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1. INTRODUCTION 

The decomposition of any positive integer N as a sum of positive-subscripted, distinct, non-

consecutive Fibonacci numbers Fk is commonly referred to as the Zeckendorf decomposition ofN 

(ZD of N, in brief) [10]. This decomposition is always possible and, apart from the equivalent use 

of Fx instead of F2 (or vice-versa), is unique [8]. 

In the past years sequences of integers {alb}, where a and b are certain Fibonacci and/or 

Lucas numbers (Lk), have been investigated from the point of view of the ZD of their terms (e.g., 

see [3], [4], [5]). The aim of this paper is to extend these studies to sequences {ab}. More pre-

cisely, in Section 2 we establish the ZD of mFhFk and ml^^, with h and k arbitrary positive 

integers (possibly subject to some trivial restrictions), for the first few positive values of the inte-

ger m; the ZD of FhLk,FJ?Lk, and FhI?k are also found. In Section 3, after some brief con-

siderations on the ZD of nFn, we analyze certain Fibonacci-Lucas products that emerge from 

particular choices of n. 

All the identities presented in this paper have been established by proving conjectures based 

on behavior that became apparent through the study of early cases of A, k, and n. These conjec-

tures were made with the aid of a multi-precision program including the generation of large-

subscripted Fibonacci numbers. On the other hand, once the identities were conjectured, their 

proofs appeared to be rather easy and similar to one another so that, to save space, we confine 

ourselves to proving but a few among them; this is done in Section 4. Section 5 provides a 

glimpse of possible further investigations. It is worth mentioning that formula (1.4) of [4], namely, 

±M _ M-(/,+i)+, - (-VKh+, - K+t+H)
r
M n n 

(here, Mr stands for either FrorLr), plays a crucial role throughout the proofs. 

2. THE ZD OF SOME FIBONACCI-LUCAS PRODUCTS 

General Remarks 

(a) The identities established in this section involve two integral parameters (namely, k and n) 

and, in most cases, are valid for all positive values of them. Sometimes they hold also for n = 0. 
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In general, some restrictions have to be imposed on k and n to obtain the ZD (as defined in 

Section 1) of the quantities on their left-hand sides. 

(b) The number of addends in the ZD of the quantities under study depends only on the integer k. 

In some cases, it is even independent of k, thus assuming a constant value. In light of [2] and [1] 

(see also [6], p. 147), this fact is not very surprising. 

(c) The usual convention that a sum vanishes whenever the upper range indicator is less than the 

lower one is adopted here. For brevity, we use the notation Fa±b = Fa+b + Fa_b. 

2.1 Fibonacci Products 

Proposition 1: 

F
k

F
k+n = 

k/2 

Z
F
4/+»-2 (A: even), 

7=1 

(k-l)/2 

JWi+ Z X - (*odd). 
7=1 

(2.1) 

Remark 1: Expression (2.1) works for n = 0 as well. In this case it yields the same result as that 

obtained by letting s = 1 in formulas (2.2) and (2.3) of [5]. 

Proposition 2: 

2F
k

F
k+n ~ 1 

(£-2)/2 

^ , + ^ W i + E ^ W i (^even), 
7=1 

{k-\)l2 

+ ̂ + n - i + Z V i (*>3, odd). 
7=1 

(2.2) 

Proposition 3: If n > 2, then 

3F
k

F
k+n = 

(k-4)/2 

F
n +

 F
n+2 + J W 3 +

 F
2k+n + X

 F
4J+»+3 (

k
 *

 4
? © V e n ) , 

7=1 

(k-3)/2 

F
n-l + ^H-2 + ^2*+«-3 +

 F
2k+n + X

 F
4/+,+l (* ^

 5
? ©dd). 

7=1 

(2.3) 

Proposition 4: If w > 3, then 

4i^^ + w = 

(k-4)/2 

F
n-2 + ^,+1 + ^,+3

 +
 ^ W l + X

 F
4,^+4 (* ^

 4
> ^m), 

7=1 

(fc-3)/2 

^-1 +^H-3
 + i

W l + I X + » + 2 (* * 3, Odd). 
7=1 

(2.4) 

Proposition 5: For k, n > 3, the ZD of 5FkFk+n is given by the right-hand side of (2.5) once the 

parity of k has been reversed. This fact becomes apparent upon inspection of (1.6) of [4]. 
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2.2 Lucas Products 

Proposition 6: If n > 3, then 

LjcLk+n ~ i 

F
n-\

 + F
n+1 +

 F
2k+n±\ (k even), 

A:—2 

^-2 + Fn+l + F2k+„+l + X F2J+n+2 (k > 3, odd)' 
(2.5) 

;=i 

Remark 2: The ZD of Z£ is given by (4.2) and (4.3) of [5]. The decomposition (2.5) (k even) 

follows immediately from (17a) of [9]. 

Proposition 7: Ifn>5, then 

^k^k+n ~ 

A?±3
 + F

2k+n±3 (k > 4, even), 

3 k-4 

F
n-A +

 F
2k+n+3 + £ ^ 2 ^ - 3 + Z ^2/+»f4 ( * ^ 5, odd) . 

;=1 /=! 

Proposition 8: If « > 5, then 

4 

I 
^Lk^k+n -

4 

2-J (
F
2j+n-5 + Flj+lk+n-s) 

(k > 4, even), 

3 Jfc-4 

F„_4 + Fn+3 + X F2J+2k+n_3 + £ ŷ+H+4 (* ^
 5
>

 o d d
) -

(2.6) 

(2.7) 

Proposition 9: If « > 6, then 

r 4 

^Lk^k+n -

J L v^3/+«-8 + ^/+2Jt+w-8) (A > 6, even), 
y=i 

3 fc-5 

F„_4 + Fn_2 + F„+1 + £ F3J+2k+n_5 + £ F2y+w+4 (* > 5, odd). 

(2.8) 

2.3 Mixed Products 

That FuU = F2k is a well-known fact (e.g., see I7 of [7]). 

Proposition 10: 

F
k^k+n -

L
k

F
k+n = \ 

X
F
2y+n-i (^even), 

7=1 

l^ + ̂ + « (*odd,n**l), 

F
n+

F
2k+n (^even), 

ix + »- i (*odd>. 

(2.9) 

(2.10) 
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Proposition 11: Ifn>k, then 

Fk Lk+n -

7=1 

Proposition 12: If n > k +1, then 

(k-2)/2 

F
„±k+l + Fn+k-2 + X (

F
4J+n-k + ^ + ^ + 2 ) (* ^

 4
> CVCn), 

(Ar-l)/2 

+ X tfW-t + ̂ iy+»+*) (* ^
 3
> odd). 

(2.11) 

J2.T7 _ 

Fn_k + F„+£_2 + F„+it+1 + F„+3;k (* > 4, even), 

k-\ 

Fn_k + F „ + w + X ^2,+„-Ht+i (* ^ 3, odd). 
(2.12) 

Remark 3: The ZD of Z ^ + w is given by (2.12) above for n > 4. The decompositions (2.9) (k 

odd) and (2.10) (k even) follow immediately from (15b) and (15a) of [9], respectively. Further, it 

is worth mentioning that (30) and (31) of [9] follow by letting n = 1 in (2.10). 

3. ON THE ZD OF nFn 

A brief study of the ZD of nFni beyond being worth undertaking/?er se, allows us to extend 

the results presented in Section 2 by considering some interesting Fibonacci-Lucas products that 

result from particular choices of n. 

Definitions: 

(1) Let f(N) denote the number of addends in the ZD ofN. 

(2) Let Q(n) denote nFn. 

(3) If Fn is in the ZD of Q(n), then n is said to possess the property 2? (n has 2P, in brief). 

We are struck by two particular aspects of the ZD of Q{n) that emerge from a computer 

experiment carried out for 1 < n < 10000. Namely, we observe that 

(i) / [Q(n)] is relatively small, 

(ii) If n has 2?, then n +1 and n + 2 have not, whereas either n + 3 or n + 4 has. 

The numerical evidence leads us to offer the following conjectures. 

Conjecture 1: The ratio of the number of naturals not having 2P to that of those having 2? is 

a
2
 = l + a = l + (l + V5)/2 . 

Conjecture 2: If m < L^ -1, with k > 0, then mLlk^l has 2?. 

Conjecture 3: Ifm< L^^, with £ > 1, then mL^ +1 has 2P. 

Note, As the final draft of the paper was being prepared, the second author and Laura 

Sanchis discovered what seems to be a proof of Conjecture 1. Once the details have been veri-

fied, the proof will appear in a separate paper. 

As for observation (i), we state the following theorem which will be proved in Section 4. 
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Theoreml: If «<Z^+ 1 , then f[Q(n)]<2k + l [cf. (3.1)]. 

The following further results have been establised by us. 

Proposition 13 (see Conj. 2): Both Z^+j and 21^^ have 8P. More precisely, we have 

2A:+1 

2k-\ 

Q\^^2k+l) - ^2L2k+l±2(k+l)
 +

 2^^2j+2Llk+l-'. 2k' 

(3.1) 

(3.2) 

Remark 4: The property 2P becomes apparent in (3.1) and (3.2) for j - k +1 and &, respectively. 

Proposition 14 (see Conj. 3): For & > 2, both L^ +1 and 2 1 ^ +1 have 2?. More precisely, we 

have 

Q(L2k + l) = FL2k+l + l+FL2k±2k+h 

Q(
2L

2k + 1) = ^ 2 / ^ + 1 +FlLu±2k-l
 +F

2Llk±2h+2-

Proposition 15: For ^ > 3, Z^ - 3 has 2?. More precisely, we have 

(*-4)/2 

2(4-3) = 

^V*-3 +
 F

i*-6 + ̂ - 3 +
 F
Lk-l + Z

 F
2y+4 (* eV«l), 

(fc-3)/2 

•W.t-3
 +

 2-i ^ 2j+Lt -k-4
 + F

2]+Lk - l ) 
7=1 

(yt odd). 

(3.3) 

(3.4) 

(3.5) 

Proposition 16 [cf. (3.1)J: 

Q(Llk) = FL2k±2k (from (1.5) of [4]). 

Proposition 17: 

Q(Fk) = \ 

k/2 

Z,
F
4J+Fk-k-2 

(fc-l)/2 

F
Fk-k+l + 

;=i 

•
F
4j+Fk-k 

(k even), 

(Jfcodd). 

(3.6) 

(3.7) 

We observe that the number of addends in some of the decompositions above is independent 

of k. In fact, from (3.6), (3.3), and (3.4), it is seen that, if k > 1, then fiQi^)] = 2 whereas, if 

k>2,thmf[Q(L2k + l)] = 3mdf[Q(2L2k + l)] = 5. 

Question. Let T > 1 be an arbitrary positive integer. Does there exist at least one function 

g(k) ofk for which f{Q[g(k)]} = T for all k greater than or equal to a certain minimum value 

Let us conclude this section by showing that, if T = 4, then there is such a function. Namely, 

g{k) = L^ + 3 will work for k > k0 - 2. 
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Proposition 18: If k > 2, then 

0 ( 4 * +3) = Fhk+l +FLik+i+FLik±2M. (3.8) 

4. SOME PROOFS 

Proof of (2.3) (k odd): Use (1.1) to rewrite the right-hand side of (2.3) as 

= 2F„+1 + 2F a t + l_ I + ^ + » - 3 - 4 + 3 ( f r o m ( 1 5 ) o f [ 4 ] ) 

= idem +
 L

"
+k+

<
k
^ ~

 £
"^-(^-3) = /<few| + 5F^Fk_3 ( f r o m ( 1 6 ) o f [ 4 ] ) 

=
 2(-4+/fc+(i-l)

 +
 -4+i-(/t-l)) + Fn+kFk_3 

= 2Fn+JcLk_l+F„+kFk_3 (from (1.5) of [4]) 

= Fn+k{
2L

k-\+
F
k-?) =

 3F
k

F
n+k-

Proof of (2.8) (k even): By using (1.5) of [4], the right-hand side of (2.8) becomes 

4 Z ^ W - 8 - Lk
 F

»+*+7 + *W*4 ~
 F

^~5 '
 F

n+k-Z [ f r o m ( U ) ] 

- r Ai+fc+1+6 ~ Ai+fc+1-6
 +

 Ai+ifc-2+6 ~ ^n+k-2-6 
— JUJ 'k' 

4~ 

= 2Lk(Ln+k+l + Ln+k_2) — *-Lk\lLn+k) = 4LkLn+k. 

= ^ ^H-t+l^6 -r **ffc-2' 6 ( - f r o m Q 5 ) o f [ 4 ] ) 

Proof of (2.12): 

Case 1: k > 4 is even. Rewrite the right-hand side of (2.12) as 

F„+k-2 + F„+k+i + Fn+k_2k + Fn+k+2k = Fn+k_2 + Fn+k+l + F w + , 4 , (from (1.5) of [4]) 

=
 2F

n+k
 +F

n+k^2k = Fn+ki^lk +
 2

) 

= Fn+kL
2

k (from identity I15 of [7]). 

Case 2: k > 3 is odd. First, rewrite the right-hand side of (2.12) as 

Fn-k +
 F

n+k-l + ^ W l " *3*+,i-l "
 F

n+M + ^,+ik+l [ f rom ( 1 . 1 ) ] 

-
 F

n-k + Fn+k_i + i ^ + „ - Fn+k+2, 

then use (1.5) of [4] thrice to rewrite the expression above as 

Fn-k + ^ + w ~
 2
^Wifc = F3k+n - FnLk - Fn+k 

~ Fn+2k+k ~ Fn+2k-k ~ FnLk = Fn+2kLk - FnLk 

- (Fn+2k ~Fn)Lk= (Fn+k+k - Fn+k_k)Lk 

~ Fn+k^k^k
 =

 Fn+k^k' 
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Proof of (3.2): Put 2LlkJtl = h for notational convenience, and use (1.1) to rewrite the right-hand 

side of (3.2) as 
F
h-2k-2

 + F
h+2k+2

 +
 \

F
h+2k ~

 F
h+2k-2 ~

 F
h-2k+2

 + F
h-2k) 

= F
h+2k+2 +

 F
h+2k-\ +

 F
h-2k-2 ~

F
h-2k+l ~ ^

F
h+2k+l ~ ^

F
h-2k-\ 

= 2FhL2k+l (from (1.5) of [4]) 

= hFn^Q(h). 

Proof of (3.5) (k even): Put Lk=h for notational convenience, and use (1.1) to rewrite the right-

hand side of (3.5) as 

F
h-k-3 +

 F
h-6 +

 F
h-3 +

 F
h-\ + (

F
h+k-2 -

 F
h+k-4 ~

 F
h+2

 + F
h) 

=
 F

h-k-3 +
 F

h+k-3 ~
 F

h+l +
 F

h-6 +
 F

h-3 +
 F

h-\ 

= hFh_3-Fh+l+Fh_6+Fh_3 +Fh_, (from (1.5) of [4]) 

= hFh_3 - 3Fh_3 = (h- 3)Fh_3 * Q(h - 3). 

Proof of Theorem 1: From (2.3) and (2.4) of [6], we see that 

f[Q(n)]^\[V(n) + U(n)] + l, 

where V(n) = [loga n\ (a = (1.+ V5 ) / 2) and U(n) is an even number defined by L^j^_i <n< 

Lu(n)+\' I*
 m u s

t be observed that U(ri) is defined in [6] in a slightly different way, for the authors 

use the initial values LQ = 3 and 1^ = 4 for the Lucas sequence. Now, it can be proved readily 

that, if n < Z^^ , then both V(ri) and U(ri) do not exceed 2k. This fact, along with (4.1), prove 

the theorem. 

5. CONCLUDING COMMENTS 

As can be seen from the examples presented in this section, the identities established in this 

paper represent only a small sample of the possibilities available to us. A thorough investigation 

on the ZD of Q(ri) seems to be worthwhile; this study will be the object of a future paper. An 

attempt to prove Conjectures 2 and 3 produced the following decompositions [see also (3.1)-

(3.4)] the proofs of which, based on the technique shown in Section 4, are left as an exercise to 

the interested reader. Namely, we see that 

2k-2 

Q\^^k+U
 = F

3L2k+i-2k-4
+F

3I^k+l-2k±l
+F

3L2k+l+2k+3
+
 2s

F
2j+3L2k+l-2(k-l) ( ^ - 2 ) , (5 -1) 

2k-2 

Q\^^2k+l) ~
 F

4L2k+l-2k-4
 + F

4L2k+i±2k+l
 +

 Mi2jl+1+2ifc+3
 +

 2^
F
2j+4L2k+l-2(k-l) \T - 2), ( 5 . 2 ) 

7=1 
2k-3 

Qi^k+l) -
 F

5L2k+l±2k +
 F

5L2k+l±2(k+2)
 +

 2^
F
2j+5L2k+l-2(k-l) ( ^ - 2 ) , ( 5 . 3 ) 

;=i 

g(3Z^ +1) = F3Lik+l + F3Lik±lk_x + F3Lik±2k+3 {k > 2), (5.4) 

2 ( 4 Llk + 1) ~
 F

4L2k+l +
F
4Llk±2k-\

JrF
4Llk±2k+\ ^

 F
4Llk±2k+?> 

(fc>2), (5.5) 
2 ( 5 ^ +1) = F5Lik+l +F5Lik±2k_3 +FiLik±2k +F5Lih±2M (k > 3). (5.6) 
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Remark 5: The property 2? becomes apparent in (5.l)-(5.3) for j = k -1. 

Moreover, we believe that also the ZD of nLn deserves some study. A medium-range (1 < n 

< 2000) computer experiment led us to conjecture that Fn is not in the ZD of nLn for n > 2. This 

experiment allowed us to observe that, if n = F2k+l (k = 1,2, 3,...), then f(nLn) = 2 with only one 

exception in the case k = 2 for which /(5L;) = 1. In fact, from (1.5) of [4], it can be seen imme-

diately that 

F2k+lLF2k+l = FF2k+l ±(2*+l) • (
5
 •

7
) 

Remark 6: Letting k = l and 2 in (5.7) yields 21^ = F_x + F5 =F2+F5 and 5L5=F0 + Fl0 = Fl0 

(the exception), respectively. 

Further, we observed that, if n = L^ (k = 2, 3,4,...), then f{nLn) = 4. In fact, from identity 

I8 of [7] and (1.6) of [4], it can be proved readily that 

LikL
,
Llk=FLik±2k__i + FLik±2ic+l. (5.8) 
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