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THE ZERO-DIVISOR GRAPH UNDER GROUP ACTIONS IN
A NONCOMMUTATIVE RING

Juncheol Han

Abstract. Let R be a ring with identity, X the set of all nonzero,
nonunits of R and G the group of all units of R. First, we investigate
some connected conditions of the zero-divisor graph Γ(R) of a noncom-

mutative ring R as follows: (1) if Γ(R) has no sources and no sinks, then
Γ(R) is connected and diameter of Γ(R), denoted by diam(Γ(R)) (resp.
girth of Γ(R), denoted by g(Γ(R))) is equal to or less than 3; (2) if X is a

union of finite number of orbits under the left (resp. right) regular action
on X by G, then Γ(R) is connected and diam(Γ(R)) (resp. g(Γ(R))) is
equal to or less than 3, in addition, if R is local, then there is a vertex of
Γ(R) which is adjacent to every other vertices in Γ(R); (3) if R is unit-

regular, then Γ(R) is connected and diam(Γ(R)) (resp. g(Γ(R))) is equal
to or less than 3. Next, we investigate the graph automorphisms group
of Γ(Mat2(Zp)) where Mat2(Zp) is the ring of 2 by 2 matrices over the
galois field Zp (p is any prime).

1. Introduction and basic definitions

The zero-divisor graph of a commutative ring has been studied extensitively
by Akbari, Anderson, Frazier, Lauve, Livinston, and Maimani in [1, 2, 3] since
its concept had been introduced by Beck in [4]. Recently, the zero-divisor
graph of a noncommutative ring (resp. a semigroup) has also been studied by
Redmond and Wu (resp. F. DeMeyer and L. DeMeyer) in [12, 13, 14] (resp.
[6]). The zero-divisor graph is very useful to find the algebraic structures and
properties of rings. In this paper, the zero-divisor graph of a noncommutative
ring is also studied by considering some group actions.

Throughout this paper all rings are assumed to be rings with identity. For
a ring R, let Zℓ(R) (resp. Zr(R)) be the set of all left (resp. right) zero-
divisors of R, Z(R) = Zℓ(R) ∪ Zr(R) and Γ(R) be the zero-divisor graph of
R consisting of all vertices in Z(R)∗ = Z(R) \ {0}, the set of all nonzero left
or right zero-divisors of R, and edges x −→ y, which means that xy = 0
for x, y ∈ Z(R)∗. If there exist vertices x0, . . . , xn ∈ Z(R)∗ such that P :
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x0 −→ x1 −→ · · · −→ xn−1 −→ xn where xi ̸= xj for all i, j = 0, 1, . . . , n
(i ̸= j) for some positive integer n, then P is called a path from x0 to xn of
length n. We will denote d(x, y) by the length of the shortest path from x to y,
otherwise, d(x, y) = ∞. Recall that Γ(R) is connected if for all distinct vertices
x, y ∈ Z(R)∗ there exists a path from x to y. The diameter of Γ(R) (denoted
by diam(Γ(R))) is defined by the supremum of d(x, y) for all distinct vertices
x and y in Γ(R). In particular, if x = y and d(x, x) = k, then the path is
called the cycle of length k. Usually vertices of a path may be considered to be
distinct, however in a cycle, the initial and the final vertices are the same. If
Γ(R) contains a cycle, then the girth of Γ(R) (denoted by g(Γ(R))) is defined
by the length of the shortest cycle in Γ(R), otherwise, g(Γ(R)) = ∞. In [7,
Proposition 1.3.2], if Γ(R) contains a cycle, then 1 + 2diam(Γ(R)) ≥ g(Γ(R)).
We say that Γ(R) is complete if xy = 0 for any distinct vertices x, y in Γ(R).

For a ring R, let X(R) (simply, denoted by X) be the set of all nonzero,
nonunits of R, G(R) (simply, denoted by G) be the group of all units of R
and J(R) (simply, denoted by J) be the Jacobson radical of R. In this paper,
we will consider some group actions on X by G given by (g, x) −→ gx (resp.
(g, x) −→ xg−1) from G × X to X, called the left (resp. right) regular action.
If ϕ : G × X −→ X is the left (resp. right) regular action, then for each
x ∈ X, we define the orbit of x by oℓ(x) = {ϕ(g, x) = gx : ∀g ∈ G} (resp.
or(x) = {ϕ(g, x) = xg−1 : ∀g ∈ G}). Recall that G is transitive on X (or G
acts transitively on X) under the regular action on X by G if there is an x ∈ X
with oℓ(x) = X (resp. or(x) = X) and the left (resp. right) regular action on
X by G is trivial if oℓ(x) = {x} (resp. or(x) = {x}) for all x ∈ X. In [8], it has
been shown that if X is a union of a finite n number of orbits under the left
regular action on X by G, then xn+1 = 0 for all x ∈ J and X is the set of all
nonzero right zero-divisors of R. Similarly, it is also shown that if X is a union
of a finite n number of orbits under the right regular action on X by G, then
xn+1 = 0 for all x ∈ J and X is the set of all nonzero left zero-divisors of R.

Recall that for all x ∈ X the set annℓ(x) = {y ∈ X : yx = 0} (resp.
annr(x) = {z ∈ X : xz = 0}) is called a left (resp. right) annihilator of x.
Let ann∗

ℓ (x) = annℓ(x) \ {0} (resp. ann∗
r(x) = annr(x) \ {0}). Given a zero-

divisor graph Γ(R) and a vertex x ∈ Z(R)∗, the indegree (resp. outdegree) of x
(denoted by indegree(x) (resp. outdegree(x)) is the number of edges arriving
(resp. leaving) at x. That is, indegree(x) = |ann∗

ℓ (x)| (resp. outdegree(x) =
|ann∗

r(x)|). A vertex of indegree 0 (resp. outdegree 0) is called a source (resp.
sink).

In Section 2, some connected conditions of the zero-divisor graph of a non-
commutative ring R are investigated as follows: (1) if Γ(R) has no sources
and no sinks, then Γ(R) is connected and diam(Γ(R)) (resp. g(Γ(R))) is equal
to or less than 3; (2) if X is a union of finite number of orbits under the left
(resp. right) regular action on X by G, then Γ(R) is connected and diam(Γ(R))
(resp. g(Γ(R))) is equal to or less than 3, in addition, if R is a local ring, then
there exists a vertex of Γ(R) which is adjacent to every other vertices in Γ(R);
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(4) if R is a unit-regular ring, then Γ(R) is connected and diam(Γ(R)) (resp.
g(Γ(R))) is equal to or less than 3.

In [3], Anderson and Livingston have shown that distinct ring automor-
phisms of a finite ring R which is not a field induce distinct graph automor-
phisms of Γ(R) and determined Aut(Γ(R)), the graph automorphisms group of
Γ(R). In particular, they have computed Aut(Γ(Zn)).

In Section 3, when R = Mat2(Zp), the ring of 2 by 2 matrices over the Galois
field Zp (p is any prime), we will show that Aut(Γ(R)) is isomorphic to the group
Sp+1, the symmetric group of degree p+1 by investigating that (1) the number
of orbits under the left (resp. right) regular action on X by G is p + 1; (2) the
number of nonzero nilpotents in R is p2 − 1; (3) Aut(Γ(R)) ̸= {1}; (4) under
the left (resp. right) regular action on X by G, oℓ(a)∩N(p) = or(a)∩N(p) =
oℓ(a)∩ or(a) for all a ∈ N(p) where N(p) is the set of all nonzero nilpotents in
R.

2. Connected zero-divisor graph under the left (resp. right) regular
action

For a subset S of Z(R)∗, we will denote the subgraph of Γ(R) with vertices
in S by ΓS(R).

Proposition 2.1. Let R be a ring. If the left (or right) regular action of G on
X is transitive, then ΓX(R) is complete.

Proof. Since the left regular action of G on X is transitive, R is a local ring
and J2 = 0 by [8, Corollary 2.4], and so Z(R)∗ = X and ΓX(R) is complete. If
the right regular action of G on X is transitive, then Z(R)∗ = X and ΓX(R)
is also complete by the similar argument. ¤

Remark 1. In Proposition 2.1, we see that if the left (resp. right) regular action
on X by G is transitive, then x2 = 0, i.e., x is a nilpotent element of nilpotency
2 for all x ∈ X.

Theorem 2.2. Let R be a ring. If Γ(R) has no sources and no sinks, then
Γ(R) is connected and diam(Γ(R)) (resp. g(Γ(R))) is equal to or less than 3.

Proof. Let x, y ∈ Z(R)∗(x ̸= y) be arbitrary. Since Γ(R) has no sources and
no sinks, i.e., ann∗

ℓ (x) ̸= ∅ (resp. ann∗
r(x) ̸= ∅), there exists an element a ∈ X

(resp. b ∈ X) such that xa = 0 (resp. by = 0). If ab = 0, then x −→ a −→
b −→ y is a path of length 3. If ab ̸= 0, then x −→ ab −→ y is a path of length
2. In particular, if we let x = y, then g(Γ(R)) is equal to or less than 3. ¤

Example 1 (See Example 1.5, p. 5 in [5]). Let

R =
{(

Z Z/2Z
0 Z/2Z

)}
and take a =

(
2 0
0 1̄

)
∈ R.
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Since the left annihilator of a is equal to {0} but the right annihilator of a is
not equal to {0}, a is not a left zero-divisor, and so a is an origin but a is a
right zero-divisor. Since there is no path from a to a2, Γ(R) is not connected.

Let

S =
{(

Z 0
Z/2Z Z/2Z

)}
and take c =

(
2 0
0 1̄

)
∈ S.

Similarly, we note that c is not a right zero-divisor, and so c is a sink but c is a
left zero-divisor. Since there is also no path from c2 to c, Γ(S) is not connected.

Remark 2. In [3, Theorem 2.3], Anderson and Livingston have shown that for
every commutative ring R, Γ(R) is connected and diam(Γ(R)) is equal to or
less than 3. But by Example 1 we can note that there is a noncommutative
ring in which its zero-divisor graph is not connected and also note that the
condition [there are no sources and no sinks in the zero-divisor graph of a
noncommutative ring] is not superfluous to be connected.

Theorem 2.3. Let R be a ring such that X is a union of finite number of
orbits under the left and right regular action on X by G. Then X = Z∗(R),
and so ΓX(R) is connected and diam(ΓX(R)) (resp. g(Γ(R))) is equal to or
less than 3.

Proof. Since X is a union of finite number of orbits under the left regular action
on X by G, then Z∗

ℓ (R) ⊆ Z∗
r (R) = X by [8, Theorem 2.2]. Similarly, we can

show that if X is a union of finite number of orbits under the right regular action
on X by G, then Z∗

r (R) ⊆ Z∗
ℓ (R) = X. Thus Z∗(R) = Z∗

ℓ (R) = Z∗
r (R) = X,

which implies that Γ(R) has no sources and no sinks, and so ΓX(R) is connected
and diam(ΓX(R))(resp. g(Γ(R))) is equal to or less than 3 by Theorem 2.2. ¤
Corollary 2.4. Let R be a ring such that X ̸= ∅. If X is finite, then X =
Z∗(R), and so R is finite and (|X| + 1)2 ≥ |R|.

Proof. Since X ̸= ∅ and is finite, X is a union of finite number of orbits under
the left and right regular action on X by G, and so we have X = Z∗(R) by
the argument given in the proof of Theorem 2.3. Hence R is finite and then
(|X| + 1)2 ≥ |R| by [11, Theorem I].

¤
Corollary 2.5. Let R be a finite ring. Then ΓX(R) is connected and

diam(ΓX(R))

(resp. g(Γ(R))) is equal to or less than 3.

Proof. Since R is a finite ring, X is a union of finite number of orbits under the
left and right regular action on X by G. Hence it follows from Theorem 2.3. ¤
Proposition 2.6. Let n be any positive integer and R be the matrix ring of
all n× n matrices over a division ring D. Then X = Z∗(R), and so ΓX(R) is
connected and diam(ΓX(R)) (resp. g(Γ(R))) is equal to or less than 3.
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Proof. Let x ∈ X be arbitrary. Then there exists y ∈ X (resp. z ∈ X) such
that xy = 0 (resp. zx = 0), which implies that ann∗

r(x) ̸= ∅ (resp. ann∗
ℓ (x) ̸= ∅)

for all x ∈ X, i.e., X = Z∗(R). Hence ΓX(R) is connected and diam(Γ(R))
(resp. g(Γ(R))) is equal to or less than 3 by Theorem 2.2. ¤
Lemma 2.7. Let R and S be two rings. If Γ(R) and Γ(S) have no sources
(resp. no sinks), then Γ(R × S) has no sources (resp. no sinks).

Proof. Let (xR, xS) ∈ Z∗(R × S) be arbitrary. Then xR ∈ Z∗(R) or xS ∈
Z∗(S). If xR ∈ Z∗(R), then there is yR ∈ X(R) such that yRxR = 0R

where 0R is the additivite identity of R since Γ(R) has no origins. Thus
(yR, 0S)(xR, xS) = (0R, 0S) where 0S is the additivite identity of S, and so
Γ(R×S) has no sources. Similarly, if xS ∈ Z∗(S), then Γ(R×S) has no sources.
By the similar argument, if Γ(R) and Γ(S) have no sinks, then Γ(R × S) has
no sinks. ¤
Corollary 2.8. Let R1, R2, . . . , Rn be rings for some positive integer n. If all
Γ(Ri) for i = 1, 2, . . . , n have no sources (resp. sinks), then Γ(R1×R2×· · ·×Rn)
has no sources (resp. no sinks).

Proof. It follows from the Lemma 2.7 and the mathematical induction on n. ¤
Proposition 2.9. Let R be a ring with X = or(x)∪or(x2)∪· · ·∪or(xn) (resp.
X = oℓ(x) ∪ oℓ(x2) ∪ · · · ∪ oℓ(xn)) under the right (resp. left) regular action
on X by G for some positive integer n. If n = 1 and |X| ≥ 3, or n = 2 and
or(x2) ̸= {x2}, or n = 3 and or(xi) ̸= {xi} for some i = 2 or 3, or n ≥ 4, then
there exists a cycle of length 3 in Γ(R).

Proof. Consider the right regular action of G on X. If n = 1, right regular
action is transitive, then Γ(R) is complete by Proposition 2.1. Since |X| ≥ 3,
there exists a cycle of length 3 in Γ(R). If n = 2 and or(x2) ̸= {x2}, then
there exists g ∈ G such that x2g ̸= x2. Since X = o(x) ∪ o(x2) and x2g ∈ X,
x2g = hx or hx2 for some h ∈ G. Thus x2 −→ x −→ x2g −→ x2 is a cycle of
length 3. If n = 3 and or(xi) ̸= {xi} for some i = 2 or 3, then there exists g ∈ G
such that xig ̸= xi. Since X = o(x) ∪ o(x2) ∪ o(x3) and xig ∈ X, xig = hx or
hx2 or hx3for some h ∈ G. Thus x3 −→ x2 −→ xig −→ x3 is a cycle of length
3. Finally, if n ≥ 4, then clearly xn−2 −→ xn−1 −→ xn −→ xn−2 is a cycle
of length 3. Similarly, the result holds under the left regular action of G on
X. ¤
Remark 3. Let R be a ring. Then for each x ∈ X, ann∗

ℓ (x) (resp. ann∗
r(x))

is a union of orbits under the left (resp. right) regular action on X by G.
Indeed, let y ∈ ann∗

ℓ (x) be arbitrary. Then we have oℓ(y) ⊆ ann∗
ℓ (x), and

so
⋃

y∈ann∗
ℓ (x) oℓ(y) ⊆ ann∗

ℓ (x). Clearly, ann∗
ℓ (x) ⊆

⋃
y∈ann∗

ℓ (x) oℓ(y). Hence
ann∗

ℓ (x) =
⋃

y∈ann∗
ℓ
o∗ℓ (y), i.e., ann∗

ℓ (x) is a union of orbits under the left regular
action on X by G. By the similar argument, ann∗

r(x) is a union of orbits under
the right regular action on X by G.
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Theorem 2.10. Let R be a ring such that X is a union of finite number of
orbits under the left (resp. right) regular action on X by G. If R is a local
ring, then there is a vertex of ΓX(R) which is adjacent to every other vertex in
ΓX(R).

Proof. Let X be a union of n orbits under the left (resp. right) regular action
on X by G. Since R is a local ring, by [8, Lemma 2.3] there exists x ∈ X such
that xn ̸= 0 = xn+1 and X = oℓ(x) ∪ oℓ(x2) ∪ · · · ∪ oℓ(xn). Hence we have
annℓ(xn) = X, i.e., a −→ xn for all a ∈ X, which means that xn is adjacent to
every other vertex in ΓX(R). By the similar argument, we can show that if X is
a union of n orbits under the right regular action on X by G, then there exists
y ∈ X such that yn ̸= 0 = yn+1 and X = or(y) ∪ or(y2) ∪ · · · ∪ or(yn). Thus
annr(yn) = X, i.e., yn −→ b for all b ∈ X, which means that yn is adjacent to
every other vertex in ΓX(R). ¤

Remark 4. We note that in the proof of Theorem 2.11 if R is a local ring such
that X = oℓ(x)∪ oℓ(x2)∪ · · · ∪ oℓ(xn) (resp. X = or(x)∪ or(x2)∪ · · · ∪ or(xn))
with xn ̸= 0 = xn+1 under the left (resp. right) regular action on X by G,
then the subgraph Γoℓ(xn) (resp. Γor(xn)) of ΓX(R) is complete.

Corollary 2.11. If R is a finite local ring, then there is a vertex of ΓX(R)
which is adjacent to every other vertex in ΓX(R).

Proof. Since R is a finite ring, X is a union of finite number of orbits under the
left and right regular action on X by G. Hence it follows from Theorem 2.10.

¤

Recall that a ring R is called unit-regular if for every x ∈ R there exists a unit
g ∈ R such that xgx = x. In [10], it has been shown that R is a unit-regular
ring if and only if for every orbit oℓ(x) (x ∈ X) under the left regular action
on X by G, there exists some idempotent e ∈ X such that oℓ(x) = oℓ(e).
Similarly, we can show that R is a unit-regular ring if and only if for every
orbit or(x) (x ∈ X) under the right regular action of G on X, there exists some
idempotent e ∈ X such that or(x) = or(e).

Proposition 2.12. Let R be a unit-regular ring such that X ̸= ∅. Then ΓX(R)
is connected and diam(ΓX(R)) (resp. g(Γ(R))) is equal to or less than 3.

Proof. Let x ∈ X be arbitrary. Then there exists an idempotent e1 ∈ X
such that oℓ(x) = oℓ(e1) under the left regular action on X by G by [10,
Lemma 2.3]. By the similar argument, there exists an idempotent e2 ∈ X such
that or(x) = or(e2) under the right regular action on X by G. Hence there
exists g1 ∈ G (resp. g2 ∈ G) such that x = g1e1 (resp. x = e2g2). Since
x(1 − e1) = g1e1(1 − e1) = 0 (resp. (1 − e2)x = (1 − e2)e2g2 = 0, x is neither
source nor sink. Thus ΓX(R) is connected and diam(ΓX(R)) is equal to or less
than 3 by Theorem 2.2. ¤
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Proposition 2.13. Let R be a unit-regular ring. Then ΓX(R) is complete if
and only if the set of all idempotents in R is orthogonal and the left regular
action on X by G is trivial, i.e., oℓ(x) = {x} for all x ∈ X.

Proof. (⇒) Suppose that ΓX(R) is complete. Clearly, the set of all idempotents
in R is orthogonal. Assume that the left regular action of G on X is not
trivial. Then there exists an idempotent e ∈ X such that oℓ(e) ̸= {e} by [10,
Lemma 2.3] and so there exists y(̸= e) ∈ oℓ(e) such that y = ge for some g ∈ G.
Since ΓX(R) is complete and y, e(y ̸= e) ∈ X, 0 = ye = (ge)e = ge = y, a
contradiction. Hence the left regular action on X by G is trivial.

(⇐) It follows from [10, Lemma 2.3]. ¤

Corollary 2.14. Let R be a unit-regular ring. Then ΓX(R) is complete if and
only if the set of all idempotents in R is orthogonal and the right regular action
on X by G is trivial, i.e., or(x) = {x} for all x ∈ X.

Proof. It follows from the similar argument given in the proof of Proposi-
tion 2.13. ¤

Lemma 2.15. Let R be a ring. If under the left (resp. right) regular action on
X by G, y ∈ oℓ(x) (resp. y ∈ or(x)) for some x ∈ X, then annr(x) = annr(y)
(resp. annℓ(x) = annℓ(y)).

Proof. If y ∈ oℓ(x) (resp. y ∈ or(x)) for some x ∈ X, then there exists g ∈ G
(resp. h ∈ G) such that y = gx (resp. y = xh). It is obvious to show that
annr(x) = annr(y) (resp. annℓ(x) = annℓ(y)). ¤

Corollary 2.16. Let R be a unit-regular ring with X ̸= ∅. Then for any
x ∈ X there exists an idempotent e ∈ X such that annr(x) = annr(e) (resp.
annℓ(x) = annℓ(e)).

Proof. It follows from the Lemma 2.15 and [10, Lemma 2.3]. ¤

Proposition 2.17. Let R be a unit-regular ring such that X ̸= ∅ and 2 = 2·1
is a unit in R. Then there exists a cycle of length 4 in Γ(R).

Proof. Let e ∈ X be an idempotent. Since 2 = 2 · 1 ∈ G, e ̸= 1 − e,−e. Thus
e −→ 1 − e −→ −e −→ e − 1 −→ e is a cycle of length 4 in Γ(R). ¤

3. Automorphism of graph over Mat2(Zp)

Recall that a graph automorphism f of a graph Γ(R) is a bijection f :
Γ(R) −→ ΓX(R) which preserves adjacency. Of course, the set Aut(Γ(R)) of
all graph automorphisms of Γ(R) forms a group under the usual composition
of functions. In [3], Anderson and Livingston computed Aut(Γ(Zn)). In this
section, we compute Aut(Γ(Mat2(Zp)) where Mat2(Zp) is the matrix ring of
all 2 × 2 matrices over Zp for any prime p.
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Lemma 3.1. Let R be a ring and f : ΓX(R) −→ ΓX(R) be a graph auto-
morphism of ΓX(R). Then for all x ∈ X, f(annℓ(x)) = annℓ(f(x)) (resp.
f(annr(x)) = annr(f(x))).

Proof. Let y ∈ f(annℓ(x)) be arbitrary. Then y = f(z) for some z ∈ annℓ(x).
Since zx = 0, 0 = f(zx) = f(z)f(x) = yf(x) and so y ∈ annℓ(f(x)). Hence
f(annℓ(x)) ⊆ annℓ(f(x)). Let z ∈ annℓ(f(x)) be arbitrary. Then zf(x) =
0. Since f is one to one, there exists z1 ∈ X such that f(z1) = z. Then
0 = zf(x) = f(z1)f(x) = f(z1x), and so z1x = 0. Since z1 ∈ annℓ(x) and
z = f(z1) ∈ f(annℓ(x)), annℓ(f(x)) ⊆ f(annℓ(x)). By the similar argument,
we have f(annr(x)) = annr(f(x)). ¤

In a ring R with identity the left (resp. right) regular action of G on X
is said to be half-transitive if G is transitive on X or if oℓ(x)(resp. or(x)) is
a finite set with |oℓ(x)| > 1 (resp. |or(x)| > 1) and |oℓ(x)| = |oℓ(y)| (resp.
|or(x)| = |or(y)|) for all x and y ∈ X. In [9, Theorem 2.4 and Lemma 2.7],
it was shown that if R is a matrix ring of all 2 × 2 matrices over a finite field
F , then G is half-transitive on X by the left (resp. right) regular action and
|oℓ(x)| = |F |2 − 1 (resp. |or(x)| = |F |2 − 1) for all x ∈ X.

Lemma 3.2. Let p be a prime and R = Mat2(Zp). Then for any x ∈ X,
ann∗

ℓ (x) = or(y) (resp. ann∗
r(x)) = oℓ(z)) for some y ∈ X (resp. z ∈ X).

Proof. By [9, Lemma 2.7], we have |oℓ(x)| = p2 − 1 (resp. |or(x)| = p2 − 1) for
all x ∈ X. Since ann∗

ℓ (x) (resp. ann∗
r(x)) is a union of a finite number of orbits

under the left (resp. right) regular action of G on X by Remark 3 and since
the left (resp. right) regular action of G on X is half-transitive by [9, Theorem
2.4], |oℓ(y)| (resp.|or(z)|) for all y ∈ ann∗

ℓ (x) (resp. all z ∈ ann∗
r(x)) is a divisor

of |ann∗
ℓ (x)| (resp. |ann∗

r(x)|) and then |ann∗
ℓ (x)| = p2 − 1 or p3 − 1 (resp.

|ann∗
r(x)| = p2 − 1 or p3 − 1) since |annl(x)| = p2 or p3 (resp. |annr(x)| = p2

or p3) and so |ann∗
ℓ (x)| = p2 − 1 (resp. |ann∗

r(x) = p2 − 1). Hence we have the
result. ¤
Lemma 3.3. Let p be a prime and R = Mat2(Zp). Then the number of orbits
under the left (resp. right) regular action on X by G is p + 1.

Proof. Let µ be the number of orbits under the left (resp. right) regular action
on X by G. Note that |G| = (p2 − 1)(p2 − p). Thus |X| = |R| − |G| − 1 =
p4−(p2−1)(p2−p)−1 = (p+1)(p2−1). Since the cardinality of any orbit under
the left (resp. right) regular action on X by G is p2 − 1 by [9, Lemma 2.7],
µ = |X|/(p2 − 1) = p + 1. ¤
Lemma 3.4. Let p be a prime, R = Mat2(Zp) and let N(p) be the set of
nonzero nilpotents in R. Then |N(p)| = p2 − 1.

Proof. Let

N1(p) =
{(

a b
αa αb

)
∈ N(p) | a, b, α ̸= 0

}
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and

N2(p) =
{(

a −αa
b −αb

)
∈ N(p) | a, b, α ̸= 0

}
.

We will show that N1(p) = N2(p). Let(
a −αa
b −αb

)
∈ N2(p)

be arbitrary. Since A2 = 0 and a, b ̸= 0, we have

A =
(

αb −α2b
b −αb

)
∈ N2(p),

and also (1/α2)
(

αb −α2b
b −αb

)
∈ N2(p).

Since

(1/α2)
(

αb −α2b
b −αb

)
=

(
(−1/α)(−b) −b
(−1/α2)(−b) (−1/α)(−b)

)
∈ N1(p),

we have N2(p) ⊆ N1(p). By the similar argument, we can have N1(p) ⊆ N2(p).
Let A be any nonzero nilpotent in R. Then

A =
(

a b
αa αb

)
or

(
a αa
a αb

)
for some α ∈ Zp.

Note that since A is a nonzero nilpotent in R, b ̸= 0. Consider the following
cases:

Case 1. α = 0;
Since

A2 = 0, A =
(

0 b
0 0

)
or

(
0 0
b 0

)
for all nonzero b ∈ Zp.

Case 2. α ̸= 0;
In this case, a ̸= 0. Hence we have N1(p) = N2(p) by the above argument.

Since A2 = 0, we have A =
(
−αb b
−α2b αb

)
.

Consequently, we have

|N(p)| = |N1(p)| +
∣∣∣∣{(

0 b
0 0

)
∈ N(p) : b( ̸= 0)

}∣∣∣∣
+

∣∣∣∣{(
0 0
b 0

)
∈ N(p) : b( ̸= 0)

}∣∣∣∣
= (p − 1)(p − 1) + 2(p − 1) = p2 − 1.

¤
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Example 2. Let R = Mat2(Z2). Then X = {x1, x2, x3, x4, x5, x6, x7, x8, x9},
where

x1 =
(

0 0
0 1

)
, x2 =

(
0 0
1 0

)
, x3 =

(
0 0
1 1

)
, x4 =

(
0 1
0 0

)
,

x5 =
(

0 1
0 1

)
, x6 =

(
1 0
0 0

)
, x7 =

(
1 0
1 0

)
, x8 =

(
1 1
0 0

)
, x9 =

(
1 1
1 1

)
.

Note that {x2, x4, x9} is the set of nonzero nilpotents in R. Under the
left (resp. right) regular action on X by G, there are three orbits oℓ(x2) =
{x2, x6, x7}, oℓ(x4) = {x1, x4, x5}, oℓ(x9) = {x3, x8, x9} (resp. or(x2) =
{x1, x2, x3}, or(x4) = {x4, x6, x8}, or(x9) = {x5, x7, x9}).

We can compute Aut(Γ(R))= {1, f, g, g ◦ f, f ◦ g, g ◦ f ◦ g}, where

f =
(

x1 x2 x3 x4 x5 x6 x7 x8 x9

x3 x2 x1 x9 x7 x5 x8 x6 x4

)
,

g =
(

x1 x2 x3 x4 x5 x6 x7 x8 x9

x6 x4 x8 x2 x1 x3 x7 x5 x9

)
are permutations.

Observe that Aut(Γ(R)) is isomorphic to S3, the symmetric group of de-
gree 3.

Theorem 3.5. Let p be a prime and R = Mat2(Zp). Then Aut(Γ(R)) ̸= {1}.

Proof. If p = 2, then Aut(Γ(R)) ̸= {1} by Example 2. Suppose that p ≥ 3.
Let N(p) be the set of nonzero nilpotents in R. Since the number orbits is
p + 1 by Lemma 3.3 under the left (resp. right) regular action on X by G and
|N(p)| = p2−1 by Lemma 3.4, there exists x ∈ X such that |oℓ(x)∩N(p)| ≥ 2.
Let x1, x2 ∈ ol(x) ∩ N(p) (x1 ̸= x2). Since x1 and x2 are nilpotents, we
have ann∗

ℓ (x1) = oℓ(x1) = oℓ(x2) = ann∗
ℓ (x2) by Lemma 3.2. We have also

ann∗
r(x1) = ann∗

r(x2). Indeed, if a ∈ ann∗
r(x1), then 0 = x1a = gx2a = 0

for some g ∈ G since x2 ∈ oℓ(x1), which implies that a ∈ ann∗
r(x2), and so

ann∗
r(x1) ⊆ ann∗

r(x2). By the similar argument, we have ann∗
r(x2) ⊆ ann∗

r(x1).
Also we have ann∗

r(x1) = or(x1) = or(x2) = ann∗
r(x2) by Lemma 3.2. Let

f = (x1, x2) be a transposition in S|X|, the symmetric group of degree |X|.
Since x1 ≠ x2, f ̸= 1. We will show that f ∈ Aut(Γ(R)). Consider x1y = 0
for some y ∈ X. If y = x1, then f(x1)f(y) = x2x2 = 0. If y = x2, then
f(x1)f(y) = x2x1 = g1x1x1 = 0 for some g1 ∈ G since x2 ∈ ol(x1). If y ̸=
x1, x2, then f(x1)f(y) = x2y = g1x1y = 0 for some g1 ∈ G since x2 ∈ ol(x1).
Also consider zx1 = 0 for some z ∈ X. If z = x1, then f(z)f(x1) = x2x2 = 0.
If z = x2, then f(z)f(x1) = x1x2 = h1x2x2 = 0 for some h1 ∈ G since
x1 ∈ o(x2). If z ̸= x1, x2, then f(z)f(x1) = zx2 = zx1h2 = 0 for some h2 ∈ G
since x2 ∈ or(x1). Consequently, f ∈ Aut(Γ(R)), and so Aut(Γ(R)) ̸= {1}. ¤

Remark 5. Let p be a prime, R = Mat2(Zp) and N(p) be the set of nonzero
nilpotents in R. We can choose that f( ̸= 1) ∈ Aut(Γ(R)) by Theorem 3.5.
Then we note that (1) f(a) ∈ N(p) for all a ∈ N(p); (2) since f is bijective
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and the left (resp. right) regular action on X by G is half-transitive with
|oℓ(x)| = p+1 (resp. |or(x)| = p+1) for all x ∈ X, |ol(x)∩N(p)| = p−1 (resp.
|or(x)∩N(p)| = p− 1) and f(oℓ(x)) = oℓ(f(x)) (resp. f(or(x)) = or(f(x))) by
Lemma 3.1 and Lemma 3.2; (3) every orbit under the left (resp. right) regular
action on X by G is oℓ(x) (resp. or(x)) for some nilpotent x ∈ X.

Lemma 3.6. Let p be a prime, R = Mat2(Zp) and N(p) be the set of all
nonzero nilpotents in R. Then under the left (resp. right) regular action on X
by G, oℓ(a) ∩ N(p) = or(a) ∩ N(p) = oℓ(a) ∩ or(a) for all a ∈ N(p).

Proof. Let b ∈ oℓ(a)∩N(p) be arbitrary. Since oℓ(a) = oℓ(b), ba = ab = 0, and
thus b ∈ ann∗

r(a) = or(a). Hence oℓ(a)∩N(p) ⊆ or(a)∩N(p) and oℓ(a)∩N(p) ⊆
oℓ(a) ∩ or(a). By the similar argument, we have or(a) ∩ N(p) ⊆ oℓ(a) ∩ N(p)
and or(a) ∩ N(p) ⊆ oℓ(a) ∩ or(a). Therefore, oℓ(a) ∩ N(p) = or(a) ∩ N(p) ⊆
oℓ(a) ∩ or(a). By Remark 4, we already knew that |or(a) ∩ N(p)| = |oℓ(a) ∩
N(p)| = p − 1. Next, we will show that oℓ(a) ∩ N(p) = oℓ(a) ∩ or(a). Let
S = annℓ(a) ∩ annr(a). Then S = (oℓ(a) ∩ or(a)) ∪ {0}. Since S is an additive
subgroup of annℓ(a) and |annℓ(a)| = p2, |S| = 1 or p. Since |oℓ(a) ∩ or(a)| ≥
|oℓ(a) ∩ N(p)| = p − 1 ≥ 1, |S| = |oℓ(a) ∩ or(a)| + 1 ≥ 2, and thus |S| = p.
Since |oℓ(a) ∩ or(a)| = |S| − 1 = p − 1 = |oℓ(a) ∩ N(p)| = |or(a) ∩ N(p)| and
oℓ(a)∩N(p), or(a)∩N(p) ⊆ oℓ(a)∩or(a), we have oℓ(a)∩N(p) = or(a)∩N(p) =
oℓ(a) ∩ or(a). ¤
Remark 6. Let p be a prime, R = Mat2(Zp) and N(p) be the set of nonzero
nilpotents in R. We can choose a1, . . . , ap+1 ∈ N(p) such that X = oℓ(a1)∪· · ·∪
oℓ(ap+1) (resp. X = or(a1)∪· · ·∪or(ap+1)). Note that for each i = 1, . . . , p+1,
oℓ(ai) = oℓ(ai)∩X = oℓ(ai)∩ [or(a1)∪ · · · ∪ or(ap+1)] = [oℓ(ai)∩ or(a1)]∪ · · · ∪
[oℓ(ai) ∩ or(ap+1)].

Lemma 3.7. Let p be a prime, R = Mat2(Zp) and N(p) be the set of nonzero
nilpotents in R. Consider X = oℓ(a1) ∪ · · · ∪ oℓ(ap+1) (resp. X = or(a1) ∪
· · · ∪ or(ap+1)) for some a1, . . . , ap+1 ∈ N(p) as mentioned in Remark 6. Then
under the left (resp. right) regular action on X by G, |oℓ(ai) ∩ or(aj)| = p − 1
for all ai, aj ∈ N(p) (i, j = 1, . . . , p + 1).

Proof. Let Aij = annℓ(ai) ∩ annr(aj) for all i, j = 1, . . . , p + 1. Note that
Aij = [oell(ai)∩or(aj)]∪{0}. If i = j, then |ol(ai)∩or(aj)| = p−1 as given in the
proof of Lemma 3.6. Suppose that i ̸= j. Since Aij ia an additive subgroup of
annℓ(ai) with |annℓ(ai)| = p2, |Aij | = 1 or p. Hence |oℓ(ai)∩or(aj)| = 0 or p−1.
Assume that |Aij | = 1 (equivalently, |oℓ(ai) ∩ or(aj)| = 0) for some i, j. Then
|Aik| > |Aii| for some k. Since |Aii| = p (equivalently, |oℓ(ai)∩ or(aj)| = p− 1)
as given in the proof of Lemma 3.6, |Aik| > p, a contradiction. Therefore,
|Aij | = p, and so |oℓ(ai) ∩ or(aj)| = p − 1 for all i, j = 1, . . . , p + 1. ¤
Lemma 3.8. Let p be a prime, R = Mat2(Zp) and N(p) be the set of nonzero
nilpotents in R. Consider X = oℓ(a1) ∪ · · · ∪ oℓ(ap+1) (resp. X = or(a1) ∪
· · · ∪ or(ap+1)) for some a1, . . . , ap+1 ∈ N(p) as mentioned in Remark 5. If
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sj = (1, j) is a transposition in Sp+1, the symmetric group of degree p + 1, and
fsj : Γ(R) −→ Γ(R) is a bijective map such that fsj (oℓ(ai)) = oℓ(asj(i)), then
fsj is a graph automorphism in Γ(R).

Proof. Note that since fsj : Γ(R) −→ Γ(R) is a bijective map such that
fsj (oℓ(ai)) = oℓ(asj(i)), fsj (oℓ(ai) ∩ or(ak)) = oℓ(asj(i)) ∩ or(asj(k)) for all
i, k = 1, . . . , p + 1.

Let x, y ∈ X be arbitrary. Consider the following cases.

Case 1. x, y ∈ oℓ(a1) ∩ or(a1).
Since a2

1 = 0, xy = yx = 0. Note that fsj (x), fsj (y) ∈ oℓ(aj) = or(aj), and so
fsj (x)fsj (y) = fsj (xy) = fsj (0) = 0 and also fsj (y)fsj (x) = 0.

Case 2. x, y ∈ oℓ(aj) ∩ or(aj).
By the similar argument given to the case 1, xy = yx = 0 and also fsj (x)fsj (y)
= fsj (y)fsj (x) = 0.

Case 3. x ∈ oℓ(a1) ∩ or(a1), y ∈ oℓ(a1) ∩ or(aj) (j ̸= 1).
Then yx = 0. Note that fsj (x) ∈ oℓ(aj) ∩ or(aj), fsj (y) ∈ oℓ(aj) ∩ or(a1), and
so fsj (y)fsj (x) = 0. Assume that xy = 0. Then a1aj = 0, which implies that
oℓ(a1) = oℓ(aj), a contradiction. Hence xy ̸= 0. Assume that fsj (x)fsj (y) = 0.
Since fsj (x) ∈ oℓ(aj)∩ or(aj), fsj (y) ∈ oℓ(aj)∩ or(a1), aja1 = 0, which implies
that oℓ(a1) = oℓ(aj), also a contradiction. Hence we have fsj (x)fsj (y) ̸= 0.

Case 4. x ∈ oℓ(aj) ∩ or(aj), y ∈ oℓ(a1) ∩ or(a1).
By the similar argument given to the case 3, xy = 0 and also fsj (x)fsj (y) = 0;
yx ̸= 0 and fsj (y)fsj (x) ̸= 0.

Case 5. x ∈ oℓ(a1) ∩ or(ai), y ∈ oℓ(a1) ∩ or(ak), (i, k ̸= 1, j).
Then x = g1a1 = aih1, y = g2a1 = akh2 for some g1, g2, h1, h2 ∈ G. If xy = 0,
then a1ak = 0, which implies that oℓ(a1) = oℓ(ak), a contradiction. Hence we
have xy ̸= 0. Since f(x) ∈ oℓ(aj) ∩ or(ai), f(y) ∈ oℓ(aj) ∩ or(ak), we also have
f(x)f(y) ̸= 0. Similarly, we have yx ̸= 0 and f(y)f(x) ̸= 0.

Case 6. x ∈ oℓ(ai) ∩ or(ar), y ∈ oℓ(ak) ∩ or(at), (i, k, r, s ̸= 1, j).
If xy = 0, then aiat = 0. Since f(x) ∈ oℓ(ai) ∩ or(ar), f(y) ∈ oℓ(ak) ∩ or(as),
f(x)f(y) = 0. Similarly we have that if yx = 0, f(y)f(x) = 0.

Consequently, fsj is a graph automorphism in Γ(R). ¤

Theorem 3.9. Let p be a prime and let R = Mat2(Zp). Then Aut(Γ(R)) ≃
Sp+1 where Sp+1 is the symmetric group of degree p + 1.

Proof. Let N(p) be the set of nonzero nilpotents in R. We can choose a1,
. . . , ap+1 ∈ N(p) such that X = oℓ(a1) ∪ · · · ∪ oℓ(ap+1). Define σ : Sp+1 −→
Aut(Γ(R)) by σ(s) = fs for all s ∈ Sp+1 where fs(oℓ(ai)) = oℓ(as(i)) for all
i = 1, . . . , p + 1. Then σ is well-defined and onto. Indeed, by Lemma 3.1
and Lemma 3.2, we have that if f ∈ Aut(Γ(R)) is arbitrary, then for all
i = 1, . . . , p + 1, f(oℓ(ai)) = oℓ(as(i)) for some s ∈ Sp+1. Since Sp+1 is gener-
ated by the p transpositions s1 = (1, 2), . . . , sp = (1, p + 1), and fs1 , . . . , fsp ∈
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Aut(Γ(R)) by Lemma 3.8, Aut(Γ(R)) is generated by the p graph automor-
phisms fs1 , . . . , fsp ∈ Aut(Γ(R)) where fsj (oℓ(ai)) = oℓ(asj(i)) for all i =
1, . . . , p + 1 and j = 1, . . . , p. Thus |Sp+1| = |Aut(Γ(R))|, which implies
that σ is a bijective map. Also σ is a group homomorphism by observing
that for all si, sj ∈ Sp+1 (i, j = 1, . . . , p) and all oℓ(ak) (k = 1, . . . , p + 1),
(fsi ◦ fsj )(oℓ(ak)) = fsisj (oℓ(ak)). Therefore, Aut(Γ(R)) ≃ Sp+1. ¤
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