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In this paper we will calculate the effect of spin–orbit coupling on properties of closed shell
molecules, using the zero-order regular approximation to the Dirac equation. Results are obtained
using density functionals including density gradient corrections. Close agreement with experiment
is obtained for the calculated molecular properties of a number of heavy element diatomic
molecules. ©1996 American Institute of Physics.@S0021-9606~96!02138-1#

I. INTRODUCTION

The zero-order regular approximation~ZORA!1–3 to the
Dirac equation has been successfully applied before4 to mol-
ecules in the variant where spin–orbit interaction was ne-
glected~which we will refer to as the scalar relativistic ap-
proximation!.

The ZORA Hamiltonian is, in contrast to the Pauli
Hamiltonian, regular at the origin even for a Coulombic
potential. This is achieved by using an expansion in
E/(2c22V), which remains,1 close to the nucleus, in-
stead of using (E2V)/2c2, which leads to the Pauli terms
but which diverges at the nucleus. The ZORA Hamiltonian
was shown to give very accurate results in atomic calcula-
tions, especially for valence orbitals.3 Exact solutions for
the hydrogenic ions were given in Ref. 5 and it was shown
there that the ZORA Hamiltonian is bounded from below for
Coulombic potentials. The precise relation between the
ZORA and the Pauli energies was recently studied in some
detail.6

In this paper we will concentrate on the treatment of
molecular spin–orbit effects by the full ZORA method. As
before, we will use density functional theory, employing the
usual~nonrelativistic! density functionals for the exchange–
correlation energy: local density functionals~LDA ! with gra-
dient correction terms added, using the so-called generalized
gradient approximation~GGA!. The Becke correction for
exchange7 and the Perdew correction for correlation,8 which
have been successfully applied in nonrelativistic
calculations9,10 and in scalar relativistic ZORA calculations,4

have been used.
In the double-group symmetry that applies in the pres-

ence of spin–orbit coupling, the molecules we are dealing
with in this study are all closed shell. The Kohn–Sham one-
electron method of density functional theory can thus be ap-
plied straightforwardly. For open shell atoms, however, the
situation is more problematic. We discuss the problems that
arise in this case in Sec. III. We propose an approximate way
to deal with intermediate coupling in the density functional
context, which we subsequently use to obtain the reference
energies for the atomic ground states that are needed to cal-
culate bond energies. In the appendix we also present results

for some ~excited! atomic multiplet energies using this
method. In Sec. IV we analyze the spin–orbit effects on the
closed shell molecules I2, Au2, Bi2, HI, AuH, TlH, IF, TlF,
TlI, PbO, and PbTe. These effects have been extensively
studied before, especially within a relativistic effective po-
tential framework~see, e.g., Refs. 11 and 12!. In particular
Pitzer13,14analyzed these effects in terms of the bonding be-
tween the spin–orbit splitj j coupled atomic spinors of the
constituent atoms. Here we will proceed slightly differently
by treating the spin–orbit interaction as a modification on a
scalar relativistic~LScoupled! starting point. Bond distances,
harmonic frequencies, dissociation energies, and dipole mo-
ments are discussed. The results for the dissociation energies
are very accurate if we include gradient correction~GGA!
terms in the energy. Results for the dissociation energies are
then usually within 0.1 eV of experiment, with only a few
exceptions. The maximum deviation is 0.28 eV for PbO, and
the average deviation is;0.1 eV for this series of com-
pounds. Bond distances and frequencies are not much af-
fected by the spin–orbit coupling. Bond distances never
change by more than 0.03 Å and for frequencies the effect is
less than 10%.

Finally we compare our results to other relativistic treat-
ments, including Dirac–Fock, relativistic effective potential,
and Douglas–Kroll methods.

II. BASIC EQUATIONS

In this paper we will solve the ZORA equation, which is
obtained as the zero-order equation in the regular expansion
in E/(2c22V) of the Dirac equation. The one-electron rela-
tivistic Kohn–Sham equations are solved in the scalar rela-
tivistic ~SR! and in the fully relativistic case~including the
spin–orbit operator!. In this paper we will focus on the ef-
fects of spin–orbit coupling on molecular properties. The
ZORA equation is
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Here we see that the spin–orbit operator, in regularized form,
is already present in this zero-order Hamiltonian. The poten-
tial V contains the nuclear field and the electron Coulomb
and exchange–correlation potentials. The scalar relativistic
ZORA equation is just the previous equation without the
spin–orbit operator

HSR
ZORAFSR

ZORA5SV1p
c2

2c22V
pDFSR

ZORA

5ESR
ZORAFSR

ZORA. ~2!

The one-electron energies can be improved using the so-
called scaled ZORA energy, which sums certain higher order
contributions to infinite order5,15
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In practical implementations~in our case in ADF, the
Amsterdam Density Functional program system! the one-
electron wave functions~Kohn–Sham orbitals! are expanded
in basis functions. In the ADF program Slater type orbital
~STO! basis sets are employed. The SR ZORA equations
lead to ‘‘kinetic energy’’ matrix elements between basis
functionsfi andfj of the form
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where in the last step partial integration has been used. Usu-
ally the point group symmetry of the molecule is used to
block diagonalize the Hamiltonian matrix. To this end, in the
nonrelativistic and scalar relativistic cases a linear transfor-
mation is performed on the basis functions to an orthonor-
malized set of single group symmetry adapted functions.

In the fully relativistic case, where spin–orbit coupling
is included, double group symmetry adapted functions have

to be used. In this case one needs, apart from the SR ZORA
‘‘kinetic energy,’’ the ZORA spin–orbit matrix elements. In
terms of double-group symmetry adapted functionsfi

d and
fj
d ~two-component functions!, the ZORA spin–orbit matrix

elements are
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where again in the last step partial integration has been used.
In the Pauli approximation spin–orbit matrix elements arise
of the following form:

i(
lmn

e lmnK ]f i
d

]xm
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4c2U]f j
d

]xn
L . ~7!

Compared to this matrix, the ZORA spin–orbit matrix is
regularized by the potential in the numerator, which makes it
effectively a 1/r potential close to a nucleus, whereas the
Pauli spin–orbit operator behaves effectively like a 1/r 3 po-
tential.

A double-group symmetry adapted function can be writ-
ten as a spatial function times spina plus a spatial function
times spinb

f i
d~r ,s!5f i

a~r !a1f i
b~r !b. ~8!

The spin integration can be done easily using the Pauli spin
matrices. The spatial matrix elements are then given by

i(
mn
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]xm
U V

4c222VU ]f j

]xn
L . ~9!

The double-group orbitals are constructed using the method
of Snijderset al.16,17 For the calculation of the scaled SR
ZORA orbital energies@see Eq.~4!# we need matrix elements
of the form

^f i up
c2
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puf j&5(

k
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]xk
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U ]f j
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Finally for the calculation of the fully relativistic scaled
ZORA orbital energies@see Eq.~3!# we need the matrix el-
ements
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The first term is already present in the SR ZORA case.
The last term can be written as~the gradient of a constant is
zero!
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All of the matrix elements needed in the scalar relativistic,
fully relativistic, and scaled ZORA cases, can be calculated
straightforwardly if one uses three-dimensional~3D! numeri-
cal integration. We use the 3D numerical integration method
by the Velde and Baerends,18 which can achieve high nu-
merical precision. In the relativistic case it is only required to
calculate in each sample point, in addition to the values of
the basis functions, the derivatives of the basis functions
with respect to the Cartesian coordinates (]/]x,]/]y,]/]z).
The 3D integration is particularly simple since the potential
V is local in the Kohn–Sham form of density functional
theory.

We note that the matrix elements needed in the scaled
ZORA case are not more difficult to calculate than the ones
that are needed for the unscaled ZORA kinetic energy. These
matrix elements have to be calculated only once since the
scaled ZORA orbital energies only have to be calculated af-
ter self-consistency is reached.

The calculation of differences in energies~bond ener-
gies! requires some precautions when using numerical inte-

gration. We use the ZORA ESA method described in some
detail in Ref. 4, because it is easy and accurate.

III. ATOMIC GROUND STATE ENERGIES

The Hohenberg–Kohn theorem for nondegenerate
ground states, that establishes a one-to-one relationship be-
tween the ground state density and the energy, can be ex-
tended in the case of degenerate ground states to a many-to-
one mapping of the set of ground state densities,
corresponding to the manifold of ground states, onto the
ground state energy. However, the treatment of degenerate
ground states is somewhat problematic since the present day
approximate functionals are not invariant over the set of
ground state densities. As a simple example, consider a hy-
drogen atom with ap1 configuration. The density functionals
currently in use will not give the same energy when the
electron is placed in theYl

m50(pz) orbital or when it is
placed in theYl

m51((px1 ipy)/&) orbital. Sometimes a
spherically averaged density with 1/3 electron each inpx ,
py , andpz , is chosen, which will give yet another energy.
These ambiguities are numerically significant. For the boron
atom, with a (2p)1 shell, the atom with occupiedYl

m50 is 0.2
eV and with occupiedYl

m51 0.07 eV below the spherically
averaged atom. For the F atom with one hole in the 2p shell,
the difference between a spherically averaged hole and a
hole in thepz atomic orbital is 0.3 eV. The problem already
arises if there is only spin degeneracy, since the current func-
tionals are not invariant under spin rotation. If one applies
unrestricted~spin polarized! density functionals, in general
different results are obtained if the electron is placed in some
spatial orbital with spina or with a mixed spin state~a
1b!/&, although these states are of course degenerate. It is
common practice to take only the state which is purely spin
a or b. However, the problem becomes acute in relativistic
calculations, where symmetry requirements will dictate spin
mixing. If we adapt the atomic one-electron states to double-

TABLE I. Energy differences~in eV! between the atomicuLS& ground state
in L–S coupling ~L–S coupling column!, and theuJMJ& ground state in
intermediate coupling~Intermediate coupling column! with respect to the
average-of-configuration energy~see the text!. The third column gives the
SO coupling constants used in the intermediate coupling calculation.

L–S
coupling

Intermediate
coupling

SO coupling
constant

LDA GGA LDA GGA LDA GGA
H 20.90 20.95 20.90 20.95 0.00 0.00
O 21.58 21.96 21.59 21.97 0.02 0.02
F 20.41 20.72 20.43 20.74 0.04 0.04
Te 20.52 20.71 20.92 21.09 0.54 0.53
I 20.11 20.19 20.45 20.52 0.68 0.66
Au 20.15 20.20 20.15 20.20 0.00 0.00
Tl 20.13 20.23 20.83 20.91 0.70 0.68
Pb 20.48 20.61 22.04 22.11 0.97 0.95
Bi 21.10 21.34 22.14 22.27 1.27 1.25

TABLE II. Optimized Slater exponents for all electron ZORA scalar rela-
tivistic calculations for iodine.

s p d f

n z n z n z n z

1 1000.0 2 185.0 3 22.1 4 2.5
1 240.0 2 56.2 3 13.3 4 1.5
1 83.0 2 28.75 3 9.05
1 53.5 2 21.25 4 7.23
2 42.0 3 16.25 4 4.89
2 29.5 3 12.2 4 3.40
2 22.2 3 9.5 4 2.48
3 13.25 4 9.55 5 2.00
3 10.4 4 6.05
4 8.55 4 4.25
4 6.00 5 3.90
4 4.45 5 2.60
5 3.51 5 1.70
5 2.44 5 1.12
5 1.70
6 1.40
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group symmetry~ujmj & states!, the resulting states will no
longer be pure spin states but will have the form of Eq.~8!.
The p1/2 orbitals for instance lead to 1/3 density of one spin
and 2/3 of the other spin. So in the limit where spin–orbit
coupling becomes negligibly small and does not have any
energetic effect, the simple linear transformation of the
ulsmlms& states to obtainujmj & states already causes a change
in the approximate energy.

In order to obtain reasonable reference energies for the
atomic ground states we have used the following approach.
An established method to obtain multiplet splittings in open
shell systems is the one suggested in Ref. 19, cf. also Refs.
20–22~see for a recently proposed alternative Ref. 23!. The
method of Ref. 19 is based on the argument that it is only
allowed to use current approximate exchange functionals for
single determinantal states, since those states obey require-
ments for, e.g., the depth of the hole at the position of the
reference electron that enters the derivation of the approxi-
mate functional. When working with single determinantal
energies only one is essentially applying the diagonal sum
method for obtaining multiplet energies which are well
known from traditional atomic theory.24 In this way theLS
coupled states belonging to a configuration are obtained.
This method we apply with the scalar relativistic ZORA
Hamiltonian, obtainingLS energies with major relativistic
effects~mass–velocity, Darwin! already included. In the next
step the matrix elements of the spin–orbit operator may be
evaluated between theLS states, so that the SO split and
double–group adapted states can be obtained by diagonaliza-
tion. A restriction to first-order spin–orbit splitting within
individual LS terms is no longer justified in the heavy ele-
ment compounds we are considering, so the full SO matrix is
diagonalized over allLS terms arising from one (nl)p con-
figuration ~intermediate coupling!. For details of this proce-

dure we refer to the appendix. In Table I we present the
resultingLS coupled and intermediate coupled ground state
energies of the atoms needed in Sec. IV with respect to the
average of the configuration energies, as well as spin–orbit
constants used to obtain the intermediate coupled result.

IV. SPIN–ORBIT EFFECTS IN CLOSED SHELL
MOLECULES

The effect of spin–orbit coupling has been studied in a
series of diatomic molecules~see Tables III–VI! that repre-
sent different types of spin–orbit effects~see below!. The
self-consistent calculations on these molecules have been
performed using the LDA potential. After convergence,
density-gradient~GGA! corrections were calculated using
the LDA density. We have noted that less than 0.01 eV dif-
ference exists for the dissociation energy between this ‘‘post-
self-consistent field~SCF!’’ adding of the gradient correc-
tions and a full SCF calculation with the gradient corrected
exchange–correlation potential. For gold we use the all-
electron large basis set B of Ref. 4. The hydrogen basis set is
also described there. For thallium, lead, and bismuth we use
basis sets optimized to numerical scalar relativistic ZORA
orbitals, of the same size as the gold basis set, but with two
extra 6p STO functions. In Table II the basis set for iodine is
given. The tellurium basis set has the same size, with of
course different optimized exponents. For oxygen and fluo-
rine we use a triple 1s and quadruple valence basis set plus
two 3d and two 4f polarization functions. The large basis
sets used give an accuracy of better than 0.02 eV for the
atomic valence orbital energies compared to numerical cal-
culations, for both the ZORA and the SR ZORA calcula-
tions.

In Tables III–V results are given of all-electron molecu-

TABLE III. Bond lengthRe and spin–orbit correction to the bond lengthDsoRe in Å for some diatomic systems.

I2 Au2 Bi2 HI AuH TlH IF TlF TlI PbO PbTe

Expt.a 2.667 2.472 2.661 1.609 1.524 1.870 1.910 2.084 2.814 1.922 2.595
ZORA GGA 2.719 2.511 2.685 1.628 1.535 1.900 1.951 2.119 2.858 1.937 2.633
SR ZORA GGA 2.697 2.517 2.655 1.625 1.535 1.931 1.940 2.126 2.872 1.939 2.629
Dsor e GGA 0.022 20.006 0.030 0.003 0.000 20.031 0.011 20.013 20.014 20.002 0.004
ZORA LDA 2.670 2.452 2.637 1.624 1.526 1.868 1.919 2.073 2.783 1.910 2.588
SR ZORA LDA 2.651 2.457 2.613 1.621 1.525 1.901 1.908 2.081 2.798 1.913 2.586
Dsor e LDA 0.019 20.005 0.024 0.003 0.001 20.033 0.011 20.008 20.015 20.003 0.002

aReference 29.

TABLE IV. Harmonic frequenciesve in cm21 for some diatomic systems.

I2 Au2 Bi2 HI AuH TlH IF TlF TlI PbO PbTe

Expt.a 215 191 173 2309 2305 1391 610 477 ~150! 721 212
ZORA GGA 197 178 174 2240 2270 1330 570 455 142 720 204
SR ZORA GGA 210 177 193 2260 2270 1320 595 450 142 730 212
Dsove GGA 26% 1% 210% 21% 0% 1% 24% 1% 0% 21% 24%
ZORA LDA 214 198 186 2260 2330 1390 610 490 155 755 216
SR ZORA LDA 226 196 203 2280 2330 1370 630 485 155 765 223
Dsove LDA 25% 1% 28% 21% 0% 1% 23% 1% 0% 21% 23%

aReference 29.
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lar calculations on some diatomic compounds. First we have
to note that the spin–orbit effect for most molecular proper-
ties is not large for these closed shell systems. The spin orbit
effect on the bond distance never exceeds 0.03 Å, on fre-
quencies it is less than 10%, and the molecular spin–orbit
effect on the energies is in most cases less than 0.15 eV,
except for Bi2 and PbTe. In Table V these molecular energies
are taken with respect to spherically and spin averaged~and
for the fully relativistic ZORA, spin–orbit averaged! atoms.
The ZORA results of Table V therefore reflectmolecular
spin–orbit coupling effects. The importantatomicspin–orbit
coupling effects, exemplified by the difference between the
first and second columns of Table I, have to be taken into
account in the molecular dissociation energies. The molecu-
lar De values, given in Table VI, will be discussed below,
but first the molecular spin–orbit effects will be discussed
with the help of Tables III–V.

In the literature many discussions exist rationalizing
spin–orbit effects, especially in the context ofab initio cal-
culations using relativistic effective core potentials~ECP!,
see, e.g., the reviews of Pitzer25 and Ermleret al.26 In par-
ticular spin–orbit interaction was analyzed in terms of the
bonding between the spin–orbit split~j j coupled! atomic
spinors as a starting point. Here we will use the scalar rela-
tivistic approximation as our starting point and we will dis-
cuss how the molecular orbitals are modified by the presence
of the spin–orbit interaction.

For the lighter atoms, hydrogen, oxygen, and fluorine,
the spin–orbit effect may be neglected, compared to the
much larger spin–orbit effect in the heavier atoms. Also the
first-order effect of spin–orbit coupling for closed shell sys-
tems is zero. We therefore expect fairly small effects of the
spin–orbit coupling in these closed shell molecules com-
pared to the open shell atoms. The spin–orbit effects will
come from higher order effects, notably spin–orbit interac-

tion between occupied and empty shells. The spin–orbit ef-
fects in Tables III–V can for a large part be understood by
focusing on the molecular bonding and antibonding orbitals
coming from the atomic valencep electrons. In Fig. 1 the
one-electron molecular orbital levels coming from these or-
bitals for Bi2 are schematically shown. At the left-hand side
of Fig. 1 the scalar relativistic energies are shown and on the
right-hand side the first-order effect of the spin–orbit inter-
action is included. The bondingpu orbital will split due to
this first-order spin–orbit effect, but since the split levels are
both fully occupied, there is no net first-order spin–orbit ef-
fect. The effects should therefore come from off-diagonal
spin–orbit interaction, which is only possible for orbitals
with the samej and for homonuclear diatomics with the
same inversion symmetry. There is only a net effect of this
off-diagonal spin–orbit interaction if it is between an occu-
pied and an unoccupied orbital, in which case it always has a
stabilizing effect on the energy. Thus, for the levels shown in
Fig. 1, we have off-diagonal spin–orbit interaction between
the occupied bondings1/2g orbital and the unoccupied anti-
bonding p1/2g orbital and between the occupied bonding
p1/2u orbital and the unoccupied antibondings1/2u orbital.
The effect of the off-diagonal spin–orbit interaction between
orbitals will be larger if the difference in energy of these
orbitals is smaller. For Bi2 the bonding and antibonding or-
bitals will become closer in energy if we increase the dis-
tance between the atoms. Thus spin–orbit coupling will in
this case have a flattening effect on the bond energy curve
and an increasing effect on the bond length. Since there is a
maximum number of interactions possible—each occupied
orbital can be stabilized by interaction with an unoccupied
one—and both atoms in the diatomic have a large spin–orbit
coupling constant, the spin–orbit effect will be relatively
large, as is indeed observed in tables III–V, in particular for
the energetic stabilization.

TABLE V. Molecular energies in eV with respect to the scalar relativistic atomic average-of-configuration~AOC! atomic energies~SR-ZORA calculations!,
or the fully relativistic average-of-configuration SO-AOC energies~ZORA calculations!, see the text.Dso denotes the difference between the fully relativistic
~ZORA! and scalar relativistic~SR ZORA! results.

I2 Au2 Bi2 HI AuH TlH IF TlF TlI PbO PbTe

ZORA GGA 2.62 2.71 6.52 4.71 4.52 3.96 4.31 6.37 4.14 8.23 5.74
SR ZORA GGA 2.51 2.65 5.42 4.68 4.48 3.84 4.21 6.37 4.04 8.08 5.38
Dso GGA 0.11 0.06 1.10 0.03 0.04 0.12 0.10 0.00 0.10 0.15 0.36
ZORA LDA 3.07 3.29 7.11 4.99 4.87 4.12 4.85 6.83 4.53 8.88 6.28
SR ZORA LDA 2.96 3.22 6.00 4.96 4.83 3.97 4.75 6.83 4.41 8.72 5.91
Dso LDA 0.11 0.07 1.11 0.03 0.04 0.15 0.10 0.00 0.12 0.16 0.37

TABLE VI. Molecular dissociation energiesDe in eV for some diatomic systems.

I2 Au2 Bi2 HI AuH TlH IF TlF TlI PbO PbTe

Expt.a 1.56 2.31 2.03 3.20 3.36 2.06 2.92 4.60 2.77 3.87 2.57
ZORA GGA 1.58 2.31 1.98 3.24 3.37 2.10 3.05 4.72 2.71 4.15 2.54
SR ZORA GGA 2.13 2.25 2.74 3.54 3.33 2.66 3.30 5.42 3.62 5.51 4.06
ZORA LDA 2.17 2.99 2.83 3.64 3.82 2.39 3.97 5.57 3.25 5.25 3.32
SR ZORA LDA 2.74 2.92 3.80 3.95 3.78 2.94 4.23 6.29 4.17 6.66 4.91

aReference 29.
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For the iodine molecule I2 we can use Fig. 1 if we also
fully occupy the antibondingpg orbital. Now we only have
to consider the off-diagonal spin–orbit interaction between
the occupied bondingp1/2u orbital and the unoccupied anti-
bondings1/2u orbital. As for Bi2 the spin–orbit effect will be
enhanced, if we increase the distance between the atoms,
since the bonding and antibonding orbitals come closer in
energy. The trends are therefore similar as in Bi2, but they
are, due to the smaller so coupling constant, smaller, in par-
ticular for the energy.

For the gold dimer Au2 the spin–orbit effect is small,
since the bonding is mainly due to the atomic 6s orbitals,
which are not affected by spin–orbit coupling. The remain-
ing small effect comes from the mixing of some 6p character
into the (6s16s) bonding orbital, and the mixing of 6s
character into almost fully occupied 5d shells. As a result
spin–orbit coupling can have some effect. At larger distances
between the gold atoms there is less 6p mixing, which re-
duces the spin–orbit effect, and consequently diminishes the
spin–orbit stabilization. Therefore spin–orbit coupling will
~very! slightly shorten the bond length of Au2 and increase
its binding energy and harmonic frequency.

We now turn to the heteronuclear compounds. Again the
net first-order effect of spin–orbit coupling for these closed
shell compounds is zero. The off-diagonal spin–orbit inter-
action between two orbitals only can become large if they
have atomic character belonging to the same atom with the
samel value ~lÞ0! and there is only a net effect if there is
off-diagonal spin–orbit interaction between occupied and
unoccupied orbitals.

For TlF, TlI, PbO, and PbTe, we have the same levels
and occupation, coming from the valence atomicp orbitals,
as in Fig. 1, except that they are not labeled byg or u
anymore. This means that there are now more possibilities
for off-diagonal spin–orbit interaction than in the homo-
nuclear case. The relative position of the levels of the occu-
pied bondingp ands orbital are reversed for some of these
compounds compared to the position they have in Fig. 1, the
unoccupied antibondingp and s orbital are always at the
same relative position as in Fig. 1. For TlF, TlI, PbO, and
PbTe, the occupied bonding orbitals have more character of
the lighter, more electronegative element, whereas the unoc-
cupied antibonding orbitals have more Tl or Pb character. If

the distance between the atoms is increased, close to the
equilibrium bond length, the occupied bonding orbitals will
even be more biased toward the more electronegative ele-
ment. Due to this effect the off-diagonal spin–orbit interac-
tion is smaller at longer distances. This first effect of increas-
ing the distance is larger if the difference in electronegativity
of the two atoms is larger, like in TlF and TlI. A second
effect of increasing the distance between the atoms, close to
equilibrium, is that the bonding and antibonding orbitals will
get closer in energy, which will increase the effect of the
off-diagonal spin–orbit interaction. For PbO and PbTe there
is some competition between these two effects, so that the
spin–orbit effect on the bond distance is small. For TlF and
TlI the first effect is dominating and spin–orbit coupling
shortens the bond distance. The spin–orbit effect on the en-
ergy of these four compounds is largest for PbTe, since both
lead and tellurium have a large effective spin–orbit param-
eter and the difference in electronegativity is the smallest for
these atoms.

Compared to the previous compounds, IF also has a fully
occupied antibondingp orbital. The off-diagonal spin–orbit
interaction will be largest between the occupied antibonding
p1/2 orbital and the unoccupied antibondings1/2. Both have
more iodine than fluorine character, and acquire more iodine
character with increasing distance. The two spin–orbit ef-
fects, which result from an increase in the distance between
the atoms, are now in the same direction and will lengthen
the bond distance.

In Fig. 2 the one-electron molecular orbital levels of TlH
coming from the 1s orbital of hydrogen and the 6p orbitals
of thallium are schematically shown. The bondings orbital
~H 1s1Tl 6ps! has more hydrogen character. The energy of
the nonbondingp orbital ~thallium 6pp! will not change
much if we increase the distance. In this case the first effect
~decreasing SO interaction due to the increasing H character
in the bonding orbital upon bond lengthening! is dominating,
and spin–orbit coupling will shorten the bond length. For HI
we can use Fig. 2 if we also fully occupy thep orbital,
introducing occupiedp1/2 with unoccupieds1/2 SO interac-
tion. Like in IF the first effect of the spin–orbit interaction
will lengthen the bond distance. For AuH the spin–orbit ef-
fect is small, since the bonding effect is mainly due to atomic
s orbitals, which are not affected by spin–orbit coupling.
The bonding orbital now has almost no gold 6p character,
which was responsible for part of the effect in Au2.

Considering the bond distances~see also Fig. 3! we note
that compared to experiment the ZORA GGA bond distances
are too long, from 0.011 Å for AuH to 0.044 Å for TlI. The

FIG. 1. Scalar relativistic~left-hand side! and first-order spin–orbit split
~right-hand side! valence molecular orbital levels for Bi2.

FIG. 2. Scalar relativistic~left-hand side! and first-order spin–orbit split
~right-hand side! valence molecular orbital levels for TlH.
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SR ZORA GGA results lie between20.006 Å for Bi2 and
10.061 for TlH. The spin–orbit calculated results seem to
give a more systematic deviation from experiment than the
scalar relativistic results, especially the compounds where
the spin–orbit coupling has its largest effect, namely Bi2 and
TlH, are better in line with the other molecules. The LDA
results do not show a systematic overestimation of bond
lengths. The theoretical ZORA LDA results deviate from
experiment between20.031 Å for TlI and10.015 for HI.
For the SR ZORA result this is between20.048 Å for Bi2
and10.031 for TlH. The best agreement with experimental
bond distances is usually found for the LDA results, with the
only ~marginal! exception for Bi2.

For the harmonic frequencies we can do the same analy-
sis. For most of these diatomics the spin–orbit coupling has
a flattening effect on the bonding curve and vice versa. The
flattening of the curve due to spin–orbit coupling can be
quite large, especially for Bi2 and I2 and to a lesser extent for
IF and PbTe. Usually the LDA frequencies are higher than
the GGA ones, and the lowering due to the SO effect brings
the LDA frequencies quite close to experiment. So the LDA
frequencies are usually better than the GGA ones, with only
Bi2 and PbO as notable exceptions.

In order to identify the genuinely molecular spin–orbit
effect on the energy we have to consider the results presented
in Table V. In this table we can see the consequence of the
fact that in first order the molecular spin–orbit effect is zero
for these closed shell compounds. In most cases the molecu-

lar spin–orbit effect is less than 0.15 eV. Compared to the
considerable SO effects in the atoms, the SO effect in the
compounds containing Te, I, Tl, Pb, or Bi is relatively small.
This exemplifies the well-known molecular quenching of the
SO effect. This is basically due to the lifting of the atomic
degeneracy of annl set of atomic orbitals~AOs! due to the
orbital interactions providing the molecular bonding. For in-
stance, the strongers bonding thanp bonding will usually
shift the s molecular orbitals~MOs! away from p MOs,
which strongly diminishes the SO interaction. Moreover, the
levels that remain degenerate, such as thep MOs, are usually
fully occupied~or unoccupied!, leaving no net first-order so
effect. Examples ofpartial SO quenching by chemical bond-
ing may be found in Refs. 27 and 28.

In a few instances, the molecular SO effect is sizable: for
PbTe it is 0.36 eV and for Bi2 it is even 1.1 eV. The rela-
tively large effect on the energy for Bi2 can be understood,
considering the large effective spin–orbit parameter of bis-
muth, and the fact that the diagonal spin–orbit effect on the
p1/2g orbital pushes its energy toward thes1/2g such that
off-diagonal spin–orbit coupling has large effects.

In Table VI the molecular dissociation energies are
shown where in the scalar relativistic ZORA case the atomic
reference energies are those of the lowest LS state, and in the
fully relativistic ZORA case those of the lowestuJMJ& state
obtained in intermediate coupling. The correction terms were
taken from Table I. The ZORA GGA calculations give very
accurate dissociation energies compared with experiment,
the largest difference is 0.3 eV for PbO. They are the most
accurate ones without exception. The SR ZORA GGA re-
sults for Au2 and AuH are already accurate, since neither the
molecule nor its fragments exhibit strong spin–orbit cou-
pling effects. For the other compounds the omission of SO
coupling in the scalar relativistic GGA calculation leads to a
sizable deviation from experiment, ranging from 0.3 eV~HI!
to 1.6 eV~PbO! too strong bonding. The reason for this lies
almost entirely in the spin–orbit effect of the atoms. If we
would only apply the atomic corrections obtained in interme-
diate coupling, while still using the scalar relativistic mo-
lecular results, the results would already improve consider-
ably, to an accuracy of better than 0.2 eV except for PbTe
~deviation of 0.4 eV! and Bi2 ~deviation of 1.1 eV!. These
are exactly the molecules which have a large molecular
spin–orbit correction in the energies~see Table V!. In Fig. 3
these results are shown in a form that clearly exhibits the
atomic and molecular spin–orbit effects on the dissociation
energy.

The ZORA LDA results for the molecular dissociation
energies exhibit 0.3–1.4 eV too strong bonding compared to
experiment. The situation that we find for these relativistic
systems, of significant improvement resulting from the use of
the GGA for bond energies, but no improvement or even
slight worsening of the results for distances and frequencies,
is well known in the nonrelativistic case.

In Table VII we have collected some results from the
recent literature, where calculations, using spin–orbit cou-
pling, are compared with scalar relativistic calculations. The
spin–orbit effect for the bond distance and harmonic fre-

FIG. 3. Dissociation energies for some diatomic systems from all-electron
~SR! ZORA GGA calculations.
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quencies are in close agreement to our findings. The litera-
ture values for the spin–orbit effects on the dissociation en-
ergy for I2 ~0.62 eV! and HI ~0.27 eV! are close to our 0.55
and 0.30 eV, although our absolute values forDe are much
closer to experiment, in particular for I2. For TlH there is
considerable difference between our SO effect and the one
obtained in Ref. 32. We find a large spin–orbit effect~0.56
eV!, mainly due to the large spin–orbit effect on the energy
of the thallium atom, whereas in Ref. 32 only a small effect
~0.09 eV! is found. We do not have an explanation for this

discrepancy. Usually, the atomic effect dominates, as for in-
stance noted for I2 in both the work of Schwerdtfegeret al.,

43

and Teichteil and Pe´lissier.30 The situation with respect to
the molecular so effect is not so clear. Schwerdtfegeret al.
determine this effect as the difference in total energy be-
tween two pseudopotential calculations, one with a spin–
orbit averaged pseudopotential and the other one with a
pseudopotential including SO coupling~j dependent!. These
authors calculated the molecular spin–orbit effect in the dis-
sociation energy to be 0.06 eV for HI and 0.14 eV for I2,
which can be compared with our 0.03 and 0.11 eV, respec-
tively. However, Teichteil and Pelissier applied SO coupling
in the configuration-interaction~CI! step, after a spin–orbit
averaged pseudopotential calculation to generate the refer-
ence configurations, and find less than 0.01 eV. They ascribe
the difference from Schwerdtfegeret al. to the use by the
latter authors of essentially aj – j coupling scheme for the
molecule. The differences between the various molecular SO
effects are still small in an absolute sense and may also be
partly due to the different definitions, i.e., different proce-
dures to calculate them, or even differences in the pseudopo-
tentials. We note that for the bond distance, which can be
calculated straightforwardly, Schwerdtfegeret al. find an in-
crease in bond length for I2 of 0.015 and for HI 0.003 Å due
to spin–orbit coupling, comparable to, respectively, 0.02 and
0.003 Å from our calculations, and to the results of Teichteil
and Pelissier.30

In Table VIII we present selected results from the litera-

TABLE VII. Comparison with results from correlated relativistic calcula-
tions using ECPs, where the SO effect is calculated, for I2,

a for Bi2,
b for HI,

and TlH.c

I2 Bi2 HI TlH

r e ~Å!
SO 2.77 2.768 1.616 1.925
SR 2.75 2.734 1.614 1.953

ve ~cm21!
SO 185 153 2331 1329
SR 199 165 2340 1310

De ~eV!
SO 0.76 1.49 2.88 2.32
SR 1.38 3.15 2.41

aReference 30.
bReference 31.
cReference 32.

TABLE VIII. Selection of results taken from the literature for the bond lengthr e , harmonic frequencyve , and
dissociation energyDe for some diatomics compared to our ZORA GGA results.

I2 Au2 HI AuH IF TlF PbO

r e ~Å!
Expt.a 2.667 2.472 1.609 1.524 1.910 2.084 1.922
ZORA GGA 2.719 2.511 1.628 1.535 1.951 2.119 1.937

2.73b 2.537c 1.598d 1.525e 1.916f 2.04g 1.893h

2.71b 2.466i 1.601j 1.505i 1.944f 1.882k

2.690f 1.615f

2.711f 1.626f

ve ~cm21!
Expt.a 215 191 2309 2305 610 477 721
ZORA GGA 197 178 2240 2270 570 455 720

205b 178c 2354d 2288e 621f 592g 785h

214b 195i 2410j 2619i 624f 800k

2334f

2309f

De ~eV!
Expt.a 1.56 2.31 3.20 3.36 2.92 4.60 3.87
ZORA GGA 1.58 2.31 3.24 3.37 3.05 4.72 4.15

1.49b 2.12c 2.03j 2.92e 3.86g 1.3k

1.69b 2.88i 3.09f 3.75i 3.5–3.8k

1.43f 2.99f

1.42f

aReference 29. gReference 38.
bReference 33. hReference 39.
cReference 34. iReference 40.
dReference 35. jReference 41.
eReference 36. kReference 42.
fReference 37.
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ture for the compounds under study. Dirac–Fock calcula-
tions were performed by Matsuokaet al.41,42on HI and PbO.
For PbO they also calculated the dissociation energy using
density functionals for correlation. Dyall39 also reported on
Dirac–Fock calculations on PbO. The dissociation energies
calculated from Dirac–Fock calculations are not very accu-
rate, correlation effects have to be included. The Douglas–
Kroll transformation, in the scalar relativistic approximation,
was used in coupled cluster calculations on AuH by Kaldor
and Hess.36 Their results show good agreement with experi-
ment, although theirDe of 2.92 eV is somewhat further off
from the experimental value of 3.36 eV than our 3.37 eV.
The Douglas–Kroll transformation was also used in scalar
relativistic LDA calculations on Au2 and AuH by Häberlen
and Rösch,40 who obtained results close to our SR ZORA
LDA results. Relativistic ECPs including spin–orbit cou-
pling were used by Balasubramanian38 in correlated calcula-
tions on TlF. The other results come from scalar relativistic
ECP calculations including correlation. A general conclu-
sion, which most of these references make, is that since rela-
tivistic effects and correlation effects are not additive, one
should include correlation in relativistic calculations on sys-
tems containing heavy elements. This is especially true for
the dissociation energies.

In Table IX we compare ZORA and SR ZORA for the
dipole moments of the heteronuclear diatomics at the experi-
mental geometry. In the GGA results we have used the GGA
potential in the self-consistent calculations. Compared to ex-
periment the ZORA, GGA and SR ZORA GGA results have
an average deviation of about 10%. In Table X we also have
calculated the dipole moments for the same systems as the
theoretical~SR! ZORA geometry of Table III. The devia-
tions from experiment are reduced. Except for IF and PbTe
the scalar relativistic results are closer to the~known! experi-
mental values than the spin–orbit results, with an average
deviation of approximately 5% for SR ZORA GGA and 7%

for ZORA GGA. Considering the effect of spin–orbit cou-
pling on the dipole moments, we note that there is a corre-
lation with the changes in dipole moment and the changes in
atomic electron affinity and ionization potential that we will
result from spin–orbit coupling. For hydrogen, oxygen, fluo-
rine, and gold the spin–orbit effect may be neglected. To
remove an electron from thallium and lead will cost more
energy in the spin–orbit case than in the scalar relativistic
case. In the same way as the spin–orbit case, the gain in
energy is less if we add an electron to tellurium or iodine,
and it is less expensive to remove an electron from iodine
than in the scalar relativistic case. With this in mind we can
understand the spin–orbit effects on the dipole moments for
these compounds: almost no effect for AuH, a lowering ef-
fect for HI, TlH, TlF, TlI, PbO, and PbTe, and an increasing
effect on IF. A more detailed analysis may be based on the
character of the valence molecular orbitals, much the same as
we did before. The first-order effect of the spin–orbit inter-
action does not give a different density. For TlF, TlI, PbO,
and PbTe, off-diagonal spin–orbit interaction can only mix
in unoccupied orbitals, which have more character on Tl or
Pb. For IF the main off-diagonal spin–orbit interaction is
between an occupied antibondingp1/2 orbital and an unoc-
cupied antibondings1/2 orbital. The antibondingp1/2 orbital
has more iodine character than the antibondings1/2 orbital,
thus the spin–orbit effect decreases the charge on iodine. In
TlH the occupied bondings1/2 orbital of Fig. 2 will mix with
the unoccupied thalliump1/2 orbital, which has more thal-
lium character, and in HI the occupied iodinep1/2 orbital will
mix with the unoccupied antibondings1/2 orbital, which has
more hydrogen character. These orbital mixings explain the
observed spin–orbit effects.

In Ref. 49 the spin–orbit effect on the dipole moment for
HI was calculated using correlated relativistic ECPs. At the
experimental geometry they find it to be20.019 D, which is
the same as we have found. Dolget al.46 estimated the spin–

TABLE IX. Dipole momentsme in D for some diatomic systems for the experimental geometry. Positive values
meanA1B2.

HI AuH TlH IF TlF TlI PbO PbTe

Expt.a 0.45 1.95 4.23 4.61 4.64 2.73
ZORA GGA 0.41 1.08 1.15 1.77 3.74 3.74 4.28 2.71
SR ZORA GGA 0.43 1.08 1.40 1.71 3.88 4.17 4.44 3.01
Dsome GGA 20.02 20.00 20.25 0.06 20.06 20.43 20.16 20.30
ZORA LDA 0.49 0.95 1.00 1.85 3.78 3.63 4.29 2.61
SR ZORA LDA 0.51 0.95 1.28 1.78 3.91 4.07 4.46 2.91
Dsome LDA 20.02 20.00 20.28 0.07 20.07 20.44 20.17 20.30

aReference 29.

TABLE X. Dipole momentsme in D for some diatomic systems at the~SR! ZORA geometry from Table III.

HI AuH TlH IF TlF TlI PbO PbTe

Expt.a 0.45 1.95 4.23 4.61 4.64 2.73
ZORA GGA 0.41 1.08 1.28 1.94 3.97 4.01 4.35 2.85
SR ZORA GGA 0.43 1.09 1.69 1.83 4.16 4.54 4.53 3.14
Dsome GGA 20.02 20.01 20.41 0.11 20.19 20.53 20.18 20.29

aReference 29.
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orbit correction for PbO to be between20.07 and20.23 D,
our theoretical result20.16 lies in this range.

In Table XI we give some results for calculations of
dipole moments taken from the literature. Reference 45 used
Dirac–Fock calculations, except for AuH, where correlation
effects were included. Dyall39 also used Dirac–Fock calcu-
lations for PbO. The only relativistic LDA results in Table
XI are from Häberlenet al.40 for AuH. Their result for AuH
is much closer to our result than the other two. The remain-
ing results in Table XI come from calculations using relativ-
istic ECPs. The results of Table XI show similar deviations
from experiment as our results. Apparently it is difficult to
calculate the dipole moments of these compounds with high
accuracy.

V. CONCLUSIONS

In this paper we have calculated and rationalized the
effect of spin–orbit coupling in a series of closed shell di-
atomic molecules. For the calculated compounds the spin–
orbit effect on the bond distance never exceeded 0.03 Å, and
on frequencies it is less than 10%. Also the molecular spin–
orbit effect on the energies is often small, except for Bi2 and
PbTe. However, to obtain the spin–orbit effects on the dis-
sociation energy it is absolutely necessary to take into ac-
count the effect of spin–orbit coupling in the constituent
atomic fragments since it can be very large in these open
shell systems. A method is proposed to obtain the ground
state energy of open shell atoms, which uses present day
density functionals in an intermediate coupling scheme. This
method is used for the calculation of some atomic multiplet
splittings and it is shown to give realistic energy differences.
Using these intermediate-coupling atomic energies for the
calculation of the dissociation energies of the compounds
under study, we obtain high accuracy if we include gradient
correction~GGA! terms in the energy. The ZORA GGA re-
sults are within 0.15 eV from experiment, with only one
exception for PbO~0.28 eV!. For most compounds, except
for Bi2 and PbTe, this accuracy in the dissociation energy
could be obtained by only taking into account the spin–orbit
effects in the atoms. For Bi2 and PbTe it has been shown
that, to obtain high accuracy, it is also necessary to take
spin–orbit effects for the molecular energy into account. Ex-
cept for these two molecules, in most cases the molecular
spin–orbit effects are on the order of the accuracy of the

calculations compared to experiment. The calculated dipole
moments at the experimental geometry are still off by ap-
proximately 10% compared to the known experimental re-
sults in the both the spin–orbit and scalar relativistic case.
They are improved~7% and 5% discrepancy, respectively!
when calculated at the optimized geometries.

In complete analogy to the nonrelativistic case, we find
that the gradient corrections reduce the overbinding of LDA,
but do not improve bond distances and frequencies.

APPENDIX: THE CALCULATION OF ATOMIC
MULTIPLET ENERGIES

There are a few details concerning the approach to cal-
culating atomic multiplet energies in intermediate coupling
sketched above that deserve some comment.

We define the average-of-configuration~AOC! orbitals
and energy as resulting from a self-consistent field calcula-
tion with the electrons of the configuration distributed
equally over all one-electron orbitals. This leads to fractional
occupation numbers, a spherically symmetric density, and
equal spin up and down densities. This is a convenient ref-
erence point, that can easily be reproduced by any atomic
structure code. In Table I, the first column, we quote the
scalar relativistic~LS coupled! ground state energies with
respect to the scalar relativistic AOC energy for the atoms of
interest. It is not difficult to identify determinants that are
pure uLSMLMS& states belonging to the ground term and
which therefore can be used to calculate the ground state
energy. There remains the question whether one should em-
ploy the AOC orbitals in this determinant, or whether one
should try to lower the energy further by trying to optimize
the orbitals self-consistently for this particular determinant.
A further choice would be whether to apply symmetry and
equivalence restrictions between the orbitals of onenl shell,
or to search for the lowest energy without any symmetry
constraint. We have found that the use of optimized orbitals
~essentially the lowest possible one-determinantal energy!
lowers the energy of the ground state with respect to the use
of AOC orbitals, which always obey the symmetry and
equivalence restrictions, by less than 0.05 eV for the heavy
elements we are dealing with. However, for the light~second
row! elements the effect may amount to 0.15 eV. We have
used the optimized results throughout, but it is clear that with
the present unsatisfactory state of the density functional
theory for open shell systems, one should consider these ef-
fects as ‘‘error bars’’ that have to be put on the calculated
ground state energies. These error bars are virtually
negligible—in view of the general accuracy of the results—
for the heavy elements, but not so for the light elements.

In order to introduce SO coupling between theLS terms,
we first need the scalar relativistic energies of allL–S
coupled states~not just the ground term! of the (nl)p con-
figuration. These are calculated using the diagonal sum
method of Ref. 19. There are also error bars in this procedure
because of the above cited lack of certain invariance proper-
ties in the exchange–correlation functionals. There is also
the question of the use of either converged orbitals or the

TABLE XI. Results taken from the literature for dipole momentsme in D
for some diatomic systems. Positive values meanA1B2.

HI AuH TlH TlI PbO PbTe

Expt.a 0.45 4.61 4.64 2.73
0.460b 2.04c 0.77c 4.85c 4.52–4.70d 3.22c

0.40e 1.58f 3.74g 2.67g

1.16h 5.389i

aReference 29. fReference 47.
bReference 44. gReference 48.
cReference 45. hReference 48.
dReference 46. iReference 39.
eReference 35.
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AOC orbitals in the one-determinantal states. Since we use
optimized orbitals for the ground state energies, we have
used optimized orbitals throughout, noting that for the heavy
elements this has negligible effects. We actually only need
the calculated term energies for the heavy elements, since the
SO coupling is too small in the light elements to cause non-
negligible coupling of the ground state with higherLS states.
The term energies at the scalar relativistic level for the heavy
elements are shown in the first column of Table XII. The
diagonal sum method is only used for Te, Pb, and Bi, since
for I, Au, and Tl we only have one state inL–S coupling for
the lowest configuration.

In order to apply the spin–orbit interaction between the
LS terms, we use the standard approach in atomic structure
theory, see, e.g., Condon and Shortley.50 The effect of spin–
orbit coupling is summarized in an effective spin–orbit cou-
pling constantz. There are several ways to obtain good esti-
mates of this parameter. It is possible to calculate
expectation values of the SO operator over AOC orbitals.
Since we do not use the AOC orbitals for allLS multiplet
states, but perform separate optimizations, we calculate an
effective SO parameter, to be used for the SO interaction
between all theLS terms, from the difference in energy be-
tween the lowestj j configuration and a SO-AOC calcula-
tion. In the latter the fully relativistic ZORA Hamiltonian is
used and electron occupations are chosen in accordance with
the scalar relativistic (nl)p parent configuration from which

theLS terms arise. Forp2 this would mean an occupation of
2/3 electron in thep1/2 shell, and 4/3 electrons in thep3/2
shell ~occupation 2/6 in eachup1/2,mj& and eachup3/2,mj&
one-electron spinor!. The lowestj j configuration would of
course be~p1/2!

2. The resulting spin–orbit constants are
given in Table I. Calculating a spin–orbit coupling constant
from the expectation value of the spin–orbit operator over
AOC orbitals does not lead to very different values. For Te
and I the resulting spin–orbit coupling constant would only
be a few hundredths of an eV smaller, for Tl, Pb, and Bi
however it would be some 15% smaller.

As a consequence of the spin–orbit interaction the en-
ergy of the resultinguJMJ& ground state will be lower than
the ground term in theLS spectrum of states. The second
column of Table I shows the energy of the lowestuJMJ&
with respect to the AOC energy. The energy lowering com-
pared to the lowestLS state~column 1! is considerable in the
atoms with large SO coupling constants. In Table XII the
whole spectrum ofuJMJ& states resulting from the SO cou-
pling is shown, together with the experimental values.51 Both
LDA and the density gradient corrected~GGA! splittings are
in close agreement with experiment, deviations are less than
0.1 eV. This accuracy is actually better than the error bars of
the current density functionals for the SRuLS& multiplet en-
ergies, so it may be considered somewhat fortuitous. We
have referred above to two types of AOC calculation, one
scalar relativistic and the other one including so coupling. It
is to be noted that these AOC calculations lead to different
total energies, even if the first-order effect of the SO inter-
action within a manifold of spin–orbitals belonging to a
(nl)p configuration, all equally occupied, would not lead to a
change in energy. However, a full self-consistent calculation,
including the SO operator, changes the SO-AOC energy with
respect to the scalar relativistic AOC energy because higher
order effects of the SO operator play a role, in particular in
deep core fully occupied shells. This is already apparent if
one considers the exact solutions in a hydrogenic heavy ion,
for example the Uranium911 ion. The averaged relativistic
2p orbital energy of21045.54 a.u.~1/3 times21257.39
~2p1/2! plus 2/3 times21089.61~2p3/2! is approximately 15
a.u. lower than the scalar relativistic orbital energy
21130.34 a.u. So even for closed shells SO interaction can
be important, due to the second- and higher-order effects of
the so coupling. The radial part of the 2p1/2 orbital is in that
case not identical anymore to the radial part of the 2p3/2
orbital. We have, however, observed that the change in den-
sity of the core orbitals due to SO effects has very little effect
on the valence orbitals.

Since the higher order SO energetic effects are signifi-
cant, and since the fully relativistic all-electron calculations
on molecules to be reported do include these SO effects in
the deep core shells, we have to take care to include them in
the atoms as well. This means that the atomic ground state
energies to be used in the dissociation energy calculations of
the molecules have to be obtained by taking the SO-AOC
energies and adding the energy lowerings given in column 2
of Table I with respect to that reference point.

TABLE XII. Atomic multiplet energies in eV. Experimental results are
taken from the tables of Moore.a

L–S
coupling

Intermediate
coupling

LDA GGA J LDA GGA EXP
Tellurium

3P2 0 0 2 0 0 0
3P0 0 0 0 0.61 0.62 0.58
3P1 0 0 1 0.67 0.64 0.59
1D2 0.70 0.88 2 1.23 1.37 1.31
1S0 1.94 2.24 0 2.68 2.90 2.88

Iodine
2P1/2 0 0 1/2 0 0 0
2P3/2 0 0 3/2 1.02 0.99 0.94

Thallium
2P1/2 0 0 1/2 0 0 0
2P3/2 0 0 3/2 1.05 1.02 0.97

Lead
3P0 0 0 0 0 0 0
3P1 0 0 1 1.08 1.03 0.97
3P2 0 0 2 1.41 1.40 1.32
1D2 0.59 0.69 2 2.78 2.76 2.66
1S0 1.54 1.69 0 3.70 3.74 3.65

Bismuth
4S3/2 0 0 3/2 0 0 0
2D3/2 0.88 1.03 3/2 1.49 1.48 1.42
2D5/2 0.88 1.03 5/2 1.91 1.97 1.91
2P1/2 1.58 1.72 1/2 2.61 2.66 2.69
2P3/2 1.58 1.72 3/2 4.08 4.08 4.11

aReference 51.
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