%. The worst is GC — the GC’s PPE



decreases as the energy increases 121%.

In summary, a simple architecture is more efficient for VM

services, and given the fraction of time spent in VM services,

hardware customization for VM services is a promising direc-

tion.
IV. RELATED WORK

GC energy consumption. Velaso et al. study the energy

consumption of state-of-the-art GCs for designing embed-

ded systems [17]. They use Jikes RVM, Dynamic Sim-

pleScalar (DSS) [18], and combine DSS with a CACTI

energy/delay/area model to calculate energy. Their energy

simulation results follow the performance measurements from

prior work [19]. However, their simulation results show GC

consumes a disproportionate amount of energy, but our results

refute this finding. Chen et al. study mark-sweep GC using an

energy simulator and the Shade SPARC simulator [20]. They

improve leakage energy by using a GC-controlled optimization

to shut off memory banks that do not hold live data. Diwan et

al. measure four different memory management strategies on a

flexible research platform — Itsy Pocket Computer [21]. Their

results demonstrate that the choice of GC algorithm changes

the program’s energy consumption. Compared to prior work,

this paper focuses more broadly on hardware customization

for VM services, rather than on designing an energy-efficient

GC algorithm or improving energy with GC.

VM hardware customization. Meyer et al. explore hard-

ware for GC [22][23][24]. They develop a novel processor

architecture with an objected-based RISC core and a GC core

using VHDL and generate an FPGA. Their goals are to elimi-

nate GC pauses for real-time embedded systems and improve

safety and reliability given stringent safety requirements, such

as satellites and aircrafts. In comparison, we focus on general

purpose hardware and software. Azul systems built a custom

chip to run Java business applications and severs [25]. They

redesign about 50% of CPU and build their own OS and

VM. The chips have special GC instructions, such as read

and write barriers, but do not have specialized GC cores. Our

work focuses more broadly on VM services and explores if

modest hardware customization can improve overall PPE.

V. CONCLUSION

Our work configures and measures real hardware to deter-

mine the effect of architectural features on PPE of VM services

on applications. The paper establishes that customized cores

for VM services has the potential to improve PPE and help

address the dark silicon problem.
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