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In this paper we will calculate the effect of spin—orbit coupling on properties of closed shell
molecules, using the zero-order regular approximation to the Dirac equation. Results are obtained
using density functionals including density gradient corrections. Close agreement with experiment
is obtained for the calculated molecular properties of a number of heavy element diatomic
molecules. ©1996 American Institute of Physids$0021-960806)02138-1

I. INTRODUCTION for some (excited atomic multiplet energies using this
o L3 method. In Sec. IV we analyze the spin—orbit effects on the
The zero-order regular approximatiGiORA)™“to the  ¢josed shell molecules | Au,, Bi,, HI, AuH, TIH, IF, TIF,

Dirac equation has been successfully applied béfarenol- TIl, PbO, and PbTe. These effects have been extensively

ecules in the Va”ant where spin—orbit mteracthn. Was Nesiudied before, especially within a relativistic effective po-
glected(which we will refer to as the scalar relativistic ap-

proximation) tential framework(see, e.g., Refs. 11 and)12n particular
The ZORA Hamiltonian is. in contrast to the Paull Pitzet*1* analyzed these effects in terms of the bonding be-

Hamiltonian, regular at the origin even for a Coulombic tween the spin—orbit splifj coupled atomic spinors of the
potential. This is achieved by using an expansion inconstituent atoms. Here we will proceed slightly differently
E/(2c¢?—V), which remains<1 close to the nucleus, in- by treating the spin—orbit interaction as a modification on a
stead of using E—V)/2c?, which leads to the Pauli terms scalar relativisti¢LS coupled starting point. Bond distances,
but which diverges at the nucleus. The ZORA Hamiltonianharmonic frequencies, dissociation energies, and dipole mo-
was shown to give very accurate results in atomic calculaments are discussed. The results for the dissociation energies
tions, especially for valence orbitalsExact solutions for are very accurate if we include gradient correcti®GA)

tEe hyﬂrogﬁni;(i)olgz v;'/ere_lgive_zn ir_w 'Eef' 5da(;1c: it WESISh(}WWerms in the energy. Results for the dissociation energies are
there that the amiltonian Is bounded from below % then usually within 0.1 eV of experiment, with only a few

Coulombic potentials. The precise relation between the

ZORA and the Pauli energies was recently studied in Somgxcepnons. The r.naIX|ml.Jm deviation is 0.'28 e\/ for PbO, and
detail® the average deviation is-0.1 eV for this series of com-

In this paper we will concentrate on the treatment ofPounds. Bond distances and frequencies are not much af-
molecular spin—orbit effects by the full ZORA method. As fected by the spin—orbit coupling. Bond distances never
before, we will use density functional theory, employing thechange by more than 0.03 A and for frequencies the effect is
usual(nonrelativistig density functionals for the exchange— less than 10%.
correlation energy: local density functional<DA) with gra- Finally we compare our results to other relativistic treat-
dient correction terms added, using the so-called generalizeglents, including Dirac—Fock, relativistic effective potential,
gradient approximatio(GGA). The Becke correction for 44 pouglas—Kroll methods.
exchangéand the Perdew correction for correlatfomhich
have been successfully applied in nonrelativistic
calculationg®and in scalar relativistic ZORA calculatiofis,
have been used.

In the c.iouble—.group §ymmetry that applies in the PreSy BASIC EQUATIONS
ence of spin—orbit coupling, the molecules we are dealing
with in this study are all plosed s_hell. The Kohn—Sham one- In this paper we will solve the ZORA equation, which is
el_ectron methOd of density functional theory can thus be aP%btained as the zero-order equation in the regular expansion
plied straightforwardly. For open shell atoms, however, the

2_ i i - -
situation is more problematic. We discuss the problems tha'{_1 E/(2¢"—V) of the Dirac equation. The one-electron rela

arise in this case in Sec. IIl. We propose an approximate Waywstlc Kohn—-Sham equations are solved in the scalar rela-
to deal with intermediate coupling in the density functionalfivistic (SR) and in the fully relativistic caséncluding the
context, which we subsequently use to obtain the referenc&in—orbit operatr In this paper we will focus on the ef-
energies for the atomic ground states that are needed to cdgcts of spin—orbit coupling on molecular properties. The
culate bond energies. In the appendix we also present resull®©RA equation is
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c to be used. In this case one needs, apart from the SR ZORA
HZORAGHZORA_ | \/ 4 ¢ p Ty ap

“kinetic energy,” the ZORA spin—orbit matrix elements. In
terms of double-group symmetry adapted functigisand
(;de (two-component functionsthe ZORA spin—orbit matrix
elements are

(DZORA
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Here we see that the spin—orbit operator, in regularized form,
is already present in this zero-order Hamiltonian. The poten-
tial V contains the nuclear field and the electron Coulomb

NI

v
_gd
=(dio V(4c2—2v

. : R d
and exchange—correlation potentials. The scalar relativistic —IE . 19<l5 \% d;
ZORA equation is just the previous equation without the Imn V4672V x, |
spin—orbit operator ©)

2
ZORAq)ZORA V4 p c p CI)ZORA L o .
2c2—-V where again in the last step partial integration has been used.

In the Pauli approximation spin—orbit matrix elements arise
of the following form:

The one-electron energies can be improved using the so-

ZORA(I)ZORA ) (2)

called scaled ZORA energy, which sums certain higher order (9¢| (7¢J
contributions to infinite ordeér 1> €imn 71 2¢? ox, @
EZORA
led_ . . : . o
S 2 ) Compared to this matrix, the ZORA spin—orbit matrix is

ZORA c ZORA ; Al H H
1+(P lo-p 2—v2 p|® ) regularized by the potential in the numerator, which makes it
effectively a 1f potential close to a nucleus, whereas the

In an analogous way the scaled energy in the scalar relatiauli spin—orbit operator behaves effectively like 8°Xo-

istic case is tential.
E£ZORA A double-group symmetry adapted function can be writ-
Escaled_ R , ) (4) ten as a spatial function times spinplus a spatial function
C times sping
+ ZORA ZORA
. . . . ) d _ g B
In practical implementationgén our case in ADF, the ¢ (r,s)=¢i(r)a+ ¢ (r)B. ®)

Amsterdam Density Functional program sysjethe one-

electron wave functionKohn—Sham orbitalsare expanded The spin integration can be done easily using the Pauli spin
in basis functions. In the ADF program Slater type orbitalmatrices. The spatial matrix elements are then given by
(STO basis sets are employed. The SR ZORA equations

lead to “kinetic energy” matrix elements between basis <a¢i Vv
€lmn

Xy |4C2—2V ©

functions ¢ and ¢; of the form < Xn ]

4

2

c
(il TER M by =(ilp 27V pl ;)
(a2

IXk 2c2—V

where in the last step partial integration has been used. Usu-
ally the point group symmetry of the molecule is used to
block diagonalize the Hamiltonian matrix. To this end, in the

X/’

The double-group orbitals are constructed using the method
of Snijderset all®’ For the calculation of the scaled SR
ZORA orbital energiefsee Eq(4)] we need matrix elements

of the form

2 (?¢I CZ
(dilp 2=V)? pld;)= 2 <¢9_xk 22

ﬁ¢,—>

B

nonrelativistic and scalar relativistic cases a linear transfor-

(10

mation is performed on the basis functions to an orthonor-

malized set of single group symmetry adapted functions. Finally for the calculation of the fully relativistic scaled
In the fully relativistic case, where spin—orbit coupling ZORA orbital energie$see Eq.(3)] we need the matrix el-

is included, double group symmetry adapted functions havements
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§ c? § gration. We use the ZORA ESA method described in some
(¢ilo-p (202——V)2 o p|¢>j> detail in Ref. 4, because it is easy and accurate.

=(ad C—2 d lll. ATOMIC GROUND STATE ENERGIES
<¢| |p (2C2_V)2 p|¢]>
The Hohenberg—Kohn theorem for nondegenerate
% )| &%) (11) ground states, that establishes a one-to-one relationship be-
1 tween the ground state density and the energy, can be ex-

The first term is already present in the SR ZORA Casej[ended in the case of degenerate ground states to a many-to-

The last term can be written &he gradient of a constant is one mapping of the se_:t of ground state densities,
zer9 corresponding to the manifold of ground states, onto the

ground state energy. However, the treatment of degenerate

d ground states is somewhat problematic since the present day
Xp)|¢1‘> approximate functionals are not invariant over the set of
ground state densities. As a simple example, consider a hy-

d CZ
+(¢i |0'V(m

<¢_d|g.v<c—2
i (202_\/)2

=<¢-d|aoV( V(4c?—-V) ) % p)| 69 drogen atom with g@? configuration. The density functionals
! 4c?(2c2—V)? ] currently in use will not give the same energy when the
pgr: V42—V | 9ot electron is placed in th&/"=°(p,) orbital or when it is
:iz € <ﬂ o —( ¢ ) ﬂ> (12) placed in theY{“Zl((pX+ipy)/\/§) orbital. Sometimes a
oMM\ X | 4cA(2¢2=V)?| 9x, spherically averaged density with 1/3 electron eactpjn

All of the matrix elements needed in the scalar relativistic,p%’ and pzk,)_ls _(E_hosen, which _W'IIII give Y:_}t ar:ot{?ertﬁnebrgy.
fully relativistic, and scaled ZORA cases, can be calculate% toi’nsev:?; a'g(%;?ssﬁéﬁ I:rl:?;rcl)cma Vzi;gonéc'ﬁa?eﬁmgg is% Zoron
straightforwardly if one uses three-dimensio(&D) numeri- Vv ,d ith . d(,m=l 0.07 eV bel F;h ' heri : I

cal integration. We use the 3D numerical integration method ¥ &nd wWith occupiedr, D7 eV below the spherically

by the Velde and Baerend®which can achieve high nu- averaged atom. For the F atom W.'th one hole in theskel,
merical precision. In the relativistic case it is only required tothe difference between a spherically averaged hole and a

calculate in each sample point, in addition to the values Opqle n thep, "’Ftom'c orpltal s 0.3 ev. The problem already
the basis functions, the derivatives of the basis function§"'=€S if there |s.onlylspln degenergcy, since the current fqnc-
with respect to the Cartesian coordinatésdk, a/ dy, al iz). tionals are not invariant under spin rotation. If one applies

The 3D integration is particularly simple since the potentialg_rf']fesmfted(sllf'n polabr;z_eai 3??;?3' flun(;tlongls,l n %e_neral
V is local in the Kohn—Sham form of density functional Iterent results are obtained It the electron IS placed in some

theory spatial orbital with spina or with a mixed spin statéa
We note that the matrix elements needed in the scaledLB)/‘/Z although these states are of course degenerate. It is

ZORA case are not more difficult to calculate than the one§©MMON practice to take only the state which is purely spin

that are needed for the unscaled ZORA kinetic energy. Thesg ©' B. H owever, the problem becqmes acute' nr elat|V|st|_c
matrix elements have to be calculated only once since thgqlqulaﬂons, where symmetry requirements will dictate spin
scaled ZORA orbital energies only have to be calculated afmxing. If we adapt the atomic one-electron states to double-
ter self-consistency is reached.

The calculation of differences in energiésond ener-  tagLe . Optimized Slater exponents for all electron ZORA scalar rela-
gies requires some precautions when using numerical intesvistic calculations for iodine.

S p d f
TABLE I. Energy differencesgin eV) between the atomilt S) ground state
in L—S coupling (L—S coupling colump, and the|JM;) ground state in n 4 n 4 n 4 n 4
intermediate couplingIntermediate coupling columrwith respect to the
average—of—configejragtiion energgee the Ft)e))thhe third colum’; gives the 1 1000.0 2 1850 3 221 4 25
SO coupling constants used in the intermediate coupling calculation. 1 240.0 2 56.2 3 133 4 15
1 83.0 2 28.75 3 9.05
L-S Intermediate SO coupling 1 53.5 2 21.25 4 7.23
coupling coupling constant 2 42.0 8 16.25 4 4.89
2 29.5 3 12.2 4 3.40
LDA GGA LDA GGA LDA GGA 2 22.2 3 9.5 4 2.48
H —0.90 —0.95 —0.90 —0.95 0.00 0.00 3 13.25 4 9.55 5 2.00
o -1.58 -1.96 -1.59 -1.97 0.02 0.02 3 104 4 6.05
F —-0.41 —-0.72 —0.43 —-0.74 0.04 0.04 4 8.55 4 4.25
Te —0.52 -0.71 -0.92 —1.09 0.54 0.53 4 6.00 5 3.90
| —-0.11 —0.19 —0.45 —0.52 0.68 0.66 4 4.45 5 2.60
Au —-0.15 —-0.20 -0.15 -0.20 0.00 0.00 5 351 5 1.70
Tl —-0.13 -0.23 —-0.83 -0.91 0.70 0.68 5 2.44 5 1.12
Pb —0.48 —0.61 —2.04 —-2.11 0.97 0.95 5 1.70
Bi -1.10 —-1.34 —-2.14 —2.27 1.27 1.25 6 1.40
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TABLE lIl. Bond lengthR, and spin—orbit correction to the bond lengtffR, in A for some diatomic systems.

I Au, Bi, HI AuH TIH IF TIF ull PbO PbTe
Expt? 2.667 2472 2661 1609 1524 1.870  1.910 2.084 2.814 1.922 2595
ZORA GGA 2719 2511 2685  1.628  1.535 1.900  1.951 2.119 2.858 1.937  2.633
SRZORA  GGA  2.697 2517 2655 1625 1535 1.931  1.940 2.126 2.872 1.939  2.629
ASY, GGA 0022 -0.006 0030 0003 0.000 -0031 0011 -0.013 -0.014 -0.002  0.004
ZORA LDA  2.670 2452 2637 1624 1526 1.868  1.919 2.073 2.783 1.910  2.588
SR ZORA LDA 2651 2457 2613 1621 1525 1.901  1.908 2.081 2.798 1.913  2.586
ASY, LDA 0019 -0.005 0024 0003 0001 -0033 0011 -0.008 -0015 —0.003  0.002

%Reference 29.

group symmetry(|jmj) state$, the resulting states will no dure we refer to the appendix. In Table | we present the
longer be pure spin states but will have the form of B).  resultingL S coupled and intermediate coupled ground state
The p4, orbitals for instance lead to 1/3 density of one spinenergies of the atoms needed in Sec. IV with respect to the
and 2/3 of the other spin. So in the limit where spin—orbitaverage of the configuration energies, as well as spin—orbit
coupling becomes negligibly small and does not have angonstants used to obtain the intermediate coupled result.
energetic effect, the simple linear transformation of the

lsmm,) states to obtaifjm;) states already causes a changelv. SPIN—ORBIT EFFECTS IN CLOSED SHELL

in the approximate energy. ' MOLECULES
In order to obtain reasonable reference energies for the

atomic ground states we have used the following approach. The effect of spin—orbit coupling has been studied in a
An established method to obtain multiplet splittings in openseries of diatomic moleculgsee Tables IlI-V) that repre-
shell systems is the one suggested in Ref. 19, cf. also Refsent different types of spin—orbit effecsee below. The
20-22(see for a recently proposed alternative Ref.. Zhe  self-consistent calculations on these molecules have been
method of Ref. 19 is based on the argument that it is onlyperformed using the LDA potential. After convergence,
allowed to use current approximate exchange functionals fodensity-gradient(GGA) corrections were calculated using
single determinantal states, since those states obey requitthte LDA density. We have noted that less than 0.01 eV dif-
ments for, e.g., the depth of the hole at the position of thderence exists for the dissociation energy between this “post-
reference electron that enters the derivation of the approxiself-consistent fieldSCH” adding of the gradient correc-
mate functional. When working with single determinantaltions and a full SCF calculation with the gradient corrected
energies only one is essentially applying the diagonal sunexchange—correlation potential. For gold we use the all-
method for obtaining multiplet energies which are well electron large basis set B of Ref. 4. The hydrogen basis set is
known from traditional atomic theor¥’. In this way theLS  also described there. For thallium, lead, and bismuth we use
coupled states belonging to a configuration are obtainedasis sets optimized to numerical scalar relativistic ZORA
This method we apply with the scalar relativistic ZORA orbitals, of the same size as the gold basis set, but with two
Hamiltonian, obtainingL S energies with major relativistic extra G STO functions. In Table Il the basis set for iodine is
effects(mass—velocity, Darwinalready included. In the next given. The tellurium basis set has the same size, with of
step the matrix elements of the spin—orbit operator may beourse different optimized exponents. For oxygen and fluo-
evaluated between theS states, so that the SO split and rine we use a tripled and quadruple valence basis set plus
double—group adapted states can be obtained by diagonalizavo 3d and two 4 polarization functions. The large basis
tion. A restriction to first-order spin—orbit splitting within sets used give an accuracy of better than 0.02 eV for the
individual LS terms is no longer justified in the heavy ele- atomic valence orbital energies compared to numerical cal-
ment compounds we are considering, so the full SO matrix igulations, for both the ZORA and the SR ZORA calcula-
diagonalized over alL S terms arising from onen()P con-  tions.

figuration (intermediate coupling For details of this proce- In Tables IlI-V results are given of all-electron molecu-

TABLE IV. Harmonic frequencieso, in cm™* for some diatomic systems.

I Au, Bi, HI AuH TIH IF TIF Til PbO PbTe
Expt2 215 191 173 2309 2305 1391 610 477 (150 721 212
ZORA GGA 197 178 174 2240 2270 1330 570 455 142 720 204
SR ZORA GGA 210 177 193 2260 2270 1320 595 450 142 730 212
A%, GGA —6% 1% —~10% 1% 0% 1% —4% 1% 0% 1% —4%
ZORA LDA 214 198 186 2260 2330 1390 610 490 155 755 216
SR ZORA LDA 226 196 203 2280 2330 1370 630 485 155 765 223
A%, LDA —5% 1% —8% 1% 0% 1% —-3% 1% 0% 1% —-3%

®Reference 29.
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TABLE V. Molecular energies in eV with respect to the scalar relativistic atomic average-of-configura@xe) atomic energie$SR-ZORA calculations
or the fully relativistic average-of-configuration SO-AOC enerd@®RA calculationg see the textAS° denotes the difference between the fully relativistic
(ZORA) and scalar relativisti€SR ZORA) results.

I Au, Bi, HI AuH TIH IF TIF Tl PbO PbTe
ZORA GGA 2.62 2.71 6.52 4.71 4.52 3.96 4.31 6.37 4.14 8.23 5.74
SR ZORA GGA 2,51 2.65 5.42 4.68 4.48 3.84 4.21 6.37 4.04 8.08 5.38
A% GGA 0.11 0.06 1.10 0.03 0.04 0.12 0.10 0.00 0.10 0.15 0.36
ZORA LDA 3.07 3.29 7.11 4.99 4.87 4.12 4.85 6.83 4.53 8.88 6.28
SR ZORA LDA 2.96 3.22 6.00 4.96 4.83 3.97 4.75 6.83 4.41 8.72 5.91
A% LDA 0.11 0.07 1.11 0.03 0.04 0.15 0.10 0.00 0.12 0.16 0.37

lar calculations on some diatomic compounds. First we havéon between occupied and empty shells. The spin—orbit ef-
to note that the spin—orbit effect for most molecular properfects in Tables IlI-V can for a large part be understood by
ties is not large for these closed shell systems. The spin orbfocusing on the molecular bonding and antibonding orbitals
effect on the bond distance never exceeds 0.03 A, on fresoming from the atomic valencg electrons. In Fig. 1 the
guencies it is less than 10%, and the molecular spin—orbibne-electron molecular orbital levels coming from these or-
effect on the energies is in most cases less than 0.15 eVWjtals for Bi, are schematically shown. At the left-hand side
except for By and PbTe. In Table V these molecular energiesof Fig. 1 the scalar relativistic energies are shown and on the
are taken with respect to spherically and spin averdgad right-hand side the first-order effect of the spin—orbit inter-
for the fully relativistic ZORA, spin—orbit averaggdtoms. action is included. The bonding, orbital will split due to
The ZORA results of Table V therefore reflegtolecular this first-order spin—orbit effect, but since the split levels are
spin—orbit coupling effects. The importamtomicspin—orbit  both fully occupied, there is no net first-order spin—orbit ef-
coupling effects, exemplified by the difference between thdect. The effects should therefore come from off-diagonal
first and second columns of Table I, have to be taken int@pin—orbit interaction, which is only possible for orbitals
account in the molecular dissociation energies. The molecuwith the samej and for homonuclear diatomics with the
lar D, values, given in Table VI, will be discussed below, same inversion symmetry. There is only a net effect of this
but first the molecular spin—orbit effects will be discussedoff-diagonal spin—orbit interaction if it is between an occu-

with the help of Tables IlI-V. pied and an unoccupied orbital, in which case it always has a
In the literature many discussions exist rationalizingstabilizing effect on the energy. Thus, for the levels shown in
spin—orbit effects, especially in the contextads initio cal-  Fig. 1, we have off-diagonal spin—orbit interaction between

culations using relativistic effective core potentid/SCP,  the occupied bonding,,,, orbital and the unoccupied anti-
see, e.g., the reviews of PitZemand Ermleret al®® In par-  bonding m,, orbital and between the occupied bonding
ticular spin—orbit interaction was analyzed in terms of thew,,, orbital and the unoccupied antibondirag,,, orbital.
bonding between the spin—orbit splitj coupled atomic  The effect of the off-diagonal spin—orbit interaction between
spinors as a starting point. Here we will use the scalar relaerbitals will be larger if the difference in energy of these
tivistic approximation as our starting point and we will dis- orbitals is smaller. For Bithe bonding and antibonding or-
cuss how the molecular orbitals are modified by the presendeitals will become closer in energy if we increase the dis-
of the spin—orbit interaction. tance between the atoms. Thus spin—orbit coupling will in

For the lighter atoms, hydrogen, oxygen, and fluorinethis case have a flattening effect on the bond energy curve
the spin—orbit effect may be neglected, compared to thand an increasing effect on the bond length. Since there is a
much larger spin—orbit effect in the heavier atoms. Also themaximum number of interactions possible—each occupied
first-order effect of spin—orbit coupling for closed shell sys-orbital can be stabilized by interaction with an unoccupied
tems is zero. We therefore expect fairly small effects of theone—and both atoms in the diatomic have a large spin—orbit
spin—orbit coupling in these closed shell molecules com<coupling constant, the spin—orbit effect will be relatively
pared to the open shell atoms. The spin—orbit effects willarge, as is indeed observed in tables IlI-V, in particular for
come from higher order effects, notably spin—orbit interac-the energetic stabilization.

TABLE VI. Molecular dissociation energi€3,, in eV for some diatomic systems.

15 Au, Bi, HI AuH TIH IF TIF TH PbO PbTe
Expt? 1.56 231 2.03 3.20 3.36 2.06 2.92 4.60 2.77 3.87 2.57
ZORA GGA 1.58 231 1.98 3.24 3.37 2.10 3.05 4.72 2.71 4.15 2.54
SR ZORA GGA 2.13 2.25 2.74 3.54 3.33 2.66 3.30 5.42 3.62 5.51 4.06
ZORA LDA 2.17 2.99 2.83 3.64 3.82 2.39 3.97 5.57 3.25 5.25 3.32
SR ZORA LDA 2.74 2.92 3.80 3.95 3.78 2.94 4.23 6.29 4.17 6.66 4.91

®Reference 29.
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(right-hand sidg valence molecular orbital levels for TIH.
(¢

g N — N C1ng
the distance between the atoms is increased, close to the
FIG. 1. Scalar relativistigleft-hand side and first-order spin—orbit split  equilibrium bond length, the occupied bonding orbitals will
(right-hand sidg valence molecular orbital levels for Bi even be more biased toward the more electronegative ele-
ment. Due to this effect the off-diagonal spin—orbit interac-
tion is smaller at longer distances. This first effect of increas-
For the iodine molecule,lwe can use Fig. 1 if we also ing the distance is larger if the difference in electronegativity
fully occupy the antibondingr, orbital. Now we only have of the two atoms is larger, like in TIF and TIl. A second
to consider the off-diagonal spin—orbit interaction betweenreffect of increasing the distance between the atoms, close to
the occupied bondingry 5, orbital and the unoccupied anti- equilibrium, is that the bonding and antibonding orbitals will
bondingoy, orbital. As for Bi, the spin—orbit effect will be  get closer in energy, which will increase the effect of the
enhanced, if we increase the distance between the atomsff-diagonal spin—orbit interaction. For PbO and PbTe there
since the bonding and antibonding orbitals come closer ifis some competition between these two effects, so that the
energy. The trends are therefore similar as ip, Biut they  spin—orbit effect on the bond distance is small. For TIF and
are, due to the smaller so coupling constant, smaller, in partll the first effect is dominating and spin—orbit coupling
ticular for the energy. shortens the bond distance. The spin—orbit effect on the en-
For the gold dimer Ay the spin—orbit effect is small, ergy of these four compounds is largest for PbTe, since both
since the bonding is mainly due to the atomis érbitals, lead and tellurium have a large effective spin—orbit param-
which are not affected by spin—orbit coupling. The remain-eter and the difference in electronegativity is the smallest for
ing small effect comes from the mixing of somp 6haracter these atoms.
into the (6+6s) bonding orbital, and the mixing of 6 Compared to the previous compounds, IF also has a fully
character into almost fully occupiedd5shells. As a result occupied antibondingr orbital. The off-diagonal spin—orbit
spin—orbit coupling can have some effect. At larger distanceiteraction will be largest between the occupied antibonding
between the gold atoms there is legs ®ixing, which re- 1, orbital and the unoccupied antibonding,,. Both have
duces the spin—orbit effect, and consequently diminishes thmore iodine than fluorine character, and acquire more iodine
spin—orbit stabilization. Therefore spin—orbit coupling will character with increasing distance. The two spin—orbit ef-
(very) slightly shorten the bond length of Awand increase fects, which result from an increase in the distance between
its binding energy and harmonic frequency. the atoms, are now in the same direction and will lengthen
We now turn to the heteronuclear compounds. Again thehe bond distance.
net first-order effect of spin—orbit coupling for these closed In Fig. 2 the one-electron molecular orbital levels of TIH
shell compounds is zero. The off-diagonal spin—orbit inter-coming from the % orbital of hydrogen and theborbitals
action between two orbitals only can become large if theyof thallium are schematically shown. The bondimgrbital
have atomic character belonging to the same atom with théH 1s+Tl 6p,) has more hydrogen character. The energy of
samel value (I #0) and there is only a net effect if there is the nonbondings orbital (thallium 6p,) will not change
off-diagonal spin—orbit interaction between occupied andmuch if we increase the distance. In this case the first effect
unoccupied orbitals. (decreasing SO interaction due to the increasing H character
For TIF, Tll, PbO, and PbTe, we have the same leveldn the bonding orbital upon bond lengthenjng dominating,
and occupation, coming from the valence atomiorbitals, and spin—orbit coupling will shorten the bond length. For HlI
as in Fig. 1, except that they are not labeled dyor u we can use Fig. 2 if we also fully occupy the orbital,
anymore. This means that there are now more possibilitiesitroducing occupiedr;;, with unoccupiedoy;, SO interac-
for off-diagonal spin—orbit interaction than in the homo- tion. Like in IF the first effect of the spin—orbit interaction
nuclear case. The relative position of the levels of the occuwill lengthen the bond distance. For AuH the spin—orbit ef-
pied bondingm and o orbital are reversed for some of these fect is small, since the bonding effect is mainly due to atomic
compounds compared to the position they have in Fig. 1, the orbitals, which are not affected by spin—orbit coupling.
unoccupied antibondingr and o orbital are always at the The bonding orbital now has almost no golg @haracter,
same relative position as in Fig. 1. For TIF, TIl, PbO, andwhich was responsible for part of the effect in-Au
PbTe, the occupied bonding orbitals have more character of Considering the bond distancésee also Fig. Bwe note
the lighter, more electronegative element, whereas the unothat compared to experiment the ZORA GGA bond distances
cupied antibonding orbitals have more Tl or Pb character. Ifare too long, from 0.011 A for AuH to 0.044 A for TII. The
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lar spin—orbit effect is less than 0.15 eV. Compared to the

28 % considerable SO effects in the atoms, the SO effect in the
§% T compounds containing Te, I, Tl, Pb, or Bi is relatively small.
26 A Bi, I This exemplifies the well-known molecular quenching of the
= F pore SO effect. This is basically due to the lifting of the atomic
§ ’ JAu degeneracy of anl set of atomic orbital§AOs) due to the
224 / orbital interactions providing the molecular bonding. For in-
3 % stance, the stronger bonding thanm bonding will usually
£2°7 %—-«% TIF shift the o molecular orbitals(MOs) away from = MOs,
2 % IF PbO = ggé(\)m which strongly diminishes the SO interaction. Moreover, the
AuH I TiH % EXPERIMENT levels that remain degenerate, such asitiMOs, are usually
e K fully occupied(or unoccupiedl leaving no net first-order so
X effect. Examples opartial SO quenching by chemical bond-
o spin-orbit effect in: ing may be found in Refs. 27 and 28.
............. fragments (atoms) In a few instances, the molecular SO effect is sizable: for
=, = molecule PbTe it is 0.36 eV and for Biit is even 1.1 eV. The rela-
C tively large effect on the energy for Btan be understood,
8 {”ge considering the large effective spin—orbit parameter of bis-
%4_ muth, and the fact that the diagonal spin—orbit effect on the
5 g Orbital pushes its energy toward thg,,, such that
=°7 off-diagonal spin—orbit coupling has large effects.
§ In Table VI the molecular dissociation energies are
227 shown where in the scalar relativistic ZORA case the atomic
reference energies are those of the lowest LS state, and in the
"I fully relativistic ZORA case those of the lowelstM ;) state

obtained in intermediate coupling. The correction terms were
FIG. 3. Dissociation energies for some diatomic systems from all-electrof@ken from Table I. The ZORA GGA calculations give very
(SR) ZORA GGA calculations. accurate dissociation energies compared with experiment,
the largest difference is 0.3 eV for PbO. They are the most
accurate ones without exception. The SR ZORA GGA re-
SR ZORA GGA results lie between0.006 A for B, and  sults for Ay, and AuH are already accurate, since neither the
+0.061 for TIH. The spin—orbit calculated results seem tomolecule nor its fragments exhibit strong spin—orbit cou-
give a more systematic deviation from experiment than theling effects. For the other compounds the omission of SO
scalar relativistic results, especially the compounds whereoupling in the scalar relativistic GGA calculation leads to a
the spin—orbit coupling has its largest effect, namelydid  sizable deviation from experiment, ranging from 0.3 @\)
TIH, are better in line with the other molecules. The LDA to 1.6 eV(PbO too strong bonding. The reason for this lies
results do not show a systematic overestimation of bonélmost entirely in the spin—orbit effect of the atoms. If we
lengths. The theoretical ZORA LDA results deviate from would only apply the atomic corrections obtained in interme-
experiment betweer-0.031 A for Tl and+0.015 for HI.  diate coupling, while still using the scalar relativistic mo-
For the SR ZORA result this is betweer0.048 A for Bi,  lecular results, the results would already improve consider-
and +0.031 for TIH. The best agreement with experimentalably, to an accuracy of better than 0.2 eV except for PbTe
bond distances is usually found for the LDA results, with the(deviation of 0.4 eV and B, (deviation of 1.1 eV. These
only (margina) exception for Bj. are exactly the molecules which have a large molecular
For the harmonic frequencies we can do the same analyspin—orbit correction in the energiésee Table V. In Fig. 3
sis. For most of these diatomics the spin—orbit coupling hashese results are shown in a form that clearly exhibits the
a flattening effect on the bonding curve and vice versa. Thatomic and molecular spin—orbit effects on the dissociation
flattening of the curve due to spin—orbit coupling can beenergy.
quite large, especially for Biand |, and to a lesser extent for The ZORA LDA results for the molecular dissociation
IF and PbTe. Usually the LDA frequencies are higher tharenergies exhibit 0.3—1.4 eV too strong bonding compared to
the GGA ones, and the lowering due to the SO effect bringgxperiment. The situation that we find for these relativistic
the LDA frequencies quite close to experiment. So the LDAsystems, of significant improvement resulting from the use of
frequencies are usually better than the GGA ones, with onlyhe GGA for bond energies, but no improvement or even
Bi, and PbO as notable exceptions. slight worsening of the results for distances and frequencies,
In order to identify the genuinely molecular spin—orbit is well known in the nonrelativistic case.
effect on the energy we have to consider the results presented In Table VII we have collected some results from the
in Table V. In this table we can see the consequence of theecent literature, where calculations, using spin—orbit cou-
fact that in first order the molecular spin—orbit effect is zeropling, are compared with scalar relativistic calculations. The
for these closed shell compounds. In most cases the molecapin—orbit effect for the bond distance and harmonic fre-
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TABLE VII. Comparison with results from correlated relativistic calcula- discrepancy. Usually, the atomic effect dominates, as for in-
tions using ECPs, where the SO effect is calculated,,f@ifor Bi,,” for HI,

and TIHS
I, Bi, HI TIH
re ()
SO 2.77 2.768 1.616 1.925
SR 2.75 2.734 1.614 1.953
We (Cmil)
SO 185 153 2331 1329
SR 199 165 2340 1310
D, (eV)
SO 0.76 1.49 2.88 2.32
SR 1.38 3.15 2.41

aReference 30.
PReference 31.
‘Reference 32.

stance noted forlin both the work of Schwerdtfeget al,*®

and Teichteil and Rissier®® The situation with respect to
the molecular so effect is not so clear. Schwerdtfegjeal.
determine this effect as the difference in total energy be-
tween two pseudopotential calculations, one with a spin—
orbit averaged pseudopotential and the other one with a
pseudopotential including SO couplifgdependent These
authors calculated the molecular spin—orbit effect in the dis-
sociation energy to be 0.06 eV for HI and 0.14 eV fgr |
which can be compared with our 0.03 and 0.11 eV, respec-
tively. However, Teichteil and Pelissier applied SO coupling
in the configuration-interactiofCl) step, after a spin—orbit
averaged pseudopotential calculation to generate the refer-
ence configurations, and find less than 0.01 eV. They ascribe
the difference from Schwerdtfeget al. to the use by the
latter authors of essentially ja-j coupling scheme for the
molecule. The differences between the various molecular SO

guencies are in close agreement to our findings. The literaeffects are still small in an absolute sense and may also be
ture values for the spin—orbit effects on the dissociation enpartly due to the different definitions, i.e., different proce-
ergy for |, (0.62 e\) and HI(0.27 e\) are close to our 0.55 dures to calculate them, or even differences in the pseudopo-
and 0.30 eV, although our absolute values g are much
closer to experiment, in particular fos.IFor TIH there is
considerable difference between our SO effect and the onerease in bond length fop bf 0.015 and for HI 0.003 A due
obtained in Ref. 32. We find a large spin—orbit effé@56
eV), mainly due to the large spin—orbit effect on the energy0.003 A from our calculations, and to the results of Teichteil
of the thallium atom, whereas in Ref. 32 only a small effectand Pelissiet°

(0.09 eV is found. We do not have an explanation for this

tentials. We note that for the bond distance, which can be
calculated straightforwardly, Schwerdtfegsral. find an in-

to spin—orbit coupling, comparable to, respectively, 0.02 and

In Table VIII we present selected results from the litera-

TABLE VIII. Selection of results taken from the literature for the bond lengthharmonic frequencw, , and
dissociation energ . for some diatomics compared to our ZORA GGA results.

I, Au, HI AuH IF TIF PbO
re (A)
Expt2 2.667 2.472 1.609 1.524 1.910 2.084 1.922
ZORA GGA 2.719 2.511 1.628 1.535 1.951 2.119 1.937
2.73 2.537 1.59¢ 1.5258 1.916 2.08 1.893
2.7P 2.468 1.603 1.508 1.944 1.88%
2.690 1.615
2.711 1.626
we (cm™)
Expt2 215 191 2309 2305 610 477 721
ZORA GGA 197 178 2240 2270 570 455 720
2058 178 2354 2288 621 59X 785
214 195 2410 2619 624 800
2334
2309
De (eV)
Expt2 1.56 2.31 3.20 3.36 2.92 4.60 3.87
ZORA GGA 1.58 2.31 3.24 3.37 3.05 4.72 4.15
1.49 2.1% 2.03 2.97 3.8¢ 1.3
1.69 2.88 3.09 3.78 3.5-3.8
1.43 2.99
1.42

aReference 29.
PReference 33.
‘Reference 34.
‘Reference 35.
®Reference 36.
'Reference 37.

9Reference 38.
"Reference 39.
iReference 40.
IReference 41.
KReference 42.
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TABLE IX. Dipole momentsu, in D for some diatomic systems for the experimental geometry. Positive values

meanATB".

HI AuH TIH IF TIF Til PbO  PbTe
Expt2 0.45 1.95 4.23 4.61 4.64 2.73
ZORA GGA 0.41 1.08 1.15 1.77 3.74 3.74 4.28 2.71
SR ZORA GGA 0.43 1.08 1.40 1.71 3.88 4.17 4.44 3.01
A%, GGA —0.02 —-0.00 -0.25 0.06 —-0.06 —-0.43 -0.16 -0.30
ZORA LDA 0.49 0.95 1.00 1.85 3.78 3.63 4.29 2.61
SR ZORA LDA 0.51 0.95 1.28 1.78 3.91 4.07 4.46 2.91
ASu, LDA —-0.02 —0.00 -0.28 0.07 -0.07 —-0.44 -0.17 —-0.30

®Reference 29.

ture for the compounds under study. Dirac—Fock calculafor ZORA GGA. Considering the effect of spin—orbit cou-
tions were performed by Matsuolea al***?on HI and PbO.  pling on the dipole moments, we note that there is a corre-
For PbO they also calculated the dissociation energy usintation with the changes in dipole moment and the changes in
density functionals for correlation. Dy&llalso reported on atomic electron affinity and ionization potential that we will
Dirac—Fock calculations on PbO. The dissociation energiesesult from spin—orbit coupling. For hydrogen, oxygen, fluo-
calculated from Dirac—Fock calculations are not very accu+ine, and gold the spin—orbit effect may be neglected. To
rate, correlation effects have to be included. The Douglas+emove an electron from thallium and lead will cost more
Kroll transformation, in the scalar relativistic approximation, energy in the spin—orbit case than in the scalar relativistic
was used in coupled cluster calculations on AuH by Kaldorcase. In the same way as the spin—orbit case, the gain in
and Hess® Their results show good agreement with experi-energy is less if we add an electron to tellurium or iodine,
ment, although theiD, of 2.92 eV is somewhat further off and it is less expensive to remove an electron from iodine
from the experimental value of 3.36 eV than our 3.37 eV.than in the scalar relativistic case. With this in mind we can
The Douglas—Kroll transformation was also used in scalaunderstand the spin—orbit effects on the dipole moments for
relativistic LDA calculations on Ayand AuH by Hderlen  these compounds: almost no effect for AuH, a lowering ef-
and Rech? who obtained results close to our SR ZORA fect for HI, TIH, TIF, Tll, PbO, and PbTe, and an increasing
LDA results. Relativistic ECPs including spin—orbit cou- effect on IF. A more detailed analysis may be based on the
pling were used by Balasubramariaim correlated calcula- character of the valence molecular orbitals, much the same as
tions on TIF. The other results come from scalar relativisticwe did before. The first-order effect of the spin—orbit inter-
ECP calculations including correlation. A general conclu-action does not give a different density. For TIF, Tll, PbO,
sion, which most of these references make, is that since reland PbTe, off-diagonal spin—orbit interaction can only mix
tivistic effects and correlation effects are not additive, onein unoccupied orbitals, which have more character on Tl or
should include correlation in relativistic calculations on sys-Pb. For IF the main off-diagonal spin—orbit interaction is
tems containing heavy elements. This is especially true fobetween an occupied antibonding,, orbital and an unoc-
the dissociation energies. cupied antibondingry;, orbital. The antibondingry, orbital

In Table IX we compare ZORA and SR ZORA for the has more iodine character than the antibonding orbital,
dipole moments of the heteronuclear diatomics at the experthus the spin—orbit effect decreases the charge on iodine. In
mental geometry. In the GGA results we have used the GGA'H the occupied bonding,, orbital of Fig. 2 will mix with
potential in the self-consistent calculations. Compared to exthe unoccupied thalliumr;;, orbital, which has more thal-
periment the ZORA, GGA and SR ZORA GGA results havelium character, and in HI the occupied ioditrg, orbital will
an average deviation of about 10%. In Table X we also havenix with the unoccupied antibonding,, orbital, which has
calculated the dipole moments for the same systems as theore hydrogen character. These orbital mixings explain the
theoretical(SR) ZORA geometry of Table Ill. The devia- observed spin—orbit effects.
tions from experiment are reduced. Except for IF and PbTe In Ref. 49 the spin—orbit effect on the dipole moment for
the scalar relativistic results are closer to (keown) experi-  HI was calculated using correlated relativistic ECPs. At the
mental values than the spin—orbit results, with an averagexperimental geometry they find it to b€0.019 D, which is
deviation of approximately 5% for SR ZORA GGA and 7% the same as we have found. Degal*® estimated the spin—

TABLE X. Dipole momentsu, in D for some diatomic systems at ti8R) ZORA geometry from Table III.

HI AuH TIH IF TIF TII PbO PbTe
Expt? 0.45 1.95 4.23 4.61 4.64 2.73
ZORA GGA 0.41 1.08 1.28 1.94 3.97 4.01 4.35 2.85
SR ZORA GGA 0.43 1.09 1.69 1.83 4.16 4.54 4.53 3.14
A%, GGA —0.02 —-0.01 -0.41 0.11 -0.19 —0.53 —0.18 —0.29

®Reference 29.
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TABLE XI. Results taken from the literature for dipole momepisin D
for some diatomic systems. Positive values maars .

calculations compared to experiment. The calculated dipole
moments at the experimental geometry are still off by ap-
proximately 10% compared to the known experimental re-

TIH i PbO PbTe ! A _ Imel
- sults in the both the spin—orbit and scalar relativistic case.
Expt” 045 461 4.64 273 They are improved7% and 5% discrepancy, respectively
0.460 0.7F 4.8% 452-470 327 - .
0.4 378 267 when calculated at the optimized geometries.
5389 In complete analogy to the nonrelativistic case, we find

%Reference 29.
bPReference 44.
‘Reference 45.
dReference 46.

Reference 47.
9Reference 48.
"Reference 48.
'Reference 39.

that the gradient corrections reduce the overbinding of LDA,
but do not improve bond distances and frequencies.

APPENDIX: THE CALCULATION OF ATOMIC

‘Reference 35. MULTIPLET ENERGIES

There are a few details concerning the approach to cal-
culating atomic multiplet energies in intermediate coupling
sketched above that deserve some comment.

We define the average-of-configuratiGhOC) orbitals
energy as resulting from a self-consistent field calcula-
tion with the electrons of the configuration distributed
lations for PbO. The only relativistic LDA results in Table gggjggt?gf rnaﬂln?t? eerse7leac tgc;)r;‘ grri?:gﬁlls.s-;m?nlgf:iis ;Z:E}f;!ogsg

.XI are ;rorln Habterlenet al; Itf(t)r: Autﬂ. TTE" rtesult;tr)]r AuH ._equal spin up and down densities. This is a convenient ref-
'S much closer 1o our result than the other two. 1he remaifg o, q point, that can easily be reproduced by any atomic
ing results in Table XI come from calculations using relativ-

oS e .~ structure code. In Table I, the first column, we quote the
Istic ECPS'.The results of Table XI show sm_ulgr d_e\_”at'onsscalar relativistic(LS coupled ground state energies with
from experiment as our results. Apparently it is difficult to

lculate the dipol s of th ds with hi respect to the scalar relativistic AOC energy for the atoms of
;icclzjr:cf/ € dipole moments ot these compounds with Nigk}east 1t is not difficult to identify determinants that are

pure |LSM_ Mg) states belonging to the ground term and
which therefore can be used to calculate the ground state
energy. There remains the question whether one should em-
In this paper we have calculated and rationalized theploy the AOC orbitals in this determinant, or whether one
effect of spin—orbit coupling in a series of closed shell di-should try to lower the energy further by trying to optimize
atomic molecules. For the calculated compounds the spinthe orbitals self-consistently for this particular determinant.
orbit effect on the bond distance never exceeded 0.03 A, andl further choice would be whether to apply symmetry and
on frequencies it is less than 10%. Also the molecular spin-equivalence restrictions between the orbitals of nhehell,
orbit effect on the energies is often small, except foy@id or to search for the lowest energy without any symmetry
PbTe. However, to obtain the spin—orbit effects on the disconstraint. We have found that the use of optimized orbitals
sociation energy it is absolutely necessary to take into actessentially the lowest possible one-determinantal energy
count the effect of spin—orbit coupling in the constituentlowers the energy of the ground state with respect to the use
atomic fragments since it can be very large in these openf AOC orbitals, which always obey the symmetry and
shell systems. A method is proposed to obtain the grounéquivalence restrictions, by less than 0.05 eV for the heavy
state energy of open shell atoms, which uses present datements we are dealing with. However, for the liggecond
density functionals in an intermediate coupling scheme. Thisow) elements the effect may amount to 0.15 eV. We have
method is used for the calculation of some atomic multipletused the optimized results throughout, but it is clear that with
splittings and it is shown to give realistic energy differencesthe present unsatisfactory state of the density functional
Using these intermediate-coupling atomic energies for theéheory for open shell systems, one should consider these ef-
calculation of the dissociation energies of the compoundgects as “error bars” that have to be put on the calculated
under study, we obtain high accuracy if we include gradienground state energies. These error bars are virtually
correction(GGA) terms in the energy. The ZORA GGA re- negligible—in view of the general accuracy of the results—
sults are within 0.15 eV from experiment, with only one for the heavy elements, but not so for the light elements.
exception for PbQ0.28 e\). For most compounds, except In order to introduce SO coupling between th&terms,
for Bi, and PbTe, this accuracy in the dissociation energyve first need the scalar relativistic energies of BHS
could be obtained by only taking into account the spin—orbitcoupled stategnot just the ground terjnof the (nl)P con-
effects in the atoms. For Biand PbTe it has been shown figuration. These are calculated using the diagonal sum
that, to obtain high accuracy, it is also necessary to takenethod of Ref. 19. There are also error bars in this procedure
spin—orbit effects for the molecular energy into account. Exbecause of the above cited lack of certain invariance proper-
cept for these two molecules, in most cases the moleculdies in the exchange—correlation functionals. There is also
spin—orbit effects are on the order of the accuracy of thehe question of the use of either converged orbitals or the

orbit correction for PbO to be betweer0.07 and—0.23 D,
our theoretical result-0.16 lies in this range.

In Table XI we give some results for calculations of
dipole moments taken from the literature. Reference 45 usegnd
Dirac—Fock calculations, except for AuH, where correlation
effects were included. Dyafl also used Dirac—Fock calcu-

V. CONCLUSIONS
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TABLE XIl. Atomic multiplet energies in eV. Experimental results are thel S terms arise. F0p2 this would mean an occupation of
taken from the tables of Moore. 2/3 electron in thepy,, shell, and 4/3 electrons in the,

L_s Intermediate shell (occupation 2/6 in eacfp1/2,m;) and eachp3/2,m;)
coupling coupling one-electron spingr The lowestjj configuration would of
DA GGA 3 DA GGA Exp course be(py;p)-. The re_sultmg _spln—o_rblt co_nstants are
Tellurium given in Table I. Calculating a spin—orbit coupling constant
°p, 0 0 2 0 0 0 from the expectation value of the spin—orbit operator over
zPo 0 0 0 0.61 0.62 0.58 AOC orbitals does not lead to very different values. For Te
1 0 0 1 067 064 059 gand | the resulting spin—orbit coupling constant would only
D, 0.70 0.88 2 1.23 1.37 131 tew hundredths of v ler. for TI. Pb. and Bi
s, 194 294 0 > 68 290 > 88 e a few hundredths of an eV smaller, for Tl, Pb, and Bi
. however it would be some 15% smaller.
'02'”e As a consequence of the spin—orbit interaction the en-
Pio 0 0 1/2 0 0 0

%p,, 0 0 32 1.02 0.99 0.94 ergy of the resulti_ngJ M;) ground state will be lower than
the ground term in thé S spectrum of states. The second

Thallium column of Table | shows the energy of the lowé3M,)
P12 0 0 2 0 0 0 with respect to the AOC energy. The energy lowering com-
%P, 0 0 32 1.05 1.02 0.97 P gy. Ihe ay 9
pared to the lowedt S state(column ] is considerable in the
Le";‘d atoms with large SO coupling constants. In Table XII the
Po 0 0 0 0 0 0 whole spectrum ofJM;) states resulting from the SO cou-
3P, 0 0 1 1.08 1.03 0.97 nole sp 3) St 'g
P, 0 0 2 1.41 1.40 1.32 pling is shown, together with the experimental valeeBoth
D, 0.59 0.69 2 2.78 2.76 266  LDA and the density gradient correcté€@GA) splittings are
'S 154 1.69 0 3.70 3.74 3.65 in close agreement with experiment, deviations are less than
Bismuth 0.1 eV. This accuracy is actually better than the error bars of
s, 0 0 3/2 0 0 0 the current density functionals for the $RS) multiplet en-
“Dap 0.88 1.03 3/2 1.49 1.48 142 ergies, so it may be considered somewhat fortuitous. We
Dsp 0.88 1.03 52 1.91 .97 191 have referred above to two types of AOC calculation, one
2P, 1.58 1.72 12 2.61 2.66 2.69 O . ) N
%p,, 158 172 3/2 4.08 4.08 411  scalar relativistic and the other one including so coupling. It

is to be noted that these AOC calculations lead to different
total energies, even if the first-order effect of the SO inter-
action within a manifold of spin—orbitals belonging to a

AOC orbitals in the one-determinantal states. Since we usgnl)p copfiguration, all equally occupied, WO.U|d not lead t(.) a
optimized orbitals for the ground state energies, we haVghang_e in energy. However, a full self-consistent calculatlo_n,
used optimized orbitals throughout, noting that for the heaV)}nCIUd'ng the SO operator,. c_hgnges the SO-AOC energylwnh
elements this has negligible effects. We actually only need€SPect to the scalar relativistic AOC energy because higher
the calculated term energies for the heavy elements, since tifsder effects of the SO operator play a role, in particular in
SO coupling is too small in the light elements to cause nondeep core fully occupied shells. This is already apparent if
negligible coupling of the ground state with highe® states.  ©ON€ considers the exact si)lgtlons in & hydrogenic heavy ion,
The term energies at the scalar relativistic level for the heav§P" €xample the Uraniuff™ ion. The averaged relativistic
elements are shown in the first column of Table XII. The2P orbital energy of—1045.54 a.u(1/3 times —1257.39
diagonal sum method is only used for Te, Pb, and Bi, sincé2Py2) Plus 2/3 times—1089.61(2ps,) is approximately 15
for I, Au, and Tl we only have one state in-S coupling for ~ @U. lower than the scalar relativistic orbital energy
the lowest configuration. —1130.34 a.u. So even for closed shells SO interaction can
In order to apply the spin—orbit interaction between thebe important, due to the second- and higher-order effects of
LS terms, we use the standard approach in atomic structuf@e so coupling. The radial part of theg, orbital is in that
theory, see, e.g., Condon and Shorfilefhe effect of spin— case not identical anymore to the radial part of they2
orbit coupling is summarized in an effective spin—orbit cou-0rbital. We have, however, observed that the change in den-
pling constant. There are several ways to obtain good esti-Sity of the core orbitals due to SO effects has very little effect
mates of this parameter. It is possible to calculateon the valence orbitals.
expectation values of the SO operator over AOC orbitals. ~ Since the higher order SO energetic effects are signifi-
Since we do not use the AOC orbitals for &I multiplet ~ cant, and since the fully relativistic all-electron calculations
states, but perform separate optimizations, we calculate a@n molecules to be reported do include these SO effects in
effective SO parameter, to be used for the SO interactioithe deep core shells, we have to take care to include them in
between all the.S terms, from the difference in energy be- the atoms as well. This means that the atomic ground state
tween the lowesij configuration and a SO-AOC calcula- energies to be used in the dissociation energy calculations of
tion. In the latter the fully relativistic ZORA Hamiltonian is the molecules have to be obtained by taking the SO-AOC
used and electron occupations are chosen in accordance withergies and adding the energy lowerings given in column 2
the scalar relativisticr{l)P parent configuration from which of Table | with respect to that reference point.

®Reference 51.
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