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(Received May 15, 1989) 

A distributive lattice (L, A, V) gives rise to a self-dual symmetric ternary operation, 

viz., 

(*) x,y,z -+ (xyz) := (x A y) V (x A z) V (y A z), 

named the median operation of L. This operation satisfies the identities 

(xxy) = x 

(vw(xyz)) = ((vwx)(vwy)z). 

A median algebra M is a symmetric ternary algebra satisfying these two identities. 

Such an algebra is close to a distributive lattice: for any element a of M one obtains a 

median semilattice (M, A) with partial join V (distributing over A) and least element 

a via 

x A y := (xay) 

such that the median of any x, y, z is recovered by the expression (*). In general, 

(M, A, V) is not a lattice, but still admits a representation as a lower set of some 

distributive lattice. 

Typically, a property of a distributive lattice L that is invariant under interchang-

ing meet and join often is expressible merely in terms of the median operation. 

Most concepts, though, are not self-dual. For instance, the translational hull QL 

of (L, A, V) usually refers to the meet A. It consists of all A-translations of L, i.e., 

mappings r: L —• L satisfying 

T(X A y) = x A Ty for all x,y £ L. 

Q.L is a distributive lattice (with the identity map as its largest element) with respect 

to the pointwise order. L embeds in QL via a —* u>a, where 

oja : x —• x A a (x £ L) 
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is the ("inner") translation associated with a £ L. The translational hull is a stan-

dard construction in semigroup theory; cf. Petrich (1970). Now, in order to obtain 

a self-dual extension concept, one may first form the translational hull QL and then 

take the dual translational hull (that is, the V-translational hull) Qd
 of QL. But 

what is a convenient description of this "double" translational hull QdQL or QQdL? 

Certainly its members can be regarded as retractions of the corresponding median 

algebra, i.e., mappings <p satisfying 

<p(xyz) = (x<py<pz) for all x, y, z; 

cf. Bandelt k Hedlikova (1983). 

Not all retractions can qualify simultaneously as members of QdQL since there are 

too many of them. Actually, for each pair u, v of elements, the mapping x —• (xuv) is 

a retraction. In any case, median algebra is the appropriate framework for studying 

the double translational hull of distributive lattices. It turns out that for an arbitrary 

median algebra M one can define this sort of extension. This can be accomplished 

without reference to a particular orientation of the median algebra as a median 

semilattice. 

Some further terminology is needed here. A convex subalgebra N of a median 

algebra M is a subset satisfying (vwz) £ N for all v,w £ N and z £ M . The 

smallest convex subalgebra containing a given subset A is called the convex hull of 

A in M . A split of M is a congruence relation with exactly two blocks P and Q; 

necessarily, P and Q are ("prime") convex subalgebras. An n-ary operation / on 

the set M is said to preserve a binary relation g if and only if x,£t/,- for i = 1, . . . , n 

implies 

f(xi,...,xn)gf(yx,...,yn) (x , , t / t £ M). 

Particular interest attaches to the semilattice orders which are preserved under the 

median operation: these orders and their meet operations are then called compatible 

(with the algebra M) . A semilattice operation A on M is known to be compatible 

if and only if the median operation of the algebra M can be written in terms of A 

and the associated partial join V as in (*) above. For this and further information 

on median algebras, see Bandelt k, Hedlikova (1983). 

L e m m a . Let A be an idempotent, commutative operation on a median algebra 

M. Then A is a compatible semilattice operation on M if and only if 

(w A xyz) — (wyz) A (xyz) for all w,x,y,z £ A/, 

or equivalent!}', if A preserves all splits of M. 
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P r o o f . Assume that (M,A) is a compatible semilattice (with partial join op-

eration V). Then 

[(wAy)V(wAz)V(yAz)]A[(xAy)V(xAz)V(yAz)] = (wAx Ay)V(wAxAz)V(yAz) 

since the meet is distributive over the partial join. This proves necessity. 

Next we show that this identity implies that A preserves every split ~ of M. For 

v,w,x £ M with v ~ w, we get 

v A x = (vvx) A (xvx) 

= ( v A xvx) 

~ (v A xwx) 

= (vwx) A (xwx) 

= (vwx) A x. 

Similarly we obtain that 

w Л x ~  (vwx)  Л x. 

Therefore vAx~wAx,as required. 

Conversely, assume that A preserves all splits. Suppose (x A y) A z and x A (y A z) 

were incongruent modulo some split ~. If x ~ z, then 

x A  (y A  z)  ~  x A (y A x) =  (x A y) A x ~  (x A y) A  z, 

yielding a contradiction. So, without loss of generality assume that x ~ y. Then 

(x A y) A z ~  y A  z. If y A  z ~  y, then 

x A (y A z) ~  y A (y A z) ~  y A  z, 

again a contradiction. Hence y A z *~ y. But this yields 

x A  (y A z) ~  (y A z)  A (y A z) = y A  z, 

a final contradiction. We conclude that A is a semilattice operation. 

Finally assume that A is a semilattice operation preserving all splits. We claim 

that for w, x, y, z in M the identity in the Lemma holds. Let ~ be any split of M. 

If y ~ z, then (w A xyz), (wyz), (xyz), and hence their meets would be congruent to 

y,z. So assume that x ~ y but z is incongruent with x, y. If w ~ x, then again 

either side of the asserted equality would be congruent to w, x, y. Otherwise w ~ z, 

and then 

(w  A xyz)  ~  (z  A yyz) =  z  A y =  (zyz)  A (yyz) ~  (wyz)  A  (xyz). 
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This proves the claim. In particular, the partial order associated with A is a com-

patible relation of M. Then, by Lemma 3.3 of Bandelt k Hedlikova (1983), (MA) 

is a compatible semilattice. D 

T h e o r e m 1. Let M be a median algebra. Then the set £M of al! compati

ble semilattice operations on M is a median algebra with respect to the operation 

a, /? , 7 —• (af3y) defined by 

x(a)3y)y := (xay x/3y xyy) for x,y G M. 

Then £M is up to isomorphism the unique median algebra N such that (i) M is a 

convex subalgebra of N, (ii) every compatible semilattice operation on M uniquely 

extends to one on N, (iii) every compatible semilattice operation on N has a zero. 

In particular, M embeds in £M via 

u —• u, where xuy := (xuy) for x,y G M. 

P r o o f . For a , /? , 7 G £M the binary operation (a/3y) on M is evidently idem-

potent and commutative since a , /?, 7 are such. From the Lemma we infer that (a/3y) 

belongs to £M . 

The following identity will be used in the sequel: 

x(a/3y)y = (xay)/3(xyy) for all x,y G M. 

To prove this, suppose by way of contradiction that there exists a split ^ of M 

such that v := x(a/3y)y and w := (xay)/3(xyy) are not congruent modulo ~ . If 

xay ~ xjy, then 

v ~ (xay x/3y xay) = xay = (xay)/3(xay) ~ u>, 

contradicting the hypothesis. Hence xay and xyy are incongruent. Then, without 

loss of generality, x/3y — xyy and consequently 

v ~ (xay xf3y x/3y) = x/3y. 

Now, x and y are not congruent, for otherwise, we would get xay ~ x ~ xyy. Say, 

xay ~ x and xyy ~ y. This, however, yields w ~ x/Jt/ ~ v, a final contradiction. 

Next we show that £M is a median algebra. The identity (aa/3) = a and symmetry 

are clear from the definition of the ternary operation on £M. The third axiom 
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required for a median algebra is readily checked as well: 

x((af3y)6e)y = ((xay xf3y xjy)x6y xey) 

= (xay (xpy x6y xey)(xjy x6y xey)) 

= x(a(f36e)(y6e))y 

for all x, y G M and a,/3,y,6,e G £M. 

Every element u G M is the zero of its associated semilattice operation u. There-

fore u = v implies u = v for u, v G M. Further, 

x(uvw)y = ((xuy)(xvy)(xwy)) = (x(iwiv)y) 

for u, v, w, x, y G M, whence 

(innv) = (wviv). 

We conclude that u —• u constitutes an embedding of M into £M. Denote the image 

of M under this embedding by M. 

Note that every retraction <p of M is a homomorphism with respect to any member 

A of £M. Indeed, let x, y G M, and put w — x Ay A <px A y?y. Then 

<£>(x Ay) = <£>(ivxy) = (iv <px <py) = <px A <py. 

In particular, for u,v G M and a G £M, 

x(wai))y = (xuy)a(xvy) = (x^/y)a(x^;y) = (x(uav)y) 

since iv —• (xwy) is a retraction. Therefore iiav £ M, and thus M is a convex 

subalgebra of £M. 

Every compatible semilattice operation * on M extends to £M by the rule 

x(a * j3)y := (xay) * (x/iy) for x, y G M, a,/? G £M. 

This operation is certainly idempotent and commutative and belongs to ££M because 

x((ay6) * (0y6))y = (x(a7-5)y) * (x(f3y6)y) 

= ((xay)(xyy)(x6y)) * (x(3y)(xyy)(x6y)) 

= ((xay) * (x/3y)(xyy)(x6y)) 

= (x(a * P)yxryx6y) 

= x(a*fly6)y, 
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by virtue of the Lemma. The operation * on £M actually restricts to the given 

operation * on M since 

x(u * v)y = (x(u * v)y) = (xuy) * (xvy) for n, v £ M. 

If • is any member of ££M restricting to * on M, then 

(x(a • fi)y) = (xay) • (xfSy) 

= (xay) * (xpy) = (x(a * /?)*/), 

and therefore every member of £M extends uniquely to £M. 

Finally, let * be any member of ££M. We wish to show tha t * has a zero. Since M 

is a convex subalgebra of £M, it is closed under *, that is: ii*v £ M for all ti, v £ M. 

The restriction of * to M thus corresponds to a compatible semilattice operation a 

on the isomorphic copy M, so that 

uav = u * v for u,v(zM. 

We claim tha t a is the zero of *. For /J, 7 £ £M and x, y £ M we get 

(£(/?* 7)2/) = (xf3y)*(xyy) 

= (x/3y)a(xyy) 

= x((3ay)y 

= (x(pay)y), 

whence 

/?*7 = (/?c*7). 

So, in particular, ££M = £M. 

Now assume that N is a median algebra satisfying (i), (ii), (iii). Then £M = £N 

by (i) and (ii), and £N = N by (iii). This completes the proof of Theorem 1. • 

For a median algebra M the algebra £M described in Theorem 1 is referred to 

as the zero-completion of M. If £M coincides with M, then M is said to be zero-

complete. Every bounded distributive lattice is zero-complete. From the subdirect 

representation theorem we infer that every median algebra M embeds in some algebra 

2
X
 such that 2

X
 is the convex hull of M. Then the zero-completion of M can be 

described within 2A as follows. 
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T h e o r e m 2. Let M be a subalgebra of the median algebra 2
X
 of all subsets of 

some set X. If 2
X
 is the convex hull of M, then £ M is isomorphic to the largest 

subalgebra N of 2
X
 which contains M as a convex subalgebra, viz.: 

N = {z G 2X | (uvz) G M for all u, v G M } . 

P r o o f . First observe that N is in fact a subalgebra of 2X, as 

(uv(ziz2zz)) = ((uvz\)(uvz2)(uvz3)) G M 

for all u,v G M and z\,zi,z$ G N. Clearly M is a convex subalgebra of N, and 

every other subalgebra of 2A in which M is convex is necessarily contained in N. 

One may identify X as the set of all splits of M . Since every compatible semilattice 

operation on M preserves all splits of M it extends uniquely to 2X
. Therefore £ M 

embeds in 2A by virtue of Theorem 1. Furthermore, £M actually embeds in the 

algebra N. 

If A is a compatible semilattice operation on N, then its extension to 2X has a 

least element 0. For u,v G M, 

(uvO) = u A v G M, 

whence 0 G N. Therefore N is zero-complete and thus meets the three conditions in 

Theorem 1. We conclude that N is isomorphic to £ M . • 

Assume that M is a subalgebra of a median algebra M'. Let us call 

N = {z G M' | (uvz) G M for all u,v G M } 

the convexizer of M in M'. It is the largest subalgebra of M' containing M as a 

convex subalgebra. The convexizers play a role similar to that of the idealizers in 

the framework of distributive lattices. So, Theorem 2 is the analogue of a result 

concerning the translational hull Q.L of a distributive lattice L; see Figa-Talamanca 

& Franklin (1968) and Cornish (1974). If L is a distributive sublattice of V, then 

the convexizer of L in V is just the dual idealizer of the idealizer of L in V since for 

zeL', 

(z A s)Vt£ L for all s, t G L 

if and only if 

(uvz) G L for all u,v G L. 

So not unexpectedly, we have the following result. 
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Coro l lary 1. For every distributive lattice L, 

ZLs*ndQL^smdL. 

P r o o f . Assume that L is given by its subdirect representation, that is: L is 

a sublattice of some power set lattice 2X so that 2X is the convex hull of L. Then, 

up to isomorphism, L is an ideal of QL, and QL is a dual ideal of QdQL, whence 

L is a convex sublattice of QdQL, the latter being a sublattice of 2X. Since QdQL 

is bounded, it is zero-complete. Further, every member of £L uniquely extends to 

QdQL (even to 2X). We conclude from Theorem 1 that £L is isomorphic to QdQL, 

and analogously, to QQdL as well. Alternatively, one may argue that QdQL is the 

largest sublattice in which L is a convex sublattice, and thus conclude the proof with 

Theorem 2. D 

In particular, if L is a distributive lattice with zero, then £L = QL. More gener-

ally, consider the following subset of the translational hull of a median semilattice 

(M, A, V) with least element 0: 

QtM = {T £ QM | TX V Ty exists for all x ,y G M } . 

So, a translation r of (M, A) belongs to QtM if and only if the image im r is a 

(distributive) lattice. It is easy to see that QtM is a subsemilattice of QM, as well 

as a subalgebra of the median algebra of all retractions, where the median of three 

retractions is given by 

(<pi<P2<P3)x = (<P\X(p2X(p3x) for xEM. 

Therefore QtM is a median semilattice extending M. Now, Theorem 5.5 of Bandelt 

& Hedh'kova (1983) establishes a one-to-one correspondence between the sets £M 

and QtM. In fact, to each member * of £M one can associate a retraction r via 

TX := x * 0 for x £ M. 

Since 

x A TX = x A (x * 0) = (x A x) * (x A 0) = x * 0 = rx, 

the image im r is a lower set in (M, A), whence r belongs to QM . Moreover, T(X * y) 

is an upper bound of TX and Ty because 

(x * 0) A (x * y * 0) = x * (0 A (y * 0)) = x * 0, 
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and the analogous identity holds for Ty. Therefore r is a member of UtM. On the 

other hand, given r G 0<M one can uniquely extend the join V on the distributive 

lattice (im r, A, V) to M, thus giving a member * of £M, by virtue of Theorem 5.4 of 

Bandelt &; Hedlikova (1983). It is then not difficult to check that * <-> r constitutes an 

isomorphism between the median algebras £M and QtM, thus proving the concluding 

corollary. 

Coro l lary 2. For a median semilattice (M, A) with zero, fi^M is isomorphic to 

£M. 

As every median algebra M can be turned into a median semilattice with zero, the 

preceding corollary provides a convenient method to determine the zero-completion 

of M. For instance, given a tree algebra P, choose any compatible semilattice order 

with zero. Then £T can be regarded as the set of ail chains between the zero and 

the elements of T and all unbounded maximal chains; cf. Corollary 6.6 of Bandelt & 

Hedlikova (1983). 
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