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TheZx M Algorithm: A Method for Interferometric
Image Reconstruction in SAR/SAS

José M. B. DiasMember, IEEEand José M. N. LeitddViember, |IEEE,

Abstract—This paper presents an effective algorithm for abso- two antennas in single-pass mode or one antenna in re-
lute phase (not simply modulo-Zr) estimation from incomplete, peat-pass mode) separated by a baseline, it is possible to

noisy and modulo-2r observations in interferometric aperture interferethe two images in such a wav that the common
radar and sonar (INSAR/INSAS). The adopted framework is also flectivity i 9 led out ():I/th tric i
representative of other applications such as optical interferometry, SCENE TENECUVIt/IS cancelied out an € geometric in-

magnetic resonance imaging and diffraction tomography. The formation contained in the scene topography is retained
Bayesian viewpoint is adopted; the observation density is72-pe- in the phase difference.
riodic and accounts for the interferometric pair decorrelation 2) Magnetic resonance imagingystems, where the phase

and system noise; thea priori probability of the absolute phase is
modeled by acompound Gauss—Markov random fiellCGMRF)
tailored to piecewise smooth absolute phase images. We propose

estimation is a necessary tool for determining the mag-
netic field deviation maps. These deviation maps are then

an iterative scheme for the computation of themaximum a pos- used to correct geometric distortions in echo-planar im-
teriori probability (MAP) absolute phase estimate. Each iteration ages [3]. Other applications areas are water and fat sepa-
embodies a discrete optimization step4-step), implemented by ration [4] and dynamic range improvement of phase con-

network programming techniques and an iterative conditional

modes(ICM) step (w-step). Accordingly, the algorithm is termed trast measurements.
ZwM , where the letter M étands for ma;<imization. An important 3) Optical interferometrywhere phase differences are used

contribution of the paper is the simultaneous implementation of to obtain information such as shape, displacement, or vi-
phase unwrapping (inference of the z-multiples) and smoothing bration of a surface [5].

(denoising of the observations). This improves considerably the  4) Diffraction tomographye.g., geophysical tomography or
accuracy of the absolute phase estimates compared to methods acoustic tomography), where the Rythov approximation

in which the data is low-pass filtered prior to unwrapping. A set - X .
of experimental results, comparing the proposed algorithm with yields a mapping between the observed object and the

alternative methods, illustrates the effectiveness of our approach. phase of the measured field [6].
. L In all these applications, the observed data relates to the phase
Index Terms—Bayesian estimation, compound Gauss—Markov . . . ] . .
random, interferometry, iterative conditioonal modes (ICM), net- 'n. a nonlinear and ”0'5}’ way; the non“r.]ea”ty' c_losely relat?q
work progranr'"‘ningl phase unwrapping_ W|th the wave propagatlon phenomena |nVO|Ved N the ach|S|'
tion process, is sinusoidal; the noise is introduced both by the
acquisition mechanism and by the electronic equipment. There-
|. INTRODUCTION fore, the phase should be inferred from noisy modutaeBser-
HE need for estimating phasdrom incomplete, noisy vations, (the so-callegrincipal phase valuesr interferogran).
and modulo-2 observations appears in many classes of The mainstream of phase estimation research in
imaging techniques. Some relevant examples are as followsjnSAR/INSAS usually takes a two step approach: in the
1) Interferometric synthetic aperture rad8nSAR) [1] and first step a filtered interferogram is obtained from noisy
interferometric synthetic aperture songdmSAS) [2]. InSAR/INSAS image pairs; in the second step the phase is
Synthetic aperture radar (SAR) and synthetic apertunewrapped by determiningz2multiples consistent with the
sonar (SAS) systems produce high resolution imagélered interferogram ynwrapping in the interferometric
of the coherent fields backscatterd by the surface beifaygon). The book [7] and the algorithms therein presented and
illuminated. SAR and SAS images are typically acquiredompared are representative of this approach. Throughout this
by a single antenna. By using two antennas (actualbaper we use the teromwrappingto designate the latter step.
Broadly speaking, phase estimation methods can be clas-
sified into four major classes: path following methods,
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In the path following schemes [7], [9], [10] phase ido infer the 2r-multiple component of the phase of a given
unwrapped along selected image paths. In the presence of dite. However, in situations such as undersampling (e.g., topog-
continuities, noise, or undersampling, different paths betwegaphy inducing high phase rates), abrupt features/objects, or the
two points may lead to different phase values. To resolve layyover phenomenon), the smoothness assumption can not be
mitigate theses inconsistencies, heuristic rules are appliedntade. In this case, the principal phase values are inconsistent in
provide path-independent integration. the sense that they do not uniquely determine the phase. Discon-

Minimum-norm phase unwrapping methods cast the unwranuities or inconsistencies may also appear as a consequence of
ping problem as the minimization of a¥ norm [7], [11]. L?> the smoothness step applied by most phase unwrapping algo-
norm (least-squares) has long been used [12], [13]; the lea#tthms; typically, this step assumes that phase is practically con-
squares solution can be computed efficiently by using fast cgtant within small windows, which is not true for high phase rate
sine or Fourier transforms [14]. Works [15] and [16] have praegions. Independently of their origin, phase discontinuities/in-
posed (independently) network programming based algorithieensistencies are the principal source of error in any phase esti-
that minimize theL! norm; this criterion is able to preservemation algorithm that does not take them into account. To fur-
sharp transitions without modeling them explicitly [17]. Thigher complicate the problem, the discontinuity field can not be
ability is further enhanced by using?” norms with0 < p < uniquely determined from the observed data, even in the absence
1. However, these norms lead to hard nonconvex optimizatiofinoise, due to the periodic structure of the observation mech-
problems, with unbearable computational load. A suboptimahism.

LY solution is proposed in [7, ch. 5].

Due to decorrelation (temporal and spatial),.no-return or low Proposed Approach
return areas (e.g., due to layover phenomena in INSAR/INSAS),
the modulo-2 phase estimates corresponding to those areadVe adopt the Bayesian viewpoint. The likelihood function,
might be extremely biased and/or noisy. To handle this problewiiich models the observation mechanism, is-g2riodic
both the path following and the minimum-norm procedures ha@d accounts for the interferometric pair decorrelation and
incorporated quality maps as a measure of confidence on the 81& System noise. Tha priori probability of the phase is
served data at each site (see, e.g., [18] for path following, [19jodeled by a first-order compound Gauss—Markov random
for weighted least-squares and [15] for weighfédnorm). field (CGMRF) [34] tailored to piecewise smooth phase fields.

In a quite different vein and recognizing that phase estimationDue to the periodic structure of the likelihood function,
is an ill-posed problem, papers [20]-[23] have adopted the rdfje discontinuity field in INSAR/INSAS applications can not
ularization framework to impose smoothness on the solutidpe uniquely determined from the observed data. However,
The same objective has been pursued in papers [24]-[29]ibycan be inferred using information external to the phase
adopting a Bayesian viewpoint. Papers [24] and [25] proposstimation framework. The major source of discontinuities
a nonlinear recursive filtering solution to the phase reconstrid- INSAR/INSAS applications is the layover phenomenon
tion. Paper [26] considers the INSAR observation model takifgee, e.g., [7, ch. 3]). The layover areas can be separated
into account not only the image phase, but alsolthekscat- from the nonlayover ones as proposed in [35]. This work
tering coefficientand thecorrelation factorimages, which are exploits spectral shift that exists between the signal read by
jointly recovered from INSAR image pairs. Paper [27] proposéie two sensors as function of the along-range local slope. An
a fractal-based prior and a simulated annealing scheme to c@tiernative approach to handle discontinuities/inconsistencies
pute the phase image. Works [28]-[30], although proposingsato segment the observed data into a phase-consistent region
phase unwrapping approach to phase estimation, can be cigl its complement and use only the observed data in the
sified as Bayesian, since the differences between neighborfagmer region to estimate the whole phase. Our approach
2z-multiples of the phase are modeled as random variables; ggepts both: a discontinuity field and a region of consistency.
phase is unwrapped using mean field inference in [29], probaetailed procedures aiming at discontinuity detection or data
bility propagation in graphical models in [28] and network-flowsegmentation are, however, beyond the scope of this paper.
techniques [31] to approximate the MAP solution in [30]. In papers [24]-[26], following a Bayesian approach, the prior

Methods based on parametric models constrain the phasésta first-order causal GMRF. Taking advantage of this prior
belong to a given parametric model. Works [32] and [33] havand using theeduced-order modglROM) approximation of
adopted low-order polynomials. These approaches yield gadie GMRF [36], the phase is estimated with a nonlinear recur-
results if the low-order polynomials represent accurately tisive filtering technique. Compared with the present approach,
phase. However, in practical applications the entire phase futite main differences concern the prior and the estimation algo-
tion cannot be approximated by a single two-dimensional (2-Bijhm: we use a first-order noncausal CGMRF prior. In terms
polynomial model. To circumvent model mismatches, work [32]f estimation, the noncausal prior implies a batch perspective,
proposes a partition of the observed field where each partitiafhere the phase estimate at each site is based on the complete
element has its own parametric model. observed image. This is in contrast with the filtering technique

In one way or another, most phase estimation algorithms @splemented in the referenced papers, where the phase estimate
sume that the phase difference between two neighboring sitdsa given site is inferred only from past (in the lexicographic
varies smoothly (less than in a deterministic or stochastic sense) observed data.
sense, depending on the paradigm); based on this assumptioip compute the MAP estimate, we derive an iterative pro-
it is possible, by exploiting the neighboring observed phasesdure with two steps per iteration: the first step, termed the
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Z-step, maximizes the posterior density with respect to the fie
of 2 phase multiples; the second step, termedrtistep, max-
imizes the posterior density with respect to the phase princig
values. TheZ-step is a discrete optimization problem solved b
network programming techniques inspired by Flyn's minimur
weighted discontinuity algorithm [15]. The-step is a contin-
uous optimization problem solved approximately byitbeated
conditional modegICM) [37] scheme. Accordingly, we term
our algorithmZ= M, where the lettef/ stands for maximiza-
tion.

As previously mentioned, the smoothing step that many phe
estimation schemes apply prior to unwrapping jeopardizes t
phase unwrapping step in areas of high phase rate. This prob
is minimized in the proposed methodology, as it does not sg
the phase estimation into independent smoothing and unwri
ping steps; these steps are instead implemented simultaneousiy
and implicitly in computing the MAP estimate. The accuracy Qfig 1. Typical interferometric SAR/SAS geometry. The trajectories of sensors
the proposed scheme is in this way considerably improved cosnands. are parallel and separated by the basefindhe height: of a given
pared to the phase unwrapping approaches. terrain element is a known function of the phase: ¢; — ¢, i.e.,h = g(&).

This paper is organized as follows. Section Il introduces the
observation model, the CGMRF prior and the posteriori density. 3) focusing errors originated by the imaging algorithm or
Section Il elaborates on the estimation procedure; namely, we by platform displacements with respect to the nominal
derive solutions for th&-step and for ther-step. Section IV trajectory;
presents results based on synthetic data and on data generatél geometric decorrelation originated by the different ge-
by a simulator fed with real elevation measurements. ometries of each sensor.

We assume that?> = E[|~ 2] = E[|»2|?] and that the cor-

Il. PROPOSEDMODELS relation factore = (E[2123])/6° (also termed thehange pa-

) rameteror degree of coherend@8, ch. 5]) is real. A sufficient
A. Observation Model condition fora to be real is that the difference between the phase

Fig. 1 shows a typical SAR/SAS geometry. The trajectories ofduced by each scattererin andz; has an even density.
sensors; ands; are parallel and separated by the baselhe  Definingz = [z; x»]*, 02 = EJ[n1|?] and assuming that
The heighth of a given terrain element is a functiglip) of the  E[|n;|?] = E[|n2|?], the probability density functiénof = is
phasep = ¢1 — ¢2, Wheregp, and¢, are the propagation path[38, ch. 5]
phases associated to sensor 1 and sensor 2, respectivelygPhase 1 -
is to be inferred fromy; andx,, the complex amplitudes of the Prj(e]¢) = e Qe (3)
backscattered field read by each sensor from a given site. These m|Q
amplitudes are given by

whereQ = E[zz"] is given by

21 =217 40y D) 0% + 02 ab?ed?
— —J¢2 Q= 929 62 2 |- (4)
To =z2€ + 1o (2) ati“e + o,
wherez; andz; are the complex amplitudes originated by the Developing the quadratic form in (3), one is led to
scatterers illuminated by apertures 1 and 2, respectively, and Pats (2]8) = e cos(¢—n) (5)
n, andno are the electronic noise of sensor 1 and sensor 2, @l¢
respectively. o . wherec = ¢(z,6, ) and
Assuming that the surface being illuminated is rough com-
pared to the wavelength, that there are no strong specular reflec- n =arg (x123) (6)
tors and that there arelarge number of scatterers per resolu- 2062 |1 24|
tion cell, then the complex amplitude is complex zero-mean A :—IQI . (7)

circular Gaussian distributed [38, ch. 5]. Noisgsandn, are
also independent (corresponding to different sensors) and comThe likelihood functiorp,,,(x|¢) is 27-periodic with respect
plex zero-mean circular Gaussian distributed. Furthermore, ¥9e¢ with maxima atp = 2xk + 7, for k € Z (Z denotes the

assume that; andn» are independent of; andz,. integer set). Parametgiis a maximum likelihood estimate ¢t
Complex amplitudes; and z, are different due to the fol- The peakiness of (5) abot & +-7, controlled by the parameter
lowing reasons: A, is an indication, in a statistical sense, of how trustworthy the

1) spatial decorrelation originated by image misregistratiofata is.

2) temporal de_correlat'on originated by scatterer displace-g,, compactness, lowercase letters will denote random variables and their
ments (only in repeated-pass mode); values as well.
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Often, the parametey is unknown and must be jointly esti-
mated with the phase. Herein, when necessary, we take the
maximum likelihood estimata,,;, (see [38, ch. 5]). h -

Let¢ = {(/)UKL,J) < Z} andx = {$7J|(L,J) € ZO} ls.]_ E
denote the phase and complex amplitude associated with sites >
Z =1, j)|i,7=1,...,N} (we assume without lack of gen- | l
erality that the images are squared) ahdC Z, respectively. =

Assuming that the componentsxfare conditionally indepen-
dent, then

"" hi+1,j

PuioXId) = ] Pausio, (wigldis) - (8)

ez, Fig. 2. Representation of the site £) and its first-order neighbors along with

the line field variables affecting each pair of neighboring sites.

The conditional independence assumption is valid if the res- . . ] )
olution cells associated with any pair of pixels are disjoint. Usifermer case and assuming a uniform prior;orihe estimate of
ally this is a good approximation, since theint spread func- #» 9ivene, is

tion of the imaging systems is only slightly larger than the cor- S T+ R
responding inter-pixel distance [39]. = ”}CZE = (10)
As stated before, we assume that the observation set of sites ez (AB) vy + (A¢Y)” i

Z, is a subset of the phase sitBsSitesZ — 7, are either not

. . ) which is also the maximum likelihood estimate of this param-
observed or belong to inconsistent phase regions.

eter.
B. Prior Model C. Posterior Density
Imageg is assumed to bgiecewise smoothvith abrupt vari- Consider that the line field procekss known. Invoking the

ations between neighboring regions. These variations are duB#yes rule and noting that |, ;(x|¢,1) = px|¢(x|¢), we ob-
undersampling in areas with high fringe rates, mainly due tain the posterior probability density function@f given , 1),
the presence dayoverphenomena and/or abrupt feature or obas
jects. Whatever their origin, discontinuities of the phasare
the principal source of error in any unwrapping algorithm that Polx1 (9]%,1) o< Pxip (x|9) pop (S[1) (11)
does not take them into account. - ;
Gauss—Markov randqm fieldgl0] are bot_h mathematically \évl:] g;z t(g()e ;?](;t(zgs) irr]]?ct) ((jfffr\;\:jénc?bgm, ere discarded. Intro
and computationally suitable for representing local interactions
and particularly continuity between neighboring pixels. How- (plx,1) o GZ%ZOM cos(@i;—ni;)
ever, the continuity constraint must be discarded for those pixgﬁéb"l ’
in the neighborhood of discontinuities. For this purpose we take o5 Loz, ((A0l) 0i4(a00) Ris) (12)
afirst-order noncausal CGMRF [34] with density
The next section is devoted to maximization of the posterior
density (12) with respect to the phase imageWe stress
that, contrary to the optimization schemes implemented by
phase unwrapping algorithms, we do not constrain explicitly
the modulo2r phase derivatives to be irrotational [7,ch. 2].
© ; oS -
wherel = {v;;,hi;|(i,j) € Z} is the so-calledine field ' evertheless, this (_:onstr_alnt is indirectly enforcc_ad by_ th_e prior:
processii; = (1—vi;), hi; = (1—hyj), A 2} = ($ij—bij1), |fhthe referred r?t;atlonal r|]s notd;f?ro at soane ptzn';”tmshl_mhphes
Af/)fj = ((/)ij - </)z‘—1,j), Zy = {(i,7)]4,5 = 2,...,N} and the pfeS(T'nce 0 erl]rge p ase di erenmsgj or (/)ij whic
p~! means the variance of increme Q;» and A¢y;. Vari- are penalized by the prior.
ableswv;;, hi; € {0,1} serve the purpose of signaling disconti-
nuities. Notice that the continuity constraint between siteg ( R
and ¢, j — 1) is removed if variabley;; is set to one; similarly, ~ The MAP criterion is adopted for computigg Accordingly
the continuity constraint between sités;j) and ¢ — 1, j) is re- -
moved if variabley;; is set to one. Fig. 2 shows the sitef) and briap = arg In£Xp¢lx,l(¢|Xv D. (13)
its four first-order neighbors. A line field variable between each
pair of neighboring sites represents a possible discontinuity. Due to the periodic structure gf,;(x|¢), computing the
Parameter. of (9) controls the smoothness of the phase fieldAP solution leads to a huge nonconvex optimization problem,
asy gets large, the random phase fields generated by (9) becomith unbearable computation burden. Instead of computing the
smoother. Ify is nota priori known it should be dealt with as exact estimate,, , », we resort to a suboptimal scheme that de-
a random variable and either estimated jointly with the phabeers nearly optimal estimates, with a far lower computational
surface or integrated out from the posterior distribution. In tHead.

H N2 o2 T
el (DI ox exp D) Z (Agl5)" v + (A¢7‘,j)2h7‘,j

tjCZ1

I1l. ESTIMATION PROCEDURE
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A. Z-Step

Since the logarithm is strictly increasing amds(vy;; +
27k;; — n;;) does not depend dfy;, solving the maximization
step is equivalent to solving

~(0
Initialization: z,b( - n
fort=1,2,...,
Unwrapping step:

k" = arg ml?xp¢\x.1(7/’(t_l) + 27k[x,1) k =arg HEHE(M"/’) 17)

Smoothing step: where the energ(k|+) is given by

EXp) = Y (A¢h) v+ (A¢%) hy  (18)

~(1

¢( ) _ arg maxpg,. (2 + 27k |x, 1)
w [atl

Termination test:

jE€Z,
if  (stop test == true) with
break loop for ) )
Agly = (2 (kij — ki j—1) — Apjs] 19)
end for A‘/)fj = [27r (ku - ki—lyj) - Az/)zbj] (20)
Fig. 3. Pseudo-code for tfr M algorithm. andAz/;g;. = i -1 — iy aNdAYY, = b1 5 — iy

The energyF (k|v) is a sum of quadratic functions of{ —
Suppose initially thaZ, = Z, i.e., all sites are observed. Letk;_; ;) and &;; — k; ;—1). This is a special case of the so-called

the imagep;; be uniquely decomposed as nearest lattice vector problermwhich, for general positive defi-
nite quadratic forms of;;, is known to be NP-hard [41]. For the
Pij = iy + 2rki; (14) problem at hand, we propose a network programming algorithm

wherek;; = [(¢;; + m)/(27)] € Z (|=] denotes the |argestthatfindsthe exact solution in polynomial time. The algorithm is
integer less than or equal to) is the so-called wrap-count NSPired by Flyn's minimun}w discontinuity approach [15], which
component ofg;; and;; € [—=,7[ is the principal value MNIMIZES the sum of A¢j; + 7 || and||A¢y; + 7 ||. Flyn's

of ¢;;. The MAP estimate (13) can be rewritten in terms Jpbiective function is, in fact, quite different from ours. How-

s s (s ever, both objective functions are the sum of first-order clique
P = {vi;|(4,5) € Z} andk = {k;; [ (i,5) € Z} as potentials depending only aa¢f; and A¢};. This structural
(,7,MAP’ §MAP) similarity allows us to adapt the above ideas to our problem.
The following lemma assures that if the minimumitk|v)
=arg IEf}(qublx,l (% + 27k|x,1) (15 s not yet reached, then there exists a binary imdgé.e., the
elements ofk are all 0 or 1) such thaf(k+ ki) < E (k|b).
=arg {max {maxp[ﬂx:l (¥ + 27k|x, 1)}} . Lemma 1: Let k; andk, be two wrap-counts images such
P Lk that
(16)
E(kalyp) < E(kil9p). (21)

Instead of computing (16), we propose a procedure that suc- . ) )
cessively and iteratively maximizeg,,. (1 + 2rk|x,1) with ~ Then there exists a binary imagk such that

respect tck € ZV° andep € [—x,«[Y . We term this maxi- E (ky + Skl) < E (k 29
mization on setZ and[—w,n[ as theZx M algorithm; Fig. 3 (ea o+ Okleb) (al9). (e2)
shows the corresponding high-level pseudo-code. Proof: See Appendix A. u

The Z=M algorithm is greedy since the posterior density According to Lemma 1, we can iteratively compulitg =
Psix,1(¢|x,1) can not decrease in each step of each iteratiog, ; + sk, whereSk e {0, 1}/\’2 minimizesFE(k; | + 6kt),
Thus, the stationary points of the unwrapping and smoothig@til the the minimum energy is reached. Each minimization
steeps correspond to local maximaggfy1(¢|x,1). Neverthe- is a discrete optimization problem that can be exactly solved
less, the proposed method yields systematically good resultsiragolynomial time by using network programming techniques
we will document in next section. such as maximum flow [42] or minimum cut [43]. We note,

The unwrapping step finds the maximum of the posterior deRowever, that in the iterative scheme just described, it is not
sity pgjx,1(¢[x,1) on a mesh obtained by discretizing each carecessary to compute the exact minimize#gk; _1 + dk|sb)
ordinateg;; according to (14). The first estimaké®) delivered with respect task, but only a binary imagék that decreases
by the unwrapping step is based on the maximum likelihood eB{k;_; + ¢kl|¢). Based on this fact, we propose an efficient
timaten = {#;; | (¢,5) € Z}. Smoothing is next implemented.algorithm that iteratively searches for improving binary images
This is in contrast with the scheme followed by most phasgé.
unwrapping algorithms, where the phase is estimated from arhe following lemma, presented and proved in [15, Ap-
smoothed version af given, for example, by the ML estimate,pendix], assures that if there exists an improving binary
under the assumption that the phasi constant within win- image 6k [i.e., E(k + Sk|¢p) < E(k|¥)], then there ex-
dows of given size. This assumption leads to large errors in arésts another improving binary imagél such that the set
of high phase rate. S51(61) = {(¢,4) € Z|6l;; = 1} is connected in the first-order



DIAS AND LEITO: Z=M ALGORITHM 413

5

E
o

whereg;; = 27k;; +1;;. The function to be maximized in (23)

-L'-j"‘
Se

(] TR RN ] is not convex due to the terms; cos(¢;; — 7:,). Computingy

Tr : e is therefore a hard problem. Herein, we adopt the ICM approach
:.LA n . EﬁO], whtllch, in tsElte gf being suboptimal, yields good results for
ef--38 (seeee € problem at hand. .
J_‘,__‘ . . oe ICM is a coordinatewise ascent technique where all coor-
C 28 ™ "8 dinates are visited according to a given schedule. After some
[ ] ﬁ L a8 aaeee simple algebraic manipulation of the objective function (23), we

a B conclude that its maximum with respectitg; is given by

Fig. 4. lllustration of a binary partition. Se&t; in part (a) defines a binary 7 _ X . N 7 N2
partition; small rectangles connect first-order neighbors with one eleméht in hij = arg s _I?[(?fw Pij cos (ij = 11ij) (z/)” z/)”)

an another inZ — S;. The boundary of5, defines a loop. Sef; in part (b) ’ (24)
does not define a binary partition.

where
neighborhood sense, i.e., given two sitesandss,, of Sy there  ;; =2 Aij (25)
exists a sequence of first-order neighbors, alfinthat begins f‘lii B
in s; and ends ins,,. We call imagessl with this property i =hij + hit1j + vij + Ui j11 (26)
binary partitions ofZ. Fig. 4 illustrates this concept. S8t <);; =¢i; — 27k (27)

in part (a) defines a binary partition; small rectangles connect T T R R
first-order neighbors with one element$ an another inS,.  %ij = Pimrghiy  Gijm10  Ginajhivn  Pigabijn
The boundary of5; defines a loop. Sef; in part (b) does not
: . » (28)
define a binary partition.
Lemma 2: Suppose that there exits a binary imagesuch  There are no closed form solutions for maximization of (24),
that since it involves transcendental and power functions. We com-
putes;; using a simple two-resolution numeric method. First,
E(k+ k) < E(kl#). we search/?ij inthe set{ni/M |i = —M,..., M — 1}. Next,
we refine the search by using the $etio/M + mi/M?|i =
—M,...,M —1}, whereriog/M is the result of the first search.

lij

Then, there exists a binary partition &f 61, such that

We have useds = 20, which leads to the maximum error of
Ek+4é E (kl#). :
( + |"/") < ( W") 7r/(20)2. R
Proof: See Lemma 2 in [15, Appendix]. m The phase estimatg; depends in a nonlinear way of daga

Flyn’s central idea is to search for improving binary partiand onthe mean weighted phasg. The balance between these
tions §1, termed in [15] elementary operations (EO’s). Oite WO components is controlled by parametey. Fig. 5 displays
is found the wrap-count imadeis updated t&+61. Ifno EO s Solutions of (24) as function af;;, parameterized by;;. The
possible, then, according to Lemma 2, the eneffi|+) can  Principal phase value ig = 0. Assuming thafy;; — n;;| <,
not be decreased by any binary image increment of the actth@ncos(¢;; —;;) is well-approximated by the quadratic form
argumentk. Thus, by Lemma 1E(k|4) has reached its min- 1 — (¥i; —7:;)?/2, thus, leading to the linear approximation
imum. | o B2,

Given that that the clique potentiala§;;) and (¢};) are thy ~ = (29)
functions of phase differences computed between first-order i +2
neighbors, to check if a given binary parti.tiélhimproves the. Reintroducing (29) in this condition, one gets; — 7:;| <
energy, one has to compute only the variation of those cliqyg /(s, . + 2). If this condition is not met, the solution becomes
potentials containing sites on s&f(s1) and on its complement highly nonlinear onvy;; and4;;. This is illustrated by Fig. 5:
So [sites marked with a small rectangle on Fig. 4(a)], i.easw;ij — n;;] increases, at some point the phdAs? becomes

one has to compute clique potentials Bfk|s) only along  cjipped attr, being therefore independent of the observed data
loops (this is still true on the boundary &f, by taking zero

potentials). Flyn's algorithm uses graph theory techniques ?Oln computing the ICM solution, we have updated sites column
represent and generate EOs. The details of the mplementa%g,rbommn and each site was updated four times. We have no-

are presented in Appendix B. ticed that practically no improvement is obtained by taking a
) large number of updates by site. This will be illustrated in the
B. Smoothing Step next section.

The smoothing step amounts to computeq'Alngiven by
C. Incomplete Observations
% =arg max , Z Aij cos (¢ij — 1ij) Now suppose that datais partially observed, i.e., data com-
cl=mml™ jjcz ponentsz;; are not observed on sité$ — Z,. The Zx M al-
_H Z (A#,)Q Tij + (A¢;‘,)2 hij (23) gorithm presented in Fig. 3 still works, provided that we supply
2 ije 7 ’ ’ values for the initial principal phase valuﬁg)) inthe setZ — 7,
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11) end for
{Estimate phase on the nonobserved
sites 7 — Z,}
12) for t:=1 to 10 do R
13) for each site (i.j) € Z — Z, update ¢}
given by (28)
14) end for

Algorithm 1 shows the completér M procedure including
situations where some sites are not observed. Steps 1-11 com-
pute the phasg on sitesZ, by setting the line field tdp1’(Z,).
Steps 12-14 compute the phaﬁen sitesZ — Z,.

Concerning computational complexity, téestep is, by far,

' the most demanding one, using a number of floating point
;) 6 4 2 0 2 4 6 g operations very close to that required by Flyn's minimum dis-
vy continuity algorithm. Since the proposed scheme needs roughly
four Z-steps, it has approximately four times the complexity
of Flyn’s minimum discontinuity algorithm. To our knowledge
there is no formula for the complexity of Flyn's algorithm (see
Flyn's remarks about complexity in [15]). Nevertheless, we

and take\;; = 0 alsp i_n this s_et. The drawback of this is thathave found, empirically, a complexity of approximatelN3)
due to almost certain inconsistence of observed phggdsr

(t,7) € Z, andz/jgg) for Z — Z,, the firstZ-step might pro-
duce poor results implying slower converge of the algorithm.
To overcome this drawback, first we estimate phase&¢oas

if the sites inZ — Z, were disconnected from sites #y. Next  The algorithm derived in the previous sections is now applied

we maximize the posterior density éh— Z, given the phase 0 synthetic INSAR pairs generated from both synthetic and real
estimates orZ,. elevation data. The results are divided into two parts: (a) con-

The maximization of the posterior density @nh— Z, given tinuous surfaces and (b) discontinuous surfaces with unknown

the phase estimates &f is a quadratic problem that we solvediscontinuities. In part (a), we take the line field tolbe 0, i.e.,

again using ICM. A simple manipulation PE|x,1(¢A5IX, 1) leads there are no discontinuities; in part (b) we assume the disconti-
to the conclusion that its maximum with respecttg, (i, ;) € nuity locations are unknown, but belong to the nonobserved data

(Z — Z,) is given by (28) withi;; given by (26). setZy. Part (a) deals with INSAR pairs generated from synthetic
With the purpose of disconnecting the nonobserved sites fréf¢vation data, whereas part (b) deals with an InNSAR pair gen-

the observed sites, we introduce the line fié{&, ) that signals €rated from real elevation data. _ o

a discontinuity between every site i, that has a first-order ~Concerning the paramet&rwe use the maximum likelihood

neighbor inZ — Z,. We introduce also the line fieldp1'(Z,), estimate (see [38, ch. 5]), assuming that image parameters are

meaning the discontinuities denotedlplus those of’(Z,). ~ constant within 10< 10 rectangular windows. When this as-
sumption does not hold, the maximum likelihood estimates are

poor, particularly the cohereneeon which A depends. If the

Fig. 5. Solution of maximization (25) as function ¢f (the mean principal
phase), parameterized withand forn = 0.

for the Z-step.

IV. EXPERIMENTAL RESULTS

Algorithm 1 ZwM procedure.

Input: 7, 1, Z,, tmax

1) 1/,/3(0)::77, L=l (7, ){initialization } {Estimate
phase on the observed sites Z,}

2) for t:= 1 to t:=tnax do

3) compute k® (Z-step) given by (17)
{Z-step is implemented by steps 1,2 and
3 of the network programming procedure
presented in Appendix B }

4) compute R given by (10)

5) for n:=1to 4 do R

6) for each site (¢,j) € Z, update z/)i(;) accor-

ding to (24) (w-step) using a two-res-
olution numeric method

7) end for

8) if (stop test == true) then

9) break loop for
10) end if

phase variation inside 10 10 windows is greater than/4, the
coherence estimate becomes strongly biased. In these cases, we
estimate the coherence based on2windows and then apply
a 10x 10 rectangular low-pass filter. In any event, there is no
need to have precise estimates\afince, in our experience, the
algorithm is not sensitive to local fluctuations of this parameter.
Step 4 of theZx M algorithm estimates the smoothness pa-
rameter iteratively according to (10). The algorithm is there-
fore adaptive with respect to this parameter. This scheme yields
good results if the correlation factor is, roughly, greater than
0.7, i.e., the interferogram is not too noisy. Otherwise, phase
estimates tend to be overly smooth, as the data term of the pos-
terior density does not have enough strength to dominate the
smoothing term. A solution is to impose an adequate priqe on
that prevents its estimates from growing to much. In this sec-
tion, we push the idea of prior to an extreme and;s¢b a
constant. In a large set of experiments we observed that any
value of i, € [1,2] leads to good results. Having in mind that
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Fig. 6. Interfergramsif-image) of a Gaussian elevation of heightrlrad and
standard deviations; = 10 ando; = 15 pixels. The correlation coefficient
of the associated INSAR pair és = 0.8.
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u = o2, whereg? is the variance of the first-order phase 50

differencesA¢}; and A¢y; for (i,4) € Z,, then the interval
1 € [1,2] corresponds to the interval € [1/+/2,1]. With o

in this interval, it is very unlike to have first-order phase differ. 3
ences larger in magnitude thar{approximately three standard 20
deviations). This is therefore consistent with the fact that pha 10

estimation is meaningless when first-order phase differences:
larger thanr in magnitude in a large number of sites. In this sec 9
-10,]

100

tion we sety, = 1.5.

A. Continuous Surfaces

Fig. 6 displays the interferogram & {#;,} image) obtained
with parameteré = 1, « = 0.8 ando,, = 0. The phase image
¢ is a Gaussian elevation of height-14ad and standard de-
viationso; = 10 ands; = 15 pixels. The magnitude of the
phase difference\¢; takes the maximum value of 2.5 and is

greater than 2 in many sites. On the other hand, a correlat'q@lrmlxyl@(t)|x7 1) happens in both steps of the first iteration.
coefficient ofor = 0.8 implies a standard deviation of the max+or¢ > 2 only thez-step produces noticeable increments in the
imum likelihood estimatey;; of 0.91. This figure is computed posterior density. These increments are, however, possible due
based on the density gfobtained from the joint density (3). In to the very small increments produced by the smoothing step.

these conditions, the task of phase estimation is extremely hatgy ¢ > 4 there is practically no improvement in the estimates.
as the interferogram exhibits a large number of inconsistencies

i.e., the observed imaggis not consistent with the assumptiorga
of phase differences less thanat a large number of sites. In h
the unwrapping jargon we say that the interferogram has a

of residues.

The Zn M estimates are presented in Fig. 7; part (a) shows
~(1
the ;Jhase estimat,e( ) and part (b) shows the phase estimaitg;

~(10

Fig. 8 plots the logarithm of the posterior density

lnp¢|x71($(t)|x, 1) and the L? norm of the estimation error
l¢—@lI> = N33, (¢ — ¢i;)* as function of the iteration

Fig. 9 shows the histogram of the err{ﬁﬁ}o) —
mple mean is-0.038 and the sample variance is 0.1. Notice
at the estimator did not produce any error onklomponent

tqs and reduced the initial variance of the interferogram from
0.91to 0.1.
To rank theZx M algorithm, we applied the following algo-
hms to the present problem:
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Fig. 7. Phase estimaikm; (@)t = 1 and (b)t = 10.

« Path following type: Goldstein’s branch cut (GBC) [44];

quality guided (QG) [18], [45]; and mask cut (MC) [46].

e Minimum norm type: Flyn’s minimum discontinuity
(FMD) [15]; weighted least-square (WLS) [19], [47]; and

The four nonintegers ticked between two consecutive integers L° norm (LON) (see [7, ch. 5.5]).

refer to four consecutive ICM sweeps, implementingthstep
of the Zx M algorithm. Notice that the larger increment in

« Bayesian type:recursive nonlinear filters [25] and [26]

(NLF).
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3 x10 1 TABLE |
! ! j ! L? NORM OF THE ESTIMATION ERRORS OFZ7 M AND OF CLASSICAL
ICM sweeps UNWRAPPING ALGORITHMS. THE LEFT COLUMN PLOTS RESULTSBASED ON
L THE MAXIMUM LIKELIHOOD ESTIMATE OF i USING A3 X 3 RECTANGULAR
10.8 WINDOW; THE RIGHT COLUMN PLOTS RESULTS BASED ON THE
Inp,,, @OIxD
ol > NON-SMOOTH 7 GIVEN BY (7)
n 2
_ 106 [l
= 5 Algorithm | Smooth n  Non-smooth 0
[=1 I
= = _
sl loa ZmM 0.1
GBC 48.0 7.0
QG 10.0 2.2
! 192 MC 40.8 28.6
A Y . .
169 — I
FMD 224 34
050 ... ; P T 0
1 5 3 4 5 s 7 8 WLS 8.8 3.5
iteration - t LON 24.1 2.6
~(1) NLF - 40.1

Fig. 8. Evolution of the logarithm of the posterior denslity;(mx’l(qﬁ |x,1)

and of theZ.? norm of the estimation error as function of the iteratiod-steps
coincide with integers, whereas ICM sweeps implementirgiep are assigned ] ] o )
to the noninteger part of smooth interferogram produced by a maximum likelihood esti-

mate ofx, using a 3x 3 rectangular window (see [38, ch. 5]).
Table | displays thé.?> norm of the estimation errds — ¢||?

1800 ' ' ' ’ ' for each of the classic algorithms referred to above. Apart from
1600+ { the proposedn M scheme, all the algorithms produced poor
results, some of them catastrophic. The reasons depend on the
1400+ 1 class of algorithms and are basically the following.
1200 . * In the path following and minimum norm methods the
> noise filtering is the first processing step and is discon-
21000 : n fi
g nected from the phase unwrapping process. The noise fil-
g s00- ] tering assumes the phase to be constant within given win-
= dows. In data sets such as the one at hand, this assumption
600~ is catastrophic, even using small windows. On the other
hand, if the smoothing step is not applied, even if the al-
400+ . . . .
gorithm is able to infer most of thes2multiples, the ob-
200+ 1 servation noise is fully present in the estimated phase.
» The recursive nonlinear filtering solutions [25] and [26]
9% > = 0 1 > 3 fail because they use only the past observed data, in the
phase error lexicographic sense, to infer the phase.

As a final note with respect to this data set, we call attention
to the estimation errors of the firgtstep and of the FMD algo-
rithm: these errors havk? norms of approximately 0.9 and 3.4,
The path following and minimum norm algorithms were impletespectively. This difference illustrates what was said in the pre-
mented with the code supplied in the book [7], using the fo¥ious section: despite the structural similarity between the FMD
lowing settings: GBC (-dipole yes); QG, MC, (-mode min_vaglgorithm and the-step, the objective functions they minimize
-tsize 3); and WLS (-mode min_var -tsize 3, -thresh yes). Tigge different, leading to different estimates. The former basically
unweighted versions of the FMD and LON algorithms have be@finimizes anl* norm, while the latter minimizes ab* norm.
used in this subsection whereas the weighted version will beln this data set the FMD algorithm, contrary to the fiésstep,
used in the following two subsections. was not able to unwrap part of the top of the Gaussian eleva-

With the exception of NLF, all the algorithms referred tdion. We do not have, however, any evidence thatep always
above are of the phase unwrapping type. We should be carefiduces better results; for example, it is well known that the
therefore, in comparing~ M method with those algorithms, asL' norm is more robust to outliers than ti#é norm. Hence,
the former implements simultaneous smoothing and phase tie FMD algorithm should yield better results in phase sur-
wrapping, whereas the latter ones implement only the unwrédpees with discontinuities not signaled. Notice, however, that the
ping step. This means that the estimates produced by the phé&sstep can easily be modified to minimize ah§ norm with
unwrapping methods depend on the type of smoothing applied> 1. This is a topic for future research.
previously to the interferogram. For this reason we consideredFig. 10 displays the interferogram obtained from an INSAR
two different scenarios: (a) nonsmooth interferogram; and (pair with parameter8 = 1, « = 0.5 ando,, = 0. The phase

Fig. 9. Histogram of the errd}i“m — ¢.
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Fig. 10. Interferogramf-image) of a Gaussian elevation of heightrad and
standard deviations; = 10 ando; = 15. The correlation coefficient of the A )
associated INSAR pairis = 0.5. Tenth iteration

image¢ is a Gaussian elevation of height Tad and standard
deviationso; = 10 ando; = 15. Compared with the pre-
vious example, the maximum phase difference has beenredu ,,
from 2.5 rad to 1.25 and the standard deviation of the err
n:; increased from 0.91 to 1.33. The smaller phase rate allo
now filtering the interferogram in small windows without de- 10
stroying the phase information as happened in the previous d
set. Thus, phase estimation from this data set is not as harc 0
the previous case.

TheZr M estlmates are displayed in Fig. 11; part (a) shov»lo R

the phase esumatﬁ and part (b) shows the phase estimat >

$( ” Table I presents thé&? norm ||¢ — ¢||2 of the estima-
tion error for each of the classic algorithm referred above. V'
consider however two smoothing filters: one with support ¢ 5 50 50
4 x 4 pixels and the other with 8 3 pixels. The best phase es-

timate given by FMD and LON methods exhibit &4 error ap- ()

i
{/f/"lll"ll 0"““"‘:“‘

////l"l ' ”“:‘\:“} {b)
" "'u’o“" ‘f:‘:}e‘e‘
gy

proximately four times larger than tHe’ error of the proposed Fig. 11. Phase estimage"’: (a)¢ = 1 and (b)t = 10.
estimate. Notice the high sensitivity of the phase unwrapping
methods to dimension of the filter. What happens is that the TABLE I

AS IN FOR A GAUSSIAN ELEVATION OF HEIGHT 77 rad AND STANDARD

4 x 4 smoothing filter destroys the phase information in areas,
EVIATIONS o; = 10 AND Tg; = 15. THE CORRELATION COEFFICIENT OF
of high phase rate, jeopardizing the success of phase unwrap- THE ASSOCIATEDINSAR PARR IS a = 0.5
ping methods. On the other side, filters smaller thar & do _
not enforce enough smoothness on the interferogram. g — 9|
Algorithm | Smooth 1 (4 x 4) Smooth 1 (3 x 3) Non-smooth 7
B. Discontinuous Surfaces With Unknown Discontinuities 7~ B - 0.18
In this section, we use a simulated INSAR example supplii g 25 0.95 624
in the book [7]. The data set was generated based on a real «QG 60 105 5 % 10°

ital elevation model of mountainous terrain around Long’s Pee

CO, using a high-fidelity INSAR simulator that models the SAl MC 62 272 5% 10°
point spread function, the INSAR geometry, the speckle noi F'MD 23 0.81 3.95
and the layover and shadow phenomena. For a detailed desc WLS 165 147.4 683
tion of the simulator, see [7, ch. 3] and the references thereir 1 gN 21 0.87 43

Fig. 12 shows a contour plot of the terrain used to gely
erate the INSAR data. The size of the image in pixels s
458(azimuth)x 152(range). To compare the estimated surfaces
directly with the “ground truth,” the surface has been resamplétlood estimate of the interferogram and the correlation factor,
in the SAR slant plane. Figs. 13 and 14 show the maximum likasing a rectangular window of size 4(azimughd(range) and

- - 2 % 10°
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Fig. 15. Quality map relative to the interferogram shown in Fig. 13, computed
using the phase derivative and thresholding procedures presented in [7, ch. 3].
Fig. 12. Contour plot of the terrain used to generate the INSAR data. TBeack color signals sites where the interferogram is of low quality.

surface, a digital terrain elevation model of mountainous terrain around Long’s

Peak, CO, has been resampled in the SAR slant plane; it can be therefore directly

compared with the estimated surfaces. (Data distributed with [7]).

iR
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. S0
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£ FEod4
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E
._1
w04

Azinuathikm]

fl 2 0.4 o6 R ] 1,2 1.4 1.6 Fig. 14. Correlation factor estimated from the INSAR data generated based
Azlmaathi ki) on the surface shown in Fig. 12. Notice the very low and erroneous estimated
correlation in the regions of SAR layover. The large low-correlation region on

Fig. 13. Interferogram computed from the INSAR data generated based ontﬁl%left of the image is due to image misregistration. (Data distributed with [7].)
surface shown in Fig. 12. The layover phenomenon leads to very close fringes
in some regions of the interferogram. (Data distributed with [7]). sents in white the set of sité,. Notice that the sites in black
representing the séf — Z,, are mostly in the layover regions.
takingo,, = 0. The two flat regions in gray on the top and on  To compute the imagé\;,;} we need the amplitudir;z-]|
the bottom of Fig. 13 correspond to undefined data due to tfe all image pixels [see definition (7)]. As this data has not
projection of the high terrain relief into the slant plane. been supplied in the the book [7], we have generated it under
The SAR layover phenomenon leads to very close fringestime assumption that the electronic noisgis zero and that the
some regions of the interferogram, clearly visible in Fig. 13. Ipower§? = E[|x|?] = 1 for all image pixels. This choice is
these regions, the assumption of constant phase within smalljtestified noting that ifs,, = 0 the density of\ does not depend
gions is far from being true, leading to incorrect estimates oh 6.
the principal phase values in the SAR layover regions. There-Fig. 16 shows the error maﬁ}fb\g) — ¢;|} produced by the
fore, the principal phase values in these regions should notdeM algorithm. We have only taken= 2 (two iterations) as
used, as they are inconsistent with the true phase values. In temwseZ» M iterations do not improve the phase estimate. Larger
of theZ= M algorithm, this means that the phase should be iefrors are confined to the sites signaled as low-quality in the
ferred from the data observed in a suh8gtof 7. quality map shown in Fig. 15 (i.e., sites in the et Z,). This
To infer the setZ, we have adopted the phase derivative anslas to be expected as the phase in these region is determined
thresholding procedures presented in [7, ch. 3]. Fig. 15 rept®y the estimated phase along its boundary. The overall phase



DIAS AND LEITO: Z=M ALGORITHM

R}
- o
S |

]
E :
vrid

‘.
L]
2 l.-l'-' it

i 0.5 1 1.5
Azimaibi km )
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V. CONCLUDING REMARKS

This paper presents an effective algorithm for absolute
phase estimation in interferometric aperture radar/sonar
(INSAR/InSAS) applications. The Bayesian standpoint was
adopted. The likelihood function, which models the observation
mechanism, is 2-periodic and accounts for interferometric
pair decorrelation and system noise. Tariori probability
of the absolute phase is modeled by a noncausal first-order
compound Gauss—Markov random field (CGMRF). This prior
is suited to piecewise smooth fields, in the sense that it enforces
smoothness, in a statistical way, between neighboring sites not
split by discontinuities. The adopted framework also models
incomplete data observations.

The CGMREF prior is parameterized by the location of the dis-
continuities, the so-called line field. Due to the periodic struc-
ture of the likelihood function and to the interferometric noise,
the determination of the line field is an ill-posed problem, i.e.,

Black color denotes an absolute error greater or equairtd_arger errors are it can not be uniquely determined from the observed data. The
confined to the low-quality sites signaled in the quality map shown in Fig. 15jne field might, however, be inferred using information external

TABLE Il

COMPUTATION TIMES FOR THELONG' S PEAK EXAMPLE IN A PC WORKSTATION

EQUIPPEDWITH A 350 MHz PENTIUM-III CPU

Computation Time (sec.)

Algorithm | 152 x 458 304 x 916

ZmM 220 1660
FMD 100 780
LON 330 1300

estimate is of good quality as confirmed by th&estimate error

to the absolute phase estimation framework, as is proposed for
example in [35], which aims at the detection of discontinuities
existing between layover and nonlayover areas in INSAR/INSAS
applications by exploiting the spectral shift that exists between
the signal read by the two sensors as function of the along range
local slope. Another approach for handling discontinuities/in-
consistencies is to segment the observed data into a phase-con-
sistent region and its complement and use only the observed
data in the former region to estimate the whole absolute phase.
Our approach accepts both: a discontinuity field and a region of
consistency. These ideas were illustrated with examples in Sec-
tion IV. Detailed procedures aiming at discontinuity detection or
data segmentation are, however, beyond the scope of this paper.
To compute the absolute phase estimate we adopted the max-

of 0.78. This value decreases to 0.05 if we measure the error oimyum a posteriori (MAP) criterion. We derived a suboptimal

in the observed sef.

iterative procedure consisting of two steps per iteration: the first

We have applied FMD and LON phase unwrapping algstep, termed th&-step, maximizes the posterior density with
rithms to the same data set using the same quality map. Theggpect to the 2 phase multiples; the second step, termed the
algorithms were selected because they are ranked as the bestep, maximizes the posterior density with respectto the phase
phase unwrapping techniques (see [7, ch. 6] and [48]). Thencipal values. Th&-step is a discrete optimization problem
L? estimate error is 1.53 for the FMD algorithm and 0.91 fogolved exactly by network programing techniques inspired by
the LON algorithm. These values decrease to 0.1 and 0.63%n’sminimum discontinuity algorithnj15]. The =-step is
respectively, if the error is measured only over the observed getontinuous optimization problem solved approximately by
Zy. TheZx M yields the lowelL? error. The improvement over the iterated conditional mode$iCM) procedure. We named
the LON algorithm is almost a factor of two in the observed s#he proposed algorithrdn M, where the lettefl/ stands for

Zy.

maximization.

All results presented in this section were obtained with a TheZ#x M algorithm accounts for the observation noise in a
PC workstation equipped with a 350 Mhz Pentium-1ll CPUnodel-based fashion. More specifically, the observation mech-

Table Il shows the computation times for the Long’s Peak dasaism took into account the electronic noise and the decorrela-
set; the left column refers to the example distributed with bodion noise. This is a crucial feature that underlies the advantage
[7]; the right column refers to data generated synthetically mf theZx A algorithm over the classical path following and min-
upsampling the surfaceé and the correlatiomx with a factor imum-norm schemes, mainly in regions where the phase rate is
of two and then generation of a data set according to the altesetar. Infact, these schemes approach absolute phase estima-
servation model (3). As expected, the computation time of thien by splitting the problemintotwo separate steps: inthefirstthe
Zw M algorithm is, approximately, twice the computation timaoise in the interferogram is filtered out by applying low-pass fil-
of the FMD algorithm. Concerning computer complexity, botkering; inthe second step, termed phase unwrappingsthb@se
algorithms display values that conform to #¥éN?) trend dis- multiples are computed. For high phase rate regions, the applica-
cussed in Section lIl. tion of first step make itimpossible to recover the absolute phase,



420 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 11, NO. 4, APRIL 2002

as the principal values estimates are highly biased. Thisisincéor ¢ = 1,...,n. Introducing (18) into (31), we obtaifi <
trast with theZz M algorithm, where the first step, tiZestep, is  S* + S, where
an unwrapping applied over the observed interferogram. ) ) )
To evaluate the performance of tie M algorithm, it was sh=3" [(A¢Z§t)) - (A¢§}<t—1)) + (A(/)Z.(O))
applied to two classes of problems: continuous surfaces and dis- ;
continuous surfaces with unknown discontinuities. In the latter 1(0) nt) ni—1\2]
class, theZ« M algorithm was fed with a consistency map using - (A%' T A — Adyy ) } Vij (32)
the phase derivative and thresholding procedures presentedin [7, 9 9 9
ch. 3]. In all examples studied we have compared the computed S* = {(A@'j@)) - (A@'j@*l)) + A¢fj<°>)
estimates with those provided by the best path following and ij
minimum-norm schemes, namely the Goldstein’s branch cut, the 5(0) w(t) wt—1\2] 5
quality guided, the Flyn’'s minimum discontinuity, the weighted - (A¢ij T A — Ay ) } hi (33)
least-square and thB” norm. The proposed algorithm yields
excellentresults in all examples considered, performing, in som(aereA¢Z(t) and A(j)fj(t) are given by (19) and (20), respec-
cases, much better than the alternative techniques just mentioftiggly, computed at the wrap-count imagé’. To prove (31),
Concerning computer complexity, tier M algorithm takes, we now show that the terms 6f* corresponding to a given site
approximately, a number of floating point operations propori, ) ¢ Z have positive sum. The same is true concerrfitig
tional to the 1.5 power of the number of pixels. By far, thetep  The differencet(? — k), for ¢ = 0,...,n, is a mono-
is the most demanding, using a number of floating point opef@me sequence. This is a consequence of the definition (30):
tions very close to the Flyn’s minimum discontinuity algorithmis Ak;; > Ak; ;1 the sequence is monotone increasing; if
Since the proposed scheme needs roughly Zoeteps, is has A, < Ak, ;_, the sequence is monotone decreasing. There-

approximately four times the Flyn’s minimum discontinuitxcore the SequenC%Ad)(L(t)} fort — 0 . is also Mono-
algorithm complexity. ij [ yeeey T

Concerning future developments, we foresee the integratiorf@fe. Definen = A(/JZ(O), b= A_¢£}(t71) ande = _A</>Z'(t)- The
the principal phase values in the posterior density as a major & of terms ofs” corresponding to the sité, () is
search direction. If this goal were reached then the wrap-count , , 5
image would be the only unknown of the obtained posterior den- ¢ — %" +a” — (@=b+c) =20b—a)c—b). (34)
sity and, mostimportantly, there would be no needforlteranonsgincea <b<cora>b> c the right hand side of (34) is

estimating the wrap-countimage. After obtaining thisimage, ”%ﬁways nonnegative, as we want to prove. The same reasoning
principal phase values could be obtained usingrttstep of the applies toS” =

Zw M algorithm.

APPENDIX B
APPENDIX A

Z-STEP IMPLEMENTATION
PROOF OFLEMMA 1 ) N )
Fig. 17 shows an auxiliary graph, whose nodes are interleaved

The structure of the proof is essentially that of Appendix A Qfith the phase sites. The edges denote which wrap-counts are
[15]. Define Ak;; = [koli; — [kulij, for (i,j) € Z. Giventhat 4 e incremented: a leftward (rightward) edge indicates an unit
the energy functio(k|¢) depend only on differences betweennrement of the wrap-count below (above) the edge. A down-
elements ok, we takeAk;; > 0for (4,5) € Z. Definen = \yarq (upward) edge indicates a unitincrement of the wrap-count
max;;(Aki;) and the wrap-count image sequerft€”), ¢ = right (left) of the edge. The algorithm works by creating and ex-
0,...,n}, such thak(® = k;, k™ =k, and tending paths made of directed edges. When a path is extended

kff) _ kg»)) +min (¢, Akij), t=0,....n (30) to form a loop, the algorithm performs an EO, removes thg loop
from the collection of paths and resumes the path extension.

The energy variatiodE = E(kq|$) — E (ki[¢) can be  Assume that the array of auxiliary nodes has indices in the

decomposed as set{(i,7)|i,7 = 1,...,N + 1}. Define the cost of an edge
n oV (i,7;¢, 5') between the first-order neighbots, (j")and ¢, j)
AE=>[E (k<t)|1/;) - E (k“f”h/z)]. asE(k[y) — E(k + 6k|s), wheredk is the wrap-count incre-
t=1 e ment induced by the edge. With this definitions and having in

attention the structure df(k|v) [see (18)], we are led to
SinceAE < 0 by hypothesis, then at least one of the terms

AE® of the above sum is negative. The lemma is proved if we §V(@i,5;4,j— 1) =—4n (7r + A(/);;j_l) hij—1

show that the variatioE® = E(k® 4 §k®|ep) — E(k?|4) 8V (i,j — Lii,j) = — 4 (7 — A@Y ;) hijos

satisfiess E®) < AE®, wheresk® = k® — k(=1 for any . o W

t = 1,...,n. This condition is equivalent to OV(i = 1,534, 5) = —dm (m + AG[y ;) B
8V (i, 551 = 1,j) = — 4 (7 = Apjy ;) viey ;-

0<E (k<t> |¢) _E (k(t‘l)h/;)
© ® (t=1) © The values of boundary edges are defined to be zero; i.e.,
—k (k +k -k |¢) +E (k |¢) Bl sv(1,5) =6V(N +1,5) =6V(i,1) =6V(i, N +1) =0.
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[o] (o] (o] [o] (o] 81. For counterclockwise (clockwise) 100@8,,.,, = 1 for those
T ® ® ® ® ® sites inside (outsidg) the loop. The edge values along the loop
are updated according to the new wrap-count values. The values
[o] [o] of some paths may become negative or zero, making then in-
l ® ® ® I ® l ® valid. To account for this, all the paths cc_mta_ining loop edges
are removed and the values of the resulting isolated nodes are
—f]— [o] set to zero.
® l ® ® I ® l ® The dashed edges in Fig..17 illustrate graph revisions of type
® M 1, 2, and 3. For a more detailed example, see Flyn's paper [15].
[ k2 B4 - [o] <> [o] The algorithm alternates between type 1 and type 2 revisions
& @ g ® ® ® until a loop is found, performing then a type 3 revision. If, for
\ any attempt of edge additiahV" < 0, then no loop completion
- [o] [o] [o] is possible and, according to Lemma 2 and Lemma 1, the algo-
® ® ® ® ® rithm terminates.
[o] (o] [o] [o] [o]

Fig. 17. Auxiliary graph to implement Flyn's algorithm (squared nodes)
interleaved with phase sites (circled and crossed nodes). A leftward (rightward)
edge indicates an unit increment of the wrap-count below (above) the edge. A[l]
downward (upward) edge indicates an unit increment of the wrap-count right
(left) of the edge.

(2]

Fig. 17 represents the state of the graph at a given instant.
Assuming that there are no loops, the set of edges defines a
given number of trees. The value of each nodé;, ), is the 3]
sum of edge values corresponding to the path between the node
and the tree root. In Fig. 17 there are two trees. We stress thay
the node values are real numbers, whereas in Flyn’s algorithm
they are integers. The reason is that our endigpkes values
. . ) ) 5]
in the nonnegative reals while Flyn’s energy takes values on thé
positive integers.

The basic step of Flyn's algorithm is to revise the set of

paths by adding a new edge. An edge frany) to a first-order el
neighbor ¢, 7/), if not presented, is added if 71

AV =V (i, 5)+ V(i 5;4,5) = V(E,5) > 0. (8]
If AV < 0then the new path ta’( j') would have a negative or (9]

zero value or would fail to improve an existing path. If the edge
is added, the set of paths is revised in one of the three possibe]
ways (a minor modification of [15]):

11
A. Edge Addition =

If (', 7’) is not a root or isolated node and the pathitg),

if any, does start at{, j’), then the algorithm adds the edge and
leaves existing edges unchanged. If both nodes are isolated, this]
starts a new tree. If{, j') is a root, the value of all nodes in the [14]
subtree is increased V.

(12]

[15]
B. Edge Replacement

If (¢/, /) is a branch node and the path tgj), if any, does  [16]
not contain ¢, 3’), then the algorithm removes the existing edge

to (¢, /) and adds the new edge. The paths through') are (17
changed to include the new edge and the values in its subtree
are increased b V. (18]
C. Loop Completion

If the path to , 7) contains {', 7’), then the new edge com- [19]

pletes a loop. The algorithm applies the correspondindkE©O
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