The zero multiplicity of linear recurrence sequences

by
WOLFGANG M. SCHMIDT
University of Colorado at Boulder Boulder, Colorado, U.S.A.

1. Introduction

A linear recurrence sequence of order t is a sequence $\left\{u_{n}\right\}_{n \in \mathbb{Z}}$ of complex numbers satisfying a relation

$$
\begin{equation*}
u_{n}=c_{1} u_{n-1}+\ldots+c_{t} u_{n-t} \quad(n \in \mathbb{Z}) \tag{1.1}
\end{equation*}
$$

with $t>0$ and fixed coefficients c_{1}, \ldots, c_{t}, but no relation with fewer than t summands, i.e., no relation $u_{n}=c_{1}^{\prime} u_{n-1}+\ldots+c_{t-1}^{\prime} u_{n-t+1}$. This implies in particular that the sequence is not the zero sequence, and that $c_{t} \neq 0$. The companion polynomial of the relation (1.1) is

$$
\mathcal{P}(z)=z^{t}-c_{1} z^{t-1}-\ldots-c_{t}
$$

Write

$$
\begin{equation*}
\mathcal{P}(z)=\prod_{i=1}^{k}\left(z-\alpha_{i}\right)^{a_{i}} \tag{1.2}
\end{equation*}
$$

with distinct roots $\alpha_{1}, \ldots, \alpha_{k}$. The sequence is said to be nondegenerate if no quotient $\alpha_{i} / \alpha_{j}(1 \leqslant i<j \leqslant k)$ is a root of 1 . The zero multiplicity of the sequence is the number of $n \in \mathbb{Z}$ with $u_{n}=0$. For an introduction to linear recurrences and exponential equations, see [10].

A classical theorem of Skolem-Mahler-Lech [4] says that a nondegenerate linear recurrence sequence has finite zero multiplicity. Schlickewei [6] and van der Poorten and Schlickewei [5] derived upper bounds for the zero multiplicity when the members of the sequence lie in a number field K. These bounds depended on the order t, the degree of K, as well as on the number of distinct prime ideal factors in the decomposition of the fractional ideals $\left(\alpha_{i}\right)$ in K. More recently, Schlickewei [7] gave bounds which depend

[^0]only on t and the degree of K. The linear recurrence sequence is called simple if all the roots of the companion polynomial are simple. Evertse, Schlickewei and Schmidt [3] showed that a simple, nondegenerate linear recurrence sequence of complex numbers has zero multiplicity bounded in terms of t only. The purpose of the present paper is to show that this holds for any nondegenerate sequence.

ThEOREM. Suppose that $\left\{u_{n}\right\}_{n \in \mathbb{Z}}$ is a nondegenerate linear recurrence sequence whose companion polynomial has k distinct roots of multiplicity $\leqslant a$. Then its zero multiplicity is under some bound $c(k, a)$. We may take

$$
\begin{equation*}
c(k, a)=\exp \left(\left(7 k^{a}\right)^{8 k^{a}}\right) \tag{1.3}
\end{equation*}
$$

Our value for $c(k, a)$ is admittedly rather large; but it is preferable to give some value at all, rather than to say that " $c(k, a)$ is effectively computable". No special significance attaches to the numbers 7 and 8 in (1.3), which could easily be reduced. In the case of a simple linear recurrence, $a=1$, and our bound (1.3) is of the same general shape as the one given in [3].

Corollary. The zero multiplicity of a nondegenerate recurrence sequence of order t is less than

$$
\begin{equation*}
c(t)=\exp \exp \exp (3 t \log t) \tag{1.4}
\end{equation*}
$$

Proof. This is certainly true when $t=1$ or 2 . When $t \geqslant 3$ we note that $k \leqslant t, a \leqslant t$, so that the zero multiplicity is

$$
\begin{aligned}
& \leqslant c(t, t)=\exp \left(\left(7 t^{t}\right)^{8 t^{t}}\right)=\exp \exp \left(8 t^{t}(t \log t+\log 7)\right) \\
& <\exp \exp \left(t^{3 t}\right)=\exp \exp \exp (3 t \log t)
\end{aligned}
$$

At the cost of some extra complication, the $\log t$ in (1.4) could be replaced by an absolute constant.

It is well known that a recurrence with the companion polynomial (1.2) is of the form

$$
u_{n}=P_{1}(n) \alpha_{1}^{n}+\ldots+P_{k}(n) \alpha_{k}^{n}
$$

where P_{i} is a polynomial of degree $\leqslant a_{i}-1$. The zero multiplicity therefore is the number of solutions $x \in \mathbb{Z}$ of the polynomial-exponential equation

$$
\begin{equation*}
P_{1}(x) \alpha_{1}^{x}+\ldots+P_{k}(x) \alpha_{k}^{x}=0 \tag{1.5}
\end{equation*}
$$

Given a nonzero k-tuple $\mathbf{P}=\left(P_{1}, \ldots, P_{k}\right)$ of polynomials with

$$
\operatorname{deg} P_{i}=t_{i} \quad(i=1, \ldots, k)
$$

set

$$
\begin{align*}
a & =1+\max _{i} t_{i} \tag{1.6}\\
t & =t(\mathbf{P})=\sum_{i=1}^{k}\left(t_{i}+1\right) \tag{1.7}
\end{align*}
$$

Our Theorem and its Corollary can now be formulated as follows. Suppose that $\alpha_{1}, \ldots, \alpha_{k}$ are in \mathbb{C}^{\times}, with no quotient $\alpha_{i} / \alpha_{j}(i \neq j)$ a root of unity. Then the number of solutions $x \in \mathbb{Z}$ of (1.5) does not exceed $c(k, a)$ or $c(t)$.

A first, intuitive response to an equation (1.5) probably is that if all quotients α_{i} / α_{j} $(i \neq j)$ are "large" or "small", the summands in (1.5) will have different magnitudes when x is outside a limited range, so that there will be few zeros. As is basically known, and as we will explain again in $\S 2$, the Theorem can be reduced to the special case when $\alpha_{1}, \ldots, \alpha_{k}$ and the coefficients of the polynomials P_{1}, \ldots, P_{k} are algebraic. The intuition can then be put into the more precise form that there should be few solutions if the (absolute logarithmic) heights $h\left(\alpha_{i} / \alpha_{j}\right)(1 \leqslant i, j \leqslant k ; i \neq j)$ are not too small. As will be shown in $\S 4$, this intuition is correct. Note that $h\left(\alpha_{i} / \alpha_{j}\right)>0$ precisely when α_{i} / α_{j} is not a root of 1. A major difficulty now comes from the fact that when α_{i} / α_{j} is of large degree, the height, though positive, may be quite small.

The idea to overcome this difficulty is as follows. Write

$$
P_{i}(x)=\sum_{j=1}^{a} a_{i j} x^{j-1} \quad(i=1, \ldots, k)
$$

and set

$$
N_{j}\left(X_{1}, \ldots, X_{k}\right)=\sum_{i=1}^{k} a_{i j} X_{i} \quad(j=1, \ldots, a)
$$

The equation (1.5) may be rewritten as

$$
\begin{equation*}
\sum_{j=1}^{a} N_{j}\left(\alpha_{1}^{x}, \ldots, \alpha_{k}^{x}\right) x^{j-1}=0 \tag{1.8}
\end{equation*}
$$

Suppose that $\alpha_{1}, \ldots, \alpha_{k}$ and the coefficients $a_{i j}$ lie in a number field K of degree D, and let $\xi \mapsto \xi^{(\sigma)}(\sigma=1, \ldots, D)$ signify the embeddings $K \hookrightarrow \mathbb{C}$. Then, in an obvious notation, (1.8) gives rise to

$$
\sum_{j=1}^{a} N_{j}^{(\sigma)}\left(\alpha_{1}^{(\sigma) x}, \ldots, \alpha_{k}^{(\sigma) x}\right) x^{j-1}=0 \quad(\sigma=1, \ldots, D)
$$

For each σ, this is a linear equation in $1, x, \ldots, x^{a-1}$. Hence given embeddings $\sigma_{1}, \ldots, \sigma_{a}$, we obtain a system of linear equations whose determinant must vanish, i.e.,

$$
\begin{equation*}
\left|N_{j}^{\left(\sigma_{i}\right)}\left(\alpha_{1}^{\left(\sigma_{i}\right) x}, \ldots, \alpha_{k}^{\left(\sigma_{i}\right) x}\right)\right|_{1 \leqslant i, j \leqslant a}=0 \tag{1.9}
\end{equation*}
$$

This equation is of purely exponential type, i.e., the coefficient of each exponential is a constant, and hence can be dealt with by methods developed elsewhere, e.g., in [3]. A difficulty in dealing with (1.9) is that the determinant is likely to have many exponentials

$$
\left(\alpha_{i_{1}}^{\left(\sigma_{1}\right)} \ldots \alpha_{i_{a}}^{\left(\sigma_{a}\right)}\right)^{x}
$$

with nonzero coefficients. A possible advantage for us is that when D is large, there will be many a-tuples $\sigma_{1}, \ldots, \sigma_{a}$, hence many equations (1.9) at our disposal.

A needed auxiliary result which may be of independent interest will be treated in an appendix.

Let us finally introduce the notation

$$
\alpha \approx \beta
$$

to mean that α, β are in \mathbb{C}^{\times}and that α / β is a root of 1 .

2. Specialization $\left({ }^{1}\right)$

Let $\overline{\mathbb{Q}}$ be the algebraic closure of \mathbb{Q} in \mathbb{C}. Let X, Y be algebraic varieties in \mathbb{C}^{k} defined over \mathbb{Q}. It is well known that when $X \backslash Y$ is not empty, i.e., if there is a point $\alpha \in \mathbb{C}^{k}$ lying in $X \backslash Y$, then there is in fact a point $\beta \in \overline{\mathbb{Q}}^{k}$ lying in $X \backslash Y$. Moreover, when X is irreducible and of degree Δ, there is such a point $\boldsymbol{\beta}$ with degree $d(\boldsymbol{\beta}):=[\mathbb{Q}(\boldsymbol{\beta}): \mathbb{Q}] \leqslant \Delta$.

When V is an algebraic variety defined over \mathbb{Q} and $V \backslash Y$ is not empty, write $\delta(V \backslash Y)$ for the minimum degree of the points $\beta \in \overline{\mathbb{Q}}^{k}$ in $V \backslash Y$. Write $\delta(V \backslash Y)=\infty$ when $V \backslash Y$ is empty.

Lemma 1. Let $X, Y, V_{1}, V_{2}, \ldots$ be algebraic varieties defined over \mathbb{Q}, and set $\mathcal{V}=$ $\bigcup_{n=1}^{\infty} V_{n}$. Suppose that $\delta\left(V_{n} \backslash Y\right) \rightarrow \infty$ as $n \rightarrow \infty$, and that $X \backslash(Y \cup \mathcal{V})$ is not empty. Then there is a point $\beta \in \overline{\mathbb{Q}}^{k}$ with

$$
\begin{equation*}
\beta \in X \backslash(Y \cup \mathcal{V}) \tag{2.1}
\end{equation*}
$$

Proof. There is an irreducible component X^{\prime} of X such that $X^{\prime} \backslash(Y \cup \mathcal{V})$ is not empty. Let Δ be the degree of X^{\prime}, and \mathcal{V}_{Δ} the union of the varieties V_{n} with $\delta\left(V_{n} \backslash Y\right) \leqslant \Delta$.

[^1]Whereas \mathcal{V} is not necessarily a variety, \mathcal{V}_{Δ} certainly is, and hence so is $Y \cup \mathcal{V}_{\Delta}$. Since $X^{\prime} \backslash\left(Y \cup \mathcal{V}_{\Delta}\right)$ is not empty, there is by what we said above a point $\beta \in X^{\prime} \backslash\left(Y \cup \mathcal{V}_{\Delta}\right)$ with degree $d(\beta) \leqslant \Delta$. This point cannot lie in a set $V_{n} \backslash Y$ with $\delta\left(V_{n} \backslash Y\right)>\Delta$, and hence cannot lie in $Y \cup \mathcal{V}$.

When $\alpha_{1}, \ldots, \alpha_{k}$ in \mathbb{C}^{\times}are given, and when $x \in \mathbb{Z}$, the equation (1.5) is linear in the $t=\left(t_{1}+1\right)+\ldots+\left(t_{k}+1\right)$ coefficients of the polynomials P_{1}, \ldots, P_{k} of respective degrees $\leqslant t_{1}, \ldots, t_{k}$. Hence when \mathcal{Z} is a subset of \mathbb{Z}, the totality of equations (1.5) with $x \in \mathcal{Z}$ defines a linear space in these coefficients. This linear space is $\neq\{0\}$ precisely when $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ lies in a certain algebraic variety $X=X\left(\mathcal{Z}, t_{1}, \ldots, t_{k}\right)$. Thus when $\alpha_{1}, \ldots, \alpha_{k}$ are nonzero and if (1.5) holds for $x \in \mathcal{Z}$, then $\alpha \in X \backslash Y$ where Y is given by $\alpha_{1} \ldots \alpha_{k}=0$.

Let $\Phi_{m}(x)$ be the m th cyclotomic polynomial, and $\Phi_{m}(x, y)=y^{\phi(m)} \Phi_{m}(x / y)$ its homogeneous version. For $1 \leqslant i<j \leqslant k$, let $V_{i j m}$ be the variety in \mathbb{C}^{k} defined by $\Phi_{m}\left(\alpha_{i}, \alpha_{j}\right)=0$. Then $\delta\left(V_{i j m} \backslash Y\right)=\phi(m)$. Now if, in addition to the condition on $\boldsymbol{\alpha}$ given above, we have $\alpha_{i} \not \approx \alpha_{j}$ for $i \neq j$, then $\alpha \notin \mathcal{V}=\bigcup_{i} \bigcup_{j} \bigcup_{m} V_{i j m}$, so that $\alpha \in X \backslash(Y \cup \mathcal{V})$. By Lemma 1, there is a $\boldsymbol{\beta} \in \overline{\mathbb{Q}}^{k}$ with (2.1). This $\boldsymbol{\beta}$ has nonzero components with $\beta_{i} \not \approx \beta_{j}$ for $i \neq j$, and there are polynomials $\widetilde{P}_{1}, \ldots, \widetilde{P}_{k}$ of respective degrees $\leqslant t_{1}, \ldots, t_{k}$, not all zero, so that

$$
\widetilde{P}_{1}(x) \beta_{1}^{x}+\ldots+\widetilde{P}_{k}(x) \beta_{k}^{x}=0
$$

for $x \in \mathcal{Z}$.
It is therefore clear that in proving our Theorem, we may suppose from now on that $\alpha_{1}, \ldots, \alpha_{k}$ are algebraic. They will lie in some number field K. The equation (1.5) with $x \in \mathcal{Z}$ is linear, with coefficients in K, in the coefficients of P_{1}, \ldots, P_{k}, and if these equations have a nontrivial solution, they have a nontrivial solution with components in K.

In summary: We may suppose that $\alpha_{1}, \ldots, \alpha_{k}$ and the coefficients of P_{1}, \ldots, P_{k} lie in a number field K.

3. A survey of some known results

We will quote a few facts which will be used in our proof of the Theorem.
LEMMA 2. Let $\alpha_{1}, \ldots, \alpha_{q}, a_{1}, \ldots, a_{q}$ be in \mathbb{C}^{\times}, and consider the exponential equation

$$
\begin{equation*}
a_{1} \alpha_{1}^{x}+\ldots+a_{q} \alpha_{q}^{x}=0 \tag{3.1}
\end{equation*}
$$

When $\alpha_{i} \not \approx \alpha_{j}$ for $i \neq j$ in $1 \leqslant i, j \leqslant q$, the number of solutions $x \in \mathbb{Z}$ is less than

$$
A(q)=\exp \left((6 q)^{4 q}\right)
$$

Proof. This follows immediately from Theorem 1.2 in [3]. $\left(^{2}\right)$
A solution x of (3.1) is called nondegenerate if no subsum vanishes.
Lemma 3. Again let $\alpha_{1}, \ldots, \alpha_{q}, a_{1}, \ldots, a_{q}$ be in \mathbb{C}^{\times}, but this time suppose $\alpha_{1} \approx \ldots \approx \alpha_{q}$. There are

$$
B(q)=q^{3 q^{2}}
$$

vectors $\mathbf{c}^{(w)}=\left(c_{1}^{(w)}, \ldots, c_{q}^{(w)}\right)(w=1, \ldots, B(q))$ such that for any nondegenerate solution of (3.1), the vector $\left(\alpha_{1}^{x}, \ldots, \alpha_{q}^{x}\right)$ is proportional to some vector $\mathbf{c}^{(w)}$.

Proof. We may suppose that $q>1$. Setting $n=q-1, b_{i}=-a_{i} / a_{q}, \zeta_{i}=\left(\alpha_{i} / \alpha_{q}\right)^{x}$ $(i=1, \ldots, n)$, we obtain

$$
\begin{equation*}
b_{1} \zeta_{1}+\ldots+b_{n} \zeta_{n}=1 \tag{3.2}
\end{equation*}
$$

where $\zeta_{1}, \ldots, \zeta_{n}$ are roots of 1 . By a recent result of Evertse [2] which improves on earlier work of Schlickewei [8], the equation (3.2) has at most $B(n+1)=B(q)$ solutions in roots of unity where no subsum of $b_{1} \zeta_{1}+\ldots+b_{n} \zeta_{n}$ vanishes. Given such a solution $\zeta_{1}, \ldots, \zeta_{n}$, the vector $\left(\alpha_{1}^{x}, \ldots, \alpha_{q}^{x}\right)$ is proportional to $\left(\zeta_{1}, \ldots, \zeta_{n}, 1\right)$.

A solution $\mathbf{x}=\left(x_{1}, \ldots, x_{q}\right)$ of an equation

$$
\begin{equation*}
a_{1} x_{1}+\ldots+a_{q} x_{q}=0 \tag{3.3}
\end{equation*}
$$

is called nondegenerate if no subsum vanishes.
Lemma 4. Let Γ be a finitely generated subgroup of $\left(\mathbb{C}^{\times}\right)^{q}=\mathbb{C}^{\times} \times \ldots \times \mathbb{C}^{\times}$of rank r, and let a_{1}, \ldots, a_{q} be in \mathbb{C}^{\times}. Then up to a factor of proportionality, (3.3) has at most

$$
\begin{equation*}
C(q, r)=\exp \left((r+1)(6 q)^{4 q}\right) \tag{3.4}
\end{equation*}
$$

nondegenerate solutions $\mathbf{x} \in \Gamma$.
Proof. This is just a homogeneous version of a theorem in [3]. Again set $n=q-1$, $b_{i}=-a_{i} / a_{q}$, and write $y_{i}=x_{i} / x_{q}(i=1, \ldots, n)$. Then (3.3) becomes

$$
\begin{equation*}
b_{1} y_{1}+\ldots+b_{n} y_{n}=1 \tag{3.5}
\end{equation*}
$$

and $\left(y_{1}, \ldots, y_{n}\right)$ lies in a group Γ^{\prime} of rank $\leqslant r$. By Theorem 1.1 of [3], (3.5) has at most $\left({ }^{3}\right)$

$$
\exp \left((r+1)(6 n)^{4 n}\right)<C(q, r)
$$

$\left(^{2}\right)$ Added in proof. The estimate in the final version of [3] is slightly better.
$\left({ }^{3}\right)$ Added in proof. Again the estimate in the final version of [3] is better, but effects no essential improvement of our main results.
solutions $\left(y_{1}, \ldots, y_{n}\right) \in \Gamma^{\prime}$ where no subsum of $b_{1} y_{1}+\ldots+b_{n} y_{n}$ vanishes. Since $x_{i}=y_{i} x_{q}$, the lemma follows.

Let $h\left(x_{1}: \ldots: x_{q}\right)$ denote the absolute logarithmic height of a point $\mathbf{x}=\left(\mathbf{x}_{1}: \ldots: \mathbf{x}_{q}\right)$ in projective space $\mathbb{P}_{q-1}(\overline{\mathbb{Q}})$. Let $h_{\text {in }}\left(x_{1}, \ldots, x_{n}\right)$ be the inhomogeneous height of a point $\mathbf{x} \in \overline{\mathbb{Q}}^{n}$, so that $h_{\text {in }}\left(x_{1}, \ldots, x_{n}\right)=h\left(x_{1}: \ldots: x_{n}: 1\right)$. Given a number $\alpha \in \overline{\mathbb{Q}}$, there should hopefully be no confusion writing $h(\alpha)=h_{\text {in }}(\alpha)=h(\alpha: 1)$.

When $\mathbf{x}=\left(x_{1}, \ldots, x_{q}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{q}\right)$, set

$$
\begin{equation*}
\mathbf{x} * \mathbf{y}=\left(x_{1} y_{1}, \ldots, x_{q} y_{q}\right) \tag{3.6}
\end{equation*}
$$

LEMMA 5. Let $q>1$ and Γ be a finitely generated subgroup of $\left(\overline{\mathbb{Q}}^{\times}\right)^{q}$ of rank r. Then the solutions of

$$
\begin{equation*}
z_{1}+\ldots+z_{q}=0 \tag{3.7}
\end{equation*}
$$

with $\mathbf{z}=\left(z_{1}, \ldots, z_{q}\right)=\mathbf{x} * \mathbf{y}$ where $\mathbf{x} \in \Gamma, \mathbf{y} \in\left(\mathbb{Q}^{\times}\right)^{q}$ and

$$
h(\mathbf{y}) \leqslant \frac{1}{4 q^{2}} h(\mathbf{x})
$$

are contained in the union of not more than $C(q, r)$ proper subspaces of the $((q-1)$ dimensional) space defined by (3.7).

Proof. Set $n=q-1$. The lemma is an immediate consequence of the following inhomogeneous version.

Lemma 5'. Let Γ be a finitely generated subgroup of $\left(\overline{\mathbb{Q}}^{\times}\right)^{n}$ of rank r. Then the solutions of

$$
\begin{equation*}
z_{1}+\ldots+z_{n}=1 \tag{3.8}
\end{equation*}
$$

with $\mathbf{z}=\left(z_{1}, \ldots, z_{n}\right)=\mathbf{x} * \mathbf{y}$ where $\mathbf{x} \in \Gamma, \mathbf{y} \in \mathbb{Q}^{n}$ and

$$
\begin{equation*}
h_{\mathrm{in}}(\mathbf{y}) \leqslant \frac{1}{4 n^{2}} h_{\mathrm{in}}(\mathbf{x}) \tag{3.9}
\end{equation*}
$$

are contained in the union of not more than $C(n, r)$ proper subspaces of $\overline{\mathbb{Q}}^{n}$.
This is a variation on Proposition A of [9]. In that proposition, the bound on the number of subspaces depended on the degree of the number field generated by Γ. But in contrast to our estimate $C(n, r)$, that bound was not doubly exponential.

Proof of Lemma 5'. In the proof of Proposition A we distinguished three kinds of solutions.
(i) Solutions where some $y_{i}=0$, i.e., some $z_{i}=0$. These clearly lie in n subspaces.
(ii) Solutions where each $y_{i} \neq 0$, and where $h_{\text {in }}(\mathbf{x})>2 n \log n$. These were called large solutions in [9], and it was shown in (10.4) of that paper that they lie in the union of fewer than

$$
2^{30 n^{2}}\left(21 n^{2}\right)^{r}
$$

proper subspaces.
(iii) Solutions where each $y_{i} \neq 0$ and where $h_{\text {in }}(\mathbf{x}) \leqslant 2 n \log n$. These were called small solutions in [9]. Here we argue as follows. We have $h_{\text {in }}(\mathbf{y}) \leqslant(2 n \log n) /\left(4 n^{2}\right)<\log 2$ by (3.9). Then each component has $h_{\mathrm{in}}\left(y_{i}\right)<\log 2$, and since $y_{i} \in \mathbb{Q}^{\times}$, we have $y_{i}= \pm 1$. The equation (3.8) now becomes

$$
\begin{equation*}
\pm x_{1} \pm x_{2} \pm \ldots \pm x_{n}=1 \tag{3.10}
\end{equation*}
$$

The group Γ^{\prime} generated by Γ and the points $(\pm 1, \ldots, \pm 1)$ again is finitely generated, and of rank r. By Proposition 2.1 of [3], the solution of (3.10) with $\left(\pm x_{1}, \ldots, \pm x_{n}\right) \in \Gamma^{\prime}$ lies in the union of not more than

$$
\exp \left((4 n)^{3 n} \cdot 2(r+1)\right)
$$

proper subspaces of $\overline{\mathbb{Q}}^{n}$.
Combining our estimates we obtain

$$
n+2^{30 n^{2}}\left(21 n^{2}\right)^{r}+\exp \left((4 n)^{3 n} \cdot 2(r+1)\right)<C(n, r)
$$

Lemma 6. Let β, b in $\overline{\mathbb{Q}}^{\times}$be given. Then there is a $u \in \mathbb{Z}$ such that

$$
h\left(b \beta^{x-u}\right) \geqslant \frac{1}{4} h(\beta)|x|
$$

for $x \in \mathbb{Z}$.
This is the case $r=n=1$ of Lemma 15.1 in [9]. For the convenience of the reader, we will present the proof of our special case.

Proof. We may suppose that $h(\beta)>0$. Let $K=\mathbb{Q}(b, \beta)$ and M be the set of places of K. With $v \in M$ we associate the absolute value $|\cdot|_{v}$ on K which extends the standard or a p-adic absolute value on \mathbb{Q}, as well as the renormalized absolute value $\|\cdot\|_{v}=\left(|\cdot|_{v}\right)^{d_{v} / D}$, where $D=\operatorname{deg} K$ and d_{v} is the local degree belonging to v. Then when $\alpha \in K^{\times}$,

$$
h(\alpha)=\sum_{v \in M} \max \left(0, \log \|\alpha\|_{v}\right)=\frac{1}{2} \sum_{v \in M}\left|\log \|\alpha\|_{v}\right|
$$

by the product formula. Hence

$$
h\left(b \beta^{x}\right)=\frac{1}{2} \sum_{v \in M}\left|\log \|b\|_{v}+x \log \|\beta\|_{v}\right| .
$$

Defining

$$
\psi(\xi, \zeta)=\frac{1}{2} \sum_{v \in M}\left|\xi \log \|\beta\|_{v}+\zeta \log \|b\|_{v}\right|
$$

for $(\xi, \zeta) \in \mathbb{R}^{2}$, we have

$$
\begin{equation*}
\psi(x, 1)=h\left(b \beta^{x}\right), \quad \psi(\xi, 0)=|\xi| h(\beta) . \tag{3.11}
\end{equation*}
$$

The function ψ has $\psi\left(\xi+\xi^{\prime}, \zeta+\zeta^{\prime}\right) \leqslant \psi(\xi, \zeta)+\psi\left(\xi^{\prime}, \zeta^{\prime}\right)$, as well as $\psi(\lambda \xi, \lambda \zeta)=|\lambda| \psi(\xi, \zeta)$ for $\lambda \in \mathbb{R}$. The set $\Psi \subset \mathbb{R}^{2}$ consisting of points (ξ, ζ) with $\psi(\xi, \zeta) \leqslant 1$ is convex, symmetric about $\mathbf{0}$, closed, and it contains $\mathbf{0}$ in its interior. But it may be unbounded.

When Ψ is unbounded, there is some $\left(\xi_{0}, \zeta_{0}\right) \neq(0,0)$ with $\psi\left(\xi_{0}, \zeta_{0}\right)=0$. Since $\psi(1,0)=$ $h(\beta)>0$, we have $\zeta_{0} \neq 0$. By homogeneity, there is some ξ_{1} with $\psi\left(\xi_{1}, 1\right)=0$. On the other hand, when Ψ is bounded, hence compact, pick $\left(\xi_{0}, \zeta_{0}\right)$ in Ψ with maximal possible ζ_{0}. Writing ξ_{0} as $\xi_{0}=\zeta_{0} \xi_{1}$ we obtain $\zeta_{0}\left(\xi_{1}, 1\right) \in \Psi$, hence $\zeta_{0} \psi\left(\xi_{1}, 1\right) \leqslant 1$.

Let (ξ, ζ) be given. When Ψ is unbounded, $\psi\left(\zeta \xi_{1}, \zeta\right)=|\zeta| \psi\left(\xi_{1}, 1\right)=0 \leqslant \psi(\xi, \zeta)$. When Ψ is bounded, we have $\psi\left(\zeta \xi_{1}, \zeta\right)=|\zeta| \psi\left(\xi_{1}, 1\right) \leqslant|\zeta| / \zeta_{0} \leqslant \psi(\xi, \zeta)$, with the last inequality due to homogeneity and the maximality of ζ_{0}. Taking the difference of (ξ, ζ) and $\left(\zeta \xi_{1}, \zeta\right)$, we obtain $\psi\left(\xi-\zeta \xi_{1}, 0\right) \leqslant 2 \psi(\xi, \zeta)$, and hence

$$
\left|\xi-\zeta \xi_{1}\right| h(\beta) \leqslant 2 \psi(\xi, \zeta)
$$

by (3.11). Setting $\zeta=1$ and replacing ξ by $x \in \mathbb{Z}$, we have

$$
h\left(b \beta^{x}\right)=\psi(x, 1) \geqslant \frac{1}{2}\left|x-\xi_{1}\right| h(\beta) .
$$

We pick $u \in \mathbb{Z}$ such that $\xi_{1}=-u+\mu$ with $|\mu| \leqslant \frac{1}{2}$. Then

$$
h\left(b \beta^{x-u}\right) \geqslant \frac{1}{2}\left|x-u-\xi_{1}\right| h(\beta)=\frac{1}{2}|x-\mu| h(\beta) \geqslant \frac{1}{4} h(\beta)|x| .
$$

4. Consequences of having some height $h\left(\alpha_{i} / \alpha_{j}\right)$ not too small

Define the degree of the zero polynomial to be -1 . Given a k-tuple $\mathbf{P}=\left(P_{1}, \ldots, P_{k}\right)$ of polynomials where $\operatorname{deg} P_{i}=t_{i}(i=1, \ldots, k)$, define $t(\mathbf{P})$ by (1.7), and set

$$
t^{*}(\mathbf{P})=1+\max _{i} t_{i}
$$

Note that a zero polynomial does not contribute to $t(\mathbf{P})$.

Lemma 7. Consider the equation (1.5), i.e.,

$$
\begin{equation*}
P_{1}(x) \alpha_{1}^{x}+\ldots+P_{k}(x) \alpha_{k}^{x}=0 \tag{4.1}
\end{equation*}
$$

where $\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in\left(\overline{\mathbb{Q}}^{\times}\right)^{k}$ and where each P_{i} is nonzero and has coefficients in $\overline{\mathbb{Q}}$. Suppose that $t(\mathbf{P}) \geqslant 3$ and that

$$
\begin{equation*}
\max _{i, j} h\left(\alpha_{i}: \alpha_{j}\right) \geqslant \hbar, \tag{4.2}
\end{equation*}
$$

where $0<\hbar \leqslant 1$. Set $t=t(\mathbf{P}), t^{*}=t^{*}(\mathbf{P})$,

$$
E=16 t^{2} \cdot t^{*} / \hbar, \quad F=\exp \left((6 t)^{5 t}\right)+5 E \log E .
$$

Then there are k-tuples

$$
\mathbf{P}^{(w)}=\left(P_{1}^{(w)}, \ldots, P_{k}^{(w)}\right) \neq(0, \ldots, 0) \quad(1 \leqslant w<F)
$$

of polynomials with

$$
\begin{array}{ll}
\operatorname{deg} P_{i}^{(w)} \leqslant t_{i} & (1 \leqslant w<F, 1 \leqslant i<k), \\
\operatorname{deg} P_{k}^{(w)}<t_{k} & (1 \leqslant w<F),
\end{array}
$$

such that every solution $x \in \mathbb{Z}$ of (4.1) satisfies

$$
\begin{equation*}
P_{1}^{(w)}(x) \alpha_{1}^{x}+\ldots+P_{k}^{(w)}(x) \alpha_{k}^{x}=0 \tag{4.3}
\end{equation*}
$$

for some w in $1 \leqslant w<F$.
Proof. Suppose $u \in \mathbb{Z}$, and set $y=x+u$. Then (4.1) may be rewritten as

$$
P_{1}(y-u) \alpha_{1}^{-u} \alpha_{1}^{y}+\ldots+P_{k}(y-u) \alpha_{k}^{-u} \alpha_{k}^{y}=0,
$$

which is the same as

$$
\begin{equation*}
Q_{1}(y) \alpha_{1}^{y}+\ldots+Q_{k}(y) \alpha_{k}^{y}=0 \tag{4.4}
\end{equation*}
$$

with

$$
Q_{i}(y)=P_{i}(y-u) \alpha_{i}^{-u} \quad(i=1, \ldots, k)
$$

Suppose our assertion is true for (4.4), with polynomial k-tuples $\mathbf{Q}^{(w)}=\left(Q_{1}^{(w)}, \ldots, Q_{k}^{(w)}\right)$ $(1 \leqslant w<F)$. Thus every solution $y \in \mathbb{Z}$ of (4.4) satisfies

$$
\begin{equation*}
Q_{1}^{(w)}(y) \alpha_{1}^{y}+\ldots+Q_{k}^{(w)}(y) \alpha_{k}^{y}=0 \tag{4.5}
\end{equation*}
$$

for some w. But then $x=y-u$ satisfies (4.3) with $P_{i}^{(w)}(x)=Q_{i}^{(w)}(x+u) \alpha_{i}^{u} \quad(i=1, \ldots, k)$. We therefore may make a change of variables $x \mapsto y=x+u$.

We may suppose that $h\left(\alpha_{1}: \alpha_{2}\right) \geqslant \hbar$. Write

$$
P_{i}(x)=a_{i 0}+a_{i 1} x+\ldots+a_{i, t_{i}} x^{t_{i}} .
$$

Pick u according to Lemma 6 such that

$$
h\left(a_{1, t_{1}} \alpha_{1}^{y-u}: a_{2, t_{2}} \alpha_{2}^{y-u}\right)=h\left(\frac{a_{1, t_{1}}}{a_{2, t_{2}}}\left(\frac{\alpha_{1}}{\alpha_{2}}\right)^{y-u}\right) \geqslant \frac{1}{4} h\left(\frac{\alpha_{1}}{\alpha_{2}}\right)|y| \geqslant \frac{1}{4} \hbar|y| .
$$

Setting

$$
Q_{i}(y)=P_{i}(y-u) \alpha_{i}^{-u}=b_{i 0}+b_{i 1} y+\ldots+b_{i, t_{i}} y^{t_{i}}
$$

we have $b_{1, t_{1}}=a_{1, t_{1}} \alpha_{1}^{-u}, b_{2, t_{2}}=a_{2, t_{2}} \alpha_{2}^{-u}$, so that

$$
\begin{equation*}
h\left(b_{1, t_{1}} \alpha_{1}^{y}: b_{2, t_{2}} \alpha_{2}^{y}\right) \geqslant \frac{1}{4} \hbar|y| \tag{4.6}
\end{equation*}
$$

for $y \in \mathbb{Z}$.
The equation (4.4) is of the form

$$
\left(b_{10}+b_{11} y+\ldots+b_{1, t_{1}} y^{t_{1}}\right) \alpha_{1}^{y}+\ldots+\left(b_{k 0}+b_{k 1} y+\ldots+\left(b_{k, t_{k}} y^{t_{k}}\right) \alpha_{k}^{y}=0\right.
$$

Some coefficients may be zero; omitting the zero coefficients we rewrite this as

$$
\left(b_{10}^{\prime} y^{v_{10}}+\ldots+b_{1, t_{1}} y^{t_{1}}\right) \alpha_{1}^{y}+\ldots+\left(b_{k 0}^{\prime} y^{v_{k 0}}+\ldots+b_{k, t_{k}} y^{t_{k}}\right) \alpha_{k}^{y}=0
$$

Let q be the total number of (nonzero) coefficients here, and consider the following vectors in q-dimensional space:

$$
\begin{aligned}
& \mathbf{X}=\left(b_{10}^{\prime} \alpha_{1}^{y}, \ldots, b_{1, t_{1}} \alpha_{1}^{y}, \ldots, b_{k 0}^{\prime} \alpha_{k}^{y}, \ldots, b_{k, t_{k}} \alpha_{k}^{y}\right) \\
& \mathbf{Y}=\left(y^{v_{10}}, \ldots, \quad y^{t_{1}}, \ldots, y^{v_{k 0}}, \ldots, y^{t_{k}}\right)
\end{aligned}
$$

Our equation becomes

$$
\begin{equation*}
Z_{1}+\ldots+Z_{q}=0 \tag{4.7}
\end{equation*}
$$

with $\mathbf{Z}=\mathbf{X} * \mathbf{Y}=\left(X_{1} Y_{1}, \ldots, X_{q} Y_{q}\right)$. Here \mathbf{X} lies in the group Γ of rank $r \leqslant 2$ generated by the points $\left(b_{10}^{\prime}, \ldots, b_{1, t_{1}}, \ldots, b_{k 0}^{\prime}, \ldots, b_{k, t_{k}}\right)$ and $\left(\alpha_{1}, \ldots, \alpha_{1}, \ldots, \alpha_{k}, \ldots, \alpha_{k}\right)$. Further

$$
\begin{equation*}
h(\mathbf{X}) \geqslant h\left(b_{1, t_{1}} \alpha_{1}^{y}: b_{2, t_{2}} \alpha_{2}^{y}\right) \geqslant \frac{1}{4} \hbar|y| \tag{4.8}
\end{equation*}
$$

by (4.6). On the other hand, $\mathbf{Y} \in \mathbb{Q}^{q}$, in fact $\mathbf{Y} \in\left(\overline{\mathbb{Q}}^{\times}\right)^{q}$ when $y \neq 0$, and $h(\mathbf{Y}) \leqslant t^{*} \log |y|$ since each $t_{i} \leqslant t^{*}$. Therefore when

$$
\begin{equation*}
|y| \geqslant 2 E \log E \tag{4.9}
\end{equation*}
$$

so that $|y| \geqslant\left(32 q^{2} t^{*} / \hbar\right) \log \left(16 q^{2} t^{*} / \hbar\right)$ in view of $q \leqslant t$, then

$$
|y|>\frac{16 q^{2} t^{*}}{\hbar} \log |y|
$$

and

$$
h(\mathbf{Y}) \leqslant t^{*} \log |y|<\frac{\hbar}{16 q^{2}}|y|=\frac{1}{4 q^{2}} \cdot \frac{\hbar}{4}|y| \leqslant \frac{1}{4 q^{2}} h(\mathbf{X})
$$

by (4.8). Invoking Lemma 5, we see that for such y the vector \mathbf{Z} is contained in the union of at most

$$
\begin{equation*}
C(q, 2)<\exp \left((6 q)^{5 q}\right) \leqslant \exp \left((6 t)^{5 t}\right) \tag{4.10}
\end{equation*}
$$

proper subspaces of the space (4.7). Consider such a subspace $c_{1} Z_{1}+\ldots+c_{q} Z_{q}=0$ (where $\left(c_{1}, \ldots, c_{q}\right)$ is not proportional to $\left.(1, \ldots, 1)\right)$. Taking a linear combination of this and (4.7) we obtain a nontrivial relation $c_{1}^{\prime} Z_{1}+\ldots+c_{q-1}^{\prime} Z_{q-1}=0$. But this means exactly that y satisfies a nontrivial equation

$$
\begin{equation*}
\widetilde{Q}_{1}(y) \alpha_{1}^{y}+\ldots+\widetilde{Q}_{k}(y) \alpha_{k}^{y}=0 \tag{4.11}
\end{equation*}
$$

where $\operatorname{deg} \widetilde{Q}_{i} \leqslant t_{i}(i=1, \ldots, k-1), \operatorname{deg} \widetilde{Q}_{k}<t_{k}$.
There are not more than $5 E \log E$ values of y where (4.9) is violated. For fixed y, and since $t \geqslant 3$, there will certainly be polynomials $\widetilde{Q}_{1}, \ldots, \widetilde{Q}_{k}$, not all zero, with (4.11) and the same restriction on their degrees. Altogether we get fewer than F polynomial k-tuples $\widetilde{\mathbf{Q}}=\left(\widetilde{Q}_{1}, \ldots, \widetilde{Q}_{k}\right)$, where F is the sum of the right-hand side of (4.10), and of $5 E \log E$.

Lemma 7 gives us a possible opening to prove our Theorem. Note that each $\mathbf{P}^{(w)}$ has $t\left(\mathbf{P}^{(w)}\right)<t(\mathbf{P})$, so that we can start induction on $t=t(\mathbf{P})$, provided (4.2) holds with some $\hbar=\hbar(t)>0$ independent of the degrees of $\alpha_{1}, \ldots, \alpha_{k}$. But in general such a condition (4.2) will be hard to satisfy.

5. A proposition which implies the Theorem

An n-tuple of linear forms M_{1}, \ldots, M_{n} in a variable vector \mathbf{X} will be called linearly independent over \mathbb{Q} if there is no $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{Q}^{n} \backslash\{0\}$ such that we have identically

$$
y_{1} M_{1}(\mathbf{X})+\ldots+y_{n} M_{n}(\mathbf{X})=0
$$

Proposition. Suppose that linear forms M_{1}, \ldots, M_{n} in $\mathbf{X}=\left(X_{1}, \ldots, X_{k}\right)$ have algebraic coefficients and are linearly independent over \mathbb{Q}. Let $\alpha_{1}, \ldots, \alpha_{k}$ be algebraic and have $\alpha_{i} \not \approx \alpha_{j}$ when $i \neq j$. Consider numbers $x \in \mathbb{Z}$ for which

$$
\begin{equation*}
M_{1}\left(\alpha_{1}^{x}, \ldots, \alpha_{k}^{x}\right), \quad \ldots, \quad M_{n}\left(\alpha_{1}^{x}, \ldots, \alpha_{k}^{x}\right) \tag{5.1}
\end{equation*}
$$

are linearly dependent over \mathbb{Q}. These number fall into at most

$$
H(k, n)=\exp \left(\left(7 k^{n}\right)^{6 k^{n}}\right)
$$

classes with the following property. For each class C, there is a natural number m such that
(a) solutions x, x^{\prime} in C have $x \equiv x^{\prime}(\bmod m)$,
(b) there are i, j with $h\left(\alpha_{i}^{m}: \alpha_{j}^{m}\right) \geqslant \hbar$, where

$$
\begin{equation*}
\hbar=\hbar(k, n)=e^{-10 k^{2 n}} \tag{5.2}
\end{equation*}
$$

We will now deduce the Theorem. We are concerned with (1.5), where we write P_{i} in the form

$$
P_{i}(x)=\sum_{j=1}^{a} a_{i j} x^{j-1} \quad(i=1, \ldots, k)
$$

with $a=1+\max _{i} \operatorname{deg} P_{i}$. Define linear forms

$$
N_{j}(\mathbf{X})=\sum_{i=1}^{k} a_{i j} X_{i} \quad(j=1, \ldots, a)
$$

in $\mathbf{X}=\left(X_{1}, \ldots, X_{k}\right)$. Then as already noted in the Introduction, (1.5) may be written as

$$
\begin{equation*}
\sum_{j=1}^{a} N_{j}\left(\alpha_{1}^{x}, \ldots, \alpha_{k}^{x}\right) x^{j-1}=0 \tag{5.3}
\end{equation*}
$$

Here N_{1}, \ldots, N_{a} are not necessarily independent over \mathbb{Q}. Let n be the maximum number of independent ones among them. There are linear forms M_{1}, \ldots, M_{n}, linearly independent over \mathbb{Q}, such that

$$
N_{j}(\mathbf{X})=\sum_{r=1}^{n} c_{j r} M_{r}(\mathbf{X}) \quad(j=1, \ldots, a)
$$

with rational coefficients $c_{j r}$. Then (5.3) becomes

$$
\begin{equation*}
\sum_{r=1}^{n}\left(\sum_{j=1}^{a} c_{j r} x^{j-1}\right) M_{r}\left(\alpha_{1}^{x}, \ldots, \alpha_{k}^{x}\right)=0 \tag{5.4}
\end{equation*}
$$

There are less than a numbers x where

$$
\sum_{j=1}^{a} c_{j r} x^{j-1}=0 \quad(r=1, \ldots, n)
$$

For the other solutions of (5.4), the n numbers in (5.1) are linearly dependent over \mathbb{Q}. By the Proposition, these numbers fall into at most $H(k, n)$ classes. Let us look at solutions in a fixed class.

When x_{0} is a solution in the class, every solution in the class is of the type $x=x_{0}+m z$ with $z \in \mathbb{Z}$. In terms of z, the original equation (1.5) becomes

$$
\begin{equation*}
\widehat{P}_{1}(z) \widehat{\alpha}_{1}^{z}+\ldots+\widehat{P}_{k}(z) \widehat{\alpha}_{k}^{z}=0 \tag{5.5}
\end{equation*}
$$

where $\widehat{P}_{i}(z)=\alpha_{i}^{x_{0}} P_{i}\left(x_{0}+m z\right), \widehat{\alpha}_{i}=\alpha_{i}^{m}(i=1, \ldots, k)$. But now for some i, j,

$$
h\left(\widehat{\alpha}_{i}: \widehat{\alpha}_{j}\right) \geqslant \hbar(k, n)
$$

We will prove that when $t(\mathbf{P})=t$, the equation (1.5) has at most

$$
\begin{equation*}
Z\left(t, k^{a}\right)=\exp \left(t\left(7 k^{a}\right)^{7 k^{a}}\right) \tag{5.6}
\end{equation*}
$$

solutions x. We clearly may suppose that $k \geqslant 2, t \geqslant 3$. We will prove our assertion by induction on t in $3 \leqslant t \leqslant k^{a}$. We apply Lemma 7 to (5.5). Since $t^{*}(\mathbf{P}) \leqslant t, n \leqslant a$, we have

$$
\begin{aligned}
E & \leqslant 16 t^{3} / \hbar(k, n) \leqslant 16 k^{3 a} e^{10 k^{2 a}}<e^{13 k^{2 a}} \\
5 E \log E & <65 k^{2 a} \cdot e^{13 k^{2 a}}<e^{18 k^{2 a}}, \\
F & \leqslant \exp \left((6 t)^{5 t}\right)+\exp \left(18 k^{2 a}\right) \leqslant \exp \left(\left(6 k^{a}\right)^{5 k^{a}}\right)+\exp \left(18 k^{2 a}\right)<\exp \left(\left(7 k^{a}\right)^{5 k^{a}}\right) .
\end{aligned}
$$

By Lemma 7, each solution of (5.5) satisfies an equation with a polynomial vector $\mathbf{P}^{(w)}=$ $\left(P_{1}^{(w)}, \ldots, P_{k}^{(w)}\right) \neq(0, \ldots, 0)$ with $1 \leqslant w<F$ having $t\left(\mathbf{P}^{(w)}\right)<t$. By induction on t, each such equation has at most $Z\left(t-1, k^{a}\right)$ solutions. We therefore obtain

$$
\begin{aligned}
& <a+H(k, n) F \cdot Z\left(t-1, k^{a}\right) \\
& \leqslant a+\exp \left(\left(7 k^{n}\right)^{6 k^{n}}+\left(7 k^{a}\right)^{5 k^{a}}\right) \cdot \exp \left((t-1)\left(7 k^{a}\right)^{7 k^{a}}\right) \\
& <\exp \left(t\left(7 k^{a}\right)^{7 k^{a}}\right)=Z\left(t, k^{a}\right)
\end{aligned}
$$

solutions, establishing (5.6).
Since $t \leqslant k^{a}$, the number of solutions of (1.5) certainly is

$$
<\exp \left(\left(7 k^{a}\right)^{8 k^{a}}\right)
$$

6. Splitting of exponential equations

Let nonzero $a_{1}, \ldots, a_{q}, \alpha_{1}, \ldots, \alpha_{q}$ be given. We consider the function

$$
\begin{equation*}
f(x)=a_{1} \alpha_{1}^{x}+\ldots+a_{q} \alpha_{q}^{x} \tag{6.1}
\end{equation*}
$$

We group together summands $a_{i} \alpha_{i}^{x}$ and $a_{j} \alpha_{j}^{x}$ where $\alpha_{i} \approx \alpha_{j}$. After relabeling, we may write (uniquely up to ordering)

$$
\begin{equation*}
f(x)=f_{1}(x)+\ldots+f_{g}(x) \tag{6.2}
\end{equation*}
$$

where

$$
f_{i}(x)=a_{i 1} \alpha_{i 1}^{x}+\ldots+a_{i, q_{i}} \alpha_{i, q_{i}}^{x} \quad(i=1, \ldots, g)
$$

with $q_{1}+\ldots+q_{g}=q$ and

$$
\begin{array}{ll}
\alpha_{i j} \approx \alpha_{i k} & \text { when } 1 \leqslant i \leqslant g, 1 \leqslant j, k \leqslant q_{i} \\
\alpha_{i j} \not \approx \alpha_{i^{\prime} k} & \text { when } 1 \leqslant i \neq i^{\prime} \leqslant g, 1 \leqslant j \leqslant q_{i}, 1 \leqslant k \leqslant q_{i^{\prime}} .
\end{array}
$$

Lemma 8. All but at most

$$
\begin{equation*}
G(q)=\exp \left((7 q)^{4 q}\right) \tag{6.3}
\end{equation*}
$$

solutions $x \in \mathbb{Z}$ of $f(x)=0$ have

$$
\begin{equation*}
f_{1}(x)=\ldots=f_{g}(x)=0 \tag{6.4}
\end{equation*}
$$

We will say that the equation $f(x)=0$ splits into the g equations (6.4).
Proof. The lemma is nontrivial only when $g \geqslant 2$; and then $q=q(f) \geqslant 2$. We proceed by induction on q. When $q=2$ and $g=2$, we have in fact $f(x)=a \alpha_{11}^{x}+b \alpha_{21}^{x}$ with $a b \neq 0$ and $\alpha_{11} \not \approx \alpha_{21}$. There can be at most one $x \in \mathbb{Z}$ with $f(x)=0$.

We now turn to the step $q-1 \rightarrow q$ where $q \geqslant 3$. Observe that $\left(\alpha_{1}^{x}, \ldots, \alpha_{q}^{x}\right)$ lies in a group Γ of rank $r \leqslant 1$. By Lemma 4, there are at most $C(q, 1)=\exp \left(2 \cdot(6 q)^{4 q}\right)$ vectors $\mathbf{c}^{(l)}=$ $\left(c_{1}^{(l)}, \ldots, c_{q}^{(l)}\right), 1 \leqslant l \leqslant C(q, 2)$, such that for every nondegenerate solution $x \in \mathbb{Z}$ of $f(x)=0$ we have $\left(\alpha_{1}^{x}, \ldots, \alpha_{q}^{x}\right)$ proportional to some $\mathbf{c}^{(l)}$. Thus the quotients $\left(\alpha_{i} / \alpha_{j}\right)^{x}$ depend only on l. But since $g \geqslant 2$, some α_{i} / α_{j} is not a root of 1 , so that for given l, there can be at most one solution $x \in \mathbb{Z}$.

When x is a degenerate solution of $f(x)=0$, there is a nontrivial partition of $\{1, \ldots, q\}$ into subsets $\left\{i_{1}, \ldots, i_{n}\right\},\left\{j_{1}, \ldots, j_{m}\right\}$ (with $n+m=q$) such that

$$
a_{i_{1}} \alpha_{i_{1}}^{x}+\ldots+a_{i_{n}} \alpha_{i_{n}}^{x}=0, \quad a_{j_{1}} \alpha_{j_{1}}^{x}+\ldots+a_{j_{m}} \alpha_{j_{m}}^{x}=0
$$

There are $<2^{q-1}$ such partitions. But each partition yields nonzero $f^{*}, f^{* *}$ with

$$
\begin{equation*}
f^{*}(x)=f^{* *}(x)=0 \tag{6.5}
\end{equation*}
$$

and with $f^{*}+f^{* *}=f$, as well as $q\left(f^{*}\right), q\left(f^{* *}\right)<q=q(f)$ (where $q(f)$ is the number of nonzero summands of a function f). Write

$$
\begin{aligned}
f^{*}(x) & =f_{1}^{*}(x)+\ldots+f_{g}^{*}(x) \\
f^{* *}(x) & =f_{1}^{* *}(x)+\ldots+f_{g}^{* *}(x)
\end{aligned}
$$

where $f_{i}^{*}, f_{i}^{* *}$ are linear combinations of $\alpha_{i 1}^{x}, \ldots, \alpha_{i, q_{i}}^{x}$. By induction, all but at most $2 G(q-1)$ solutions of (6.5) have

$$
\begin{gathered}
f_{i}^{*}(x)=0 \quad(1 \leqslant i \leqslant g) \\
f_{i}^{* *}(x)=0 \quad(1 \leqslant i \leqslant g)
\end{gathered}
$$

hence (6.4). The number of exceptions to (6.4) therefore is

$$
\begin{aligned}
& <\exp \left(2(6 q)^{4 q}\right)+2^{q} G(q-1) \\
& <\exp \left(2(6 q)^{4 q}\right)+2^{q} \exp \left((7 q)^{4 q-4}\right) \\
& <\exp \left((7 q)^{4 q}\right)=G(q)
\end{aligned}
$$

A summand $a_{i} \alpha_{i}^{x}$ in (6.1) will be called a singleton if $\alpha_{i} \not \approx \alpha_{j}$ for every $j \neq i, 1 \leqslant j \leqslant q$. Then one of the g summands in (6.2) equals just $a_{i} \alpha_{i}^{x}$, and hence has no zero. We therefore obtain the following

Corollary. Suppose that f as given by (6.1) contains a singleton. Then $f(x)=0$ has at most $G(q)$ zeros $x \in \mathbb{Z}$.

The $\alpha_{i j}\left(1 \leqslant j \leqslant q_{i}\right)$ occurring in f_{i} are all \approx to each other. However, given a solution x of $f_{i}(x)=0$, there may be a subsum of f_{i} which vanishes. We will refer to such a possible phenomenon as a subsplitting. It causes considerable complications in our proof of the Theorem; in particular, it necessitates the Appendix.

A solution x of $f_{i}(x)=0$ where no subsplitting occurs is called a nondegenerate solution. To ease notation, let us suppose that f itself as given by (6.1) has $\alpha_{1} \approx \ldots \approx \alpha_{q}$. By Lemma 3, there are vectors $\mathbf{c}^{(w)}(1 \leqslant w \leqslant B(q))$ such that for a nondegenerate solution, $\left(\alpha_{1}^{x}, \ldots, \alpha_{q}^{x}\right)$ is proportional to some $\mathbf{c}^{(w)}$.

7. Algebraic numbers having many conjugates which are \approx to each other

Throughout, $\alpha, \beta, \gamma, \delta$ will be in $\overline{\mathbb{Q}}^{\times}$.
LEMMA 9. (i) \approx is an equivalence relation on $\overline{\mathbb{Q}}^{\times}$.
(ii) If $\alpha \approx \beta, \gamma \approx \delta$, then $\alpha \gamma \approx \beta \delta$.
(iii) If $\alpha^{l} \approx \beta^{l}$ for some $l \in \mathbb{Z} \backslash\{0\}$, then $\alpha \approx \beta$.
(iv) If $\alpha \approx \beta$ and σ is an embedding of $\mathbb{Q}(\alpha, \beta)$ into $\overline{\mathbb{Q}}$, then $\sigma(\alpha) \approx \sigma(\beta)$.

Note that (i) has already been tacitly used above.
Proof. Let $T \subset \overline{\mathbb{Q}}^{\times}$be the torsion subgroup, i.e., the group of roots of 1 . Then $\alpha \approx \beta$ precisely when α, β have the same image in the factor group $\overline{\mathbb{Q}}^{\times} / T$. This implies (i), (ii). When $\xi^{l} \in T$ for some $l \in \mathbb{Z} \backslash\{0\}$, then $\xi \in T$; and this implies (iii). Finally, if $\xi \in T \cap \mathbb{Q}(\alpha, \beta)$ and σ is an embedding of $\mathbb{Q}(\alpha, \beta)$ into $\overline{\mathbb{Q}}$, then $\sigma(\xi) \in T$; and this yields (iv).

Lemma 10. Let β be of degree d, and $S=\left\{\beta^{[1]}, \ldots, \beta^{[d]}\right\}$ the set of its conjugates. Partition S as

$$
S=S_{1} \cup \ldots \cup S_{m}
$$

into equivalence classes under \approx. Then $\left({ }^{4}\right) d=m n$ with some $n \in \mathbb{Z}$, and

$$
\left|S_{1}\right|=\ldots=\left|S_{m}\right|=n
$$

Proof. Let G be the Galois group of $K=\mathbb{Q}\left(\beta^{[1]}, \ldots, \beta^{[d]}\right)$. When $\sigma \in G$, let $\sigma\left(S_{i}\right)$ be the set of elements $\sigma\left(\beta^{[a]}\right)$ where $\beta^{[a]}$ runs through S_{i}. By (iv) of the preceding lemma, G permutes the sets S_{1}, \ldots, S_{m}, i.e., G acts on the m-element set $\Sigma=\left\{S_{1}, \ldots, S_{m}\right\}$. Since G acts transitively on S, it acts transitively on Σ. Given S_{i}, S_{j} and $\sigma \in G$ with $\sigma\left(S_{i}\right)=S_{j}$, we have $\left|S_{i}\right|=\left|\sigma\left(S_{i}\right)\right|=\left|S_{j}\right|$. Therefore S_{1}, \ldots, S_{m} have some common cardinality n, and $d=m n$.

Lehmer's conjecture says that if $\beta \not \approx 1$ is of degree d, then $h(\beta) \geqslant c_{1} / d$ with an absolute constant $c_{1}>0$. The best that is known in this direction is Dobrowolski's [1] estimate $h(\beta) \geqslant\left(c_{2} / d\right)\left(\log ^{+} \log ^{+} d / \log ^{+} d\right)^{3}$, with the notation $\log ^{+} \xi=\max (1, \log \xi)$. According to Voutier [11], we may take $c_{2}=\frac{1}{4}$. We will use the slightly weaker version

$$
\begin{equation*}
h(\beta) \geqslant \frac{1}{4 d\left(\log ^{+} d\right)^{3}} \tag{7.1}
\end{equation*}
$$

The following lemma can sometimes be used in place of Lehmer's conjecture.

[^2]Lemma 11. Let β be as in Lemma 10, and suppose $\beta \not \approx 1$. Then

$$
\begin{equation*}
h(\beta) \geqslant \frac{1}{4 d\left(\log ^{+} m\right)^{3}} . \tag{7.2}
\end{equation*}
$$

Proof. In the notation of Lemma 10, we may suppose that $\beta \in S_{1}$. Let $\gamma_{i}(i=1, \ldots, m)$ be the product of the elements of S_{i}, i.e.,

$$
\gamma_{i}=\prod_{\beta^{[a]} \in S_{i}} \beta^{[a]}
$$

Then G permutes $\gamma_{1}, \ldots, \gamma_{m}$, so that every conjugate of γ_{1} is among $\gamma_{1}, \ldots, \gamma_{m}$. We may infer that γ_{1} is of degree $\leqslant m$. Moreover, $\gamma_{1} \not \approx 1$, for otherwise $\beta^{n} \approx \gamma_{1} \approx 1$, and hence $\beta \approx 1$, against the hypothesis. Therefore $h\left(\gamma_{1}\right) \geqslant 1 /\left(4 m\left(\log ^{+} m\right)^{3}\right)$. But

$$
h\left(\gamma_{1}\right) \leqslant \sum_{\beta^{[a]} \in S_{1}} h\left(\beta^{[a]}\right)=\left|S_{1}\right| h(\beta)=n h(\beta) .
$$

We may conclude that

$$
h(\beta) \geqslant \frac{h\left(\gamma_{1}\right)}{n} \geqslant \frac{1}{4 d\left(\log ^{+} m\right)^{3}} .
$$

Henceforth we will use the notation $n(\beta)=n$ where n is as in Lemma 10. Suppose that $\mathbb{Q}(\beta) \subset K$ where K is of degree D. Let $\xi \mapsto \xi^{(\sigma)}(\sigma=1, \ldots, D)$ signify the embeddings $K \hookrightarrow \mathbb{C}$. Then each $\beta^{[a]}(1 \leqslant a \leqslant d)$ occurs D / d times among $\beta^{(1)}, \ldots, \beta^{(D)}$. Therefore among $\beta^{(1)}, \ldots, \beta^{(D)}$, there are

$$
n_{K}(\beta):=\frac{D}{d} n(\beta)
$$

elements which are \approx to each other. Note that $D=m n_{K}(\beta)$. We immediately get the following

Corollary. $h(\beta) \geqslant 1 /\left(4 d\left(\log ^{+}\left(D / n_{K}(\beta)\right)\right)^{3}\right)$.
Again let β be as in Lemma 10, and suppose $S_{1}=\left\{\beta^{[1]}, \ldots, \beta^{[n]}\right\}$. So $\beta^{[1]}, \ldots, \beta^{[n]}$ have a common absolute value b, and we may write

$$
\begin{equation*}
\beta^{[i]}=b \cdot e^{2 \pi i \varrho_{i}} \quad(i=1, \ldots, n) \tag{7.3}
\end{equation*}
$$

with $0 \leqslant \varrho_{i}<1$. The differences $\varrho_{i}-\varrho_{j}$ are rational, since $\beta^{[i]} / \beta^{[j]} \approx 1$.
More generally, let $R=\left\{\varrho_{1}, \ldots, \varrho_{n}\right\}$ be a system of reals such that each difference $\varrho_{i}-\varrho_{j} \in \mathbb{Q}$, but $\varrho_{i}-\varrho_{j} \notin \mathbb{Z}$ when $i \not \approx j$. Let $r_{i j}$ be the denominator of $\varrho_{i}-\varrho_{j}$, i.e., the least natural number such that $r_{i j}\left(\varrho_{i}-\varrho_{j}\right) \in \mathbb{Z}$. Given $x \in \mathbb{N}$, let $u_{i}(x)$ be the number of j in $1 \leqslant j \leqslant n$ with $r_{i j} \mid x$. The system R will be called homogeneous if $u_{1}(x)=\ldots=u_{n}(x)$ for $x \in \mathbb{N}$.

Lemma 12. Let $\left\{\beta^{[1]}, \ldots, \beta^{[n]}\right\}$ be as above, and $\varrho_{1}, \ldots, \varrho_{n}$ defined by (7.3). Then $R=\left\{\varrho_{1}, \ldots, \varrho_{n}\right\}$ is homogeneous.

Proof. Write $v_{i}(x)$ for the number of j in $1 \leqslant j \leqslant n$ with $r_{i j}=x$. Since $u_{i}(x)=$ $\sum_{y \mid x} v_{i}(y)$, it will suffice to check that $v_{1}(x)=\ldots=v_{n}(x)$. Since $\beta^{[i]} / \beta^{[j]}=e^{2 \pi i r_{i j}^{\prime} / r_{i j}}$ with $\operatorname{gcd}\left(r_{i j}, r_{i j}^{\prime}\right)=1$, we have $r_{i j}=x$ precisely when $\beta^{[i]} / \beta^{[j]}$ is a primitive x th root of 1 .

Given i and x set $v=v_{i}(x)$, and suppose that $\beta^{[i]} / \beta^{\left[l_{k}\right]}(1 \leqslant k \leqslant v)$ is a primitive x th root of 1 for v distinct numbers l_{1}, \ldots, l_{v} in $1 \leqslant l \leqslant n$.

Let G^{\prime} be the subgroup of the Galois group G of $\mathbb{Q}\left(\beta^{[1]}, \ldots, \beta^{[d]}\right)$ which permutes $\beta^{[1]}, \ldots, \beta^{[n]}$, i.e., which acts on $S_{1}=\left\{\beta^{[1]}, \ldots, \beta^{[n]}\right\}$. Since G acts transitively on S and permutes S_{1}, \ldots, S_{m}, the group G^{\prime} acts transitively on S_{1}. Now let j in $1 \leqslant j \leqslant n$ be given, and pick $\sigma \in G^{\prime}$ with $\sigma\left(\beta^{[i]}\right)=\beta^{[j]}$. We have $\sigma\left(\beta^{\left[l_{k}\right]}\right)=\beta^{\left[l_{k}^{\prime}\right]}$ where $l_{1}^{\prime}, \ldots, l_{v}^{\prime}$ are v distinct integers in $1 \leqslant l^{\prime} \leqslant n$. Further

$$
\frac{\beta^{[j]}}{\beta^{\left[l_{k}^{\prime}\right]}}=\sigma\left(\frac{\beta^{[i]}}{\beta^{\left[l_{k}\right]}}\right) \quad(1 \leqslant k \leqslant v)
$$

are primitive x th roots of 1 . Therefore $v_{j}(x) \geqslant v=v_{i}(x)$. By symmetry, $v_{i}(x)=v_{j}(x)$, and the lemma follows.

When α, β, γ are in \mathbb{Q}^{\times}or more generally in \mathbb{C}^{\times}, write

$$
\begin{equation*}
G(\alpha: \beta: \gamma) \tag{7.4}
\end{equation*}
$$

for the subgroup of \mathbb{C}^{\times}generated by α / β and α / γ. Clearly $G(\alpha: \beta: \gamma)$ is finite precisely when $\alpha \approx \beta \approx \gamma$. With β and $S_{1}=\left\{\beta^{[1]}, \ldots, \beta^{[n]}\right\}$ as above, a triple of integers i, j, h in $1 \leqslant i, j, h \leqslant n$ will be said to be ε-bad if

$$
\left|G\left(\beta^{[i]}: \beta^{[j]}: \beta^{[h]}\right)\right| \leqslant \varepsilon n
$$

In the notation of (7.3), this happens precisely when

$$
\operatorname{lcm}\left(r_{i j}, r_{i h}\right) \leqslant \varepsilon n
$$

Now let $l \geqslant 3$, and consider l-tuples of integers u_{1}, \ldots, u_{l} in $1 \leqslant u \leqslant n$. Such an l-tuple will be called ε-bad if some triple u_{i}, u_{j}, u_{h} with distinct i, j, h in $1 \leqslant i, j, h \leqslant l$ is ε-bad, i.e., if it has

$$
\left|G\left(\beta^{\left[u_{i}\right]}: \beta^{\left[u_{j}\right]}: \beta^{\left[u_{h}\right]}\right)\right| \leqslant \varepsilon n .
$$

Since $R=\left\{\varrho_{1}, \ldots, \varrho_{n}\right\}$ is homogeneous, and by the Corollary of the Appendix, the number of ε-bad l-tuples is $<\varepsilon^{1 / 2} l^{3} n^{l}$.

Suppose again that $\mathbb{Q}(\beta) \subset K$ and that $\xi \mapsto \xi^{(\sigma)}(\sigma=1, \ldots, D)$ signify the embeddings $K \hookrightarrow \mathbb{C}$. There are $n_{K}(\beta)=n D / d$ numbers μ in $1 \leqslant \mu \leqslant D$ such that $\beta^{(\mu)} \in\left\{\beta^{[1]}, \ldots, \beta^{[n]}\right\}$. Let \mathcal{M} be the set of these numbers. Given $l \geqslant 3$, an l-tuple μ_{1}, \ldots, μ_{l} of numbers in \mathcal{M} will be called ε-bad if there are distinct numbers i, j, h in $1 \leqslant i, j, h \leqslant l$ such that

$$
\left|G\left(\beta^{\left(\mu_{i}\right)}: \beta^{\left(\mu_{j}\right)}: \beta^{\left(\mu_{h}\right)}\right)\right| \leqslant \varepsilon n
$$

Since for each u in $1 \leqslant u \leqslant n$ there are D / d numbers μ in \mathcal{M} with $\beta^{(\mu)}=\beta^{[u]}$, and since $n_{K}(\beta)=n D / d$, we see that the number of ε-bad l-tuples of numbers in \mathcal{M} is less than

$$
\begin{equation*}
\varepsilon^{1 / 2} l^{3} n_{K}(\beta)^{l} \tag{7.5}
\end{equation*}
$$

Here \mathcal{M} is typical of a subset of $\{1, \ldots, D\}$ such that the numbers $\beta^{(\mu)}$ with $\mu \in \mathcal{M}$ make up an equivalence class under \approx. Any such set \mathcal{M} has $|\mathcal{M}|=n_{K}(\beta)$. We have

Lemma 13. Let $\mathcal{M} \subset\{1, \ldots, D\}$ be such that the numbers $\beta^{(\mu)}$ with $\mu \in \mathcal{M}$ make up an equivalence class under \approx of the numbers $\beta^{(1)}, \ldots, \beta^{(D)}$. Then the number of ε-bad l-tuples μ_{1}, \ldots, μ_{l} with $\mu_{i} \in \mathcal{M}(i=1, \ldots, l)$ is less than (7.5).

8. Two easy lemmas

Let K be a number field of degree D, and let $\xi \mapsto \xi^{(\sigma)}(\sigma=1, \ldots, D)$ signify the embeddings $K \hookrightarrow \mathbb{C}$. When $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in K^{n}$, set $\mathbf{a}^{(\sigma)}=\left(a_{1}^{(\sigma)}, \ldots, a_{n}^{(\sigma)}\right)(\sigma=1, \ldots, D)$.

Lemma 14. Suppose that $\mathbf{a} \in K^{n}$. Then the vectors $\mathbf{a}^{(\sigma)}(\sigma=1, \ldots, D)$ span a rational subspace of K^{n}.

Proof. This is well known.
Lemma 15. Suppose that $\mathbf{a} \in K^{n} \subset \mathbb{C}^{n}$ but $\mathbf{a} \notin T$ where T is some subspace of \mathbb{C}^{n}. Then there are at least D / n integers σ in $1 \leqslant \sigma \leqslant D$ with $\mathbf{a}^{(\sigma)} \notin T$.

Proof. We will first suppose that a_{1}, \ldots, a_{n} are linearly independent over \mathbb{Q}. If the lemma were false for \mathbf{a}, there would be a set of more than $D-D / n$ vectors \mathbf{a}^{σ} in T. Since $T \neq \mathbb{C}^{n}$, it will suffice to show that any set of more than $(1-1 / n) D$ vectors $\mathbf{a}^{(\sigma)}$ spans \mathbb{C}^{n}.

So let $\mathcal{A} \subset\{1, \ldots, D\}$ be given with $|\mathcal{A}|>(1-1 / n) D$, and let \mathcal{B} be the complement of \mathcal{A}, so that $|\mathcal{B}|<D / n$. Since a_{1}, \ldots, a_{n} are linearly independent over \mathbb{Q}, the vectors $\mathbf{a}^{(\sigma)}$ $(\sigma=1, \ldots, D)$ span \mathbb{C}^{n}. We may suppose without loss of generality that $\mathbf{a}^{(1)}, \ldots, \mathbf{a}^{(n)}$ are linearly independent. Suppose that K is generated by α, i.e., $K=\mathbb{Q}(\alpha)$. Let G be the Galois group of its normal closure $\mathbb{Q}\left(\alpha^{(1)}, \ldots, \alpha^{(D)}\right)$. For $g \in G$ we have $g\left(\alpha^{(\sigma)}\right)=\alpha^{\left(\sigma_{g}\right)}$, where $1_{g}, \ldots, D_{g}$ is a permutation of $1, \ldots, D$. Given σ and τ, there is a $g \in G$ with
$\sigma_{g}=\tau$; in fact, the number of such $g \in G$ is $|G| / D$. Given σ, the number of $g \in G$ with $\sigma_{g} \in \mathcal{B}$ is $|G| \cdot|\mathcal{B}| / D$. The number of $g \in G$ such that at least one of $1_{g}, \ldots, n_{g}$ is in \mathcal{B} is $\leqslant|G| \cdot|\mathcal{B}| n / D<|G|$. Hence there is a $g \in G$ such that $1_{g}, \ldots, n_{g}$ all lie in \mathcal{A}. Since $\mathbf{a}^{(1)}, \ldots, \mathbf{a}^{(n)}$ are independent and $g\left(\mathbf{a}^{(i)}\right)=\mathbf{a}^{\left(i_{g}\right)}(i=1, \ldots, n)$ with $1_{g}, \ldots, n_{g}$ in \mathcal{A}, the vectors $\mathbf{a}^{(\sigma)}$ with $\sigma \in \mathcal{A}$ indeed span \mathbb{C}^{n}.

This takes care of the case when a_{1}, \ldots, a_{n} are linearly independent over \mathbb{Q}. In general, we may suppose that a_{1}, \ldots, a_{r} are linearly independent over \mathbb{Q}, and that

$$
a_{j}=\sum_{i=1}^{r} c_{i j} a_{i} \quad(r<j \leqslant n)
$$

with rational coefficients $c_{i j}$. Since $\mathbf{a} \notin T$, there is a relation $\gamma_{1} x_{1}+\ldots+\gamma_{n} x_{n}=0$ valid on T, such that $\gamma_{1} a_{1}+\ldots+\gamma_{n} a_{n} \neq 0$. But then

$$
\gamma_{1}^{\prime} a_{1}+\ldots+\gamma_{r}^{\prime} a_{r} \neq 0
$$

with $\gamma_{i}^{\prime}=\gamma_{i}+\sum_{j=r+1}^{n} c_{i j} \gamma_{j}$. Thus $\hat{\mathbf{a}}=\left(a_{1}, \ldots, a_{r}\right)$ does not lie in the space $T^{\prime} \subset \mathbb{C}^{r}$ defined by $\gamma_{1}^{\prime} x_{1}+\ldots+\gamma_{r}^{\prime} x_{r}=0$. By the case of the lemma already shown, there are at least $D / r \geqslant D / n$ integers σ with $\hat{\mathbf{a}}^{(\sigma)} \notin T^{\prime}$, so that $\gamma_{1} a_{1}^{(\sigma)}+\ldots+\gamma_{n} a_{n}^{(\sigma)} \neq 0$, and hence $\mathbf{a}^{(\sigma)} \notin T$.

9. Nonvanishing of determinants

After the preliminary work of the preceding sections, we can finally commence with the proof of the Proposition. We first dispose of two simple cases.
(a) When $k=1, M_{j}(X)=b_{j} X$, and the linear independence condition means that b_{1}, \ldots, b_{n} are linearly independent over \mathbb{Q}. Then for any $\xi \neq 0$, in particular for $\xi=\alpha_{1}^{x}$, the numbers $M_{1}(\xi)=b_{1} \xi, \ldots, M_{n}(\xi)=b_{n} \xi$ are linearly independent over \mathbb{Q}.
(b) When $n=1, M_{1}(\mathbf{X})=a_{1} X_{1}+\ldots+a_{k} X_{k}$ is not identically zero, and furthermore $M_{1}\left(\alpha_{1}^{x}, \ldots, \alpha_{k}^{x}\right)=0$ becomes $a_{1} \alpha_{1}^{x}+\ldots+a_{k} \alpha_{k}^{x}=0$. By Lemma 2 , this equation has at most

$$
A(k) \leqslant H(k, 1)
$$

solutions. We now put each solution into a class by itself. Hence in each class we may choose m arbitrarily large, in particular so large that some $h\left(\alpha_{i}^{m}: \alpha_{j}^{m}\right) \geqslant \hbar(k, 1)$.

We may then suppose from now on that $k \geqslant 2, n \geqslant 2$. Again K will be a field containing $\alpha_{1}, \ldots, \alpha_{k}$ and the coefficients of our linear forms. Again we set $D=\operatorname{deg} K$, and $\xi \mapsto \xi^{(\sigma)}$ $(\sigma=1, \ldots, D)$ will signify the embeddings $K \hookrightarrow \mathbb{C}$. When $M_{j}(\mathbf{X})=a_{1 j} X_{1}+\ldots+a_{k j} X_{k}$, set $M_{j}^{(\sigma)}(\mathbf{X})=a_{1 j}^{(\sigma)} X_{1}+\ldots+a_{k j}^{(\sigma)} X_{k}$. We will write $\mathbf{a}_{i}=\left(a_{i 1}, \ldots, a_{i n}\right)$ and $\mathbf{a}_{i}^{(\sigma)}=\left(a_{i 1}^{(\sigma)}, \ldots, a_{i n}^{(\sigma)}\right)$. Now if the n numbers (5.1) are linearly dependent over \mathbb{Q}, we have

$$
y_{1} M_{1}\left(\alpha_{1}^{x}, \ldots, \alpha_{k}^{x}\right)+\ldots+y_{n} M_{n}\left(\alpha_{1}^{x}, \ldots, \alpha_{k}^{x}\right)=0
$$

with y_{1}, \ldots, y_{n} in \mathbb{Q}, not all zero. Then for $\sigma=1, \ldots, D$,

$$
y_{1} M_{1}^{(\sigma)}\left(\alpha_{1}^{(\sigma) x}, \ldots, \alpha_{k}^{(\sigma) x}\right)+\ldots+y_{n} M_{n}^{(\sigma)}\left(\alpha_{1}^{(\sigma) x}, \ldots, \alpha_{k}^{(\sigma) x}\right)=0
$$

Therefore the matrix with rows

$$
\left(M_{1}^{(\sigma)}\left(\alpha_{1}^{(\sigma) x}, \ldots, \alpha_{k}^{(\sigma) x}\right), \ldots, M_{n}^{(\sigma)}\left(\alpha_{1}^{(\sigma) x}, \ldots, \alpha_{k}^{(\sigma) x}\right)\right) \quad(\sigma=1, \ldots, D)
$$

has rank $<n$. Let $\mathcal{D}\left(\sigma_{1}, \ldots, \sigma_{n} ; x\right)$ be the determinant formed from the rows $\sigma_{1}, \ldots, \sigma_{n}$ of that matrix; then

$$
\begin{equation*}
\mathcal{D}\left(\sigma_{1}, \ldots \sigma_{n} ; x\right)=0 \tag{9.1}
\end{equation*}
$$

Lemma 16.

$$
\begin{equation*}
\mathcal{D}\left(\sigma_{1}, \ldots, \sigma_{n} ; x\right)=\sum_{i_{1}=1}^{k} \ldots \sum_{i_{n}=1}^{k} \Delta\left(\mathbf{a}_{i_{1}}^{\left(\sigma_{1}\right)}, \ldots, \mathbf{a}_{i_{n}}^{\left(\sigma_{n}\right)}\right)\left(\alpha_{i_{1}}^{\left(\sigma_{1}\right)} \ldots \alpha_{i_{n}}^{\left(\sigma_{n}\right)}\right)^{x} \tag{9.2}
\end{equation*}
$$

where $\Delta\left(\mathbf{a}_{i_{1}}^{\left(\sigma_{1}\right)}, \ldots, \mathbf{a}_{i_{n}}^{\left(\sigma_{n}\right)}\right)$ is the determinant of the matrix with rows $\mathbf{a}_{i_{1}}^{\left(\sigma_{1}\right)}, \ldots, \mathbf{a}_{i_{n}}^{\left(\sigma_{n}\right)}$. When M_{1}, \ldots, M_{n} are linearly independent over \mathbb{Q}, this determinant is $\neq 0$ for certain $\sigma_{1}, \ldots, \sigma_{n}$ and i_{1}, \ldots, i_{n}.

Proof. Since $M_{j}^{(\sigma)}\left(\alpha_{1}^{(\sigma) x}, \ldots, \alpha_{k}^{(\sigma) x}\right)=a_{1 j}^{(\sigma)} \alpha_{1}^{(\sigma) x}+\ldots+a_{k j}^{(\sigma)} \alpha_{k}^{(\sigma) x}$, we see that

$$
\begin{aligned}
& \mathcal{D}\left(\sigma_{1}, \ldots, \sigma_{n} ; x\right) \\
& \quad=\left|\begin{array}{ccc}
a_{11}^{\left(\sigma_{1}\right)} \alpha_{1}^{\left(\sigma_{1}\right) x}+\ldots+a_{k 1}^{\left(\sigma_{1}\right)} \alpha_{k}^{\left(\sigma_{1}\right) x} & \ldots & a_{1 n}^{\left(\sigma_{1}\right)} \alpha_{1}^{\left(\sigma_{1}\right) x}+\ldots+a_{k n}^{\left(\sigma_{1}\right)} \alpha_{k}^{\left(\sigma_{1}\right) x} \\
\vdots & & \vdots \\
a_{11}^{\left(\sigma_{n}\right)} \alpha_{1}^{\left(\sigma_{n}\right) x}+\ldots+a_{k 1}^{\left(\sigma_{n}\right)} \alpha_{k}^{\left(\sigma_{n}\right) x} & \ldots & a_{1 n}^{\left(\sigma_{n}\right)} \alpha_{1}^{\left(\sigma_{n}\right) x}+\ldots+a_{k n}^{\left(\sigma_{n}\right)} \alpha_{k}^{\left(\sigma_{n}\right) x}
\end{array}\right| \\
& \quad=\sum_{\pi} \varepsilon_{\pi}\left(a_{1, \pi(1)}^{\left(\sigma_{1}\right)} \alpha_{1}^{\left(\sigma_{1}\right) x}+\ldots+a_{k, \pi(1)} \alpha_{k}^{\left(\sigma_{1}\right) x}\right) \ldots\left(a_{1, \pi(n)}^{\left(\sigma_{n}\right)} \alpha_{1}^{\left(\sigma_{n}\right) x}+\ldots+a_{k, n(n)}^{\left(\sigma_{n}\right)} \alpha_{k}^{\left(\sigma_{n}\right) x}\right)
\end{aligned}
$$

where π runs through the permutations of $1, \ldots, n$, and where ε_{π} is the sign of π. We obtain

$$
\begin{aligned}
\mathcal{D}\left(\sigma_{1}, \ldots, \sigma_{n} ; x\right) & =\sum_{i_{1}=1}^{k} \ldots \sum_{i_{n}=1}^{k} \alpha_{i_{1}}^{\left(\sigma_{1}\right) x} \ldots \alpha_{i_{n}}^{\left(\sigma_{n}\right) x} \sum_{\pi} \varepsilon_{\pi} a_{i_{1}, \pi(1)}^{\left(\sigma_{1}\right)} \ldots a_{i_{n}, \pi(n)}^{\left(\sigma_{n}\right)} \\
& =\sum_{i_{1}=1}^{k} \ldots \sum_{i_{n}=1}^{k} \Delta\left(\mathbf{a}_{i_{1}}^{\left(\sigma_{1}\right)}, \ldots, \mathbf{a}_{i_{n}}^{\left(\sigma_{n}\right)}\right)\left(\alpha_{i_{1}}^{\left(\sigma_{1}\right)} \ldots \alpha_{i_{n}}^{\left(\sigma_{n}\right)}\right)^{x}
\end{aligned}
$$

Given i, the vectors $\mathbf{a}_{i}^{(\sigma)}(\sigma=1, \ldots, D)$ span a subspace S_{i} of \mathbb{C}^{n} which is rational by Lemma 14 . We claim that when M_{1}, \ldots, M_{n} are linearly independent over \mathbb{Q}, then
$S_{1}+\ldots+S_{k}=\mathbb{C}^{n}$. For otherwise, there is a nontrivial relation $y_{1} X_{1}+\ldots+y_{n} X_{n}=0$ valid on $S_{1}+\ldots+S_{k}$, with coefficients y_{1}, \ldots, y_{n} in \mathbb{Q}. Since $\mathbf{a}_{i} \in S_{i}$, we have $y_{1} a_{i 1}+\ldots+y_{n} a_{i n}=0$ $(i=1, \ldots, k)$, which leads to $y_{1} M_{1}(\mathbf{X})+\ldots+y_{n} M_{n}(\mathbf{X})=0$, against our assumption. Now $\mathbb{C}^{n}=S_{1}+\ldots+S_{k}$ is spanned by the vectors $\mathbf{a}_{i}^{(\sigma)}(i=1, \ldots, k ; \sigma=1, \ldots, D)$, hence is spanned by certain vectors $\mathbf{a}_{i_{1}}^{\left(\sigma_{1}\right)}, \ldots, \mathbf{a}_{i_{n}}^{\left(\sigma_{n}\right)}$. But then $\Delta\left(\mathbf{a}_{i_{1}}^{\left(\sigma_{1}\right)}, \ldots, \mathbf{a}_{i_{n}}^{\left(\sigma_{n}\right)}\right) \neq 0$.

Changing our notation, suppose that

$$
\begin{equation*}
\Delta\left(\mathbf{a}_{u_{1}}^{\left(\tau_{1}\right)}, \ldots, \mathbf{a}_{u_{n}}^{\left(\tau_{n}\right)}\right) \neq 0 \tag{9.3}
\end{equation*}
$$

The n-tuple u_{1}, \ldots, u_{n} will be fixed from now on. By relabeling embeddings, we may suppose that $\tau_{1}=1$. In view of (9.3), $\mathbf{a}_{u_{2}}^{\left(\tau_{2}\right)}$ does not lie in the space spanned by the vectors $\mathbf{a}_{u_{1}}^{(1)}, \mathbf{a}_{u_{3}}^{\left(\tau_{3}\right)}, \ldots, \mathbf{a}_{u_{n}}^{\left(\tau_{n}\right)}$. By Lemma 15 , there is a subset \mathcal{S}_{2} of $\{1, \ldots, D\}$ of cardinality $\left|\mathcal{S}_{2}\right| \geqslant D / n$ such that $\mathbf{a}_{u_{2}}^{(\sigma)}$ does not lie in this subspace when $\sigma \in \mathcal{S}_{2}$; thus

$$
\Delta\left(\mathbf{a}_{u_{1}}^{(1)}, \mathbf{a}_{u_{2}}^{(\sigma)}, \mathbf{a}_{u_{3}}^{\left(\tau_{3}\right)}, \ldots, \mathbf{a}_{u_{n}}^{\left(\tau_{n}\right)}\right) \neq 0
$$

when $\sigma \in \mathcal{S}_{2}$. When $n>2$, we continue as follows. Let $\sigma_{2} \in \mathcal{S}_{2}$ be given. Then $\mathbf{a}_{u_{3}}^{\left(\tau_{3}\right)}$ does not lie in the space spanned by $\mathbf{a}_{u_{1}}^{(1)}, \mathbf{a}_{u_{2}}^{\left(\sigma_{2}\right)}, \mathbf{a}_{u_{4}}^{\left(\tau_{4}\right)}, \ldots, \mathbf{a}_{u_{n}}^{\left(\tau_{n}\right)}$. By Lemma 15 , there is a set $\mathcal{S}_{3}\left(\sigma_{2}\right) \subset\{1, \ldots, D\}$ of cardinality $\geqslant D / n$ such that $\mathbf{a}_{u_{3}}^{(\sigma)}$ does not lie in this subspace when $\sigma \in \mathcal{S}_{3}\left(\sigma_{2}\right)$. Thus

$$
\Delta\left(\mathbf{a}_{u_{1}}^{(1)}, \mathbf{a}_{u_{2}}^{\left(\sigma_{2}\right)}, \mathbf{a}_{u_{3}}^{\left(\sigma_{3}\right)}, \mathbf{a}_{u_{4}}^{\left(\tau_{4}\right)}, \ldots, \mathbf{a}_{u_{n}}^{\left(\tau_{n}\right)}\right) \neq 0
$$

when $\sigma_{2} \in \mathcal{S}_{2}, \sigma_{3} \in \mathcal{S}_{3}\left(\sigma_{2}\right)$.
Continuing in this way, we inductively construct sets $\mathcal{S}_{2}, \mathcal{S}_{3}\left(\sigma_{2}\right), \ldots, \mathcal{S}_{n}\left(\sigma_{2}, \ldots, \sigma_{n-1}\right)$ of cardinality at least D / n, such that $\mathcal{S}_{j}\left(\sigma_{2}, \ldots, \sigma_{j-1}\right)$ is defined when

$$
\begin{equation*}
\sigma_{2} \in \mathcal{S}_{2}, \quad \sigma_{3} \in \mathcal{S}_{3}\left(\sigma_{2}\right), \quad \ldots, \quad \sigma_{j-1} \in \mathcal{S}_{j-1}\left(\sigma_{2}, \ldots, \sigma_{j-2}\right) \tag{9.4}
\end{equation*}
$$

and such that

$$
\begin{equation*}
\Delta\left(\mathbf{a}_{u_{1}}^{(1)}, \mathbf{a}_{u_{2}}^{\left(\sigma_{2}\right)}, \ldots, \mathbf{a}_{u_{n}}^{\left(\sigma_{n}\right)}\right) \neq 0 \tag{9.5}
\end{equation*}
$$

when

$$
\begin{equation*}
\sigma_{2} \in \mathcal{S}_{2}, \quad \sigma_{3} \in \mathcal{S}_{3}\left(\sigma_{2}\right), \quad \ldots, \quad \sigma_{n} \in \mathcal{S}_{n}\left(\sigma_{2}, \ldots, \sigma_{n-1}\right) \tag{9.6}
\end{equation*}
$$

10. Selection of exponential equations

It will be convenient to set

$$
\begin{aligned}
& \Delta\binom{\sigma_{1}, \ldots, \sigma_{n}}{i_{1}, \ldots, i_{n}}=\Delta\left(\mathbf{a}_{i_{1}}^{\left(\sigma_{1}\right)}, \ldots, \mathbf{a}_{i_{n}}^{\left(\sigma_{n}\right)}\right), \\
& \mathcal{A}\binom{\sigma_{1}, \ldots, \sigma_{n}}{i_{1}, \ldots, i_{n}}=\alpha_{i_{1}}^{\left(\sigma_{1}\right)} \ldots \alpha_{i_{n}}^{\left(\sigma_{n}\right)}
\end{aligned}
$$

and when $\boldsymbol{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$,

$$
\begin{equation*}
f_{\boldsymbol{\sigma}}(x)=\sum_{i_{1}=1}^{k} \ldots \sum_{i_{n}=1}^{k} \Delta\binom{\sigma_{1}, \ldots, \sigma_{n}}{i_{1}, \ldots, i_{n}}\left(\mathcal{A}\binom{\sigma_{1}, \ldots, \sigma_{n}}{i_{1}, \ldots, i_{n}}\right)^{x} \tag{10.1}
\end{equation*}
$$

Then (9.1) becomes

$$
\begin{equation*}
f_{\sigma}(x)=0 . \tag{10.2}
\end{equation*}
$$

Here f_{σ} is of the type f considered in $\S 6$. According to Lemma 8 , the equation (10.2) will split, with up to $G(q)$ exceptions. The number $q=q(\boldsymbol{\sigma})$ of nonzero summands in (10.1) has $q \leqslant k^{n}$, so that splitting occurs with at most $G\left(k^{n}\right)$ exceptions. $\left(^{5}\right.$) In principle, we can do this for any σ with $1 \leqslant \sigma_{i} \leqslant D(i=1, \ldots, n)$, which should give us a lot of information. However, if we carried out this splitting for every n-tuple $\boldsymbol{\sigma}$, the number of exceptions would depend on a factor involving the degree D, which we have to avoid. We therefore have to select a small set of n-tuples σ for which we will study (10.2).

Let \mathcal{S} be the set of n-tuples $\boldsymbol{\sigma}=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$ with $\sigma_{1}=1$, and with $\sigma_{2}, \ldots, \sigma_{n}$ satisfying (9.6). When $\boldsymbol{\sigma} \in \mathcal{S}$, the coefficient

$$
\Delta\binom{\sigma_{1}, \ldots, \sigma_{n}}{u_{1}, \ldots, u_{n}}
$$

in (10.1) is nonzero, so that not all coefficients of $f_{\boldsymbol{\sigma}}$ vanish. We will restrict ourselves to $\sigma \in \mathcal{S}$; but the set \mathcal{S} is still too large and will have to be pared down.

As in (6.2), we may write $f_{\boldsymbol{\sigma}}=f_{\boldsymbol{\sigma} 1}+\ldots+f_{\boldsymbol{\sigma} \cdot g(\boldsymbol{\sigma})}$. Here we may suppose that $f_{\sigma 1}$ has the summand

$$
\begin{equation*}
\Delta\binom{\sigma_{1}, \ldots, \sigma_{n}}{u_{1}, \ldots, u_{n}}\left(\mathcal{A}\binom{\sigma_{1}, \ldots, \sigma_{n}}{u_{1}, \ldots, u_{n}}\right)^{x} \tag{10.3}
\end{equation*}
$$

Let $\mathcal{I}(\sigma)$ be the set of n-tuples $\left(i_{1}, \ldots, i_{n}\right)$ with

$$
\begin{gather*}
\Delta\binom{\sigma_{1}, \ldots, \sigma_{n}}{i_{1}, \ldots, i_{n}} \neq 0 \tag{10.4}\\
\mathcal{A}\binom{\sigma_{1}, \ldots, \sigma_{n}}{i_{1}, \ldots, i_{n}} \approx \mathcal{A}\binom{\sigma_{1}, \ldots, \sigma_{n}}{u_{1}, \ldots, u_{n}} . \tag{10.5}
\end{gather*}
$$

Clearly $\left(u_{1}, \ldots, u_{n}\right) \in \mathcal{I}(\boldsymbol{\sigma})$, and

$$
\begin{equation*}
f_{\sigma 1}(x)=\sum_{\left(i_{1}, \ldots, i_{n}\right) \in \mathcal{I}(\sigma)} \Delta\binom{\sigma_{1}, \ldots, \sigma_{n}}{i_{1}, \ldots, i_{n}}\left(\mathcal{A}\binom{\sigma_{1}, \ldots, \sigma_{n}}{i_{1}, \ldots, i_{n}}\right)^{x} \tag{10.6}
\end{equation*}
$$

[^3]We will first deal with the case where $|\mathcal{I}(\boldsymbol{\sigma})|=1$ for some $\boldsymbol{\sigma} \in \mathcal{S}$. Then $f_{\boldsymbol{\sigma} 1}$ equals (10.3), so that $f_{\boldsymbol{\sigma}}$ contains a singleton. It suffices in this case to restrict ourselves to (10.2) with this particular σ. By the corollary to Lemma 8, (10.2) has at most

$$
G(q(\boldsymbol{\sigma})) \leqslant G\left(k^{n}\right) \leqslant H(k, n)
$$

solutions x. Here we put each solution in a class by itself. We can choose m so large that some $h\left(\alpha_{i}^{m}: \alpha_{j}^{m}\right) \geqslant \hbar(k, n)$.

We may then suppose from now on that $|\mathcal{I}(\sigma)|>1$ for each $\sigma \in \mathcal{S}$. The number of n-tuples $\left(i_{1}, \ldots, i_{n}\right)$ is k^{n}, and the number of sets of such n-tuples is $2^{k^{n}}$. Therefore the number of possibilities for $\mathcal{I}(\boldsymbol{\sigma})$ is $<2^{k^{n}}$. Given $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}$ with $\sigma_{1}=1$ and $\sigma_{2}, \ldots, \sigma_{n-1}$ satisfying (9.6), there is a set $\mathcal{I}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}\right)$ such that $\mathcal{I}\left(\sigma_{1}, \ldots, \sigma_{n-1}, \sigma_{n}\right)=$ $\mathcal{I}\left(\sigma_{1}, \ldots, \sigma_{n-1}\right)$ when σ_{n} lies in a subset $\mathcal{S}_{n}^{\prime}\left(\sigma_{2}, \ldots, \sigma_{n-1}\right)$ of $\mathcal{S}_{n}\left(\sigma_{2}, \ldots, \sigma_{n-1}\right)$ of cardinality

$$
\left|\mathcal{S}_{n}^{\prime}\left(\sigma_{2}, \ldots, \sigma_{n-1}\right)\right|>2^{-k^{n}}\left|\mathcal{S}_{n}\left(\sigma_{2}, \ldots, \sigma_{n}\right)\right| \geqslant D n^{-1} \cdot 2^{-k^{n}}
$$

Given $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-2}$ with $\sigma_{1}=1$ and $\sigma_{2}, \ldots, \sigma_{n-2}$ satisfying (9.6), then there is a set $\mathcal{I}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-2}\right)$ such that $\mathcal{I}\left(\sigma_{1}, \ldots, \sigma_{n-2}, \sigma_{n-1}\right)=\mathcal{I}\left(\sigma_{1}, \ldots, \sigma_{n-2}\right)$ when σ_{n-1} lies in a subset $\mathcal{S}_{n-1}^{\prime}\left(\sigma_{2}, \ldots, \sigma_{n-2}\right)$ of $\mathcal{S}_{n-1}\left(\sigma_{2}, \ldots, \sigma_{n-2}\right)$ of cardinality $>D /\left(n \cdot 2^{k^{n}}\right)$. After carrying out $n-1$ such steps, we obtain a set \mathcal{I} of n-tuples $\left(i_{1}, \ldots, i_{n}\right)$, as well as sets

$$
\begin{equation*}
\mathcal{S}_{2}^{\prime}, \quad \mathcal{S}_{3}^{\prime}\left(\sigma_{2}\right), \quad \ldots, \quad \mathcal{S}_{n}^{\prime}\left(\sigma_{2}, \ldots, \sigma_{n-1}\right) \tag{10.7}
\end{equation*}
$$

where $\mathcal{S}_{j}^{\prime}\left(\sigma_{2}, \ldots, \sigma_{j-1}\right)$ is defined for

$$
\sigma_{2} \in \mathcal{S}_{2}^{\prime}, \quad \sigma_{3} \in \mathcal{S}_{3}^{\prime}\left(\sigma_{2}\right), \quad \ldots, \quad \sigma_{j-1} \in \mathcal{S}_{j-1}^{\prime}\left(\sigma_{2}, \ldots, \sigma_{j-2}\right)
$$

Each of the sets (10.7) has cardinality

$$
\begin{equation*}
>\frac{D}{n \cdot 2^{k^{n}}} \tag{10.8}
\end{equation*}
$$

Further, when \mathcal{S}^{\prime} consists of $\boldsymbol{\sigma}$ with $\sigma_{1}=1$ and

$$
\sigma_{2} \in \mathcal{S}_{2}^{\prime}, \quad \sigma_{3} \in \mathcal{S}_{3}^{\prime}\left(\sigma_{2}\right), \quad \ldots, \quad \sigma_{n} \in \mathcal{S}_{n}^{\prime}\left(\sigma_{2}, \ldots, \sigma_{n-1}\right)
$$

then

$$
\begin{equation*}
\mathcal{I}(\boldsymbol{\sigma})=\mathcal{I} \quad \text { when } \boldsymbol{\sigma} \in \mathcal{S}^{\prime} \tag{10.9}
\end{equation*}
$$

For $2 \leqslant j \leqslant n$, let \mathcal{T}_{j} be the set of numbers $i_{j} \neq u_{j}$ in $1 \leqslant i_{j} \leqslant k$ such that

$$
\begin{equation*}
\left(i_{1}, \ldots, i_{j-1}, i_{j}, u_{j+1}, \ldots, u_{n}\right) \in \mathcal{I} \tag{10.10}
\end{equation*}
$$

for certain i_{1}, \ldots, i_{j-1}. (When $j=n,(10.10)$ becomes $\left(i_{1}, \ldots, i_{n-1}, i_{n}\right) \in \mathcal{I}$.)

Lemma 17. Suppose $i_{j} \in \mathcal{T}_{j}$. Then

$$
h\left(\frac{\alpha_{i_{j}}}{\alpha_{u_{j}}}\right)>\frac{1}{k^{6 n} \operatorname{deg}\left(\alpha_{i_{j}} / \alpha_{u_{j}}\right)} .
$$

Proof. In view of (10.5), which holds for any n-tuple $\left(i_{1}, \ldots, i_{n}\right) \in \mathcal{I}$,

$$
\mathcal{A}\binom{\sigma_{1}, \ldots, \sigma_{j}, \sigma_{j+1}, \ldots, \sigma_{n}}{i_{1}, \ldots, i_{j}, u_{j+1}, \ldots, u_{n}} \approx \mathcal{A}\binom{\sigma_{1}, \ldots, \sigma_{n}}{u_{1}, \ldots, u_{n}}
$$

for $\sigma \in \mathcal{S}^{\prime}$. Thus

$$
\alpha_{i_{1}}^{\left(\sigma_{1}\right)} \ldots \alpha_{i_{j}}^{\left(\sigma_{j}\right)} \alpha_{u_{j+1}}^{\left(\sigma_{j+1}\right)} \ldots \alpha_{u_{n}}^{\left(\sigma_{n}\right)} \approx \alpha_{u_{1}}^{\left(\sigma_{1}\right)} \ldots \alpha_{u_{j}}^{\left(\sigma_{j}\right)} \alpha_{u_{j+1}}^{\left(\sigma_{j+1}\right)} \ldots \alpha_{u_{n}}^{\left(\sigma_{n}\right)}
$$

which is

$$
\begin{equation*}
\left(\frac{\alpha_{i_{j}}}{\alpha_{u_{j}}}\right)^{\left(\sigma_{j}\right)} \approx\left(\frac{\alpha_{u_{1}}}{\alpha_{i_{1}}}\right)^{\left(\sigma_{1}\right)} \cdots\left(\frac{\alpha_{u_{j-1}}}{\alpha_{i_{j-1}}}\right)^{\left(\sigma_{j-1}\right)} \tag{10.11}
\end{equation*}
$$

This holds when $\sigma_{1}=1, \sigma_{2} \in \mathcal{S}_{2}^{\prime}, \ldots, \sigma_{j} \in \mathcal{S}_{j}^{\prime}\left(\sigma_{2}, \ldots, \sigma_{j-1}\right)$. Let such $\sigma_{2}, \ldots, \sigma_{j-1}$ be fixed, and let σ_{j} range through $\mathcal{S}_{j}^{\prime}\left(\sigma_{2}, \ldots, \sigma_{j-1}\right)$. Then the right-hand side of (10.11) is fixed, so that the number of $\left(\alpha_{i_{j}} / \alpha_{u_{j}}\right)^{(\sigma)}(\sigma=1, \ldots, D)$ which are \approx to each other is at least $\left|\mathcal{S}_{j}^{\prime}\left(\sigma_{2}, \ldots, \sigma_{j-1}\right)\right|>D /\left(n \cdot 2^{k^{n}}\right)$. In other words, in the notation of $\S 7$,

$$
\begin{equation*}
n_{K}\left(\frac{\alpha_{i_{j}}}{\alpha_{u_{j}}}\right)>\frac{D}{n \cdot 2^{k^{n}}} \tag{10.12}
\end{equation*}
$$

Since $i_{j} \neq u_{j}$, and hence $\alpha_{i_{j}} / \alpha_{u_{j}} \not \approx 1$, the corollary to Lemma 11 yields

$$
h\left(\frac{\alpha_{i_{j}}}{\alpha_{u_{j}}}\right)>\frac{1}{4\left(\log \left(n \cdot 2^{k^{n}}\right)\right)^{3} \operatorname{deg}\left(\alpha_{i_{j}} / \alpha_{u_{j}}\right)}>\frac{1}{k^{6 n} \operatorname{deg}\left(\alpha_{i_{j}} / \alpha_{u_{j}}\right)},
$$

on recalling that $k \geqslant 2, n \geqslant 2$.
For $2 \leqslant j \leqslant n$, let \mathcal{T}_{j}^{*} be the set of numbers $\alpha_{i_{j}} / \alpha_{u_{j}}$ with $i_{j} \in \mathcal{T}_{j}$. Say $\mathcal{T}_{j}^{*}=\left\{\beta_{1}, \ldots, \beta_{r}\right\}$. Clearly $r<k$; possibly $r=0$, and \mathcal{T}_{j}^{*} is empty. We had seen in (10.12) and Lemma 17 that

$$
\begin{equation*}
n_{K}\left(\beta_{s}\right)>\frac{D}{n \cdot 2^{k^{n}}} \quad(s=1, \ldots, r) \tag{10.13}
\end{equation*}
$$

and that

$$
\begin{equation*}
h\left(\beta_{s}\right)>\frac{1}{k^{6 n} \operatorname{deg} \beta_{s}} \quad(s=1, \ldots, r) . \tag{10.14}
\end{equation*}
$$

Set

$$
\begin{equation*}
l=3 k^{n} \tag{10.15}
\end{equation*}
$$

Recall the definition of the group $G(\alpha: \beta: \gamma)$ in $\S 7$.

Lemma 18. Suppose

$$
\begin{equation*}
D>e^{4 k^{2 n}} \tag{10.16}
\end{equation*}
$$

Let $2 \leqslant j \leqslant n$, and let $\sigma_{1}, \ldots, \sigma_{j-1}$ with $\sigma_{1}=1, \sigma_{2} \in \mathcal{S}_{2}^{\prime}, \ldots, \sigma_{j-1} \in \mathcal{S}_{j-1}^{\prime}\left(\sigma_{2}, \ldots, \sigma_{j-2}\right)$ be given. Then there is a subset $\mathcal{S}_{j}^{\prime \prime}=\mathcal{S}_{j}^{\prime \prime}\left(\sigma_{1}, \ldots, \sigma_{j-1}\right)$ of $\mathcal{S}_{j}^{\prime}\left(\sigma_{1}, \ldots, \sigma_{j-1}\right)$ of cardinality

$$
\left|\mathcal{S}_{j}^{\prime \prime}\left(\sigma_{1}, \ldots, \sigma_{j-1}\right)\right|=l
$$

such that

$$
\begin{equation*}
\left|G\left(\beta_{s}^{(\phi)}: \beta_{s}^{(\psi)}: \beta_{s}^{(\omega)}\right)\right|>e^{-9 k^{2 n}} \operatorname{deg} \beta_{s} \quad(s=1, \ldots, r) \tag{10.17}
\end{equation*}
$$

for any triple of distinct numbers ϕ, ψ, ω in $\mathcal{S}_{j}^{\prime \prime}\left(\sigma_{2}, \ldots, \sigma_{j-1}\right)$.
Proof. For brevity, write $\mathcal{S}_{j}^{\prime}=\mathcal{S}_{j}^{\prime}\left(\sigma_{2}, \ldots, \sigma_{j-1}\right)$. When $r=0$, the condition (10.17) is vacuous. Since \mathcal{S}_{j}^{\prime} has cardinality $>D /\left(n \cdot 2^{k^{n}}\right)>3 k^{n}=l$ by (10.8), (10.16), it certainly contains a subset $\mathcal{S}_{j}^{\prime \prime}$ of cardinality l.

Now suppose that $r>0$. Set

$$
\begin{equation*}
\varepsilon=e^{-8 k^{2 n}} \tag{10.18}
\end{equation*}
$$

Note that

$$
\begin{equation*}
2 \varepsilon^{1 / 2} k l^{3}\left(n \cdot 2^{k^{n}}\right)^{l}<\varepsilon^{1 / 2} \cdot 54 k^{3 n+1} e^{3 k^{2 n}}=54 k^{3 n+1} e^{-k^{2 n}}<1 \tag{10.19}
\end{equation*}
$$

since $k \geqslant 2, n \geqslant 2$, and that

$$
\begin{equation*}
2 l^{2}\left(n \cdot 2^{k^{n}}\right)^{l}<18 k^{2 n} e^{3 k^{2 n}}<D \tag{10.20}
\end{equation*}
$$

by (10.16).
Let $\beta_{s} \in \mathcal{T}_{j}^{*}$ be given. We had seen in (10.11) that the numbers $\beta_{s}^{(\sigma)}$ with $\sigma \in$ $\mathcal{S}_{j}^{\prime}\left(\sigma_{2}, \ldots, \sigma_{j-1}\right)$ were all \approx to each other. So let \mathcal{M} be the set of all the σ in $1 \leqslant \sigma \leqslant D$ for which $\beta_{s}^{(\sigma)}$ is \approx to these numbers. By Lemma. 13, the number of ε-bad l-tuples μ_{1}, \ldots, μ_{l} in \mathcal{M} is less than

$$
\begin{equation*}
\varepsilon^{1 / 2} l^{3} n_{K}\left(\beta_{s}\right)^{l} \leqslant \varepsilon^{1 / 2} l^{3} D^{l} \tag{10.21}
\end{equation*}
$$

In particular, the number of ε-bad l-tuples μ_{1}, \ldots, μ_{l} with each μ_{i} in \mathcal{S}_{j}^{\prime} is less than (10.21). So far, $\beta_{s} \in \mathcal{T}_{j}^{*}$ was fixed. The number of l-tuples μ_{1}, \ldots, μ_{l} in \mathcal{S}_{j}^{\prime} which are ε-bad for some $\beta_{s}, 1 \leqslant s \leqslant r$, is

$$
\begin{equation*}
\leqslant r \varepsilon^{1 / 2} l^{3} D^{l}<\varepsilon^{1 / 2} k l^{3} D^{l}<\frac{1}{2}\left(\frac{D}{n \cdot 2^{k^{n}}}\right)^{l} \tag{10.22}
\end{equation*}
$$

by (10.19). The number of l-tuples of numbers μ_{1}, \ldots, μ_{l} in \mathcal{S}_{j}^{\prime} of which at least two numbers are equal is

$$
\begin{equation*}
\leqslant\binom{ l}{2} D^{l-1}<l^{2} D^{l-1}<\frac{1}{2}\left(\frac{D}{n \cdot 2^{k^{n}}}\right)^{l} \tag{10.23}
\end{equation*}
$$

by (10.20). On the other hand, the number of all l-tuples μ_{1}, \ldots, μ_{l} in \mathcal{S}_{j}^{\prime} is

$$
\left|\mathcal{S}_{j}^{\prime}\left(\sigma_{2}, \ldots, \sigma_{j-1}\right)\right|^{l} \geqslant\left(\frac{D}{n \cdot 2^{k^{n}}}\right)^{l}
$$

Comparing this with $(10.22),(10.23)$, we see that there is an l-tuple μ_{1}, \ldots, μ_{l} of distinct numbers of \mathcal{S}_{j}^{\prime} which is not ε-bad for any of $\beta_{1}, \ldots, \beta_{r}$. By definition, this means that for any three distinct numbers i, j, h in $1 \leqslant i, j, h \leqslant l$, we have

$$
\begin{aligned}
\left|G\left(\beta_{s}^{\left(\mu_{i}\right)}: \beta_{s}^{\left(\mu_{j}\right)}: \beta_{s}^{\left(\mu_{h}\right)}\right)\right| & >\varepsilon n\left(\beta_{s}\right)=\varepsilon\left(\operatorname{deg} \beta_{s}\right) D^{-1} n_{K}\left(\beta_{s}\right) \\
& >\frac{\varepsilon \operatorname{deg} \beta_{s}}{n \cdot 2^{k^{n}}}>\left(\operatorname{deg} \beta_{s}\right) e^{-9 k^{2 n}}
\end{aligned}
$$

by (10.13), (10.18).
We now set $\mathcal{S}_{j}^{\prime \prime}\left(\sigma_{2}, \ldots, \sigma_{j-1}\right)=\left\{\mu_{1}, \ldots, \mu_{i}\right\}$. Then indeed for any three distinct numbers ϕ, ψ, ω in $\mathcal{S}_{j}^{\prime \prime}(\ldots)$ we have (10.17).

The condition (10.16) on D can always be achieved by enlarging the field K, if necessary. We will assume from now on that (10.16) holds.

Remark. Without (10.16) we might not produce an l-tuple μ_{1}, \ldots, μ_{l} of distinct integers. This really would not make much difference. Note that if we enlarge K, there may be several embeddings $\sigma: K \hookrightarrow \mathbb{C}$ whose restrictions to the field generated by $\alpha_{1}, \ldots, \alpha_{k}$ and the coefficients of M_{1}, \ldots, M_{n} are equal.

We now define $\mathcal{S}^{\prime \prime}$ to be the set of n-tuples $\boldsymbol{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ with $\sigma_{1}=1, \sigma_{2} \in \mathcal{S}_{2}^{\prime \prime}$, $\sigma_{3} \in \mathcal{S}_{3}^{\prime \prime}\left(\sigma_{2}\right), \ldots, \sigma_{n} \in \mathcal{S}_{n}^{\prime \prime}\left(\sigma_{1}, \ldots, \sigma_{n-1}\right)$. We will deal with the equations (10.2) where $\boldsymbol{\sigma} \in \mathcal{S}^{\prime \prime}$. The number of these equations is

$$
\begin{equation*}
\left|\mathcal{S}^{\prime \prime}\right|=l^{n-1}<3^{n} \cdot k^{n^{2}}, \tag{10.24}
\end{equation*}
$$

hence is bounded independently of D.

11. Conclusion

As noted above, each equation (10.2) splits, with at most $G(q) \leqslant G\left(k^{n}\right)$ exceptions. If we carry this out for each $\sigma \in \mathcal{S}^{\prime \prime}$, we get

$$
\begin{equation*}
\leqslant\left|\mathcal{S}^{\prime \prime}\right| G\left(k^{n}\right)<3^{n} k^{n^{2}} \exp \left(\left(7 k^{n}\right)^{4 k^{n}}\right)<\exp \left(\left(7 k^{n}\right)^{5 k^{n}}\right) \tag{11.1}
\end{equation*}
$$

exceptions. We put each exceptional x into a class by itself. As we have noted before, we then can make m so large that $h\left(\alpha_{i}^{m}: \alpha_{j}^{m}\right) \geqslant \hbar(k, n)$.

For nonexceptional x, each equation (10.2) with $\sigma \in \mathcal{S}^{\prime \prime}$ splits, so that x satisfies

$$
\begin{equation*}
f_{\boldsymbol{\sigma} 1}(\mathbf{x})=0 \quad\left(\boldsymbol{\sigma} \in \mathcal{S}^{\prime \prime}\right) \tag{11.2}
\end{equation*}
$$

We write this out in detail:

$$
\begin{equation*}
\sum_{\left(i_{1}, \ldots, i_{n}\right) \in \mathcal{I}} \Delta\binom{\sigma_{1}, \ldots, \sigma_{n}}{i_{1}, \ldots, i_{n}}\left(\mathcal{A}\binom{\sigma_{1}, \ldots, \sigma_{n}}{i_{1}, \ldots, i_{n}}\right)^{x}=0 \tag{11.3}
\end{equation*}
$$

Here in each summand we have (10.4), (10.5). One of the summands has $\left(i_{1}, \ldots, i_{n}\right)=$ $\left(u_{1}, \ldots, u_{n}\right)$. A natural impulse would be to apply Lemma 3 to (11.3). But not so fast: x might be a degenerate solution of (11.3), i.e., the unpleasant phenomenon of subsplitting might occur.

Given $\boldsymbol{\sigma} \in \mathcal{S}^{\prime \prime}$ and given a solution x of (11.3), there will be a subset $\mathcal{I}(\boldsymbol{\sigma}, x) \subset \mathcal{I}$ containing $\left(u_{1}, \ldots, u_{n}\right)$ such that

$$
\begin{equation*}
\sum_{\left(i_{1}, \ldots i_{n}\right) \in \mathcal{I}(\boldsymbol{\sigma}, x)} \Delta\binom{\sigma_{1}, \ldots, \sigma_{n}}{i_{1}, \ldots, i_{n}}\left(\mathcal{A}\binom{\sigma_{1}, \ldots, \sigma_{n}}{i_{1}, \ldots, i_{n}}\right)^{x}=0 \tag{11.4}
\end{equation*}
$$

but that splits no further, i.e., that no subsum of (11.4) vanishes. Since the coefficient

$$
\Delta\binom{\sigma_{1}, \ldots, \sigma_{n}}{u_{1}, \ldots, u_{n}} \neq 0
$$

by (9.5), we have necessarily $|\mathcal{I}(\sigma, x)|>1$.
There are fewer than k^{n} tuples $\mathbf{i}=\left(i_{1}, \ldots, i_{n}\right) \neq\left(u_{1}, \ldots, u_{n}\right)$. Hence given $\sigma_{1}, \ldots, \sigma_{n-1}$, there will be an n-tuple

$$
\mathbf{i}=\mathbf{i}\left(\sigma_{1}, \ldots \sigma_{n-1}, x\right) \neq\left(u_{1}, \ldots, u_{n}\right)
$$

such that $\mathbf{i} \in \mathcal{I}(\sigma, x)$ for at least $l / k^{n}=3$ of the numbers $\sigma_{n} \in \mathcal{S}_{n}^{\prime \prime}\left(\sigma_{2}, \ldots, \sigma_{n-1}\right)$. Let $\mathcal{S}_{n}^{*}\left(\sigma_{2}, \ldots, \sigma_{n-1}, x\right)$ consist of 3 such numbers σ_{n}. Next, given $\sigma_{1}, \ldots, \sigma_{n-2}$, there will be an n-tuple

$$
\mathbf{i}\left(\sigma_{1}, \ldots, \sigma_{n-2}, x\right)
$$

such that $\mathbf{i}\left(\sigma_{1}, \ldots, \sigma_{n-2}, \sigma_{n-1}, x\right)=\mathbf{i}\left(\sigma_{1}, \ldots, \sigma_{n-2}, x\right)$ for at least 3 of the numbers σ_{n-1}. And so forth. We obtain n-tuples

$$
\mathbf{i}(x), \quad \mathbf{i}\left(\sigma_{2}, x\right), \quad \ldots, \quad \mathbf{i}\left(\sigma_{2}, \ldots, \sigma_{n-1}, x\right)
$$

and 3 -element sets

$$
\mathcal{S}_{2}^{*}(x), \quad \mathcal{S}_{3}^{*}\left(\sigma_{2}, x\right), \quad \ldots, \quad \mathcal{S}_{n}^{*}\left(\sigma_{2}, \ldots, \sigma_{n-1}, x\right)
$$

with the following property. Let $\mathcal{S}^{*}(x)$ consist of $\boldsymbol{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ with

$$
\sigma_{1}=1, \quad \sigma_{2} \in \mathcal{S}_{2}^{*}(x), \quad \sigma_{3} \in \mathcal{S}_{3}^{*}\left(\sigma_{2}, x\right), \quad \ldots, \quad \sigma_{n} \in \mathcal{S}_{n}^{*}\left(\sigma_{2}, \ldots, \sigma_{n-1}, x\right)
$$

Then

$$
\begin{equation*}
\mathbf{i}(x) \in \mathcal{I}(\boldsymbol{\sigma}, x) \tag{11.5}
\end{equation*}
$$

when $\sigma \in \mathcal{S}^{*}(x)$.
Now let Σ be a system of 3 -element sets $\mathcal{S}_{2}^{*}, \mathcal{S}_{3}^{*}\left(\sigma_{2}\right), \ldots, \mathcal{S}_{n}^{*}\left(\sigma_{1}, \ldots, \sigma_{n-1}\right)$, where $\mathcal{S}_{j}^{*}\left(\sigma_{2}, \ldots, \sigma_{j-1}\right)$ is defined when $\sigma_{2} \in \mathcal{S}_{2}^{*}, \sigma_{3} \in \mathcal{S}_{3}^{*}\left(\sigma_{2}\right), \ldots, \sigma_{j-1} \in \mathcal{S}_{j-1}^{*}\left(\sigma_{2}, \ldots, \sigma_{j-2}\right)$, and where $\mathcal{S}_{j}^{*}\left(\sigma_{2}, \ldots, \sigma_{j-1}\right) \subset \mathcal{S}_{j}^{\prime \prime}\left(\sigma_{2}, \ldots, \sigma_{j-1}\right)$. The number of possible choices for \mathcal{S}_{2}^{*} is $\leqslant l^{3}$. The number of choices for $\mathcal{S}_{3}^{*}\left(\sigma_{2}\right)$ is also $\leqslant l^{3}$, but carrying this out for each $\sigma_{2} \in \mathcal{S}_{2}^{*}$, we get $\leqslant l^{3 \cdot 3}$ choices. The number of choices for all the sets $\mathcal{S}_{4}^{*}\left(\sigma_{2}, \sigma_{3}\right)$ with $\sigma_{2} \in \mathcal{S}_{2}^{*}$, $\sigma_{3} \in \mathcal{S}_{3}^{*}\left(\sigma_{2}\right)$, is $\leqslant l^{3 \cdot 3 \cdot 3}$, etc. Thus the number of possibilities for a system Σ is

$$
\leqslant l^{3} \cdot l^{3 \cdot 3} \cdot \ldots \cdot l^{3^{n-1}}<l^{3^{n}}
$$

When \mathbf{i} is an n-tuple and Σ a system as above, let $C(\mathbf{i}, \Sigma)$ be the class of solutions x with $\mathbf{i}(x)=\mathbf{i}$ and

$$
\mathcal{S}_{2}^{*}(x)=\mathcal{S}_{2}^{*}, \quad \mathcal{S}_{3}^{*}\left(\sigma_{2}, x\right)=\mathcal{S}_{3}^{*}\left(\sigma_{2}\right), \quad \ldots, \quad \mathcal{S}_{n}^{*}\left(\sigma_{2}, \ldots, \sigma_{n-1}, x\right)=\mathcal{S}_{n}^{*}\left(\sigma_{2}, \ldots, \sigma_{n-1}\right)
$$

whenever

$$
\begin{equation*}
\sigma_{2} \in \mathcal{S}_{2}^{*}, \quad \sigma_{3} \in \mathcal{S}_{3}^{*}\left(\sigma_{2}\right), \quad \ldots, \quad \sigma_{n} \in \mathcal{S}_{n}^{*}\left(\sigma_{2}, \ldots, \sigma_{n-1}\right) \tag{11.6}
\end{equation*}
$$

The number of classes is less than

$$
\begin{equation*}
k^{n} \cdot l^{3^{n}}=k^{n}\left(3 k^{n}\right)^{3^{n}} \tag{11.7}
\end{equation*}
$$

We will now study solutions in a given class $C(\mathbf{i}, \Sigma)$. Let $j=j(\mathbf{i})$ be the number such that

$$
\mathbf{i}=\left(i_{1}, \ldots, i_{j}, u_{j+1}, \ldots, u_{n}\right)
$$

and $i_{j} \neq u_{j}$. Possibly $i_{n} \neq u_{n}$, so that $j=n$. But we cannot have $j=1$, for then (10.5) would give

$$
\mathcal{A}\binom{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}}{i_{1}, u_{2}, \ldots, u_{n}} \approx \mathcal{A}\binom{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}}{u_{1}, u_{2}, \ldots, u_{n}}
$$

and hence $\alpha_{i_{1}}^{\left(\sigma_{1}\right)} \approx \alpha_{u_{1}}^{\left(\sigma_{1}\right)}$, which cannot happen when $i_{1} \neq u_{1}$. Therefore

$$
\begin{equation*}
2 \leqslant j \leqslant n . \tag{11.8}
\end{equation*}
$$

For $x \in C(\mathbf{i}, \Sigma)$, and $\boldsymbol{\sigma}$ with $\sigma_{1}=1$ and (11.6), the equation (11.4) becomes

$$
\begin{equation*}
\Delta\binom{\sigma_{1}, \ldots, \sigma_{n}}{u_{1}, \ldots, u_{n}}\left(\mathcal{A}\binom{\sigma_{1}, \ldots, \sigma_{n}}{u_{1}, \ldots, u_{n}}\right)^{x}+\Delta\binom{\sigma_{1}, \ldots, \sigma_{n}}{i_{1}, \ldots, i_{n}}\left(\mathcal{A}\binom{\sigma_{1}, \ldots, \sigma_{n}}{i_{1}, \ldots, i_{n}}\right)^{x} \tag{11.9}
\end{equation*}
$$

$(+$ possible further terms $)=0$.
We will now restrict $\boldsymbol{\sigma}$ with (11.6) even further. We fix $\sigma_{1}=1, \sigma_{2}, \ldots, \sigma_{j-1}$ arbitrarily such that (11.6) holds, in so far as it applies to them. We let σ_{j} vary in $\mathcal{S}_{j}^{*}\left(\sigma_{2}, \ldots, \sigma_{j-1}\right)$, so that σ_{j} assumes three values ϕ, ψ, ω. Given a choice of σ_{j}, we again fix $\sigma_{j+1}, \ldots, \sigma_{n}$ such that (11.6) holds. Thus we now have three n-tuples σ, which we will denote by $\boldsymbol{\sigma}_{\phi}, \boldsymbol{\sigma}_{\psi}, \boldsymbol{\sigma}_{\omega}$. We will study (11.4), which is the same as (11.9), for these three choices of $\boldsymbol{\sigma}$.

The number of possibilities for each of $\mathcal{I}\left(\boldsymbol{\sigma}_{\phi}, x\right), \mathcal{I}\left(\boldsymbol{\sigma}_{\psi}, x\right), \mathcal{I}\left(\boldsymbol{\sigma}_{\omega}, x\right)$ is $<2^{k^{n}}$. We subdivide the class $C(\mathbf{i}, \Sigma)$ into

$$
\begin{equation*}
2^{3 k^{n}} \tag{11.10}
\end{equation*}
$$

subclasses $C\left(\mathbf{i}, \Sigma, \mathcal{I}_{\phi}, \mathcal{I}_{\psi}, \mathcal{I}_{\omega}\right)$ such that $\mathcal{I}\left(\boldsymbol{\sigma}_{\phi}, x\right)=\mathcal{I}_{\phi}, \mathcal{I}\left(\boldsymbol{\sigma}_{\psi}, x\right)=\mathcal{I}_{\psi}, \mathcal{I}\left(\boldsymbol{\sigma}_{\omega}, x\right)=\mathcal{I}_{\omega}$ in the class. Let $q_{\phi}, q_{\psi}, q_{\omega}$ be the number of nonzero summands in (11.9) with $\boldsymbol{\sigma}=\boldsymbol{\sigma}_{\phi}, \boldsymbol{\sigma}_{\psi}, \boldsymbol{\sigma}_{\omega}$, respectively. Each of these numbers is $\leqslant k^{n}$.

No subsum of (11.9) vanishes. Hence we may apply Lemma 3. Fix $\sigma=\sigma_{\phi}$ for the moment. Let $\mathcal{A}_{\boldsymbol{\sigma}}(x)$ be the vector in q_{ϕ}-space with components

$$
\left(\mathcal{A}\binom{\sigma_{1}, \ldots, \sigma_{n}}{i_{1}, \ldots, i_{n}}\right)^{x}
$$

where $\left(i_{1}, \ldots, i_{n}\right) \in \mathcal{I}_{\phi}$. According to Lemma 3 , there are vectors $\mathbf{c}_{\boldsymbol{\sigma}}^{(w)}\left(1 \leqslant w \leqslant B\left(q_{\phi}\right)\right)$ such that $\mathcal{A}_{\boldsymbol{\sigma}}(x)$ is proportional to some $\mathbf{c}_{\sigma}^{(w)}$ for every solution x. We subdivide $\mathbf{C}\left(\mathbf{i}, \Sigma, \mathcal{I}_{\phi}, \mathcal{I}_{\psi}, \mathcal{I}_{\omega}\right)$ according to the $\mathbf{c}_{\boldsymbol{\sigma}}^{(w)}\left(w=1, \ldots, B\left(q_{\phi}\right)\right)$ to which $\mathcal{A}_{\boldsymbol{\sigma}}(x)$ is proportional. In fact we do this for $\boldsymbol{\sigma}_{\phi}$ as well as for $\boldsymbol{\sigma}_{\psi}, \boldsymbol{\sigma}_{\omega}$, so that we divide into

$$
\leqslant B\left(q_{\phi}\right) B\left(q_{\psi}\right) B\left(q_{\omega}\right) \leqslant B\left(k^{n}\right)^{3}
$$

subclasses. Thus altogether, by (11.7), (11.10), the number of subclasses (which we will call "classes" from now on) is

$$
\begin{align*}
& <k^{n}\left(3 k^{n}\right)^{3^{n}} \cdot 2^{3 k^{n}} B\left(k^{n}\right)^{3}<\left(3 k^{n}\right)^{3^{n}+1} \cdot 2^{3 k^{n}} \cdot\left(k^{n}\right)^{9 k^{2 n}} \\
& <k^{12 n k^{2 n}}<\exp \left(12 n k^{2 n+1}\right) \tag{11.11}
\end{align*}
$$

Considering only the two components of $\mathcal{A}_{\boldsymbol{\sigma}}(\mathbf{x})$ highlighted in (11.9), we get

$$
\left(\mathcal{A}\binom{\sigma_{1}, \ldots, \sigma_{n}}{i_{1}, \ldots, i_{n}}\right)^{x}=c_{\phi}\left(\mathcal{A}\binom{\sigma_{1}, \ldots, \sigma_{n}}{u_{1}, \ldots, u_{n}}\right)^{x}
$$

when $\boldsymbol{\sigma}=\boldsymbol{\sigma}_{\phi}$, where $c_{\phi}=c_{\phi}^{(w)}=c_{\boldsymbol{\sigma}}^{(w)}\left(i_{1}, \ldots, i_{n}\right) / c_{\boldsymbol{\sigma}}^{(w)}\left(u_{1}, \ldots, u_{n}\right)$ in a given class is fixed. By our definition of j, this gives

$$
\left(\alpha_{i_{1}}^{\left(\sigma_{1}\right)} \ldots \alpha_{i_{j}}^{\left(\sigma_{j}\right)}\right)^{x}=c_{\phi}\left(\alpha_{u_{1}}^{\left(\sigma_{1}\right)} \ldots \alpha_{u_{j}}^{\left(\sigma_{j}\right)}\right)^{x}
$$

for $\boldsymbol{\sigma}=\boldsymbol{\sigma}_{\phi}$, or

$$
\left(\left(\frac{\alpha_{i_{j}}}{\alpha_{u_{j}}}\right)^{(\phi)}\right)^{x}=c_{\phi}\left(\left(\frac{\alpha_{u_{1}}}{\alpha_{i_{1}}}\right)^{\left(\sigma_{1}\right)} \ldots\left(\frac{\alpha_{u_{j-1}}}{\alpha_{i_{j-1}}}\right)^{\left(\sigma_{j-1}\right)}\right)^{x}
$$

An analogous relation holds when $\boldsymbol{\sigma}=\boldsymbol{\sigma}_{\psi}$ or $\boldsymbol{\sigma}=\boldsymbol{\sigma}_{\omega}$. Taking quotients we obtain

$$
\left(\frac{\left(\alpha_{i_{j}} / \alpha_{u_{j}}\right)^{(\phi)}}{\left(\alpha_{i_{j}} / \alpha_{u_{j}}\right)^{(\psi)}}\right)^{x}=\frac{c_{\phi}}{c_{\psi}}
$$

Now $\alpha_{i_{j}} / \alpha_{u_{j}}$ is one of the numbers β_{s} in \mathcal{T}_{j}^{*}, so that we may write

$$
\left(\frac{\beta_{s}^{(\phi)}}{\beta_{s}^{(\psi)}}\right)^{x}=\frac{c_{\phi}}{c_{\psi}}
$$

Similarly $\left(\beta_{s}^{(\phi)} / \beta_{s}^{(\omega)}\right)^{x}=c_{\phi} / c_{\omega}$. Hence if x, x^{\prime} lie in our class, then

$$
\left(\frac{\beta_{s}^{(\phi)}}{\beta_{s}^{(\psi)}}\right)^{x-x^{\prime}}=\left(\frac{\beta_{s}^{(\phi)}}{\beta_{s}^{(\omega)}}\right)^{x-x^{\prime}}=1
$$

So if $\left|G\left(\beta_{s}^{(\phi)}: \beta_{s}^{(\psi)}: \beta_{s}^{(\omega)}\right)\right|=m$, we obtain $x \equiv x^{\prime}(\bmod m)$. On the other hand, $m>$ $e^{-9 k^{2 n}} \operatorname{deg} \beta_{s}$ by (10.17), so that in view of (10.14),

$$
h\left(\beta_{s}^{m}\right)=m h\left(\beta_{s}\right)>\frac{e^{-9 k^{2 n}}}{k^{6 n}}>e^{-10 k^{2 n}}=\hbar(k, n)
$$

But β_{s} is the quotient of two numbers α_{i} / α_{j}, so that $h\left(\alpha_{i}^{m}: \alpha_{j}^{m}\right)>\hbar(k, n)$.
So how many classes do we have? Adding (11.1) to (11.11) we obtain indeed at most

$$
\exp \left(\left(7 k^{n}\right)^{6 k^{n}}\right)=H(k, n)
$$

classes.

Appendix: Denominators of certain rational numbers

Consider a system $R=\left\{\varrho_{1}, \ldots, \varrho_{n}\right\}$ of real numbers whose differences $\varrho_{i}-\varrho_{j}$ lie in \mathbb{Q}, but not in \mathbb{Z} when $i \neq j$. We will briefly refer to such a set of reals as a system. Let $r_{i j}$ be the denominator of $\varrho_{i}-\varrho_{j}$, so that $\varrho_{i}-\varrho_{j}=r_{i j}^{\prime} / r_{i j}$ with $r_{i j}>0$ and $\operatorname{gcd}\left(r_{i j}, r_{i j}^{\prime}\right)=1$. In
particular, $r_{i i}=1(1 \leqslant i \leqslant n)$. We would like most of these denominators to have order of magnitude at least n. Given $\varepsilon>0$, let $N_{0}(\varepsilon)$ be the number of pairs i, j in $1 \leqslant i, j \leqslant n$ with

$$
r_{i j} \leqslant \varepsilon n
$$

Is there a function $\delta(\varepsilon)$ (independent of n and of R) which tends to 0 as $\varepsilon \rightarrow 0$, such that

$$
\begin{equation*}
N_{0}(\varepsilon) \leqslant \delta(\varepsilon) n^{2} ? \tag{A1}
\end{equation*}
$$

The answer to this question is negative: Let $R=\{0,1 / n, \ldots,(n-1) / n\}$. In this case $N_{0}(\varepsilon)=n N^{\prime}(\varepsilon)$ where $N^{\prime}(\varepsilon)$ is the number of integers $i, 1 \leqslant i \leqslant n$, with $\operatorname{gcd}(i, n) \geqslant 1 / \varepsilon$. Now $N^{\prime}(\varepsilon)=n-N^{\prime \prime}(\varepsilon)$ where $N^{\prime \prime}(\varepsilon)$ counts the number of integers $i, 1 \leqslant i \leqslant n$, with $\operatorname{gcd}(i, n)<1 / \varepsilon$. Clearly

$$
N^{\prime \prime}(\varepsilon) \leqslant n \prod_{\substack{p \mid n \\ p \geqslant 1 / \varepsilon}}\left(1-p^{-1}\right) .
$$

Hence let $n=n_{m}$ be the product of the primes p in $1 / \varepsilon \leqslant p \leqslant m$. Then when $m \geqslant m_{0}(\varepsilon)$, we have $N^{\prime \prime}(\varepsilon)<\frac{1}{2} n$, and hence $N^{\prime}(\varepsilon)>\frac{1}{2} n, N_{0}(\varepsilon)>\frac{1}{2} n^{2}$, which is inconsistent with (A1).

Not to give up, we write $N(\varepsilon)$ for the number of triples i, j, k in $1 \leqslant i, j, k \leqslant n$ with

$$
\begin{equation*}
\operatorname{lcm}\left(r_{i j}, r_{i k}\right) \leqslant \varepsilon n \tag{A2}
\end{equation*}
$$

I conjecture that there is a function $\delta(\varepsilon)$ (independent of n and R) which tends to 0 as $\varepsilon \rightarrow 0$, such that

$$
\begin{equation*}
N(\varepsilon) \leqslant \delta(\varepsilon) n^{3} \tag{A3}
\end{equation*}
$$

I cannot prove this conjecture, unless we make an extra assumption on the system R. Given $x \in \mathbb{N}$ and $1 \leqslant i \leqslant n$, write $u_{i}(x)$ for the number of integers $j, 1 \leqslant j \leqslant n$, with

$$
r_{i j} \mid x
$$

We call R homogeneous if for every x, the number $u_{i}(x)$ is independent of i; say $u_{i}(x)=$ $u(x)$. For example, $R=\{0,1 / n, \ldots,(n-1) / n\}$ is homogeneous. Another example is the system R_{m} consisting of the numbers i / m with $1 \leqslant i \leqslant m, \operatorname{gcd}(i, m)=1$, so that R_{m} has cardinality $n=\phi(m)$: for in this case, if i / m and i^{\prime} / m are in R_{m}, say $i^{\prime} \equiv k i(\bmod m)$, then $r_{i j}=r_{i^{\prime} j^{\prime}}$ where j^{\prime} is the integer in $1 \leqslant j^{\prime} \leqslant m$ with $j^{\prime} \equiv k j(\bmod m)$. Occasionally we will write $u_{i}^{R}(x)$ and $u^{R}(x)$ to indicate that our functions come from a particular system R.

Theorem A. Suppose $0<\varkappa<1$. Then when R is homogeneous we have

$$
\begin{equation*}
N(\varepsilon) \leqslant \zeta(2-\varkappa) \varepsilon^{\varkappa} n^{3} . \tag{A4}
\end{equation*}
$$

Thus in this case we may take $\delta(\varepsilon)=\zeta(2-\varkappa) \varepsilon^{\varkappa}$ in (A3). It may be shown that when the denominators $r_{i j}$ are all powers of a fixed prime p, and when R is homogeneous, then $N(\varepsilon) \leqslant \varepsilon^{2} n^{3}$. Therefore (A4) may perhaps be replaced by $N(\varepsilon) \leqslant c_{0}(\varkappa) \varepsilon^{\varkappa} n^{3}$ for $0<\varkappa<2$, and possibly even for $\varkappa=2$. To carry out the proof of Theorem A, we will need a somewhat more general theorem. Let $R=\left\{\varrho_{1}, \ldots, \varrho_{n}\right\}, S=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ be homogeneous systems. We will call R, S isomorphic, and write $R \sim S$, if $u^{R}(x)=u^{S}(x)$.

Theorem B. Let $R=\left\{\varrho_{1}, \ldots, \varrho_{n}\right\}, S=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}, T=\left\{\tau_{1}, \ldots, \tau_{n}\right\}$ be homogeneous, and isomorphic to each other. Suppose that all the differences $\varrho_{i}-\sigma_{j}, \varrho_{i}-\tau_{k}$ lie in \mathbb{Q}. Let $a_{i j}$ be the denominator of $\varrho_{i}-\sigma_{j}$, let $b_{i k}$ be the denominator of $\varrho_{i}-\tau_{k}$, and $N(\varepsilon)$ the number of triples i, j, k in $1 \leqslant i, j, k \leqslant n$ with

$$
\begin{equation*}
\operatorname{lcm}\left(a_{i j}, b_{i k}\right) \leqslant \varepsilon n \tag{A5}
\end{equation*}
$$

Thèn (A4) holds for \varkappa in $0<\varkappa<1$.
The proof of Theorem B will proceed via a series of lemmas. Let $R=\left\{\varrho_{1}, \ldots, \varrho_{n}\right\}$ be a homogeneous system. Note that $r_{i j} \in \mathbb{N}$ is least such that $r_{i j}\left(\varrho_{i}-\varrho_{j}\right) \in \mathbb{Z}$. When $x \in \mathbb{N}$, write $\varrho_{i} \stackrel{x}{=} \varrho_{j}$ if $r_{i j} \mid x$, i.e., if $x\left(\varrho_{i}-\varrho_{j}\right) \in \mathbb{Z}$. Clearly $\stackrel{x}{=}$ defines an equivalence relation among the elements of R. Thus R splits into equivalence classes, where each class contains $u(x)$ elements, and the number of classes is $v(x):=n / u(x)$.

When $R=\left\{\varrho_{1}, \ldots, \varrho_{n}\right\}, S=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$, write $R \stackrel{x}{=} S$ if $x\left(\varrho_{i}-\sigma_{j}\right) \in \mathbb{Z}$ for $1 \leqslant i, j \leqslant n$. The relation $\stackrel{x}{=}$ for systems is symmetric and transitive but not reflexive, since not necessarily $R \stackrel{x}{\equiv} R$. But when $R \stackrel{x}{\equiv} S$, then $R \stackrel{\underline{x}}{\underline{\underline{x}}} S \stackrel{\underline{x}}{\underline{=}} R$, hence $R \stackrel{x}{\equiv} R$. When $R \stackrel{x}{\underline{\underline{x}}} R$, then $\varrho_{i}=\varrho_{1}+\left(a_{i} / x\right)$ with $a_{i} \in \mathbb{Z}$, but when $i \neq j$ we have $\varrho_{i}-\varrho_{j}=\left(a_{i}-a_{j}\right) / x \notin \mathbb{Z}$, so that $a_{i} \not \equiv a_{j}(\bmod x)$, and therefore R has cardinality $|R| \leqslant x$.

Lemma A. Let R be homogeneous, $x \in \mathbb{N}$, and let R_{1}, \ldots, R_{v} be the equivalence classes with respect to $\stackrel{x}{\equiv}$. Then $R_{r} \stackrel{x}{=} R_{r}(1 \leqslant r \leqslant v)$, but $R_{r} \neq R_{s}$ when $r \neq s$. The sys tems R_{1}, \ldots, R_{v} are homogeneous and isomorphic to each other. When $R \stackrel{m}{=} R$ and $x \mid m$, then $v \leqslant m / x$.

Furthermore, if S is homogeneous and isomorphic to R, with equivalence classes S_{1}, \ldots, S_{v}, then $R_{1} \sim \ldots \sim R_{v} \sim S_{1} \sim \ldots \sim S_{v}$. Given $1 \leqslant r \leqslant v$, there is at most one s with $R_{r} \stackrel{x}{=} S_{s}$.

Proof. We have $x\left(\varrho_{i}-\varrho_{j}\right) \in \mathbb{Z}_{r}$ when $\varrho_{i}, \varrho_{j} \in R_{r}$, and therefore $R_{r} \stackrel{x}{\equiv} R_{r}$. But when $\varrho_{i} \in R_{r}, \varrho_{j} \in R_{s}$ with $r \neq s$, then $\varrho_{i} \neq \varrho_{j}$, and hence $R_{r} \neq R_{s}$. Now suppose that ϱ_{i}, ϱ_{j}
are in R_{r}. Then $\varrho_{i} \underline{\underline{y}} \varrho_{j}$ when $r_{i j} \mid y$. But since $r_{i j} \mid x$, this holds precisely if $r_{i j} \mid y^{\prime}$ where $y^{\prime}=\operatorname{gcd}(y, x)$. Conversely, if $\varrho_{i} \in R_{r}, \varrho_{j} \in R$ and $r_{i j} \mid y^{\prime}$, then $r_{i j} \mid y$ and $r_{i j} \mid x$, hence $\varrho_{j} \in R_{r}$. Therefore

$$
u_{i}^{R_{r}}(y)=u_{i}^{R_{r}}\left(y^{\prime}\right)=u_{i}^{R}\left(y^{\prime}\right)=u^{R}\left(y^{\prime}\right) .
$$

We may conclude that R_{r} is homogeneous with $u^{R_{r}}(y)=u^{R}\left(y^{\prime}\right)$. Therefore $R_{1} \sim \ldots \sim R_{v}$. When $R \stackrel{m}{\equiv} R$ and $x \mid m$, each $\varrho_{i}=\varrho_{1}+a_{i} / m$ with $a_{i} \in \mathbb{Z}$. Now if $\varrho_{i} \in R_{r}, \varrho_{j} \in R_{s}$ with $r \neq s$, then $x\left(\varrho_{i}-\varrho_{j}\right)=x\left(a_{i}-a_{j}\right) / m \notin \mathbb{Z}$, so that $a_{i} \not \equiv a_{j}(\bmod m / x)$. This shows that the number v of classes R_{1}, \ldots, R_{v} has $v \leqslant m / x$.

When S is homogeneous with $R \sim S$, each equivalence class S_{1}, \ldots, S_{v} is homogeneous, and $u_{i}^{S_{S}}(y)=u^{S}\left(y^{\prime}\right)=u^{R}\left(y^{\prime}\right)$, so that indeed S_{1}, \ldots, S_{v} are isomorphic to R_{1}, \ldots, R_{v}. When $R_{r} \stackrel{x}{=} S_{s}$ and $R_{r} \stackrel{x}{=} S_{t}$, then $S_{s} \stackrel{x}{=} S_{t}$, so that $s=t$.

Write $c(\varkappa, p)=\left(1-p^{\varkappa-2}\right)^{-1}$,

$$
c(\varkappa, m)=\prod_{p \mid m} c(\varkappa, p)
$$

Lemma B. Suppose that we are in the situation of Theorem B, and that

$$
\begin{equation*}
R \stackrel{m}{\equiv} S \stackrel{m}{\equiv} T \tag{A6}
\end{equation*}
$$

Then

$$
N(\varepsilon) \leqslant c(\varkappa, m) \varepsilon^{\varkappa} n^{3}
$$

Since for any systems R, S, T as in Theorem B there is an $m \in \mathbb{N}$ with (A6), and since $c(\varkappa, m)<\zeta(2-\varkappa)$, this lemma implies Theorem B.

Proof. When $m=1$, we have $\varrho_{i}-\varrho_{j} \in \mathbb{Z}$ for $1 \leqslant i, j \leqslant n$, but $\varrho_{i}-\varrho_{j} \notin \mathbb{Z}$ for $i \neq j$, and therefore $n=1$. Then (A5) cannot hold unless $\varepsilon \geqslant 1$; but then $N(\varepsilon)=1 \leqslant \varepsilon^{\varkappa}=c(\varkappa, 1) \varepsilon^{\varkappa} \cdot 1^{3}$.

It will therefore suffice to prove the lemma for

$$
m=p^{l} m_{0}
$$

where p is a prime, $p \nmid m_{0}, l>0$, assuming that the lemma is true for m_{0}.
We may apply a common translation to R, S, T. Hence we may suppose that all the elements of R, S, T lie in $m^{-1} \mathbb{Z}$. Set

$$
x_{q}=m_{0} p^{l-q}=m p^{-q} \quad(0 \leqslant q \leqslant l)
$$

Let $R_{1}, \ldots, R_{v_{1}}$ be the equivalence classes of R with respect to $\stackrel{x_{1}}{=}$. Thus $v_{1}=v\left(x_{1}\right)$, and each $R_{r}\left(1 \leqslant r \leqslant v_{1}\right)$ has $u\left(x_{1}\right)=n / v_{1}$ elements. By Lemma A, we have $v_{1} \leqslant m / x_{1}=p$.

Given a class R_{r}, we split it into subclasses $R_{r, 1}, \ldots, R_{r, v_{2}}$ with respect to $\stackrel{x_{2}}{=}$. Since $R_{r} \stackrel{x_{1}}{=} R_{r}$, we have $v_{2} \leqslant x_{1} / x_{2}=p$. Moreover, since $R_{r} \sim R_{r^{\prime}}\left(1 \leqslant r, r^{\prime} \leqslant v_{1}\right)$, the number v_{2} is by Lemma A independent of r in $1 \leqslant r \leqslant v_{1}$. Note that R splits into the classes $R_{r_{1}, r_{2}}$ $\left(1 \leqslant r_{1} \leqslant v_{1}, 1 \leqslant r_{2} \leqslant v_{2}\right)$ with respect to $\stackrel{x_{2}}{=}$, and these $v_{1} v_{2}$ systems $R_{r_{1}, r_{2}}$ are isomorphic to each other. Suppose now that $1<q \leqslant l$, and that we have defined systems $R_{r_{1}, \ldots, r_{q-1}}$ for $1 \leqslant r_{i} \leqslant v_{i}(i=1, \ldots, q-1)$, these being the equivalence classes of R with respect to $\stackrel{x_{q-1}}{\equiv}$. A system $R_{r_{1}, \ldots, r_{q-1}}$ splits into classes $R_{r_{1} \ldots, r_{q-1}, r_{q}}\left(1 \leqslant r_{q} \leqslant v_{q}\right)$ with respect to $\stackrel{x_{q}}{=}$. Here $v_{q} \leqslant p$, and v_{q} is independent of r_{1}, \ldots, r_{q-1}. The $v_{1} \ldots v_{q}$ systems $R_{r_{1}, \ldots, r_{q}}$ are all isomorphic to each other, and they are the equivalence classes of R with respect to $\stackrel{x_{q}}{=}$, so that $v\left(x_{q}\right)=v_{1} \ldots v_{q}$. Each $R_{r_{1}, \ldots, r_{q}}$ contains $n /\left(v_{1} \ldots v_{q}\right)$ elements. In this way, we eventually construct systems $R_{r_{1}, \ldots, r_{q}}$ for $0<q \leqslant l$ and $1 \leqslant r_{i} \leqslant v_{i}(i=1, \ldots, q)$. When $q=0$, a notation $R_{r_{1}, \ldots, r_{q}}$ will simply mean R.

In complete analogy, we construct systems $S_{s_{1} \ldots . s_{q}}$ and $T_{t_{1}, \ldots, t_{q}}$, where again $1 \leqslant s_{i} \leqslant v_{i}$ and $1 \leqslant t_{i} \leqslant v_{i}(i=1, \ldots, q)$, with the numbers v_{1}, \ldots, v_{q} the same as above by Lemma A, and since $R \sim S \sim T$. Furthermore

$$
R_{r_{1}, \ldots, r_{q}} \sim S_{s_{1} \ldots \ldots s_{q}} \sim T_{t_{1} \ldots, t_{q}}
$$

for any $r_{1}, \ldots, r_{q}, s_{1}, \ldots, s_{q}, t_{1}, \ldots, t_{q}$ under consideration.
If we have

$$
\begin{equation*}
R_{r_{1}, \ldots, r_{q}} \stackrel{x_{q}}{=} S_{s_{1} \ldots, s_{q}} \stackrel{x_{q}}{=} T_{t_{1}, \ldots, t_{q}} \tag{A7}
\end{equation*}
$$

for some $1 \leqslant q \leqslant l$ and $r_{1}, \ldots, r_{q}, s_{1}, \ldots, s_{q}, t_{1}, \ldots, t_{q}$, then

$$
\begin{equation*}
R_{r_{1} \ldots \ldots, r_{q-1}} \stackrel{x_{q-1}}{=} S_{s_{1} \ldots \ldots s_{q-1}} \stackrel{x_{q-1}}{=} T_{t_{1} \ldots, t_{q-1}} \tag{A8}
\end{equation*}
$$

When $q=1$, then (A8) is to be interpreted as $R \stackrel{x_{0}}{\equiv} S \stackrel{x_{0}}{\equiv} T$, which is certainly true by (A6) and since $x_{0}=m$. On the other hand, when (A8) holds, then by Lemma A the number of triples r_{q}, s_{q}, t_{q} with (A7) is $\leqslant v_{q}$ (since there are v_{q} choices for r_{q}). Write w_{1} for the number of triples r_{1}, s_{1}, t_{1} such that (A7) holds for $q=1$. By what we have just said, $w_{1} \leqslant v_{1}$. Suppose that w_{1}, \ldots, w_{q-1} have been defined such that the number of $3(q-1)$ tuples $r_{1}, \ldots, r_{q-1}, s_{1}, \ldots, s_{q-1}, t_{1}, \ldots, t_{q-1}$ with (A8) equals $w_{1} \ldots w_{q-1}$. Then let w_{q} be a number such that the number of $3 q$-tuples $r_{1}, \ldots, r_{q}, s_{1}, \ldots, s_{q}, t_{1}, \ldots, t_{q}$ with (A7) equals $w_{1} \ldots w_{q-1} w_{q}$. In particular, when $w_{1} \ldots w_{q-1}=0$, then (A8) never holds, hence (A7) never holds, and we set $w_{q}=0$. In this way w_{q} is uniquely defined, and $0 \leqslant w_{q} \leqslant v_{q}$ for $q=1, \ldots, l$.

For convenience we will write $\mathbf{r}=\left(r_{1}, \ldots, r_{l}\right), \mathbf{s}=\left(s_{1}, \ldots, s_{l}\right), \mathbf{t}=\left(t_{1}, \ldots, t_{l}\right)$. There are $\left(v_{1} v_{2} \ldots v_{l}\right)^{3}$ triples $\mathbf{r}, \mathbf{s}, \mathbf{t}$. For $0 \leqslant q \leqslant l$, let \mathcal{C}_{q} be the set of triples $\mathbf{r}, \mathbf{s}, \mathbf{t}$ for which q is the largest integer in $0 \leqslant q \leqslant l$ for which (A7) holds. In particular, \mathcal{C}_{0} consists of triples where (A7) does not hold for $q=1$.

The number of $3 q$-tuples $r_{1}, \ldots, r_{q}, \ldots, t_{1}, \ldots, t_{q}$ with (A7) is $w_{1} \ldots w_{q}$. Therefore \mathcal{C}_{l} has cardinality

$$
\begin{equation*}
\left|\mathcal{C}_{l}\right|=w_{1} \ldots w_{l} \tag{A9}
\end{equation*}
$$

When $q<l$, the number of $3(q+1)$-tuples $r_{1}, \ldots, r_{q}, r_{q+1}, \ldots, t_{1}, \ldots, t_{q}, t_{q+1}$ with (A7) equals $w_{1} \ldots w_{q} v_{q+1}^{3}$. On the other hand, the number of $3(q+1)$-tuples where (A7) holds with $q+1$ in place of q is $w_{1} \ldots w_{q} w_{q+1}$. Therefore the number of ($q+1$)-tuples with (A7), but not (A7) with $q+1$ in place of q, is $w_{1} \ldots w_{q}\left(v_{q+1}^{3}-w_{q+1}\right)$. Given such a $3(q+1)$-tuple, the number of choices for $r_{q+2}, \ldots, r_{l}, \ldots, t_{q+2}, \ldots, t_{l}$ is $\left(v_{q+2} \ldots v_{l}\right)^{3}$ (to be interpreted as 1 when $q=l-1$). Therefore

$$
\begin{equation*}
\left|\mathcal{C}_{q}\right|=w_{1} \ldots w_{q}\left(v_{q+1}^{3}-w_{q+1}\right)\left(v_{q+2} \ldots v_{l}\right)^{3} \quad(0 \leqslant q<l) \tag{A10}
\end{equation*}
$$

with the right-hand side to be interpreted as $\left(v_{1}^{3}-w_{1}\right)\left(v_{2} \ldots v_{l}\right)^{3}$ when $q=0$, and as $w_{1} \ldots w_{l-1}\left(v_{l}^{3}-w_{l}\right)$ when $q=l-1$.

We now insert a sublemma to Lemma B. Given $\mathbf{r}, \mathbf{s}, \mathbf{t}$, write $N(\mathbf{r}, \mathbf{s}, \mathbf{t} ; \varepsilon)$ for the number of triples i, j, k with $\varrho_{i} \in R_{\mathbf{r}}, \sigma_{j} \in S_{\mathbf{s}}, \tau_{k} \in T_{\mathbf{t}}$ having (A5).

Lemma C. Suppose that $\mathbf{r}, \mathbf{s}, \mathbf{t}$ is in the class \mathcal{C}_{q}. Then

$$
N(\mathbf{r}, \mathbf{s}, \mathbf{t} ; \varepsilon) \leqslant c\left(\varkappa, m_{0}\right) \varepsilon^{\varkappa} n^{3} p^{(q-l) \varkappa}\left(v_{1} \ldots v_{l}\right)^{\varkappa-3}
$$

Proof. Numbers $\xi \in m^{-1} \mathbb{Z}$ may uniquely be written as

$$
\xi=\frac{y}{m_{0}}+\frac{z}{p^{l}}=\xi^{\prime}+\xi^{\prime \prime}
$$

say, where $y, z \in \mathbb{Z}$ and $0 \leqslant z<p^{l}$. Accordingly, when $\varrho_{i} \in R_{\mathbf{r}}$, write $\varrho_{i}=\varrho_{i}^{\prime}+\varrho_{i}^{\prime \prime}$. But $m_{0}=x_{l}$, so that $\varrho_{i} \stackrel{m_{2}}{=} \varrho_{i^{*}}$ for $\varrho_{i}, \varrho_{i^{*}} \in R_{\mathbf{r}}$, and therefore $\varrho_{i}^{\prime \prime}$ is the same for every $\varrho_{i} \in R_{\mathbf{r}}$. Using the same argument for $S_{\mathbf{s}}, T_{\mathbf{t}}$, we have

$$
\varrho_{i}=\varrho_{i}^{\prime}+\varrho^{\prime \prime}, \quad \sigma_{j}=\sigma_{j}^{\prime}+\sigma^{\prime \prime}, \quad \tau_{k}=\tau_{k}^{\prime}+\tau^{\prime \prime}
$$

for $\left(\varrho_{i}, \sigma_{j}, \tau_{k}\right) \in R_{\mathbf{r}} \times S_{\mathbf{s}} \times T_{\mathbf{t}}$. Since $\mathbf{r}, \mathbf{s}, \mathbf{t} \in \mathcal{C}_{q}$, we have $x_{q}\left(\varrho_{i}-\sigma_{j}\right)=m_{0} p^{l-q}\left(\varrho_{i}-\sigma_{j}\right) \in \mathbb{Z}$, therefore $p^{l-q}\left(\varrho^{\prime \prime}-\sigma^{\prime \prime}\right) \in \mathbb{Z}$, and also $p^{l \sim q}\left(\varrho^{\prime \prime}-\tau^{\prime \prime}\right) \in \mathbb{Z}$. On the other hand, when $q<l$, then (A7) does not hold with $q+1$ in place of q, so that not both $x_{q+1}\left(\varrho_{i}-\sigma_{j}\right), x_{q+1}\left(\varrho_{i}-\tau_{k}\right)$ lie in \mathbb{Z}, and hence not both $p^{l-q-1}\left(\varrho^{\prime \prime}-\sigma^{\prime \prime}\right), p^{l-q-1}\left(\varrho^{\prime \prime}-\tau^{\prime \prime}\right)$ lie in \mathbb{Z}. We may infer that the respective denominators $a^{\prime \prime}$ and $b^{\prime \prime}$ of $\varrho^{\prime \prime}-\sigma^{\prime \prime}$ and $\varrho^{\prime \prime}-\tau^{\prime \prime}$ have

$$
\begin{equation*}
\operatorname{lcm}\left(a^{\prime \prime}, b^{\prime \prime}\right)=p^{l-q} \tag{A11}
\end{equation*}
$$

Let $R_{\mathbf{r}}^{\prime}$ be the system consisting of the ϱ_{i}^{\prime} where $\varrho_{i} \in R_{\mathbf{r}}$, and define $S_{\mathbf{s}}^{\prime}, T_{\mathbf{t}}^{\prime}$ similarly. Then $R_{\mathbf{r}}^{\prime} \sim R_{\mathbf{r}}, S_{\mathbf{s}}^{\prime} \sim S_{\mathbf{s}}, T_{\mathbf{t}}^{\prime} \sim T_{\mathbf{t}}$, so that $R_{\mathrm{r}}^{\prime} \sim S_{\mathbf{s}}^{\prime} \sim T_{\mathbf{t}}^{\prime}$. Furthermore $R_{\mathbf{r}}^{\prime} \stackrel{m_{0}}{=} S_{\mathbf{s}}^{\prime} \stackrel{m_{0}}{=} T_{\mathrm{t}}^{\prime}$. When $\left(\varrho_{i}^{\prime}, \sigma_{j}^{\prime}, \tau_{k}^{\prime}\right) \in R_{\mathbf{r}}^{\prime} \times S_{\mathbf{s}}^{\prime} \times T_{\mathbf{t}}^{\prime}$, let $a_{i j}^{\prime}, b_{i k}^{\prime}$ be the respective denominators of $\varrho_{i}^{\prime}-\sigma_{j}^{\prime}, \varrho_{i}^{\prime}-\tau_{k}^{\prime}$. Then $a_{i j}=a_{i j}^{\prime} a^{\prime \prime}, b_{i k}=b_{i k}^{\prime} b^{\prime \prime}$. By (A11) and since $p \nmid a_{i j}^{\prime} b_{i k}^{\prime}$,

$$
\operatorname{lcm}\left(a_{i j}, b_{i k}\right)=p^{l-q} \operatorname{lcm}\left(a_{i j}^{\prime}, b_{i k}^{\prime}\right)
$$

The condition (A5) therefore becomes

$$
\begin{equation*}
\operatorname{lcm}\left(a_{i j}^{\prime}, b_{i k}^{\prime}\right) \leqslant \varepsilon p^{q-l} n=\varepsilon p^{q-l} v_{1} \ldots v_{l}\left(n / v_{1} \ldots v_{l}\right) \tag{A12}
\end{equation*}
$$

We supposed Lemma B to be true for m_{0}. We apply this case of the lemma to $R_{\mathbf{r}}^{\prime}, S_{\mathbf{s}}^{\prime}$, $T_{\mathbf{t}}^{\prime}$ with $\varepsilon p^{q-l} v_{1} \ldots v_{l}$ in place of ε, and observe that these three systems each have cardinality $n /\left(v_{1} \ldots v_{l}\right)$. Therefore $N(\mathbf{r}, \mathbf{s}, \mathbf{t} ; \varepsilon)$, which is the number of triples $\left(\varrho_{i}, \sigma_{j}, \tau_{k}\right) \in R_{\mathbf{r}} \times S_{\mathbf{s}} \times T_{\mathbf{t}}$ with (A5), satisfies

$$
\begin{aligned}
N(\mathbf{r}, \mathbf{s}, \mathbf{t} ; \varepsilon) & \leqslant c\left(\varkappa, m_{0}\right)\left(\varepsilon p^{q-l} v_{1} \ldots v_{l}\right)^{\varkappa}\left(n / v_{1} \ldots v_{l}\right)^{3} \\
& =c\left(\varkappa, m_{0}\right) \varepsilon^{\varkappa} n^{3} p^{(q-l) \varkappa}\left(v_{1} \ldots v_{l}\right)^{\varkappa-3}
\end{aligned}
$$

This completes the proof of Lemma C.
We now continue with the proof of Lemma B. Clearly

$$
N(\varepsilon)=\sum_{\mathbf{r}} \sum_{\mathbf{s}} \sum_{\mathbf{t}} N(\mathbf{r}, \mathbf{s}, \mathbf{t} ; \varepsilon),
$$

so that by Lemma C,

$$
N(\varepsilon) \leqslant c\left(\varkappa, m_{0}\right) \varepsilon^{\varkappa} n^{3}\left(v_{1} \ldots v_{l}\right)^{\varkappa-3} \sum_{q=0}^{l}\left|\mathcal{C}_{q}\right| p^{(q-l) \varkappa}
$$

Here w_{q} enters in the formulas (A9), (A10) for $\left|\mathcal{C}_{q-1}\right|,\left|\mathcal{C}_{q}\right|, \ldots,\left|\mathcal{C}_{l}\right|$. When w_{q} increases, then $\left|\mathcal{C}_{q-1}\right|$ decreases (or remains constant), whereas $\left|\mathcal{C}_{q}\right|, \ldots,\left|\mathcal{C}_{l}\right|$ increase (or remain constant), but the sum $\left|\mathcal{C}_{q-1}\right|+\left|\mathcal{C}_{q}\right|+\ldots+\left|\mathcal{C}_{l}\right|$ certainly is constant. Since the coefficient $p^{(q-1-l) x}$ of $\left|\mathcal{C}_{q-1}\right|$ in the above sum is smaller than the coefficients of $\left|\mathcal{C}_{q}\right|, \ldots,\left|\mathcal{C}_{l}\right|$, the sum can only increase when w_{q} increases. Since we had $0 \leqslant w_{q} \leqslant v_{q}$, we may replace w_{q} by $v_{q}(q=1, \ldots, l)$. In this case the sum becomes (starting with the term $q=l$)

$$
\begin{aligned}
v_{1} \ldots v_{l} & +\left(v_{1} \ldots v_{l-1}\right)\left(v_{l}^{3}-v_{l}\right) p^{-\varkappa}+\left(v_{1} \ldots v_{l-2}\right)\left(v_{l-1}^{3}-v_{l-1}\right) v_{l}^{3} p^{-2 \varkappa} \\
& +\ldots+v_{1}\left(v_{2}^{3}-v_{2}\right)\left(v_{3} \ldots v_{l}\right)^{3} p^{-(l-1) \varkappa}+\left(v_{1}^{3}-v_{1}\right)\left(v_{2} \ldots v_{l}\right)^{3} p^{-l \varkappa}
\end{aligned}
$$

We may infer that

$$
N(\varepsilon) \leqslant c\left(\varkappa, m_{0}\right) \varepsilon^{\varkappa} n^{3} f_{1}\left(v_{1}, \ldots, v_{l}\right) \leqslant c\left(\varkappa, m_{0}\right) \varepsilon^{\varkappa} n^{3} f_{\gamma}\left(v_{1}, \ldots, v_{l}\right)
$$

where $\gamma=c(\varkappa, p)=\left(1-p^{\varkappa-2}\right)^{-1}$ and

$$
\begin{aligned}
& f_{\xi}\left(v_{1}, \ldots, v_{l}\right) \\
& \quad=\left(v_{1} \ldots v_{l}\right)^{\varkappa-2}\left(\xi+\frac{v_{l}^{2}-1}{p^{\varkappa}}+\frac{v_{l-1}^{2}-1}{p^{2 \varkappa}} v_{l}^{2}+\frac{v_{l-2}^{2}-1}{p^{3 \varkappa}}\left(v_{l-1} v_{l}\right)^{2}+\ldots+\frac{v_{1}^{2}-1}{p^{\ell \varkappa}}\left(v_{2} \ldots v_{l}\right)^{2}\right)
\end{aligned}
$$

We claim that in the domain $1 \leqslant v_{q} \leqslant p(q=1, \ldots, l)$, we have

$$
\begin{equation*}
f_{\gamma}\left(v_{1}, \ldots, v_{l}\right) \leqslant \gamma=c(\varkappa, p) \tag{A13}
\end{equation*}
$$

and this will finish the proof of Lemma B, hence of Theorem B. Here (A13) will be shown by induction on l. Hence we will assume that $l=1$, or that $l>1$ and (A13) has been established for $l-1$. When v_{l-1}, \ldots, v_{1} are given, $f_{\gamma}\left(v_{1}, \ldots, v_{l}\right)$ is of the form

$$
A v_{l}^{x}+B v_{l}^{x-2}
$$

with positive coefficients A, B. This function in $v_{l}>0$ is first decreasing, then increasing, so that its maximum in any closed interval of positive reals is taken at an end point. For $l=1$ we have $f_{\gamma}(1)=\gamma, f_{\gamma}(p)=1+\gamma p^{x-2}-p^{-2}<1+\gamma p^{x-2}=\gamma$, so that in $1 \leqslant v_{1} \leqslant p$ we have indeed $f_{\gamma}\left(v_{1}\right) \leqslant \gamma$. When $l>1$ we have by induction

$$
\begin{aligned}
f_{\gamma}\left(v_{1}, \ldots, v_{l-1}, 1\right) & =\left(v_{1} \ldots v_{l-1}\right)^{\varkappa-2}\left(\gamma+\frac{v_{l-1}^{2}-1}{p^{2 \varkappa}}+\ldots+\frac{v_{1}^{2}-1}{p^{l \varkappa}}\left(v_{1} \ldots v_{l-1}\right)^{2}\right) \\
& \leqslant f_{\gamma}\left(v_{1}, \ldots, v_{l-1}\right) \leqslant \gamma \\
f_{\gamma}\left(v_{1}, \ldots, v_{l-1}, p\right) & =\left(v_{1} \ldots v_{l-1}\right)^{\varkappa-2}\left(1+\gamma p^{\varkappa-2}-p^{-2}+\frac{v_{l-1}^{2}-1}{p^{\varkappa}}+\ldots+\frac{v_{1}^{2}-1}{p^{(l-1) \varkappa}}\left(v_{1} \ldots v_{l-1}\right)^{2}\right) \\
& \leqslant f_{\gamma}\left(v_{1}, \ldots, v_{l-1}\right) \leqslant \gamma
\end{aligned}
$$

since $1+\gamma p^{\varkappa-2}-p^{-2}<\gamma$. Our claimed estimate (A13) follows.
With a view to application in the main part of the paper, we will now formulate a corollary to Theorem A. When R is a system as above, we will say that a triple of integers i, j, k in $1 \leqslant i, j, k \leqslant n$ is ε-bad if (A2) holds. Note that this property is independent of the ordering of the triple. Let $l \geqslant 3$, and consider l-tuples of integers u_{1}, \ldots, u_{l} in $1 \leqslant u_{1}, \ldots, u_{l} \leqslant n$. We call such an l-tuple ε - bad if some triple u_{i}, u_{j}, u_{k} with distinct i, j, k is ε-bad.

Corollary. Suppose that $R=\left\{\varrho_{1}, \ldots, \varrho_{n}\right\}$ is homogeneous. Then for any $l \geqslant 3$, the number of ε-bad l-tuples u_{1}, \ldots, u_{l} is

$$
<\varepsilon^{1 / 2} l^{3} n^{l}
$$

Proof. By the case $\varkappa=\frac{1}{2}$ of Theorem A, the number of ε-bad triples is

$$
\leqslant \zeta\left(\frac{3}{2}\right) \varepsilon^{1 / 2} n^{3}<3 \varepsilon^{1 / 2} n^{3}
$$

Hence given a triple i, j, k with $1 \leqslant i<j<k \leqslant l$, the number of l-tuples u_{1}, \ldots, u_{l} for which u_{i}, u_{j}, u_{k} is ε-bad is $<3 \varepsilon^{1 / 2} n^{3} \cdot n^{l-3}=3 \varepsilon^{1 / 2} n^{l}$. The number of triples i, j, k in question is $\binom{l}{3}$, so that the number of ε-bad l-tuples is

$$
\leqslant 3\binom{l}{3} \varepsilon^{1 / 2} n^{l}<\varepsilon^{1 / 2} l^{3} n^{l}
$$

References

[1] Dobrowolski, E.. On a question of Lehmer and the number of irreducible factors of a polynomial. Acta Arith., 34 (1979), 391-401.
[2] Evertse, J. H., The number of solutions of linear equations in roots of unity. To appear.
[3] Evertse, J. H., Schlickewei, H. P. \& Schmidt, W. M., Linear equations with variables which lie in a multiplicative group. To appear.
[4] Lech, C., A note on recurring series. Ark. Mat., 2 (1953), 417-421.
[5] Poorten, A.J. van der \& Schlickewei, H. P., Zeros of recurrence sequences. Bull. Austral. Math. Soc., 44 (1991), 215-223.
[6] Schlickewei. H. P., Multiplicities of algebraic linear recurrences. Acta Math., 170 (1993), 151-180.
[7] - Multiplicities of recurrence sequences. Acta Math., 176 (1996), 171-243.
[8] - Equations in roots of unity. Acta Arith., 76 (1996), 99-108.
[9] Schlickewei, H.P. \& Schmidt, W.M., The number of solutions of polynomialexponential equations. To appear in Compositio Math.
[10] Shorey, T. N. \& Tudeman, R., Exponential Diophantine Equations. Cambridge Tracts in Math., 87. Cambridge Univ. Press, Cambridge-New York, 1986.
[11] Voutier, P., An effective lower bound for the height of algebraic numbers. Acta Arith., 74 (1996), 81-95.

Wolfgang M. Schmidt
Department of Mathematics
University of Colorado at Boulder
Campus Box 395
Boulder, Colorado 80309-0395
U.S.A.
schmidt@euclid.colorado.edu
Received March 3, 1998

[^0]: The author was partially supported by NSF Grant DMS-9710314.

[^1]: (${ }^{1}$) Some results of this and the next two sections first appeared in an unpublished manuscript of Schlickewei, Schmidt and Waldschmidt. Added in proof. This work has now been published: Zeros of linear recurrences. Manuscripta Math., 98 (1998), 225-241.

[^2]: (4) The number n here and in $n(\beta), n_{K}(\beta)$ below should not be confused with the number n in the Proposition.

[^3]: $\left({ }^{5}\right)$ When the linear forms M_{1}, \ldots, M_{n} come from a polynomial vector \mathbf{P} with $t(\mathbf{P})=t$, an estimate $q \leqslant c^{t}$ with an absolute constant c may be shown to hold, enabling one to replace $\log t$ in (1.4) by a constant.

