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The �M Algorithm: A Method for Interferometric
Image Reconstruction in SAR/SAS
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Abstract—This paper presents an effective algorithm for abso-
lute phase (not simply modulo-2 ) estimation from incomplete,
noisy and modulo-2 observations in interferometric aperture
radar and sonar (InSAR/InSAS). The adopted framework is also
representative of other applications such as optical interferometry,
magnetic resonance imaging and diffraction tomography. The
Bayesian viewpoint is adopted; the observation density is 2-pe-
riodic and accounts for the interferometric pair decorrelation
and system noise; thea priori probability of the absolute phase is
modeled by acompound Gauss–Markov random field(CGMRF)
tailored to piecewise smooth absolute phase images. We propose
an iterative scheme for the computation of themaximum a pos-
teriori probability (MAP) absolute phase estimate. Each iteration
embodies a discrete optimization step (-step), implemented by
network programming techniques and an iterative conditional
modes(ICM) step ( -step). Accordingly, the algorithm is termed

, where the letter stands for maximization. An important
contribution of the paper is the simultaneous implementation of
phase unwrapping (inference of the 2 -multiples) and smoothing
(denoising of the observations). This improves considerably the
accuracy of the absolute phase estimates compared to methods
in which the data is low-pass filtered prior to unwrapping. A set
of experimental results, comparing the proposed algorithm with
alternative methods, illustrates the effectiveness of our approach.

Index Terms—Bayesian estimation, compound Gauss–Markov
random, interferometry, iterative conditioonal modes (ICM), net-
work programming, phase unwrapping.

I. INTRODUCTION

T HE need for estimating phase1 from incomplete, noisy
and modulo-2 observations appears in many classes of

imaging techniques. Some relevant examples are as follows.

1) Interferometric synthetic aperture radar(InSAR) [1] and
interferometric synthetic aperture sonar(InSAS) [2].
Synthetic aperture radar (SAR) and synthetic aperture
sonar (SAS) systems produce high resolution images
of the coherent fields backscatterd by the surface being
illuminated. SAR and SAS images are typically acquired
by a single antenna. By using two antennas (actually
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1In this paper, the wordphasemeans absolute phase (not simply modulo-2�).

two antennas in single-pass mode or one antenna in re-
peat-pass mode) separated by a baseline, it is possible to
interferethe two images in such a way that the common
scene reflectivity is cancelled out and the geometric in-
formation contained in the scene topography is retained
in the phase difference.

2) Magnetic resonance imagingsystems, where the phase
estimation is a necessary tool for determining the mag-
netic field deviation maps. These deviation maps are then
used to correct geometric distortions in echo-planar im-
ages [3]. Other applications areas are water and fat sepa-
ration [4] and dynamic range improvement of phase con-
trast measurements.

3) Optical interferometry, where phase differences are used
to obtain information such as shape, displacement, or vi-
bration of a surface [5].

4) Diffraction tomography(e.g., geophysical tomography or
acoustic tomography), where the Rythov approximation
yields a mapping between the observed object and the
phase of the measured field [6].

In all these applications, the observed data relates to the phase
in a nonlinear and noisy way; the nonlinearity, closely related
with the wave propagation phenomena involved in the acquisi-
tion process, is sinusoidal; the noise is introduced both by the
acquisition mechanism and by the electronic equipment. There-
fore, the phase should be inferred from noisy modulo-2obser-
vations, (the so-calledprincipal phase valuesor interferogram).

The mainstream of phase estimation research in
InSAR/InSAS usually takes a two step approach: in the
first step a filtered interferogram is obtained from noisy
InSAR/InSAS image pairs; in the second step the phase is
unwrapped by determining 2-multiples consistent with the
filtered interferogram (unwrapping in the interferometric
jargon). The book [7] and the algorithms therein presented and
compared are representative of this approach. Throughout this
paper we use the termunwrappingto designate the latter step.

Broadly speaking, phase estimation methods can be clas-
sified into four major classes: path following methods,
minimum-norm methods, Bayesian and regularization methods
and methods based on parametric models. Thesis [8] and
paper [9] provide a comprehensive account of the mentioned
methods. We stress that while the methods from the two first
classes implement only the phase unwrapping step mentioned
in the paragraph above, some Bayesian and regularization
methods might implement both smoothing and unwrapping
steps. Therefore, some care must me taken in comparing
phase unwrapping methods with Bayesian and regularization
methods.
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In the path following schemes [7], [9], [10] phase is
unwrapped along selected image paths. In the presence of dis-
continuities, noise, or undersampling, different paths between
two points may lead to different phase values. To resolve or
mitigate theses inconsistencies, heuristic rules are applied to
provide path-independent integration.

Minimum-norm phase unwrapping methods cast the unwrap-
ping problem as the minimization of an norm [7], [11].
norm (least-squares) has long been used [12], [13]; the least-
squares solution can be computed efficiently by using fast co-
sine or Fourier transforms [14]. Works [15] and [16] have pro-
posed (independently) network programming based algorithms
that minimize the norm; this criterion is able to preserve
sharp transitions without modeling them explicitly [17]. This
ability is further enhanced by using norms with
. However, these norms lead to hard nonconvex optimization

problems, with unbearable computational load. A suboptimal
solution is proposed in [7, ch. 5].

Due to decorrelation (temporal and spatial), no-return or low
return areas (e.g., due to layover phenomena in InSAR/InSAS),
the modulo-2 phase estimates corresponding to those areas
might be extremely biased and/or noisy. To handle this problem,
both the path following and the minimum-norm procedures have
incorporated quality maps as a measure of confidence on the ob-
served data at each site (see, e.g., [18] for path following, [19]
for weighted least-squares and [15] for weightednorm).

In a quite different vein and recognizing that phase estimation
is an ill-posed problem, papers [20]–[23] have adopted the reg-
ularization framework to impose smoothness on the solution.
The same objective has been pursued in papers [24]–[29] by
adopting a Bayesian viewpoint. Papers [24] and [25] propose
a nonlinear recursive filtering solution to the phase reconstruc-
tion. Paper [26] considers the InSAR observation model taking
into account not only the image phase, but also thebackscat-
tering coefficientand thecorrelation factorimages, which are
jointly recovered from InSAR image pairs. Paper [27] proposes
a fractal-based prior and a simulated annealing scheme to com-
pute the phase image. Works [28]–[30], although proposing a
phase unwrapping approach to phase estimation, can be clas-
sified as Bayesian, since the differences between neighboring
2 -multiples of the phase are modeled as random variables; the
phase is unwrapped using mean field inference in [29], proba-
bility propagation in graphical models in [28] and network-flow
techniques [31] to approximate the MAP solution in [30].

Methods based on parametric models constrain the phase to
belong to a given parametric model. Works [32] and [33] have
adopted low-order polynomials. These approaches yield good
results if the low-order polynomials represent accurately the
phase. However, in practical applications the entire phase func-
tion cannot be approximated by a single two-dimensional (2-D)
polynomial model. To circumvent model mismatches, work [32]
proposes a partition of the observed field where each partition
element has its own parametric model.

In one way or another, most phase estimation algorithms as-
sume that the phase difference between two neighboring sites
varies smoothly (less than in a deterministic or stochastic
sense, depending on the paradigm); based on this assumption,
it is possible, by exploiting the neighboring observed phases,

to infer the 2 -multiple component of the phase of a given
site. However, in situations such as undersampling (e.g., topog-
raphy inducing high phase rates), abrupt features/objects, or the
layoverphenomenon), the smoothness assumption can not be
made. In this case, the principal phase values are inconsistent in
the sense that they do not uniquely determine the phase. Discon-
tinuities or inconsistencies may also appear as a consequence of
the smoothness step applied by most phase unwrapping algo-
rithms; typically, this step assumes that phase is practically con-
stant within small windows, which is not true for high phase rate
regions. Independently of their origin, phase discontinuities/in-
consistencies are the principal source of error in any phase esti-
mation algorithm that does not take them into account. To fur-
ther complicate the problem, the discontinuity field can not be
uniquely determined from the observed data, even in the absence
of noise, due to the periodic structure of the observation mech-
anism.

A. Proposed Approach

We adopt the Bayesian viewpoint. The likelihood function,
which models the observation mechanism, is 2-periodic
and accounts for the interferometric pair decorrelation and
the system noise. Thea priori probability of the phase is
modeled by a first-order compound Gauss–Markov random
field (CGMRF) [34] tailored to piecewise smooth phase fields.

Due to the periodic structure of the likelihood function,
the discontinuity field in InSAR/InSAS applications can not
be uniquely determined from the observed data. However,
it can be inferred using information external to the phase
estimation framework. The major source of discontinuities
in InSAR/InSAS applications is the layover phenomenon
(see, e.g., [7, ch. 3]). The layover areas can be separated
from the nonlayover ones as proposed in [35]. This work
exploits spectral shift that exists between the signal read by
the two sensors as function of the along-range local slope. An
alternative approach to handle discontinuities/inconsistencies
is to segment the observed data into a phase-consistent region
and its complement and use only the observed data in the
former region to estimate the whole phase. Our approach
accepts both: a discontinuity field and a region of consistency.
Detailed procedures aiming at discontinuity detection or data
segmentation are, however, beyond the scope of this paper.

In papers [24]–[26], following a Bayesian approach, the prior
is a first-order causal GMRF. Taking advantage of this prior
and using thereduced-order model(ROM) approximation of
the GMRF [36], the phase is estimated with a nonlinear recur-
sive filtering technique. Compared with the present approach,
the main differences concern the prior and the estimation algo-
rithm: we use a first-order noncausal CGMRF prior. In terms
of estimation, the noncausal prior implies a batch perspective,
where the phase estimate at each site is based on the complete
observed image. This is in contrast with the filtering technique
implemented in the referenced papers, where the phase estimate
of a given site is inferred only from past (in the lexicographic
sense) observed data.

To compute the MAP estimate, we derive an iterative pro-
cedure with two steps per iteration: the first step, termed the
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-step, maximizes the posterior density with respect to the field
of 2 phase multiples; the second step, termed the-step, max-
imizes the posterior density with respect to the phase principal
values. The -step is a discrete optimization problem solved by
network programming techniques inspired by Flyn’s minimum
weighted discontinuity algorithm [15]. The-step is a contin-
uous optimization problem solved approximately by theiterated
conditional modes(ICM) [37] scheme. Accordingly, we term
our algorithm , where the letter stands for maximiza-
tion.

As previously mentioned, the smoothing step that many phase
estimation schemes apply prior to unwrapping jeopardizes the
phase unwrapping step in areas of high phase rate. This problem
is minimized in the proposed methodology, as it does not split
the phase estimation into independent smoothing and unwrap-
ping steps; these steps are instead implemented simultaneously
and implicitly in computing the MAP estimate. The accuracy of
the proposed scheme is in this way considerably improved com-
pared to the phase unwrapping approaches.

This paper is organized as follows. Section II introduces the
observation model, the CGMRF prior and the posteriori density.
Section III elaborates on the estimation procedure; namely, we
derive solutions for the -step and for the -step. Section IV
presents results based on synthetic data and on data generated
by a simulator fed with real elevation measurements.

II. PROPOSEDMODELS

A. Observation Model

Fig. 1 shows a typical SAR/SAS geometry. The trajectories of
sensors and are parallel and separated by the baseline.
The height of a given terrain element is a function of the
phase , where and are the propagation path
phases associated to sensor 1 and sensor 2, respectively. Phase
is to be inferred from and , the complex amplitudes of the
backscattered field read by each sensor from a given site. These
amplitudes are given by

(1)

(2)

where and are the complex amplitudes originated by the
scatterers illuminated by apertures 1 and 2, respectively, and

and are the electronic noise of sensor 1 and sensor 2,
respectively.

Assuming that the surface being illuminated is rough com-
pared to the wavelength, that there are no strong specular reflec-
tors and that there are alarge number of scatterers per resolu-
tion cell, then the complex amplitude is complex zero-mean
circular Gaussian distributed [38, ch. 5]. Noisesand are
also independent (corresponding to different sensors) and com-
plex zero-mean circular Gaussian distributed. Furthermore, we
assume that and are independent of and .

Complex amplitudes and are different due to the fol-
lowing reasons:

1) spatial decorrelation originated by image misregistration;
2) temporal decorrelation originated by scatterer displace-

ments (only in repeated-pass mode);

Fig. 1. Typical interferometric SAR/SAS geometry. The trajectories of sensors
s ands are parallel and separated by the baselineB. The heighth of a given
terrain element is a known function of the phase� = � � � , i.e.,h = g(�).

3) focusing errors originated by the imaging algorithm or
by platform displacements with respect to the nominal
trajectory;

4) geometric decorrelation originated by the different ge-
ometries of each sensor.

We assume that and that the cor-
relation factor (also termed thechange pa-
rameteror degree of coherence[38, ch. 5]) is real. A sufficient
condition for to be real is that the difference between the phase
induced by each scatterer in and has an even density.

Defining , and assuming that
, the probability density function2 of is

[38, ch. 5]

(3)

where is given by

(4)

Developing the quadratic form in (3), one is led to

(5)

where and

(6)

(7)

The likelihood function is 2 -periodic with respect
to with maxima at , for ( denotes the
integer set). Parameteris a maximum likelihood estimate of.
The peakiness of (5) about , controlled by the parameter

, is an indication, in a statistical sense, of how trustworthy the
data is.

2For compactness, lowercase letters will denote random variables and their
values as well.
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Often, the parameter is unknown and must be jointly esti-
mated with the phase. Herein, when necessary, we take the
maximum likelihood estimate (see [38, ch. 5]).

Let and
denote the phase and complex amplitude associated with sites

(we assume without lack of gen-
erality that the images are squared) and , respectively.
Assuming that the components ofare conditionally indepen-
dent, then

(8)

The conditional independence assumption is valid if the res-
olution cells associated with any pair of pixels are disjoint. Usu-
ally this is a good approximation, since thepoint spread func-
tion of the imaging systems is only slightly larger than the cor-
responding inter-pixel distance [39].

As stated before, we assume that the observation set of sites
is a subset of the phase sites. Sites are either not

observed or belong to inconsistent phase regions.

B. Prior Model

Image is assumed to bepiecewise smooth, with abrupt vari-
ations between neighboring regions. These variations are due to
undersampling in areas with high fringe rates, mainly due to
the presence oflayoverphenomena and/or abrupt feature or ob-
jects. Whatever their origin, discontinuities of the phaseare
the principal source of error in any unwrapping algorithm that
does not take them into account.

Gauss-Markov random fields[40] are both mathematically
and computationally suitable for representing local interactions
and particularly continuity between neighboring pixels. How-
ever, the continuity constraint must be discarded for those pixels
in the neighborhood of discontinuities. For this purpose we take
a first-order noncausal CGMRF [34] with density

(9)
where is the so-calledline field
process, , , ,

, and
means the variance of increments and . Vari-

ables serve the purpose of signaling disconti-
nuities. Notice that the continuity constraint between sites ()
and ( ) is removed if variable is set to one; similarly,
the continuity constraint between sites () and ( ) is re-
moved if variable is set to one. Fig. 2 shows the site () and
its four first-order neighbors. A line field variable between each
pair of neighboring sites represents a possible discontinuity.

Parameter of (9) controls the smoothness of the phase field:
as gets large, the random phase fields generated by (9) become
smoother. If is nota priori known it should be dealt with as
a random variable and either estimated jointly with the phase
surface or integrated out from the posterior distribution. In the

Fig. 2. Representation of the site (i; j) and its first-order neighbors along with
the line field variables affecting each pair of neighboring sites.

former case and assuming a uniform prior on, the estimate of
, given , is

(10)

which is also the maximum likelihood estimate of this param-
eter.

C. Posterior Density

Consider that the line field processis known. Invoking the
Bayes rule and noting that , we ob-
tain the posterior probability density function of, given ( ),
as

(11)

where the factors not depending onwere discarded. Intro-
ducing (8) and (9) into (11), we obtain

(12)

The next section is devoted to maximization of the posterior
density (12) with respect to the phase image. We stress
that, contrary to the optimization schemes implemented by
phase unwrapping algorithms, we do not constrain explicitly
the modulo- phase derivatives to be irrotational [7,ch. 2].
Nevertheless, this constraint is indirectly enforced by the prior:
if the referred rotational is not zero at some point this implies
the presence of large phase differences or which
are penalized by the prior.

III. ESTIMATION PROCEDURE

The MAP criterion is adopted for computing. Accordingly

(13)

Due to the periodic structure of , computing the
MAP solution leads to a huge nonconvex optimization problem,
with unbearable computation burden. Instead of computing the
exact estimate , we resort to a suboptimal scheme that de-
livers nearly optimal estimates, with a far lower computational
load.
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Fig. 3. Pseudo-code for the�M algorithm.

Suppose initially that , i.e., all sites are observed. Let
the image be uniquely decomposed as

(14)

where ( denotes the largest
integer less than or equal to) is the so-called wrap-count
component of and is the principal value
of . The MAP estimate (13) can be rewritten in terms of

and as

(15)

(16)

Instead of computing (16), we propose a procedure that suc-
cessively and iteratively maximizes with
respect to and . We term this maxi-
mization on sets and as the algorithm; Fig. 3
shows the corresponding high-level pseudo-code.

The algorithm is greedy since the posterior density
can not decrease in each step of each iteration.

Thus, the stationary points of the unwrapping and smoothing
steeps correspond to local maxima of . Neverthe-
less, the proposed method yields systematically good results, as
we will document in next section.

The unwrapping step finds the maximum of the posterior den-
sity on a mesh obtained by discretizing each co-
ordinate according to (14). The first estimate delivered
by the unwrapping step is based on the maximum likelihood es-
timate . Smoothing is next implemented.
This is in contrast with the scheme followed by most phase
unwrapping algorithms, where the phase is estimated from a
smoothed version of given, for example, by the ML estimate,
under the assumption that the phaseis constant within win-
dows of given size. This assumption leads to large errors in areas
of high phase rate.

A. -Step

Since the logarithm is strictly increasing and
does not depend on , solving the maximization

step is equivalent to solving

(17)

where the energy is given by

(18)

with

(19)

(20)

and and .
The energy is a sum of quadratic functions of (

) and ( ). This is a special case of the so-called
nearest lattice vector problem, which, for general positive defi-
nite quadratic forms of , is known to be NP-hard [41]. For the
problem at hand, we propose a network programming algorithm
that finds the exact solution in polynomial time. The algorithm is
inspired by Flyn’s minimum discontinuity approach [15], which
minimizes the sum of and . Flyn’s
objective function is, in fact, quite different from ours. How-
ever, both objective functions are the sum of first-order clique
potentials depending only on and . This structural
similarity allows us to adapt the above ideas to our problem.

The following lemma assures that if the minimum of
is not yet reached, then there exists a binary image(i.e., the
elements of are all 0 or 1) such that .

Lemma 1: Let and be two wrap-counts images such
that

(21)

Then there exists a binary image such that

(22)

Proof: See Appendix A.
According to Lemma 1, we can iteratively compute

, where minimizes ,
until the the minimum energy is reached. Each minimization
is a discrete optimization problem that can be exactly solved
in polynomial time by using network programming techniques
such as maximum flow [42] or minimum cut [43]. We note,
however, that in the iterative scheme just described, it is not
necessary to compute the exact minimizer of
with respect to , but only a binary image that decreases

. Based on this fact, we propose an efficient
algorithm that iteratively searches for improving binary images

.
The following lemma, presented and proved in [15, Ap-

pendix], assures that if there exists an improving binary
image [i.e., ], then there ex-
ists another improving binary image such that the set

is connected in the first-order



DIAS AND LEITO: ALGORITHM 413

Fig. 4. Illustration of a binary partition. SetS in part (a) defines a binary
partition; small rectangles connect first-order neighbors with one element inS

an another inZ � S . The boundary ofS defines a loop. SetS in part (b)
does not define a binary partition.

neighborhood sense, i.e., given two sitesand of there
exists a sequence of first-order neighbors, all in, that begins
in and ends in . We call images with this property
binary partitions of . Fig. 4 illustrates this concept. Set
in part (a) defines a binary partition; small rectangles connect
first-order neighbors with one element in an another in .
The boundary of defines a loop. Set in part (b) does not
define a binary partition.

Lemma 2: Suppose that there exits a binary imagesuch
that

Then, there exists a binary partition of, , such that

Proof: See Lemma 2 in [15, Appendix].
Flyn’s central idea is to search for improving binary parti-

tions , termed in [15] elementary operations (EO’s). Once
is found the wrap-count imageis updated to . If no EO is
possible, then, according to Lemma 2, the energy can
not be decreased by any binary image increment of the actual
argument . Thus, by Lemma 1, has reached its min-
imum.

Given that that the clique potentials ( ) and ( ) are
functions of phase differences computed between first-order
neighbors, to check if a given binary partitionimproves the
energy, one has to compute only the variation of those clique
potentials containing sites on set and on its complement

[sites marked with a small rectangle on Fig. 4(a)], i.e.,
one has to compute clique potentials of only along
loops (this is still true on the boundary of, by taking zero
potentials). Flyn’s algorithm uses graph theory techniques to
represent and generate EOs. The details of the implementation
are presented in Appendix B.

B. Smoothing Step

The smoothing step amounts to computeinggiven by

(23)

where . The function to be maximized in (23)
is not convex due to the terms . Computing
is therefore a hard problem. Herein, we adopt the ICM approach
[40], which, in spite of being suboptimal, yields good results for
the problem at hand.

ICM is a coordinatewise ascent technique where all coor-
dinates are visited according to a given schedule. After some
simple algebraic manipulation of the objective function (23), we
conclude that its maximum with respect to is given by

(24)
where

(25)

(26)

(27)

(28)

There are no closed form solutions for maximization of (24),
since it involves transcendental and power functions. We com-
pute using a simple two-resolution numeric method. First,
we search in the set . Next,
we refine the search by using the set

, where is the result of the first search.
We have used , which leads to the maximum error of

.
The phase estimate depends in a nonlinear way of data

and on the mean weighted phase. The balance between these
two components is controlled by parameter. Fig. 5 displays
solutions of (24) as function of , parameterized by . The
principal phase value is . Assuming that ,
then is well-approximated by the quadratic form

, thus, leading to the linear approximation

(29)

Reintroducing (29) in this condition, one gets
. If this condition is not met, the solution becomes

highly nonlinear on and . This is illustrated by Fig. 5:
as increases, at some point the phase becomes
clipped at , being therefore independent of the observed data

.
In computing the ICM solution, we have updated sites column

by column and each site was updated four times. We have no-
ticed that practically no improvement is obtained by taking a
large number of updates by site. This will be illustrated in the
next section.

C. Incomplete Observations

Now suppose that datais partially observed, i.e., data com-
ponents are not observed on sites . The al-
gorithm presented in Fig. 3 still works, provided that we supply
values for the initial principal phase values in the set
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Fig. 5. Solution of maximization (25) as function of� (the mean principal
phase), parameterized with� and for� = 0.

and take also in this set. The drawback of this is that,
due to almost certain inconsistence of observed phasesfor

and for , the first -step might pro-
duce poor results implying slower converge of the algorithm.
To overcome this drawback, first we estimate phases onas
if the sites in were disconnected from sites in . Next
we maximize the posterior density on given the phase
estimates on .

The maximization of the posterior density on given
the phase estimates on is a quadratic problem that we solve
again using ICM. A simple manipulation of leads
to the conclusion that its maximum with respect to,

is given by (28) with given by (26).
With the purpose of disconnecting the nonobserved sites from

the observed sites, we introduce the line field that signals
a discontinuity between every site in that has a first-order
neighbor in . We introduce also the line field ,
meaning the discontinuities denoted byplus those of .

Algorithm 1 procedure.
Input: , , ,

1) , {Estimate
phase on the observed sites }

2) for to do
3) compute ( -step) given by (17)

{ -step is implemented by steps 1,2 and
3 of the network programming procedure
presented in Appendix B }

4) compute given by (10)
5) for to 4 do
6) for each site update accor-

ding to (24) ( -step) using a two-res-
olution numeric method

7) end for
8) if (stop test true) then
9) break loop for
10) end if

11) end for
{Estimate phase on the nonobserved
sites }

12) for to 10 do
13) for each site update

given by (28)
14) end for

Algorithm 1 shows the complete procedure including
situations where some sites are not observed. Steps 1–11 com-
pute the phase on sites by setting the line field to .
Steps 12–14 compute the phaseon sites .

Concerning computational complexity, the-step is, by far,
the most demanding one, using a number of floating point
operations very close to that required by Flyn’s minimum dis-
continuity algorithm. Since the proposed scheme needs roughly
four -steps, it has approximately four times the complexity
of Flyn’s minimum discontinuity algorithm. To our knowledge
there is no formula for the complexity of Flyn’s algorithm (see
Flyn’s remarks about complexity in [15]). Nevertheless, we
have found, empirically, a complexity of approximately
for the -step.

IV. EXPERIMENTAL RESULTS

The algorithm derived in the previous sections is now applied
to synthetic InSAR pairs generated from both synthetic and real
elevation data. The results are divided into two parts: (a) con-
tinuous surfaces and (b) discontinuous surfaces with unknown
discontinuities. In part (a), we take the line field to be , i.e.,
there are no discontinuities; in part (b) we assume the disconti-
nuity locations are unknown, but belong to the nonobserved data
set . Part (a) deals with InSAR pairs generated from synthetic
elevation data, whereas part (b) deals with an InSAR pair gen-
erated from real elevation data.

Concerning the parameter, we use the maximum likelihood
estimate (see [38, ch. 5]), assuming that image parameters are
constant within 10 10 rectangular windows. When this as-
sumption does not hold, the maximum likelihood estimates are
poor, particularly the coherenceon which depends. If the
phase variation inside 1010 windows is greater than , the
coherence estimate becomes strongly biased. In these cases, we
estimate the coherence based on 22 windows and then apply
a 10 10 rectangular low-pass filter. In any event, there is no
need to have precise estimates ofsince, in our experience, the
algorithm is not sensitive to local fluctuations of this parameter.

Step 4 of the algorithm estimates the smoothness pa-
rameter iteratively according to (10). The algorithm is there-
fore adaptive with respect to this parameter. This scheme yields
good results if the correlation factor is, roughly, greater than
0.7, i.e., the interferogram is not too noisy. Otherwise, phase
estimates tend to be overly smooth, as the data term of the pos-
terior density does not have enough strength to dominate the
smoothing term. A solution is to impose an adequate prior on
that prevents its estimates from growing to much. In this sec-
tion, we push the idea of prior to an extreme and setto a
constant. In a large set of experiments we observed that any
value of leads to good results. Having in mind that
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Fig. 6. Interfergram (���-image) of a Gaussian elevation of height 14� rad and
standard deviations� = 10 and� = 15 pixels. The correlation coefficient
of the associated InSAR pair is� = 0:8.

, where is the variance of the first-order phase
differences and for , then the interval

corresponds to the interval . With
in this interval, it is very unlike to have first-order phase differ-
ences larger in magnitude than(approximately three standard
deviations). This is therefore consistent with the fact that phase
estimation is meaningless when first-order phase differences are
larger than in magnitude in a large number of sites. In this sec-
tion we set .

A. Continuous Surfaces

Fig. 6 displays the interferogram ( image) obtained
with parameters , and . The phase image

is a Gaussian elevation of height 14rad and standard de-
viations and pixels. The magnitude of the
phase difference takes the maximum value of 2.5 and is
greater than 2 in many sites. On the other hand, a correlation
coefficient of implies a standard deviation of the max-
imum likelihood estimate of 0.91. This figure is computed
based on the density ofobtained from the joint density (3). In
these conditions, the task of phase estimation is extremely hard,
as the interferogram exhibits a large number of inconsistencies,
i.e., the observed imageis not consistent with the assumption
of phase differences less thanat a large number of sites. In
the unwrapping jargon we say that the interferogram has a lot
of residues.

The estimates are presented in Fig. 7; part (a) shows

the phase estimate and part (b) shows the phase estimate

.
Fig. 8 plots the logarithm of the posterior density

and the norm of the estimation error
as function of the iteration.

The four nonintegers ticked between two consecutive integers
refer to four consecutive ICM sweeps, implementing the-step
of the algorithm. Notice that the larger increment in

(a)

(b)

Fig. 7. Phase estimate��� ; (a) t = 1 and (b)t = 10.

happens in both steps of the first iteration.
For only the -step produces noticeable increments in the
posterior density. These increments are, however, possible due
to the very small increments produced by the smoothing step.
For there is practically no improvement in the estimates.

Fig. 9 shows the histogram of the error . The
sample mean is 0.038 and the sample variance is 0.1. Notice
that the estimator did not produce any error on thecomponent
of and reduced the initial variance of the interferogram from
0.91 to 0.1.

To rank the algorithm, we applied the following algo-
rithms to the present problem:

• Path following type: Goldstein’s branch cut (GBC) [44];
quality guided (QG) [18], [45]; and mask cut (MC) [46].

• Minimum norm type: Flyn’s minimum discontinuity
(FMD) [15]; weighted least-square (WLS) [19], [47]; and

norm (L0N) (see [7, ch. 5.5]).
• Bayesian type:recursive nonlinear filters [25] and [26]

(NLF).
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Fig. 8. Evolution of the logarithm of the posterior densityln p��� (��� jx; l)

and of theL norm of the estimation error as function of the iterationt. -steps
coincide with integers, whereas ICM sweeps implementing�-step are assigned
to the noninteger part oft.

Fig. 9. Histogram of the error��� � ���.

The path following and minimum norm algorithms were imple-
mented with the code supplied in the book [7], using the fol-
lowing settings: GBC (-dipole yes); QG, MC, (-mode min_var
-tsize 3); and WLS (-mode min_var -tsize 3, -thresh yes). The
unweighted versions of the FMD and L0N algorithms have been
used in this subsection whereas the weighted version will be
used in the following two subsections.

With the exception of NLF, all the algorithms referred to
above are of the phase unwrapping type. We should be careful,
therefore, in comparing method with those algorithms, as
the former implements simultaneous smoothing and phase un-
wrapping, whereas the latter ones implement only the unwrap-
ping step. This means that the estimates produced by the phase
unwrapping methods depend on the type of smoothing applied
previously to the interferogram. For this reason we considered
two different scenarios: (a) nonsmooth interferogram; and (b)

TABLE I
L NORM OF THE ESTIMATION ERRORS OF �M AND OF CLASSICAL

UNWRAPPINGALGORITHMS. THE LEFT COLUMN PLOTS RESULTSBASED ON

THE MAXIMUM LIKELIHOOD ESTIMATE OF��� USING A3 � 3 RECTANGULAR

WINDOW; THE RIGHT COLUMN PLOTS RESULTS BASED ON THE

NON-SMOOTH��� GIVEN BY (7)

smooth interferogram produced by a maximum likelihood esti-
mate of , using a 3 3 rectangular window (see [38, ch. 5]).

Table I displays the norm of the estimation error
for each of the classic algorithms referred to above. Apart from
the proposed scheme, all the algorithms produced poor
results, some of them catastrophic. The reasons depend on the
class of algorithms and are basically the following.

• In the path following and minimum norm methods the
noise filtering is the first processing step and is discon-
nected from the phase unwrapping process. The noise fil-
tering assumes the phase to be constant within given win-
dows. In data sets such as the one at hand, this assumption
is catastrophic, even using small windows. On the other
hand, if the smoothing step is not applied, even if the al-
gorithm is able to infer most of the 2-multiples, the ob-
servation noise is fully present in the estimated phase.

• The recursive nonlinear filtering solutions [25] and [26]
fail because they use only the past observed data, in the
lexicographic sense, to infer the phase.

As a final note with respect to this data set, we call attention
to the estimation errors of the first-step and of the FMD algo-
rithm: these errors have norms of approximately 0.9 and 3.4,
respectively. This difference illustrates what was said in the pre-
vious section: despite the structural similarity between the FMD
algorithm and the -step, the objective functions they minimize
are different, leading to different estimates. The former basically
minimizes an norm, while the latter minimizes an norm.

In this data set the FMD algorithm, contrary to the first-step,
was not able to unwrap part of the top of the Gaussian eleva-
tion. We do not have, however, any evidence that-step always
produces better results; for example, it is well known that the

norm is more robust to outliers than the norm. Hence,
the FMD algorithm should yield better results in phase sur-
faces with discontinuities not signaled. Notice, however, that the

-step can easily be modified to minimize any norm with
. This is a topic for future research.

Fig. 10 displays the interferogram obtained from an InSAR
pair with parameters , and . The phase
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Fig. 10. Interferogram (���-image) of a Gaussian elevation of height 7� rad and
standard deviations� = 10 and� = 15. The correlation coefficient of the
associated InSAR pair is� = 0:5.

image is a Gaussian elevation of height 7rad and standard
deviations and . Compared with the pre-
vious example, the maximum phase difference has been reduced
from 2.5 rad to 1.25 and the standard deviation of the error

increased from 0.91 to 1.33. The smaller phase rate allows
now filtering the interferogram in small windows without de-
stroying the phase information as happened in the previous data
set. Thus, phase estimation from this data set is not as hard as
the previous case.

The estimates are displayed in Fig. 11; part (a) shows

the phase estimate and part (b) shows the phase estimate

. Table II presents the norm of the estima-
tion error for each of the classic algorithm referred above. We
consider however two smoothing filters: one with support of
4 4 pixels and the other with 3 3 pixels. The best phase es-
timate given by FMD and L0N methods exhibit an error ap-
proximately four times larger than the error of the proposed
estimate. Notice the high sensitivity of the phase unwrapping
methods to dimension of the filter. What happens is that the
4 4 smoothing filter destroys the phase information in areas
of high phase rate, jeopardizing the success of phase unwrap-
ping methods. On the other side, filters smaller than (33) do
not enforce enough smoothness on the interferogram.

B. Discontinuous Surfaces With Unknown Discontinuities

In this section, we use a simulated InSAR example supplied
in the book [7]. The data set was generated based on a real dig-
ital elevation model of mountainous terrain around Long’s Peak,
CO, using a high-fidelity InSAR simulator that models the SAR
point spread function, the InSAR geometry, the speckle noise
and the layover and shadow phenomena. For a detailed descrip-
tion of the simulator, see [7, ch. 3] and the references therein.

Fig. 12 shows a contour plot of the terrain used to gen-
erate the InSAR data. The size of the image in pixels is
458(azimuth) 152(range). To compare the estimated surfaces
directly with the “ground truth,” the surface has been resampled
in the SAR slant plane. Figs. 13 and 14 show the maximum like-

(a)

(b)

Fig. 11. Phase estimate��� : (a) t = 1 and (b)t = 10.

TABLE II
AS IN FOR A GAUSSIAN ELEVATION OF HEIGHT 7� rad AND STANDARD

DEVIATIONS � = 10 AND � = 15. THE CORRELATION COEFFICIENT OF

THE ASSOCIATEDINSAR PAIR IS � = 0:5

lihood estimate of the interferogram and the correlation factor,
using a rectangular window of size 4(azimuth)4(range) and
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Fig. 12. Contour plot of the terrain used to generate the InSAR data. The
surface, a digital terrain elevation model of mountainous terrain around Long’s
Peak, CO, has been resampled in the SAR slant plane; it can be therefore directly
compared with the estimated surfaces. (Data distributed with [7]).

Fig. 13. Interferogram computed from the InSAR data generated based on the
surface shown in Fig. 12. The layover phenomenon leads to very close fringes
in some regions of the interferogram. (Data distributed with [7]).

taking . The two flat regions in gray on the top and on
the bottom of Fig. 13 correspond to undefined data due to the
projection of the high terrain relief into the slant plane.

The SAR layover phenomenon leads to very close fringes in
some regions of the interferogram, clearly visible in Fig. 13. In
these regions, the assumption of constant phase within small re-
gions is far from being true, leading to incorrect estimates of
the principal phase values in the SAR layover regions. There-
fore, the principal phase values in these regions should not be
used, as they are inconsistent with the true phase values. In terms
of the algorithm, this means that the phase should be in-
ferred from the data observed in a subsetof .

To infer the set we have adopted the phase derivative and
thresholding procedures presented in [7, ch. 3]. Fig. 15 repre-

Fig. 15. Quality map relative to the interferogram shown in Fig. 13, computed
using the phase derivative and thresholding procedures presented in [7, ch. 3].
Black color signals sites where the interferogram is of low quality.

Fig. 14. Correlation factor estimated from the InSAR data generated based
on the surface shown in Fig. 12. Notice the very low and erroneous estimated
correlation in the regions of SAR layover. The large low-correlation region on
the left of the image is due to image misregistration. (Data distributed with [7].)

sents in white the set of sites . Notice that the sites in black
representing the set are mostly in the layover regions.

To compute the image we need the amplitude
for all image pixels [see definition (7)]. As this data has not
been supplied in the the book [7], we have generated it under
the assumption that the electronic noiseis zero and that the
power for all image pixels. This choice is
justified noting that if the density of does not depend
on .

Fig. 16 shows the error map produced by the
algorithm. We have only taken (two iterations) as

more iterations do not improve the phase estimate. Larger
errors are confined to the sites signaled as low-quality in the
quality map shown in Fig. 15 (i.e., sites in the set ). This
was to be expected as the phase in these region is determined
by the estimated phase along its boundary. The overall phase
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Fig. 16. Error map imagefj� � � jg produced by the �M algorithm.
Black color denotes an absolute error greater or equal to2�. Larger errors are
confined to the low-quality sites signaled in the quality map shown in Fig. 15.

TABLE III
COMPUTATION TIMES FOR THELONG’S PEAK EXAMPLE IN A PC WORKSTATION

EQUIPPEDWITH A 350 MHZ PENTIUM-III CPU

estimate is of good quality as confirmed by theestimate error
of 0.78. This value decreases to 0.05 if we measure the error only
in the observed set .

We have applied FMD and L0N phase unwrapping algo-
rithms to the same data set using the same quality map. These
algorithms were selected because they are ranked as the best
phase unwrapping techniques (see [7, ch. 6] and [48]). The

estimate error is 1.53 for the FMD algorithm and 0.91 for
the L0N algorithm. These values decrease to 0.1 and 0.09,
respectively, if the error is measured only over the observed set

. The yields the lower error. The improvement over
the L0N algorithm is almost a factor of two in the observed set

All results presented in this section were obtained with a
PC workstation equipped with a 350 Mhz Pentium-III CPU.
Table III shows the computation times for the Long’s Peak data
set; the left column refers to the example distributed with book
[7]; the right column refers to data generated synthetically by
upsampling the surface and the correlation with a factor
of two and then generation of a data set according to the ob-
servation model (3). As expected, the computation time of the

algorithm is, approximately, twice the computation time
of the FMD algorithm. Concerning computer complexity, both
algorithms display values that conform to the trend dis-
cussed in Section III.

V. CONCLUDING REMARKS

This paper presents an effective algorithm for absolute
phase estimation in interferometric aperture radar/sonar
(InSAR/InSAS) applications. The Bayesian standpoint was
adopted. The likelihood function, which models the observation
mechanism, is 2-periodic and accounts for interferometric
pair decorrelation and system noise. Thea priori probability
of the absolute phase is modeled by a noncausal first-order
compound Gauss–Markov random field (CGMRF). This prior
is suited to piecewise smooth fields, in the sense that it enforces
smoothness, in a statistical way, between neighboring sites not
split by discontinuities. The adopted framework also models
incomplete data observations.

The CGMRF prior is parameterized by the location of the dis-
continuities, the so-called line field. Due to the periodic struc-
ture of the likelihood function and to the interferometric noise,
the determination of the line field is an ill-posed problem, i.e.,
it can not be uniquely determined from the observed data. The
line field might, however, be inferred using information external
to the absolute phase estimation framework, as is proposed for
example in [35], which aims at the detection of discontinuities
existing between layover and nonlayover areas in InSAR/InSAS
applications by exploiting the spectral shift that exists between
the signal read by the two sensors as function of the along range
local slope. Another approach for handling discontinuities/in-
consistencies is to segment the observed data into a phase-con-
sistent region and its complement and use only the observed
data in the former region to estimate the whole absolute phase.
Our approach accepts both: a discontinuity field and a region of
consistency. These ideas were illustrated with examples in Sec-
tion IV. Detailed procedures aiming at discontinuity detection or
data segmentation are, however, beyond the scope of this paper.

To compute the absolute phase estimate we adopted the max-
imum a posteriori (MAP) criterion. We derived a suboptimal
iterative procedure consisting of two steps per iteration: the first
step, termed the -step, maximizes the posterior density with
respect to the 2 phase multiples; the second step, termed the

-step, maximizes the posterior density with respect to the phase
principal values. The -step is a discrete optimization problem
solved exactly by network programing techniques inspired by
Flyn’sminimum discontinuity algorithm[15]. The -step is
a continuous optimization problem solved approximately by
the iterated conditional modes(ICM) procedure. We named
the proposed algorithm , where the letter stands for
maximization.

The algorithm accounts for the observation noise in a
model-based fashion. More specifically, the observation mech-
anism took into account the electronic noise and the decorrela-
tion noise. This is a crucial feature that underlies the advantage
of the algorithm over the classical path following and min-
imum-norm schemes, mainly in regions where the phase rate is
close to . In fact, theseschemesapproachabsolutephaseestima-
tionbysplittingtheproblemintotwoseparatesteps: in thefirst the
noise in the interferogram is filtered out by applying low-pass fil-
tering; in thesecondstep, termedphaseunwrapping, the2phase
multiples are computed. For high phase rate regions, the applica-
tion of first step make it impossible to recover the absolute phase,
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as the principal values estimates are highly biased. This is in con-
trast with the algorithm, where the first step, the-step, is
an unwrapping applied over the observed interferogram.

To evaluate the performance of the algorithm, it was
applied to two classes of problems: continuous surfaces and dis-
continuous surfaces with unknown discontinuities. In the latter
class, the algorithm was fed with a consistency map using
the phase derivative and thresholding procedures presented in [7,
ch. 3]. In all examples studied we have compared the computed
estimates with those provided by the best path following and
minimum-norm schemes, namely the Goldstein’s branch cut, the
quality guided, the Flyn’s minimum discontinuity, the weighted
least-square and the norm. The proposed algorithm yields
excellent results in all examples considered, performing, in some
cases,muchbetter than thealternative techniques justmentioned.

Concerning computer complexity, the algorithm takes,
approximately, a number of floating point operations propor-
tional to the 1.5 power of the number of pixels. By far, the-step
is the most demanding, using a number of floating point opera-
tions very close to the Flyn’s minimum discontinuity algorithm.
Since the proposed scheme needs roughly four-steps, is has
approximately four times the Flyn’s minimum discontinuity
algorithm complexity.

Concerning futuredevelopments, we foresee the integration of
the principal phase values in the posterior density as a major re-
search direction. If this goal were reached then the wrap-count
image would be the only unknown of the obtained posterior den-
sityand,most importantly, therewouldbenoneedfor iterations in
estimating the wrap-count image. After obtaining this image, the
principal phase values could be obtained using the-step of the

algorithm.

APPENDIX A

PROOF OFLEMMA 1

The structure of the proof is essentially that of Appendix A of
[15]. Define , for . Given that
the energy function depend only on differences between
elements of , we take for . Define

and the wrap-count image sequence
, such that , and

(30)

The energy variation can be
decomposed as

Since by hypothesis, then at least one of the terms
of the above sum is negative. The lemma is proved if we

show that the variation
satisfies , where , for any

. This condition is equivalent to

(31)

for . Introducing (18) into (31), we obtain
, where

(32)

(33)

where and are given by (19) and (20), respec-
tively, computed at the wrap-count image . To prove (31),
we now show that the terms of corresponding to a given site

have positive sum. The same is true concerning.
The difference , for , is a mono-

tone sequence. This is a consequence of the definition (30):
if the sequence is monotone increasing; if

the sequence is monotone decreasing. There-

fore the sequence , for , is also mono-

tone. Define , and . The
sum of terms of corresponding to the site ( ) is

(34)

Since or , the right hand side of (34) is
always nonnegative, as we want to prove. The same reasoning
applies to .

APPENDIX B

-STEP IMPLEMENTATION

Fig. 17 shows an auxiliary graph, whose nodes are interleaved
with the phase sites. The edges denote which wrap-counts are
to be incremented: a leftward (rightward) edge indicates an unit
increment of the wrap-count below (above) the edge. A down-
ward (upward) edge indicates a unit increment of the wrap-count
right (left) of the edge. The algorithm works by creating and ex-
tending paths made of directed edges. When a path is extended
to form a loop, the algorithm performs an EO, removes the loop
from the collection of paths and resumes the path extension.

Assume that the array of auxiliary nodes has indices in the
set . Define the cost of an edge

between the first-order neighbors ( )and ( )
as , where is the wrap-count incre-
ment induced by the edge. With this definitions and having in
attention the structure of [see (18)], we are led to

The values of boundary edges are defined to be zero; i.e.,
.
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Fig. 17. Auxiliary graph to implement Flyn’s algorithm (squared nodes)
interleaved with phase sites (circled and crossed nodes). A leftward (rightward)
edge indicates an unit increment of the wrap-count below (above) the edge. A
downward (upward) edge indicates an unit increment of the wrap-count right
(left) of the edge.

Fig. 17 represents the state of the graph at a given instant.
Assuming that there are no loops, the set of edges defines a
given number of trees. The value of each node, , is the
sum of edge values corresponding to the path between the node
and the tree root. In Fig. 17 there are two trees. We stress that
the node values are real numbers, whereas in Flyn’s algorithm
they are integers. The reason is that our energytakes values
in the nonnegative reals while Flyn’s energy takes values on the
positive integers.

The basic step of Flyn’s algorithm is to revise the set of
paths by adding a new edge. An edge from () to a first-order
neighbor ( ), if not presented, is added if

If then the new path to ( ) would have a negative or
zero value or would fail to improve an existing path. If the edge
is added, the set of paths is revised in one of the three possible
ways (a minor modification of [15]):

A. Edge Addition

If ( ) is not a root or isolated node and the path to (),
if any, does start at ( ), then the algorithm adds the edge and
leaves existing edges unchanged. If both nodes are isolated, this
starts a new tree. If ( ) is a root, the value of all nodes in the
subtree is increased by .

B. Edge Replacement

If ( ) is a branch node and the path to (), if any, does
not contain ( ), then the algorithm removes the existing edge
to ( ) and adds the new edge. The paths through () are
changed to include the new edge and the values in its subtree
are increased by .

C. Loop Completion

If the path to ( ) contains ( ), then the new edge com-
pletes a loop. The algorithm applies the corresponding EO

. For counterclockwise (clockwise) loops, for those
sites inside (outside) the loop. The edge values along the loop
are updated according to the new wrap-count values. The values
of some paths may become negative or zero, making then in-
valid. To account for this, all the paths containing loop edges
are removed and the values of the resulting isolated nodes are
set to zero.

The dashed edges in Fig. 17 illustrate graph revisions of type
1, 2, and 3. For a more detailed example, see Flyn’s paper [15].

The algorithm alternates between type 1 and type 2 revisions
until a loop is found, performing then a type 3 revision. If, for
any attempt of edge addition , then no loop completion
is possible and, according to Lemma 2 and Lemma 1, the algo-
rithm terminates.
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