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Chronic, systemic T-cell immune activation and inflammation (IA/INFL) have been

reported to be associated with disease progression in persons with HIV (PWH) since

the inception of the AIDS pandemic. IA/INFL persist in PWH on antiretroviral therapy

(ART), despite complete viral suppression and increases their susceptibility to serious

non-AIDS events (SNAEs). Increased IA/INFL also occur during pathogenic SIV infections

of macaques, while natural hosts of SIVs that control chronic IA/INFL do not progress to

AIDS, despite having persistent high viral replication and severe acute CD4+ T-cell loss.

Moreover, natural hosts of SIVs do not present with SNAEs. Multiple mechanisms drive

HIV-associated IA/INFL, including the virus itself, persistent gut dysfunction, coinfections

(CMV, HCV, HBV), proinflammatory lipids, ART toxicity, comorbidities, and behavioral

factors (diet, smoking, and alcohol). Other mechanisms could also significantly contribute

to IA/INFL during HIV/SIV infection, notably, a hypercoagulable state, characterized

by elevated coagulation biomarkers, including D-dimer and tissue factor, which can

accurately identify patients at risk for thromboembolic events and death. Coagulation

biomarkers strongly correlate with INFL and predict the risk of SNAE-induced end-organ

damage. Meanwhile, the complement system is also involved in the pathogenesis

of HIV comorbidities. Despite prolonged viral suppression, PWH on ART have high

plasma levels of C3a. HIV/SIV infections also trigger neutrophil extracellular traps (NETs)

formation that contribute to the elimination of viral particles and infected CD4+ T-cells.

However, as SIV infection progresses, generation of NETs can become excessive, fueling

IA/INFL, destruction of multiple immune cells subsets, and microthrombotic events,

contributing to further tissue damages and SNAEs. Tackling residual IA/INFL has the

potential to improve the clinical course of HIV infection. Therefore, therapeutics targeting
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new pathways that can fuel IA/INFL such as hypercoagulation, complement activation

and excessive formation of NETs might be beneficial for PWH and should be considered

and evaluated.
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INTRODUCTION

Antiretroviral therapy (ART) has increased the life expectancy
and reduced morbidity and mortality for persons with HIV
(PWH), thus becoming one of the most successful interventions
of the twentieth century, that turned a virtually 100% deadly
condition into a chronic disease (1). Yet, over the years, it
became apparent that, despite successful suppression of HIV
replication, PWH still experience higher rates of comorbidities
and have a decreased survival compared to age-matched subjects
(2). Even in cases presenting with complete, prolonged viral
suppression, such as elite controllers or compliant PWH on
ART with undetectable viremia for decades, the levels of T-
cell activation and systemic inflammation remain higher than in
HIV-uninfected individuals (3–5). Residual immune activation
and inflammation lead to an incomplete immune restoration
and a steady decline in the proficiency and functions of the
immune system, similar to immunosenescence, i.e., progressive
deterioration of the immune system by natural aging. As a
result, in the recent years, a new paradigm of HIV pathogenesis
emerged, in which persistent T-cell immune activation and
inflammation are the key drivers of HIV pathogenesis and
response to ART (6). The observations that CD8+ T cells
from individuals with chronic HIV infection express high levels
of CD38 and HLA-DR, indicating persistent, chronic, T-cell
activation, and that these T cell activation levels are inversely
correlated with CD4+ T cell counts, and are highly predictive
for disease progression to AIDS were reported in the early
days of the AIDS pandemic (7, 8). A fundamental role of T-
cell immune activation for disease progression has also been
suggested by studies in persons living with HIV-2 (PWH-2)
and elite controllers (individuals naturally controlling their HIV-
1 infection, i.e., with undetectable plasma viral loads in the
absence of ART). In HIV-2 infection, the decline of circulating
CD4+ T cell counts is slower than in HIV-1 infection, and
patients develop AIDS after a median duration of incubation
of 14 years of untreated infection, compared to only 6 years
for HIV-1 (9). The levels of T-cell immune activation are lower
in PWH-2 than in PWH-1 (10, 11). While the magnitude of
T-cell immune activation is generally correlated with plasma
viral load (12, 13), some PWH-2 with undetectable viremia
present with persistent chronic immune activation (14). This
indicates that viral replication is not the only source of chronic
immune activation. Similar findings have been reported in elite
controllers. Despite controlling viral replication, the levels of
immune activation in these patients are higher than in uninfected
subjects, albeit lower than in untreated HIV-1 progressors (15).
The decline of CD4+ T cells was correlated to the levels of
CD4+ and CD8+ T cell activation (16) and individuals without
increased immune activation do not experience a CD4+ T cell

decline over time (17). As the absence of detectable viremia
does not entirely avert the CD4+ T cell decline, nor the
disease progression to AIDS, this strengthens the belief that
dysfunctional, persistent immune activation is a key player in
disease progression in humans.

Non-human primate (NHP) models also contributed to
this paradigm of T-cell immune activation and inflammation
driving the outcome of HIV infection. SIV impact on the
NHPs depends on species and nature of the infection (18).
As Asian macaques are not natural hosts of SIV, lentiviral
infections are pathogenic in those species. Similar to humans
with untreated HIV infection, SIV-infected macaques have a
severely damaged gastrointestinal tract, generalized immune
dysfunction, persistent high levels of systemic immune activation
and inflammation, and eventually progress to AIDS (19). In
the models of HIV/SIV disease progression, dysregulation of
the cell cycle (20), infection/dysfunction and loss of regulatory
T cells (Tregs)/Th17 cells (21–23), dendritic cells (24–26),
and/or B cells (27, 28) are all indicative of failure to control
T-cell activation/proliferation and systemic inflammation, and
contribute to poor clinical outcomes. Conversely, SIV infections
of African NHP species, including the African green monkeys
(AGMs), sooty mangabeys (SM) and mandrills, that are natural
hosts of SIV, generally do not progress to AIDS, despite
high levels of viral replication and massive acute CD4+

T cell depletion (29–32). The lack of disease progression
in natural hosts likely rely on their ability to control gut
damage (33, 34), and chronic systemic T-cell activation and
systemic inflammation (30, 35, 36). This is supported by
the fact that, over a 20-year follow-up of SIV infections
in natural hosts, only a handful of cases of AIDS have
been observed, and, in every case, disease progression was
associated with increased chronic T cell immune activation and
inflammation (37–40). Moreover, when inflammation and T-
cell immune activation were experimentally induced in AGMs,
they presented changes in biological parameters that are
usually associated with disease progression (increased plasma
viral loads, loss of mucosal CD4+ T cells and microbial
translocation) (41–43).

Altogether, comparative pathogenesis studies in NHP
species with different pathogenic outcomes of SIV infection
decisively contributed to the current paradigm in which
chronic inflammation and immune activation are key drivers
of immunopathogenesis, progression to AIDS, and the HIV-
associated comorbidities called residual immune dysregulation
syndrome (RIDS) (44).

Previous studies have implicated multiple contributing factors
as sources of the immune dysregulation characteristic to acute
HIV infection (Figure 1). HIV virions can directly activate
lymphocytes and macrophages, triggering the secretion of
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FIGURE 1 | Schematic representation of the factors that trigger immune activation and inflammation in HIV/SIV infection.

inflammatory cytokines and chemokines, including type 1 IFNs,
IP-10, TNF, IL-6, and IL-8 (45, 46). The production and release
of these cytokines can be beneficial, as they contribute to
suppression of viral replication (47–49). For example, IFN-1
expression causes a signaling cascade that leads to the production
of restriction factors and thus establishes an antiviral milieu
which inhibits viral replication (50). While the production
of IFN-1 and other cytokines mediates the stimulation of
innate and adaptive immune cell subsets that will fight the
virus, the profound impact of these proinflammatory factors
on the immune response can also be detrimental (51, 52), as
demonstrated by experimental interventions in NHPs (53). IFN-
1 also induces CD4+ T-cell loss by modulating the expression
of TNF-related apoptosis-inducing ligand (TRAIL), which then
binds to Death Receptor 5 (DR5) leading to apoptosis (53–
56). T cell apoptosis during acute infection is also triggered
by TNF binding to its cellular receptors (57, 58). Apoptosis
of infected CD4+ T cells can initially curb viral propagation,
yet uninfected T cells are not spared from destruction, which
contributes to the massive T-cell loss observed during acute
HIV infection. Consistent with observations in humans, in both
non-pathogenic and pathogenic acute SIV infections, type 1

IFNs are highly upregulated through the activation of pDCs
(59–62). The upregulation of IFN-1 leads to an increased
expression of IFN-1-stimulated genes (ISG) that persists during
chronic infection in pathogenic HIV/SIV infections but returns
to baseline in natural hosts after a transient increase during acute
infection (63, 64). TNFα enhancement by HIV proteins further
fuels HIV replication in infected cells (65, 66). Meanwhile, the
non-pathogenic SIV infection of AGMs causes induction of
Forkhead Box P3 (FoxP3) (a transcription factor necessary for the
development of Tregs), TGF-β, and IL-10, all of which contribute
to the establishment of an anti-inflammatory environment (67).
The maintenance of this anti-inflammatory milieu is enabled by
the absence of persistent IFN expression (67). On the other hand,
the pathogenic infection of macaques, associate a delayed IL-10
expression and only a slight increase in TGF-β levels, similarly
to acute HIV infection (67). The late increase in IL-10 allows
for inflammatory cytokines to go unchecked and may lead to the
exhaustion of SIV/HIV-specific CD8+ T cells (68, 69).

As the virus begins to swiftly replicate, it disseminates to the
lymphoid tissues throughout the body. One key location of the
virus is the gut-associated lymphoid tissue (GALT). During acute
infection, CCR5+ CD4+ memory T cells are depleted in the
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GI tract. Inflammatory cells, including neutrophils, monocytes,
and dendritic cells, accumulate in the mucosa, while Th17
cells, the CD4+ T cells that regulate epithelial homeostasis,
are lost, creating an environment prone to alterations of the
mucosal integrity (70–72). The damaged epithelial mucosa
allows microbial translocation from the gut lumen first into
lamina propria and then into the systemic circulation (73).
Natural hosts of SIVs do not exhibit microbial translocation
because they have the ability to maintain the mucosal integrity
by rapidly repairing the damages (33, 74) inflicted to their
mucosal barrier by the SIV infection (34). In SIVsab-infected
AGMs, administration of lipopolysaccharide (LPS) (41), tomodel
microbial translocation seen in PWH, resulted in increased
systemic immune activation and inflammation, leading to a rise
in viremia. The same was true when gut damage was directly
induced through administration of dextran sulfate sodium (DSS)
in chronically infected AGMs (43). These experiments directly
probed the role of the gut damage in inducing immune activation
and inflammation. The loss of mucosal integrity and subsequent
microbial translocation in humans and pathogenic NHP models
trigger inflammation and T-cell immune activation by enhancing
the activity of pattern recognition receptors which normally
recognize molecular patterns associated to foreign pathogens
(75). The activation of the innate immune system unleashes
a multitude of immune cells that trigger the production of
inflammatory cytokines, including IFN-α, IFN-β, IL-6, and TNF-
α (76, 77). Another consequence of microbial translocation
is an increase in circulating levels of sCD14, a marker of
monocyte activation and LPS bioactivity, which has been shown
to predict mortality, and of the scavenger receptor sCD163,
the levels of which are associated with unstable non-calcified
coronary plaques (18, 70, 78–80). Increased plasma levels of the
translocated fungal polysaccharide (1→3)-β-D-Glucan (βDG)
are also associated with immune activation (81). Microbial
translocation is not the only way in which the gut microbiome
contributes to the systemic immune activation, the composition
of the gut microbiome can alter the degree of activation of
monocytes and T cells (75). Furthermore, the composition of the
translocated microbiome can impact the immune reconstitution
in ART-treated PWH (82). Interventions aiming to introduce gut
dysbiosis, e.g., through prolonged antibiotic administration, were
not sufficient to lead to disease progression (83).

Meanwhile, microbiome alterations through antibiotics,
such as cotrimoxazole and a combination of rifaximin and
sulfasalazine, resulted in a transient reduction in systemic
immune activation and inflammation (84, 85).

An additional contributor to the SNAEs may be the altered
lipid profiles in PWH, which can also contribute to immune
activation and inflammation (86). The SMART study established
that varying sizes of HDL particles, but not other lipoproteins,
were associated with an increased risk of cardiovascular disease
(CVD) events. Meanwhile, the levels of the inflammatory and
coagulation markers CRP, D-dimer, IL-6 and sCD14 could
predict mortality from CVD in PWH (78, 87). Furthermore,
the oxidation levels of HDL and LDL are modified in PWH,
and HDLox levels positively correlate with the increases in IL-
6 and sCD163, contributing to persistent immune activation for

patients on ART (88) who are at an increased risk of serious non-
AIDS events (SNAEs), including CVD (5). Administration of a
diet rich in saturated fats and cholesterol to SIV-infected NHPs
triggered immune activation and inflammation, thus confirming
the importance of lipids as inductors of inflammation. In the
NHPs fed with high fat diet, the increases in immune activation
associated elevated levels of other cardiovascular biomarkers and
a high incidence of cardiovascular lesions. Administration of
the unhealthy diet also accelerated disease progression in the
SIV-infected macaques and led to disease progression in one
SIV-infected African green monkey (89).

Chronic coinfection with other viruses, notably human
cytomegalovirus (hCMV), but also hepatitis B (HBV) and
hepatitis C (HCV) viruses, can exacerbate HIV pathogenesis
(90, 91). Exhaustion of virus-specific CD8+ T cell populations
that regulate viral replication results in the reactivation of latent
viruses and allows their active replication, boosting in turn
systemic immune activation (92, 93). For example, coinfection
with hCMV is associated with increased inflammatory and
coagulation markers, including sCD14, IFN-γ-induced protein
(IP-10), and D-dimer (94, 95). In PWH, chronic hCMV
coinfection also exacerbates immunosenescence and the severity
of CD4+ T cell depletion due to progressive thymic dysfunction
(96). Individuals on ART still experience asymptomatic hCMV
shedding, which triggers T-cell activation, proliferation, and
exhaustion (97). Furthermore, an increased number of CD4+ T
cells from theHIV/hCMV-coinfected subjects express the cellular
senescence marker CD57, compared to individuals infected
with either HIV or hCMV only (98). The increased pool of
dysfunctional CD4+ and CD8+ T cells is associated with a loss
of the effective control of hCMV and triggers a reversal of the
CD4+/CD8+ ratio leading to an increased risk of morbidity
and mortality (99, 100). This pathologic feature also occurs
during the HIV/HCV coinfection, through the loss of CD4+

T cells and alterations of the Kupffer cells, the macrophage
population resident in the liver, leading to elevated levels of
circulating LPS and sCD14 (101–103). The loss of HCV-specific
CD4+ T cells also results in an inadequate HCV control and
reactivation (104, 105), which creates a positive feedback loop of
viral replication fueling immune activation (102). Patients with
HIV/HCV coinfectionwho received direct-acting antiviral agents
for HCV eradication had significant decreases in the markers
of immune activation and of increased HIV mortality: HIV
DNA, sCD14, LPS, and D-dimers, indicating that coinfection
suppression or eradication indeed help curb immune activation
and inflammation (106).

As stated previously, ART is not able to completely
reverse immune activation and inflammation, and low-
level immune stimulation persists despite undetectable
viremia, highlighting the importance of identifying and
therapeutically targeting different mechanisms causing immune
activation. In the following sections, we will focus on the
role of additional factors that can fuel residual immune
activation and inflammation under ART (Figure 1). We will
thus discuss the relative contribution of hypercoagulation,
complement pathway activation, and NET formation in
driving systemic immune activation and inflammation in PWH
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and how can these pathways be therapeutically targeted to
reduce SNAEs.

HYPERCOAGULATION

The coagulation cascade is composed of a series of rapid
and sequential enzymatic reactions leading to the generation
of thrombin and eventually a fibrin clot (107). Among the
positive and negative regulators of the coagulation cascade
are immune activation and inflammation, the levels of
which can trigger coagulation (108). The interplay between
immune activation, inflammation and coagulation is critical for
infection control, as the activation of coagulation can restrict
pathogens movement, thus helping pathogen elimination (109).
While this is beneficial for controlling infection, persistent
inflammation can also trigger thrombosis and may result in
blood vessel occlusion, causing pathologies, including peripheral
thrombosis, pulmonary embolism, myocardial infarction,
or stroke.

Contributing to the increased risk of thrombosis and CVD are
deficiencies in proteins C and S, which hinder the inactivation
of factors Va and VIIIa, and promote a procoagulant state
(110, 111). Though immune activation and inflammation can
initiate a procoagulant milieu, this interaction is now seen as a
feedback loop where each can trigger the other (87, 112, 113)
(Figure 2). This may be the reason for which the prevalence
of CVDs and venous thromboembolism (VTE) is increased
in untreated PWH and it is also not entirely abated by ART
even when HIV replication is completely suppressed (114–
116).

The altered coagulation associated with HIV infection
was confirmed in NHPs (42), in which comparative studies
of progressive and non-progressive SIV infections clearly
demonstrated that the hypercoagulable state is specifically
associated with the pathogenic, progressive SIV infections (42),
providing strong validation of the SMART study data (87) and
demonstrating the usefulness of animal models for the study of
HIV-related comorbidities (117).

D-Dimer
One of the best biomarkers to assess the hypercoagulable
state and the risk of death in the PWH and SIV-infected
monkeys is D-dimer (42, 43, 87, 118–120), a byproduct of
fibrin cleavage by plasmin. D-dimer plasma levels correlate with
the total thrombolytic activity. The levels of D-dimer in the
PWH included in the SMART cohort were 94% higher than
in uninfected donors recruited in the MESA cohort (121). Two
independent retrospective case control studies further confirmed
that the increased levels of D-dimer in PWH were associated
with CVD and VTE (122, 123). The elevation of D-dimer is
not entirely correlated with plasma viral load, as virologically
suppressed PWH still present increased levels of D-dimer (124).
Further studies have confirmed that D-dimer levels were reduced
but not normalized in ART-treated patients with undetectable
viremia, and that higher levels of D-dimer in those patients were
associated with an increased risk of SNAEs (87, 125, 126). Indeed,
the frequency of myocardial infarction in PWH is significantly

higher than in their non-infected peers (127). High D-dimer
levels in both PWH and their uninfected counterparts have
been shown to lead to immune activation and inflammation
through the increase in cytokines, such as IL-6 (128, 129). Finally,
high D-dimer levels are associated with immune reconstitution
inflammatory syndrome (IRIS) and death, even after adjusting
for other factors (130). The importance of D-dimer has also been
shown in pathogenic SIV infections (42, 89, 117, 120), in which
D-dimer increased early after infection (Figure 3) and correlated
with immune activation and inflammation. Furthermore, in SIV-
infected pigtailed macaques (PTM), the increases in D-dimer
levels are associated with the presence of microthrombi in
tissues (Figure 3). These microthrombi may promote hypoxia
and tissue fibrosis (Figure 3) and thus significantly contribute to
the lack of immune reconstitution and to the development of
numerous comorbidities. This may provide a new mechanism
responsible for the development of concomitant comorbidities
and of end stage organ diseases in PWH. Conversely, non-
progressive SIV infections of the natural hosts, in which D-
dimer levels remain at the preinfection levels during chronic
infection, do not develop CVD or thrombotic lesions (42, 131,
132).

These data show the importance of D-dimer levels as
a biomarker of morbidity and mortality in PWH, and
underline the strong relationship between coagulation
and inflammation.

Tissue Factor
TF initiates the extrinsic clotting pathway of the coagulation
cascade (Figure 2), playing a pivotal role in thrombosis (133).
TF is expressed on the surface of monocytes in PWH (134)
and SIV-infected NHPs (135), and it is thought to be at least
partly induced by the inflammation triggered by microbial
translocation (134, 135) (Figure 2). Increased expression of
TF on the surface of monocytes likely contributes to the
atherosclerotic plaques that lead to CVD in PWH and to
increased clot formation and thrombosis. These TF-expressing
monocytes persist even when PWH are virologically suppressed
with ART, and they can trigger both coagulation via the
activation of factor X (135) and production of inflammatory
cytokines, including interleukin-1β, IL-6, and TNFα. TF has
also been found to be expressed on CD8+ and CD4+ T
cells during HIV infection and its levels correlated with
those of the T-cell immune activation marker CD38 (136).
Similar findings have been observed in NHP models: in SIV-
infected macaques, TF-expressing monocytes were crucial to the
development of coagulopathy and its associated proinflammatory
environment (135). Recently, we showed that in SIV-infected
PTMs, TF is also expressed by neutrophils that release NETs
and by the NETs themselves, predisposing these animals
to pathological clotting (137) (Figure 4). Altogether these
results place TF at the intersection between coagulation and
inflammation, suggesting that TF inhibition may represent a
valuable therapeutic strategy to reduce the risk of comorbidities
in PWH (138).
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FIGURE 2 | Schematic representation of the interactions between inflammation, immune activation and the coagulation pathways in HIV/SIV infection. LPS,

lipopolysaccharide; TF, tissue factor; vWF, von Willebrand factor.

FIGURE 3 | Coagulation disorders during SIV infection. (a) Changes in the levels of D-Dimer assessed at critical time points of SIVsab infection in pigtailed macaques.

SP indicates set point. P-values were calculated with the paired t-test. (b) Thrombotic microangiopathy (TMA) during the pathogenic SIVsab infection of PTMs.

Immunohistochemistry for fibrinogen (brown) in the kidney. (c) Fibrosis of the heart characterized by increased diffuse deposition of collagen (blue) replacing drop-out

or lysed myocytes. Trichrome staining. The original magnification of all pictures was 400x. Reproduced with authorization from Pandrea et al. (42).

Endothelial Dysfunction
Endothelium integrity is quintessential to hemostasis and
its disruption leads to an inflammatory response that can
promote VTEs, including platelet aggregation on the exposed
subendothelial structures and clotting activation (139). HIV
proteins can also cause endothelial dysfunction by reducing
antioxidants through limiting nitric oxide bioavailability and
increasing cell permeability (140). The association between
HIV and endothelial dysfunction was reported early in the

epidemic and has been confirmed in multiple studies which
reported increases in VCAM-1, ICAM-1, P-selectin, sTF, and
Von Willebrand factor in chronically HIV-infected individuals
(140–142) (Figure 2). Studies have reported a short-term
improvement of the endothelial dysfunction after initiation
of ART (143, 144), while others reported that prolonged
exposure to certain antiretrovirals has a detrimental effect on
the integrity of the endothelium, leading to CVD and VTEs
(145, 146).
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FIGURE 4 | Consequences of Excessive NETosis in SIV-infected nonhuman

primates. (A) Monocyte (red) trapped in a NET (green). (B) Trapping of

aggregated platelets (red) in a NET (green). (C) Increased expression of TF

(red) on polymononuclear neutrophils forming NETs (green), while others

polymononuclear neutrophils do not express TF. (D) Occlusion of small blood

vessels by NETs (red) in the kidney of a SIV-infected PTM. Nuclear staining

was performed with DAPI (blue) for all figures. Scale bar lengths: 20µm (A,D),

100µm (B,C). NET, neutrophil extracellular trap; PTM, pig-tailed macaque; TF:

Tissue factor. Reproduced with authorization from Sivanandham et al. (137).

Platelets
Platelets also play a significant role in HIV-induced

hypercoagulation (Figures 2, 4). Platelet aggregation can limit

pathogens access to the vascular system and they can also directly

interact with pathogens and alter the inflammatory processes

triggered by infection (147). Several studies have confirmed

the interactions between platelets and HIV and have shown
that these interactions lead to virus internalization and platelet
activation which, in turn, can propagate the virus and lead to a
thrombocytopenia (148, 149). Another plausible reason for the
paradoxical thrombocytopenia associated with the SIV-induced
hypercoagulable state is platelets being trapped and destroyed
in NETs that are excessively released by neutrophils during
SIV infection (137) (Figure 4). Platelet activation contributes
to the inflammatory environment seen in PWH, which is
characterized by increases in IL-1β, sCD40L, P-selectin, and
IL-18 (150). Despite undetectable viremia, ART-treated PWH
continue to present increased platelet activation and spreading
(i.e., the process of platelet flattening at sites of vascular injury
to increase their contact area) (151). Meanwhile, platelets from
PWH also experience apoptosis and mitochondrial dysfunction
(151), suggesting that monitoring platelet functions might be
clinically relevant in PWH to assess their overall risk for VTE
and CVD (152).

Targeting Hypercoagulation in PWH as an
Adjunct Intervention to Control Immune
Activation and Inflammation
Attempts have been made to reduce hypercoagulation in PWH.
(i) The use of warfarin in PWH is limited by many drug-
drug interactions that result in changes in warfarin metabolism,
notably by inhibiting cytochrome P450 3A4, as well as the
need to monitor INR levels through regular blood tests (153,
154). Therefore, its use has decreased sharply over the recent
years in favor of direct oral anticoagulants (DOACs). (ii)
Aspirin is one of the most widely used and well-studied
anticoagulants that reduces platelet activity and aggregation.
Aspirin also significantly reduced platelet activation and platelet
hyperactivity in PWH (155). In addition, aspirin showed
beneficial effects in reducing the levels of T-cell activation
(CD38 and HLA-DR), monocyte activation (sCD14), platelet
activation (P-selectin), and responsiveness of leukocytes to TLR
agonist stimulation after only 1 week of treatment (156). Yet,
no significant impact of aspirin on VTEs and inflammation
has been reported in PWH (157, 158). Aspirin was reported
to be less effective for the primary prevention of myocardial
infarction in PWH compared to the normal population (159).
It has also been shown that the risk of a recurrent acute
coronary event was 6.5 times higher in ART-treated PWH
than in matched, uninfected patients (160). These studies
suggest that the current strategies for primary and secondary
cardiovascular disease prevention in PWH should be tailored to
this patient population, to include more potent anticoagulants,
as well as other therapeutic targets, notably regulating lipids
levels. Important insights could be obtained through the large,
ongoing REPRIEVE clinical trial that evaluates the efficacy of
statins for the primary prevention of cardiovascular events in
PWH. This cohort confirmed the high incidence of coronary
atherosclerosis in PWH on ART, the presence of plaques
being associated with increased immune activation (161). (iii)
Angiotensin receptor blockers have also been evaluated in PWH,
to assess their potential benefits in reducing endothelial injury.
After a 3-month prospective study, telmisartan administration
led to an increase in endothelial progenitor cells, but had
no effect on immune activation (162–164). (iv) Ixolaris, a
TF inhibitor that blocks the extrinsic coagulation pathway
at its origin, is a promising candidate for the treatment of
hypercoagulation in PWH. In chronically SIV-infected pigtailed
macaques, Ixolaris decreased D-dimer expression and TF
activity, and reduced monocyte activation (135). Inflammation
was not impacted in this study, except for IL-17, which was
slightly reduced by Ixolaris administration. (v) Several studies
assessed the benefits of DOAC administration in PWH. A
longitudinal cohort study assessed DOAC safety among PWH
who were undergoing ART (165) and concluded that there
were similar effects compared to those taking warfarin, i.e., that
these patients should be monitored as drug-drug interactions
are likely, especially when DOACs are coadministered with
protease inhibitors. This can lead to an increased risk of
bleeding. Meanwhile, association with non-nucleoside reverse
transcriptase inhibitors (NNRTIs), such as nevirapine and
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FIGURE 5 | Interplay between complement, coagulation and formation of NETs. Schematic representation of the interactions between complement, coagulation and

formation of NETs during HIV/SIV infection. CR, complement receptor; C3aR, C3a receptor; C5aR1, C5a receptor 1 or CD88.

etravirine, can lead to reduced plasma DOAC levels and increase
the risk of VTE (166). When dabigatran, a direct thrombin
inhibitor, was administered to SIV-infected pigtailed macaques,
it did not normalize coagulation parameters and resulted in
a cardiovascular event in the study group. Edoxaban, a factor
Xa inhibitor, significantly decreased the D-Dimer and TAT
levels among PWH, but did not impact inflammation (167).
Vorapaxar, a PAR-1 inhibitor did not impact HIV-related
hypercoagulation, in PWH, as shown by the lack of effect
on D-Dimer levels (168). In SIV-infected pigtailed macaques,
Vorapaxar administration had only a modest impact on T-cell
immune activation and did not normalize coagulation, nor did
it impact disease progression.

In summary, the anticoagulant interventions performed so far
resulted in some improvements in the levels of T-cell activation
but did not normalize the inflammation biomarkers that are
routinely measured in clinical trials to predict an improved
clinical outcome.

Interventions aimed at blocking the coagulation cascade
upstream seem to be more efficient than interventions
targeting the extrinsic or common coagulation pathways. It
can be hypothesized that, in HIV/SIV infections, once several
coagulation factors have been activated and feedback loops
are established between different pathways of the coagulation
cascade, it is extremely difficult to counter the hypercoagulable
state and its related inflammation.

HIV/SIV-INDUCED COMPLEMENT
PATHWAY ACTIVATION

The complement system is a key effector of the innate immune
system, which is also involved in the adaptive immune responses.
It is composed of over 30 proteins, interacting in three pathways:
classical, alternative and lectin pathways, all converging toward
the production of C3 convertases that cleave C3 into C3a and C3b
(Figure 5). The terminal, lytic phase is common to all pathways
and is initiated by the C5 convertase that severs C5 into C5a and
C5b. The latter combines with C6, C7, C8, and C9 to form the
membrane attack complex (MAC) (Figure 5).

Complement activation fights microorganisms through
multiple effector functions: (i) MAC is inserted into the
membrane of the pathogen or infected cell that has triggered
complement activation, leading to the formation of pores in
the membrane and causing osmotic lysis; (ii) C3b binds to
microorganisms insuring their opsonization and phagocytosis;
(iii) C3a, C4a, and C5a induce modifications in vascular
permeability, facilitate and attract immune cell subsets that fight
against the microorganisms and induce histamine release from
mast cells (169).

Two types of regulators of complement activation (RCA)
are described, soluble factors and membrane-bound regulators.
The later play an important role in clearing immune complexes
from circulation (e.g., CR1) and protecting host cells from
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the deleterious consequences of complement activation on self-
cells (170). Those membrane-bound RCA include CD46, the
membrane cofactor protein (MCP), a cofactor for complement
factor I, which degrades C3b and C4b; CD55, the decay-
accelerating factor (DAF), which accelerates the degradation of
C3 and C5 convertases; and protectin (CD59), which limits C9
incorporation and thus MAC formation (170).

There are numerous triggers of the classic pathway, notably
antibody-antigen complexes, apoptotic cells, C-reactive protein,
beta-amyloid, and LPS (171, 172). The lectin pathway is activated
by carbohydrates structures, such as oligosaccharides on bacterial
membranes, as well as IgA or IgM (173, 174). The alternative
pathway is activated by molecules expressed on non-self surfaces
(microorganisms) or self surfaces (apoptotic and necrotic cells)
(172). The alternative pathway is usually spontaneously activated
at low levels, but can be further amplified after the activation of
the classical pathway through interactions via C3b.

In HIV-1 infection, complement activation can be triggered
through multiple mechanisms: (i) activation of classical pathway
by C1q binding to anti-HIV antibodies (175) and C1s binding
to gp41 (176); (ii) activation of lectin pathway through gp120
recognition by the mannose binding lectin (MBL) (177); and (iii)
an amplification loop through the alternative pathway can also
boost this complement activation. Furthermore, the microbial
translocation observed during pathogenic HIV/SIV infection can
lead to the activation of all complement pathways: (i) the lectin
pathway via the recognition of Pathogen Associated Molecular
Patterns (PAMPs), (ii) the alternative pathway via LPS, (iii) the
classic pathway, which is triggered by the inflammation through
LPS and the production of CRP, that can bind to C1q (178).

Through these multiple pathways, increased activation of the
complement system occurs in PWH, as indicated by the increased
levels of the complement cleavage products (179). Interestingly,
complement activation increases with disease progression to
AIDS, as well as in PWH developing IRIS (180–183).

While lower levels of the classic pathway activation were
observed in PWH initiating ART, as emphasized by a modest
increase in classic total complement activity and a 30% increase
in intact C3 and C4 proteins after 12 weeks of ART, the levels
of factor B (a factor involved in the formation of the alternate
C3 convertase) are not completely restored on ART, suggesting
that the alternative pathway is still activated (184). The residual
complement activation in virologically-suppressed PWH was
also observed in other studies reporting a 64% increase in C3a
levels (185) and a 9% increase in soluble MAC (186), compared
to uninfected subjects. Note that the levels of soluble MAC
were particularly increased in virologically suppressed subjects
with CD4+ T cell counts below 200/mm3 (186). Furthermore,
while the levels of mannose-binding lectin increased in untreated
PWH, they did not decrease over a 2-year period of ART
(187). This residual complement activation may have multiple
sources: (i) limited, but persistent viral replication in blood
and/or lymphoid tissues leading to the activation of the classical
and lectin pathways by gp41 and gp120 binding to C1s and MBL,
respectively, as well as by anti-HIV antibodies triggering classic
pathway, and (ii) residual microbial translocation causing an
activation of all pathways (188).

Yet, despite this steady complement system activation, the
complement-mediated HIV/SIV virolysis is limited (189). This
high resistance of HIV and SIV to complement-mediated
virolysis is due to the presence on viral membranes of membrane-
bound RCA, such as CD46, CD55, and CD59, that are acquired
during the budding from the cellular membrane (189–191). In
addition to this viral escape mechanism, HIV and SIV can
also hijack complement-induced opsonization. Immune cells
recognize opsonized viruses through their FcR or complement
receptors (CRs), and HIV and SIV can either infect these cells
(192, 193) or use them as vehicles for transport to the germinal
centers of lymphoid tissues (194). For example, follicular
dendritic cells (FDC) exhibit CR1, CR2, and CR3, allowing them
to bind opsonized viruses. In the follicles, viruses can either infect
nearby T lymphocytes, or remain trapped by FDC, enabling
affinity maturation of B cells. However, when trapped by FDC,
viruses remain intact and infectious for months, constituting one
of the most important viral reservoirs in the organism (195).
Infection of the T CD4+ lymphocytes and viral trapping in
the lymphoid tissues fuel immune activation in PWH and lead
to histological alterations of the lymphoid tissues (196, 197).
Intriguingly, while the pathogenic HIV and SIVmac are trapped
in germinal centers of humans and macaques, respectively, this
phenomenon is less frequent in non-pathogenic SIV infections
of the natural African NHP hosts (32, 198–201), indicating
that deposition of complement-opsonized viral particles in the
lymphoid tissues might be critical for disease progression.

Complement may also impact HIV pathogenesis by fueling
immune activation and inflammation. C3a is a proinflammatory
factor that attracts macrophages, monocytes and mast cells,
triggers histamine release by mast cells, induces the production
of proinflammatory cytokines, such as IL-1β, IL-6, and TNF-α by
monocytes and macrophages, induces eosinophil degranulation,
prompts platelet activation, and increases vascular permeability
(202). C3a is also an immunomodulatory agent as it inhibits
neutrophil mobilization (203). C5a is a potent inductor of
inflammation after binding to its receptors, C5aR1 (CD88) or
C5aR2. The inflammatory effects of C5a include, but are not
limited to, recruitment of the immune effectors (macrophages,
monocytes, dendritic cells, neutrophils, lymphocytes), activation
of neutrophils, which result in enhanced production of the
inflammatory cytokines IL-6 and TNF-α, increases in vascular
permeability and tissue factor expression on endothelial cells, and
suppression of Treg. Interestingly, CRP, IL-6, and TNF-α, whose
expressions are increased during complement activation, have all
been linked to disease progression and comorbidities in PWH
(87, 126, 204–206). Thus, it is not surprising that complement
activation itself has been linked to different comorbidities,
notably neurological, kidney, and cardiovascular diseases, both
in PWH and in the general population.

Complement and Neurological
Comorbidities
HIV-associated neurocognitive disorders (HAND) have been
described since the dawn of the AIDS pandemic (207). HAND
aggregates wide clinical presentations ranging from HIV-related
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dementia, mostly characteristic to the pre-ART era, to milder
neurocognitive (NC) impairments (208).With the advent of ART,
incidence of HIV-related dementia has dramatically declined,
but 30–50% of PWH still present NC disorders (209), with mild
NC impairments now accounting for most NC diseases among
PWH (210). There are multiple mechanisms through which
HIV can induce neurocognitive disorders: neurotoxicity of viral
proteins produced by infected cells (macrophages or glial cells,
including astrocytes) (211), death of the productively-infected
cells (212), brain damage (edema, weakening of the blood-brain
barrier) induced by the immune and/or inflammatory responses
(213), and ART neurotoxicity (214). These mechanisms are
non-exclusive. Complement could also play a role in HIV
neurotoxicity, as it leads to apoptosis and increased production of
inflammatory cytokines. This is not unexpected as complement is
involved in synapse pruning via C1q during brain development
(215). Furthermore, complement might also play a role in
some autoimmune neurological diseases, Alzheimer’s disease,
and multiple sclerosis (216).

In PWH that progress to AIDS, complement activation can
be observed in the cerebrospinal fluid (CSF), with increased
levels of C4 indicative of intrathecal synthesis (217). While
most complement proteins are synthetized by hepatocytes,
they can also be produced by other cells, notably astrocytes
(218). Increased levels of C3 and C4 have been found in
the CSF of PWH with NC dysfunction (219), and HIV-
1 infection induces in vitro expression of C2 and C3 in
infected-astrocytes (220, 221). This effect was observed in cell
cultures treated with both whole virions and after incubation
with only viral proteins gp41 or Nef (221, 222). HIV-1 also
induces C3 expression in neurons (221, 222). In macaques with
SIV encephalitis, high C3 and C1q expression on astrocytes
and neurons was immunohistochemically detected, while the
same cells were rarely positive in uninfected animals (223).
Interestingly, C1q expression increased throughout the course
of SIV infection and was correlated to CSF viral load (224),
a marker of HIV-related dementia (225). Overexpression of
C3 was confirmed in postmortem brain tissues from patients
with HAND (226). Upregulation of the genes involved in
the interferon responses and the complement pathway was
higher in PWH with NC impairment and HIV encephalitis
compared to those without NC impairment (227). Interestingly,
a longitudinal study of PWH with NC impairment found
that patients with improved neurocognition presented a
down-regulation of the complement system, and vice versa
(228). Another potential explanation for the neurological
dysfunction in PWH is that neurons and astroglias of the
PWH may be more susceptible to complement-mediated
lysis, as the expression by neuronal and astroglial cell lines
of CD59, one of the membrane-bound RCA, is down-
regulated after incubation with gp41 peptides or inflammatory
cytokines (229).

Despite a clear association between complement activation
and NC impairment, the mechanism(s) through which
complement activation impacts neurocognitive functions is
not yet fully defined. As inhibitors of complement activation
are developed for non-HIV related neurological diseases, this

could pave the way for their evaluation in PWH presenting with
HAND or with other NC disorders.

Complement and Renal Comorbidities
Increased incidence of kidney diseases was reported early in
PWH (230). In addition to the HIV-associated nephropathy
(HIVAN), other kidney diseases are described in PWH, notably
HIV-associated immune complex kidney diseases (HIVICD)
(231). HIVICD are glomerulopathies with glomerular deposition
of immune complexes. Kidney involvement in PWH varies
according to the location of the deposits of immune complexes.
Positive staining of renal biopsies for IgG, IgM, IgA, C3, C4,
and C1q, and hypocomplementemia is frequently reported (232).
The high frequency of the immune complexes in the kidney may
play a role in the complement activation and/or in tissue damage
in PWH (231). Unlike HIVAN, HIVICD is not significantly
impacted by ART in PWH (233).

Complement and Other Comorbidities
Recently, complement activation, particularly the increased C3
levels, has been associated with various metabolic and CVD in
the general population. In a large cohort of patients followed
over 6 years, patients with high C3 levels at inclusion had an
increased risk of developing diabetes (234). Increased C3 levels
were also associated with insulin resistance and non-alcoholic
fatty liver disease (NAFLD), after adjusting for other variables
(235, 236). The role of C3a in NAFLD and insulin resistance has
also been demonstrated in animal studies, with C3aR−/− mice
being resistant to diet-induced diabetes (237, 238). Prospective
studies reported an association of increased C3 or C4 levels with
higher risks of myocardial infarction (239, 240).

In HIV-uninfected subjects with advanced atherosclerosis,
increased C5a was linked to an exacerbated CVD risk (241). This
might be explained by the proinflammatory and procoagulant
properties of C3a and C5a, notably platelet activation and TF
induction on endothelial cells, respectively. An increase in C5
and factor H-related protein 5 levels in PWH on ART and higher
levels of C5 in patients with non-AIDS comorbidities were also
recently reported (242).

Higher C3 levels were associated with metabolic syndrome
in PWH on ART (243), even after adjusting for confounding
factors, but no data are available regarding association of
complement proteins with NAFLD or CVD among PWH. Thus,
the involvement of complement activation in driving the high
frequency of CVD in PWH remains to be determined.

TARGETING COMPLEMENT PATHWAYS

Currently, only four drugs targeting the complement system are
approved by the FDA: two C1 esterase inhibitors and two C5
inhibitors (244). The C1 esterase inhibitors hinder C1s, C1r and
mannan-binding lectin-associated serine protease (MASP), and
they are used to treat patients with hereditary angioedema caused
by a deficiency in C1 (SERPING1) inhibitor. The C5 inhibitors,
eculizumab and ravulizumab, are monoclonal antibodies that
bind to C5 and prevent its cleavage, and thus the formation
of MAC. Eculizumab was developed for paroxysmal nocturnal
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hemoglobinuria, but its off-label use for kidney diseases of PWH
has been reported (245). Numerous complement inhibitors are
currently under development, including: a MASP-2 inhibitor
(narsoplimab), C3 inhibitors (compstatin and its analogs, such as
AMY-101, and pegcetacoplan), a C5aR1 antagonist (avacopan),
an anti-C5aR1 monoclonal antibody (avdoralimab) and a factor
B inhibitor (244). Their evaluation in PWH in clinical trials
aiming to limit development of comorbidities may therefore
be considered.

NET FORMATION

Generation of neutrophil extracellular traps (NETs) by
polymorphonuclear neutrophils is a recently described
mechanism of the innate immune response (246). Neutrophils
are key effectors of the innate immune system, being traditionally
considered to be involved in the defense against bacteria and
fungi (246). More recently, they have been reported to be
involved in the innate immune response against viruses (247).
The principal mechanism of action of neutrophils is phagocytosis
and killing of microorganisms through degranulation and
production of reactive oxygen species. It was recently discovered
that they can also control infection through generation of
extracellular chromatin fibers called NETs (248). Neutrophils
that release NETs develop a unique cellular morphology with
decondensed nuclei, and ultimately lose their DNA (249). The
extracellular chromatin fibers of the NETs are decorated with
numerous granule proteins, such as lactoferrin, myeloperoxidase
(MPO), histones, and neutrophil elastase (NE) (250). NETs can
capture and kill bacteria, fungi, and viruses (246, 250, 251).
In vitro generated NETs are long, thin stranded, web-like,
extracellular fibers (246). NETs with a thicker morphology were
identified in vivo in the gut, liver, skin, and lung in numerous
diseases (249, 252, 253).

NETs are beneficial for the organism by eliminating
microorganisms and preventing their spread, yet long-lasting
or excessive NET formation can be deleterious, as they induce
a proinflammatory environment, damage the tissues and can
trigger immunothrombosis (254).

The involvement of NETs in the pathogenesis of HIV and SIV
has only been studied recently. NETs can capture and eliminate
HIV-1 in vitro (255, 256) and their production seems to be
regulated by IL-10 (255). Formation of NETs by neutrophils
isolated from SIV-infected macaques, upon stimulation with
phorbol myristate acetate (PMA), is enhanced compared to
neutrophils isolated from uninfected non-human primates (137).

Increased NET formation occurs early during the acute
SIV infection, probably triggered directly by the high virus
replication. Interestingly, NET formation by neutrophils is higher
during chronic infection than during acute infection. This is
not unexpected, as the triggers for NET formation diversify
and increase in magnitude during later stages of infection.
They include bacterial products translocated from the gut, and
opportunistic pathogens, in addition to the retrovirus. NETosis
is reduced by ART, but the number of NETs remains higher
than in uninfected animals (137). Besides capturing virions and

SIV/HIV infected cells, NETs can, especially when they are
released in excess, also indiscriminately trap other immune cells
(such as neutrophils, T, B cells, macrophages, etc.) and induce
their apoptosis or lysis (Figure 4) (137). Thus, NETs might play
a significant role in the destruction and/or lack of recovery
of numerous immune cell subsets during SIV/HIV infection
and thus provide a plausible explanation for a key unsolved
aspect of HIV/SIV pathogenesis: the bystander loss of cells that
are not directly infected with HIV/SIV. Besides the negative
consequences related to the death of multiple immune cells,
the overly stimulated neutrophils may represent a neglected
source of inflammation in SIV-infected macaques and PWH.
As neutropenia is often observed during SIV/HIV infection,
the impact of neutrophils on SIV/HIV pathogenesis could be
questioned but, similarly to CD4+ T cells, the issuemight not rely
on the absolute neutrophil counts, but rather on the activation
status and the production of inflammatory cytokines by this
immune cell subset. By trapping immune cells in the NETs,
the neutrophils may contribute to their activation and death,
both processes being associated with release of inflammatory
cytokines or chemotaxis of other cells resulting in a fueling
of inflammation. As such, normalizing NET formation may be
critical to avoid tissue damages and comorbidities characteristic
to HIV/SIV infection (117).

NETs can also trap and destroy platelets (Figure 4),
contributing to platelet loss. Interestingly, while this observation
provides a plausible explanation for the thrombocytopenia
associated with SIV/HIV infection, it also links NETs to the
coagulation issues seen in PWH and SIV-infected macaques
(Figure 4) (137). It was recently showed that TF expression by
NETs (Figure 4) and their ability to capture platelets potentiate
each other to promote a proaggregative environment and
platelet activation, leading to a hypercoagulable state. TF
production by neutrophils may also play an important role in
triggering systemic and tissue INFL, as does the TF expression
by monocytes.

The contribution of NETs to the pathogenesis of HIV/SIV
infection was recently supported by multiple findings in other
infectious diseases. Thus, excessive formation of NETs is detected
in severe influenza and SARS-CoV-2 infections (257, 258), where
it is correlated with an higher mortality (259). Meanwhile, NETs
also play a deleterious effect in cancer by promoting metastasis
(260), and in autoimmune diseases and atherosclerosis by
promoting macrophage-mediated inflammation (261). NETs can
also facilitate venous thrombosis (262, 263), through expression
of tissue factor (TF) (264, 265), platelet deposition, aggregation
and activation (262), activation of factor XII (266), and cleavage
of TF pathway inhibitor (267).

TARGETING NET FORMATION

No drug inhibiting NET formation is currently FDA-approved.
However, several clinical trials are ongoing, most of them
using nebulized DNAse that degrades NETs. Other compounds
are currently investigated for autoimmunity diseases, infectious
diseases or cancers, either in humans or in animal models.
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This includes PAD-4 inhibitor (Cl-amidine), neutrophil elastase
inhibitor (GW311616A), serine protease inhibitor (camostat
mesylate), gasdermin D inhibitor (disulfiram) and C3 inhibitor
(Cp40) (268–272). If any of these drugs is proven to be efficient
in reducing NET formation in other pathologic conditions, it
could be interesting to evaluate them in the context of HIV/SIV
infection. However, preliminary studies using NHP models will
be needed, both to confirm their efficacy on reducing the virus-
driven NETosis and to collect pharmacokinetics data on those
different compounds. Indeed, based on their administration
route (per os, intravenous or subcutaneous), tissue distribution of
those drugs could vary and modulate their efficacy in preventing
NET formation.

INTERACTIONS BETWEEN COMPLEMENT,
COAGULATION AND NETS

It is now well-understood that complement, coagulation, and
formation of NETs are intertwined mechanisms (Figures 1,
5). Indeed, complement protein C3a can activate platelets,
by binding to its receptor C3aR present on platelets (273),
and platelet-bound C3a can promote the platelet aggregation
to neutrophils by binding to complement receptor 3 (CR3)
expressed on the neutrophil membrane (274). Meanwhile,
platelets are involved in the NET formation, as they can
sense LPS through TLR4, which leads to their activation and
adhesion to neutrophils, eventually inducing NETs (275). C5a is
a neutrophil chemoattractant, leading to neutrophil recruitment
and activation (276). C3a and C5a have also been linked to
an induction of NETs, C3a through a mechanism remaining to
be determined (277) and C5a by increasing TF expression and
upregulating complement receptors on neutrophil surface (278,
279). Conversely, complement activation can also be triggered
by activated neutrophils and their NETs, as complement proteins
can deposit on their surface and form C3 convertases, leading to
the production of new anaphylatoxins (280). Note that regulatory
mechanisms can also be involved in these interactions. For
example, factor H, a known complement inhibitor, can also bind
to neutrophils and inhibit NET formation (281).

In addition to these interactions between complement
proteins and NET formation, both complement and NETs
interact with the coagulation cascade. Thus, both C3a and C5a
participate in thrombus formation (282, 283). C3a is linked
to platelet activation, while C5, after binding to its receptor
C5aR1 (CD88), induces tissue factor expression on endothelial
cells and neutrophils (284, 285). C5a is also thought to play
a role in TF activation (282). Multiple effectors of coagulation
are detected on the extracellular fibers of the NETs, including
von Willebrand factor, fibrinogen, fibronectin (262) and TF
(137). Besides, some proteins associated with NETs (neutrophil
elastase and myeloperoxidase) can inhibit anticoagulant factors,
such as thrombomodulin (286). When platelets adhere to NETs
by binding to histones or to von Willebrand factor, they are
activated and form platelet aggregates (137, 262) (Figure 3).
Thrombin is then generated by platelets trapped in NETs after
the activation of the coagulation cascade by the TF exposed by

NETs and/or by NET-damaged endothelial cells (287), while the
contact coagulation pathway can be initiated by the activation
of factor XII by NETs and platelets (266). Transformation
of fibrinogen by thrombin leads to fibrin deposition on the
NETs, and to the formation of an immunothrombus (262).
During infections, NETs and immunothrombosis prevent the
spread of microorganisms throughout the body. As this process
is constrained to microvessels, it prevents deleterious effects.
However, in some cases, an uncontrolled immunothrombosis
can lead to formation of pathological thrombi. It is therefore
conceivable that such a scenario is present during HIV/SIV
infection, especially in PWH off ART. Immunothrombosis in
small blood vessels (Figure 4D) could drive the development of
comorbidities and end-stage organ diseases.

CONCLUSION

Numerous mechanisms are involved in the persistence of
low levels of inflammation and T-cell immune activation in
ART-treated PWH. The intertwined roles of hypercoagulation,
complement system and NET formation has recently emerged,
highlighting different pathways that could be targeted to reduce
the risk of SNAEs that remains elevated in ART-treated PWH.

Anticoagulant drugs have been available for decades, with
DOACs recently expanding the panel of drugs, even though
drug-drug interactions remain an issue for PWH. Meanwhile,
drugs targeting the complement system and/or NET formation
are either newly approved or still in research or industry
pipelines. Interestingly, some drugs, such as C3 inhibitors, can
inhibit two pathways (complement and NET formation) in vitro.
Evaluating these compounds in NHP models, then in PWH if
deemed promising, would be of great interest, as they might
be able to thwart different mechanisms involved in the residual
inflammation in ART-treated PWH. Studies gathering both
clinical and biological data would be necessary, to observe if those
drugs effectively reduced inflammation and immune activation,
and if this translates into a reduction in the risk of SNAEs.
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