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Abstract

We consider two-dimensional water waves of infinite depth, periodic in the hor-

izontal direction. It has been proven by Wu (in the slightly different nonperiodic

setting) that solutions to this initial value problem exist in the absence of surface

tension. Recently Ambrose has proven that solutions exist when surface tension

is taken into account. In this paper, we provide a shorter, more elementary proof

of existence of solutions to the water wave initial value problem both with and

without surface tension. Our proof requires estimating the growth of geomet-

ric quantities using a renormalized arc length parametrization of the free surface

and using physical quantities related to the tangential velocity of the free sur-

face. Using this formulation, we find that as surface tension goes to 0, the water

wave without surface tension is the limit of the water wave with surface tension.

Far from being a simple adaptation of previous works, our method requires a

very original choice of variables; these variables turn out to be physical and well

adapted to both cases. c© 2005 Wiley Periodicals, Inc.

1 Introduction

We study the well-posedness, locally in time, of the initial value problem for

water waves in two space dimensions. We consider infinitely deep water with

periodic geometry. The fluid is required to be irrotational in the bulk of the fluid,

inviscid, and incompressible. The initial data is assumed to be in a class of finite

smoothness and the surface of the wave is allowed to be of multiple heights. We

only make the assumption of infinite depth for simplicity. Indeed, our method can

easily be adapted to the case of finite depth or the case of an incompressible fluid

in vacuum. However, one of the major differences between the infinite-depth case

and other cases is the fact that the Taylor condition, which is recalled in (1.1) and

which is crucial for the well-posedness, can be proven for any initial data in the

infinite-depth case (see [17]). In the case of finite depth, that condition should be

added to the initial data.
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The well-posedness of water waves has been studied for many years. Early

results include those of [12] and [19]. These works showed that the water wave

problem (in the case of infinite and finite depth, respectively) is well-posed for a

short time if the initial data are taken sufficiently small. Later, Craig showed that

water waves with small, properly scaled initial data exist for fairly long times and

demonstrated relationships between the full, nonlinear water wave problem and the

Boussinesq and Korteweg–de Vries scaling limits [7]. The work of Craig was ex-

tended in [15], in which a longer interval of existence was found and the dynamics

of the solution over that time interval was discussed. There have been fewer papers

to deal with the water wave without an assumption as to the smallness of the initial

data. The most important works of this kind are [17, 18], which establish the well-

posedness in Sobolev spaces, locally in time, of the initial value problem in two and

three space dimensions, respectively. The proof uses a Cartesian parametrization.

It is based on rewriting the system as a quasi-linear hyperbolic system and applying

an iteration method. One of the key points is the use of the Riemann mapping the-

orem and expressing the vertical velocity yt as a function of the horizontal velocity

xt , namely, yt = K xt for some operator K that has properties similar to the Hilbert

transform. The works discussed so far have all neglected surface tension.

Other works have studied the subject of water waves with surface tension.

Their results are typically limited to the case in which the height of the wave is

a single-valued function of horizontal position. In this case, Iguchi established

well-posedness of water waves with surface tension in [10]. Also, in the case of

single-valued height, the limit of water waves as surface tension goes to 0 was

treated by Yosihara [20]. That work was also restricted to the case in which the

initial data are small. Recently Ogawa and Tani have generalized Yosihara’s result

to the case in which the bulk of the fluid is not necessarily irrotational; they do,

however, keep the assumptions of small data and single-valued height [13]. The

only work we are aware of which establishes well-posedness of water waves with

surface tension that is not limited to the case of single-valued height is [2].

In this paper, we provide a new existence proof for the two-dimensional water

wave. We first reformulate the problem by describing the free surface not by its

Cartesian coordinates but instead by its arc length and tangent angle. In doing this,

we choose an arc length parametrization for the free surface. The estimates we

obtain lead to uniform bounds in time that are independent of the amount of surface

tension (for small enough surface tension); this is an important, novel feature of this

work.

To establish existence of water waves in the absence of surface tension, an

additional physical condition should be checked. If p is the pressure and n̂ is the

outward normal vector to the free surface, then we must know that

(1.1) −∇ p · n̂ > c0 > 0,

for some positive constant c0. This is the same condition used by Wu in [17]. It

was introduced in [4] in the study of the linearization of the equations of motion of
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the water wave, and it is a generalization of a condition of G. I. Taylor [16]. It was

proven by Wu [17] that condition (1.1) holds for the case of infinitely deep water

as long as the surface of the water wave does not intersect itself. A different proof

was given in [18]. We do not prove this important lemma here; instead, we give

an intuitive argument from [18]. The intuitive argument is simply the maximum

principle: without surface tension, the pressure on the free surface is identically 0.

The pressure is superharmonic, so the maximum principle applies and the pressure

is positive in the bulk of the fluid. Since n̂ points outward, we get ∇ p · n̂ < 0.

For full details, we refer the interested reader to [18]. We do remark that an easy

generalization of the argument shows that (1.1) also holds in the case of small

surface tension; in this case, the pressure on the free surface is equal to the surface

tension times the curvature of the free surface.

To ensure that the surface does not initially intersect itself, we impose the con-

dition

(1.2) 0 < a <

∣∣∣∣ z(α, 0) − z(α′, 0)

α − α′

∣∣∣∣
for some constant a. Here, z(α, t) is the location in the complex plane of the free

surface, parametrized in space by α. For our existence and convergence to be valid,

(1.2) must hold at later times (with a replaced by εa for any fixed, small positive

ε). Since we are dealing with regular solutions, this condition will hold at least for

a short time.

The method we use in this paper is related to the method of [2], which was

strongly influenced by the numerical work of Hou, Lowengrub, and Shelley (HLS)

[8, 9]. In those works, HLS efficiently compute vortex sheets in the presence of

surface tension. (A vortex sheet is the interface between two irrotational fluids

flowing past each other; the two fluids may have different densities, and the irrota-

tional water wave is a special case of the vortex sheet problem in which the upper

fluid has density 0.) To do these computations, HLS first reformulate the problem

in two important ways: they use the curve’s tangent angle and arc length to describe

it rather than Cartesian variables, and they always keep the curve parametrized by

renormalized arc length. To keep the curve parametrized by its renormalized arc

length, a special tangential velocity is introduced. This same formulation of the

problem was used in [2] to prove well-posedness of vortex sheets with surface ten-

sion. The dependent variables analyzed there are θ , the tangent angle the curve

forms with the horizontal; γ , the vortex sheet strength; and L , the length of one

period of the curve. (The fluid’s vorticity is equal to γ times a Dirac mass centered

on the free surface; thus, if it is desired to know the velocity at any point of the

fluid, it is sufficient to know the values of these three dependent variables.) The

independent variables are α, the space variable, and time, t . In the present work,

we also analyze θ and L , but we replace γ with a related variable, δ. This new

variable has physical meaning and will be defined in Section 2.

In this paper, we establish two main results. The first is the following:
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THEOREM 1.1 Solutions to the water wave initial value problem (with or without

surface tension) exist if the given data is regular enough and satisifies the non-self-

intersection condition (1.2). These solutions are unique and depend continuously

on the initial data.

As we have mentioned, this theorem has been proven by Wu in [17] for the case

without surface tension; we feel that the proof we present here is more elementary.

Also, the theorem was proven in [2] for the case with surface tension. That proof

heavily relied upon the regularizing effect of surface tension. In the current proof,

this is not the case. Our second result is the following:

THEOREM 1.2 As the surface tension parameter tends to 0, solutions to the water

wave initial value problem with surface tension tend to the solution of the water

wave initial value problem without surface tension in a suitable norm.

The precise mathematical statement will be given later (see Theorem 2.2).

Here we make a comment on notation. In what follows, differentiation will

sometimes be denoted by application of an operator and sometimes by a subscript.

That is, Dα f and fα both indicate the derivative of f with respect to α. Also, the

operator H , which will appear frequently, is the Hilbert transform, which can be

written

H f (α) = 1

π
PV

∫ ∞

−∞

f (α′)
α − α′ dα′ = 1

2π

∫ 2π

0

f (α′) cot
1

2
(α − α′)dα′.

Here, f is 2π-periodic.

2 The Choice of Variables

Since the water waves we consider are irrotational in the bulk of the fluid, we

will be able to study quantities defined on the free surface only. The quantities we

will analyze are the position of the free surface and the vorticity of the fluid. The

irrotational water wave has a singular distribution of vorticity: while the vorticity is

always identically 0 in the interior of the fluid region, there is vorticity concentrated

on the surface. The vorticity is equal to an amplitude multiplied by a Dirac mass on

the surface. This amplitude, γ , is called the vortex sheet strength. The independent

variables we use are the spatial variable α and the time t . Since we are considering

two-dimensional fluids, the interface is one-dimensional. Thus, α is in R; in fact,

since we consider spatially periodic solutions, we restrict α to be in the interval

[0, 2π] at all times. We then have γ = γ (α, t). The position of the free surface is

given by (x(α, t), y(α, t)), or equivalently, viewing the fluid region as being in the

complex plane, z(α, t) = x(α, t) + iy(α, t). The periodicity assumption translates

into z(α + 2π, t) = 2π + z(α, t).
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2.1 The Renormalized Arc Length Parametrization

As in [2], we calculate the evolution of the curve’s tangent angle θ and arc

length s, instead of its Cartesian coordinates x and y. The equations satisfied by θ

and s are s2
α = x2

α + y2
α and θ = arctan(yα/xα). Given θ and sα, we can reconstruct

x and y by integrating

(xα, yα) = (sα cos(θ), sα sin(θ)).

As we will see below, the constant of integration is irrelevant to the evolution of θ

and γ . Given the evolution of the free surface as

(x, y)t = U n̂ + T t̂,

where n̂ and t̂ are the unit normal and tangent vectors to the curve, we can make a

straightforward calculation to get

θt = 1

sα

Uα + T

sα

θα,(2.1)

sαt = Tα − θαU.(2.2)

For the evolution of the water wave, we have no choice regarding the normal

velocity U ; that is, U is determined from the Euler equations for the motion of an

inviscid fluid. The exact form of U is discussed below. However, we may choose

the tangential velocity T to be anything we wish. We use this freedom to require

that sαt be independent of α. In particular, we set

(2.3) sαt = Tα − θαU = Lt

2π
.

Recall that L is the length of one period of the curve; thus, Lt is the time derivative

of this length. Integrating this equation yields our choice of T ; we set the constant

of integration equal to 0. With this choice, the curve will always be parametrized

by arc length, normalized so that the parameter α always lies in the interval [0, 2π]
(as long as it is initially parametrized this way). This is the same choice of T used

in [2, 8, 9]. In the rest of this paper, we will frequently use the formula implied by

our choice of T ,

sα = L

2π
.

The curve’s normal velocity, U , is determined from the position of the curve

(x, y) and the vortex sheet strength, γ , by the Birkhoff-Rott integral. (A discussion

of the Birkhoff-Rott integral can be found, for example, in [3] or [14]. It can be

derived by first using the Biot-Savart law to recover the velocity of the fluid from

the vorticity together with the fact that our vorticity is a measure concentrated on

the free surface. This results in a formula for the velocity at interior points of the

fluid. A limit can be taken to find the velocity of material points on the surface; it

is important to remember in our case that there is fluid on only one side of the free

surface.)
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2.2 The Birkhoff-Rott Integral

The Birkhoff-Rott integral W is the singular integral

(2.4) W(α, t) =
1

2π
PV

∫ ∞

−∞
γ (α′, t)

(−(y(α, t) − y(α′, t)), x(α, t) − x(α′, t))

(x(α, t) − x(α′, t))2 + (y(α, t) − y(α′, t))2
dα′;

we determine U by U = W·n̂.

Notice that the integral in (2.4) is taken over the whole real line, even though we

are dealing with functions that are periodic in space. This integral is still well de-

fined if the principal value is also taken at infinity; alternatively, it can be summed

over the periodic images to yield an integral over one period with a cotangent ker-

nel instead.

Our goal for the rest of this section is to rewrite the evolution equations for the

water wave problem. We have already given an evolution equation for θ in (2.1).

Now that we have given formulae for U and T , we will rewrite this equation in a

convenient way; in particular, we will rewrite the evolution equations as a quasi-

linear system for θ and δα. (We will define δ soon.) In the presence of surface

tension, we actually get a semilinear system for θ and δα. To be able to find the

quasi-linear system, we must make use of a representation of Wα that was given in

[2]. Later in this section, we will give the evolution equation for γ . We are able to

infer an evolution equation for δ from the evolution equations for γ and θ . We then

make a significant effort to rewrite the evolution equation for δα so that it takes a

convenient form that is suitable for energy estimates.

We now begin rewriting the evolution equations. To help with future calcu-

lations involving W, we introduce some complex notation. We define the map

� : R
2 → C by �(a, b) = a + ib. We define z = x + iy to be the image under �

of the free surface of our water wave. Thus, we have the representations for t̂ and

n̂

�(t̂) = zα

sα

, �(n̂) = i zα

sα

.

If we let ∗ denote complex conjugation, then the formula for a dot product is

a · b = Re
{
�(a)�(b)∗} .

Using �, we have the representation for W

(2.5) �(W)∗ = 1

2π i
PV

∫
γ (α′)

z(α) − z(α′)
dα′.

To make sense of W and its derivatives, we will at times approximate the sin-

gular integral by a Hilbert transform; this is the reason for the following definition

of the integral operator K[z]:

(2.6) K[z] f (α) = 1

2π i

∫ ∞

−∞
f (α′)

[
1

z(α) − z(α′)
− 1

zα(α′)(α − α′)

]
dα′.
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We will also use certain commutators in understanding W and its derivatives. In

particular, the operator [H, f ] is given by

(2.7) [H, f ]g(α) = 1

π

∫
g(α′)

f (α′) − f (α)

α − α′ dα′.

Both of these operators are smoothing operators, and lemmas reflecting this are

located in the appendix.

Using the integral remainder operator K and the commutator above, we get the

following representation for Wα:

(2.8) Wα · n̂ = π

L
H(γα) + m · n̂, Wα · t̂ = −π

L
H(γ θα) + m · t̂.

Here, m is given by

(2.9) �(m)∗ = zαK[z]
(

γα

zα

− γ zαα

z2
α

)
+ zα

2i

[
H,

1

z2
α

] (
γα − γ zαα

zα

)
.

This definition of m as the sum of various smooth remainders is natural; the full

calculation leading to (2.8) can be found in [1, 2]. We also refer the reader to

Section 2.6; there a similar argument is used to compute Wαt · n̂.

We will now give an explanation of the idea behind the calculation leading to

(2.8). In (2.5), if we approximate z(α) − z(α′) by zα(α
′)(α − α′), we have

�(W)∗ ≈ 1

2π i
PV

∫
γ (α′)

zα(α′)(α − α′)
dα′.

Using sα = |zα| = L/2π , we can rewrite this as

�(W)∗ ≈ 1

L
PV

∫
γ (α′)
α − α′

(
2π i zα(α

′)
L

)∗
dα′.

Notice that this is the same as

W ≈ π

L
H(γ n̂).

Differentiating, this yields

Wα ≈ π

L
H(γαn̂) − π

L
H(γ θα t̂).

Here we have used the identity n̂α = −θα t̂. Pulling n̂ and t̂ through the Hilbert

transform in this last expression (which costs only a smooth commutator), we have

Wα ≈ π

L
H(γα)n̂ − π

L
H(γ θα)t̂;

this is essentially the same as (2.8).
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2.3 The Modified Tangential Velocity

As we have mentioned above, we need to define a new quantity δ in order to

perform energy estimates. We make the definition

(2.10) δ = π

L
γ − (T − W·t̂).

Since the Lagrangian velocity of a fluid particle on the surface is W+ γ

2sα
t̂, another

way to state the definition is that δ is the difference between the Lagrangian tan-

gential velocity and our tangential velocity T . We will use δ as one of our system’s

dependent variables. This is because, as we will see later, δ is more regular than γ .

We also point out that, for given z(α), the mapping γ → δ is one-to-one; namely,

one can recover γ from z and δ. We refer the reader to [3] and the appendix of [1].

2.4 Evolution Equations

We will frequently use identities involving derivatives of the tangent and normal

vectors, such as

(2.11) t̂α · n̂ = −n̂α · t̂ = θα, t̂t · n̂ = −n̂t · t̂ = θt ,

t̂α · t̂ = n̂α · n̂ = t̂t · t̂ = n̂t · n̂ = 0.

We use these identities together with (2.3) and the formula U = W·n̂ to make

the following calculation, which will be useful many times:

Dα(T − W·t̂) = Tα − Wα · t̂ − W · t̂α

= θαU + Lt

2π
− Wα · t̂ − θαU = Lt

2π
− Wα · t̂.

(2.12)

We can now rewrite the evolution equation (2.1) as

θt = 2π

L

(
Wα · n̂ + (T − W·t̂)θα

)
= 2π2

L2
H(γα) + 2π

L
(T − W·t̂)θα + 2π

L
m · n̂.

(2.13)

We also need to discuss the evolution of L . Since L = ∫
sα dα, we use (2.2) and

the fact that T is periodic to find

(2.14) Lt(t) = −
∫ 2π

0

θα(α, t)U (α, t)dα.

The evolution equation for γ is (see Appendix B)

γt = 1

We

2πθαα

L
+ Dα

(
2π(T − W·t̂)γ

L

)

− 2

(
L

2π
Wt · t̂ + π2

L2
γ γα − (T − W·t̂)Wα · t̂ + gyα

)
.

(2.15)
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The Weber number We is a dimensionless parameter inversely proportional to sur-

face tension. Thus, We = ∞ is the case without surface tension. This form of

the equation can be found in [6], for example. We have included a derivation of

the equation in the appendix. A similar derivation is included in [3], and another

version can be found in [1]. For now, we restrict ourselves to the case We = ∞; we

will consider We < ∞ in Section 4. This allows us to write the evolution equation

for γ as

γt = 2π

L
Dα((T − W·t̂)γ )

− 2

(
L

2π
Wt · t̂ + π2

L2
γ γα − (T − W·t̂)Wα · t̂ + gyα

)
.

(2.16)

The system formed by equations (2.13) and (2.15) is the water wave system

(without surface tension). We rewrite this system in a more convenient form, using

the modified tangential velocity δ. In what follows, s is taken large enough (s ≥ 6

will certainly be sufficient).

PROPOSITION 2.1 The water wave system can be rewritten as

(2.17)

{
δαt = − 2π

L
δδαα − cθα + ψ,

θt = − 2π
L

δθα + 2π
L

H(δα) + φ,

where c = −∇ p · n̂ is positive and ψ and φ are lower-order terms that satisfy

‖ψ‖s−1/2 ≤ C(‖θ‖s, ‖δ‖s+1/2), ‖φ‖s ≤ C(‖θ‖s−1, ‖δ‖s−1/2)‖θ‖s .

PROOF: For the convenience of the reader, we will give the detailed computa-

tion that yields (2.17). Thus, we need to use (2.16) to calculate δt . First, however,

we restate (2.13) in terms of δ. To do this, we make use of (2.12); we get

(2.18) θt = 2π

L

(
H(δα) − H(Wα · t̂) + (T − W·t̂)θα + m · n̂

)
.

We restate this by using the representation (2.8) for Wα · t̂ and the definition of δ.

We get

(2.19) θt = 2π

L

(
H(δα) − δθα − H(m · t̂) + m · n̂ + π

L
P0(γ θα)

)
.

Here we have used the fact that H 2( f ) = − f whenever f has zero mean. If f

does not have zero mean, then H 2( f ) = − f + P0( f ), where

P0( f ) = 1

2π

∫ 2π

0

f (α)dα.
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We now proceed to find an evolution equation for δ. Notice that we can rewrite

(2.16) to read

γt = −Dα

((γπ

L

)2

− 2(T − W·t̂)
(γπ

L

)
+ (T − W·t̂)2

)

+ Lt

π
(T − W·t̂) − L

π
Wt · t̂ − 2gyα.

(2.20)

This can be rephrased as

(2.21) γt = −Dα(δ
2) + Lt

π
(T − W·t̂) − L

π
Wt · t̂ − 2gyα.

We use (2.10) to calculate δt :

(2.22) δt = π

L
γt − π Lt

L2
γ − Tt + Wt · t̂ + θt(W·n̂).

Substituting from (2.21), this becomes

δt = π

L

(
−Dα(δ

2) + Lt

L
(T − W·t̂) − L

π
Wt · t̂ − 2gyα

)

− π Lt

L2
γ − Tt + Wt · t̂ + θt(W·n̂)

= −π

L
Dα(δ

2) − Lt

L
δ − 2π

L
gyα − Tt + θt(W·n̂).

(2.23)

In later sections of this paper, we will perform estimates that require taking α-

derivatives of δ. Thus, we now compute δαt :

δαt = −π

L
D2

α(δ
2) − Lt

L
δα − 2π

L
gyαα − Tαt

− θtθα(W·t̂) + θαt(W·n̂) + θt(Wα · n̂).

(2.24)

Since we know from (2.3) that Tα = θα(W·n̂) + Lt/(2π), we have

Tαt = θαt(W·n̂) + θαWt · n̂ − θαθt(W·t̂) + Ltt

2π
.

We substitute this into (2.24) to get

(2.25) δαt = −π

L
D2

α(δ
2) − Lt

L
δα − 2π

L
gyαα − θα(Wt · n̂) − Ltt

2π
+ θt(Wα · n̂).

We want to continue to simplify (2.25), but first we must put some effort into

understanding Wt · n̂. We have thus far been considering the surface of the water

wave to be a curve parametrized by the spatial variable α. We now want to think of

it as also being parametrized by a Lagrangian spatial variable β. That is, the same

curve is given by the set of points (x(α, t), y(α, t)) or (x̃(β, t), ỹ(β, t)). It is

natural to use the equation

(2.26) (x(α, t), y(α, t)) = (x̃(β, t), ỹ(β, t))
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to define α as a function of β and t . We define V by

(x̃, ỹ)t(β, t) = V(β, t) = W(α(β, t), t) + γ (α(β, t), t)

2sα(α(β, t), t)
t̂.

Given any function f (α(β, t), t), we can compute its time derivative by

d f

dt
= ∂ f

∂t
+ α̇

∂ f

∂α
.

To calculate α̇, we differentiate both sides of (2.26) with respect to t . We find that

(x, y)t + α̇(x, y)α = (x̃, ỹ)t .

Taking the tangential component of this, we see that α̇ is the difference in tangential

velocities of (x, y) and (x̃, ỹ) divided by sα. That is, α̇ = δ/sα.

Since our goal at the moment is to calculate Wt · n̂, we now compute Vt · n̂. We

get

(2.27) Vt · n̂ = Wt · n̂ + δ

sα

Wα · n̂ + γ

2sα

θt + γ

2s2
α

δθα.

We combine (2.27) with (2.25) to get

δαt =
[
−2π

L
gyαα − θαVt · n̂

]
− π

L
D2

α(δ
2) − Lt

L
δα − Ltt

2π

+ θt Wα · n̂ + π

L
θαγ θt + 2π

L
θαδWα · n̂ + 2π2

L2
θ2
αδγ.

(2.28)

We now look in detail at the first term on the right-hand side of this equation,

keeping in mind (1.1). We first notice that since yα = L
2π

sin(θ), we have that

yαα = L
2π

θα cos(θ). We also make the definition ĝ = (0,−1). We can now see that

−2π

L
gyαα = gθαĝ · n̂.

Following [4], we notice now that the Euler equations (in Lagrangian coordinates)

can be stated as

Vt − gĝ = −∇ p.

We make the definition

(2.29) c(α, t) = −∇ p · n̂;
recall that (1.1) implies that c is positive and bounded away from 0. We can now

write the term in brackets on the right-hand side of (2.28) as simply −cθα. We can

then write the equation for δαt :

δαt = −cθα − π

L
D2

α(δ
2) − Lt

L
δα − Ltt

2π

+ θt Wα · n̂ + π

L
θαγ θt + 2π

L
θαδWα · n̂ + 2π2

L2
θ2
αδγ.

(2.30)
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We want to understand better the last four terms on the right-hand side above, so

we rewrite them as follows:

δαt = −cθα − π

L
D2

α(δ
2) − Lt

L
δα − Ltt

2π

+
(

Wα · n̂ + π

L
θαγ

) (
θt + 2π

L
θαδ

)
.

(2.31)

We will simplify this by using (2.8).

We first simplify the term Wα · n̂ + π
L
θαγ by recognizing that it is very similar

to H(δα). That is, (2.10) implies

H(δα) = H

(
π

L
γα + Wα · t̂ − Lt

2π

)

= π

L
(H(γα) + γ θα − P0(γ θα)) + H(m · t̂).

Now when we use (2.8), we get

Wα · n̂ + π

L
θαγ = π

L
H(γα) + m · n̂ + π

L
θαγ

= H(δα) − H(m · t̂) + m · n̂ + π

L
P0(γ θα).

(2.32)

We next try to simplify θt + 2π
L

θαδ. We first use (2.13) to replace the θt term

and (2.10) to replace the δ. We get

(2.33) θt + 2π

L
θαδ = 2π

L

(
Wα · n̂ + π

L
θαγ

)
.

Notice that we calculated the quantity on the right-hand side in (2.32). So, our final

form of δαt is

δαt = −cθα − π

L
D2

α(δ
2) − Lt

L
δα − Ltt

2π

+ 2π

L

(
H(δα) − H(m · t̂) + m · n̂ + π

L
P0(γ θα)

)2

.

(2.34)

Finally, we see that (2.19) and (2.34) can be rewritten as

(2.35)

{
δαt = − 2π

L
δδαα − cθα + ψ,

θt = − 2π
L

δθα + 2π
L

H(δα) + φ,

where ψ and φ are lower-order terms and are given by

ψ = −2π

L
(δα)

2 − Lt

L
δα − Ltt

2π

+ 2π

L

(
H(δα) − H(m · t̂) + m · n̂ + π

L
P0(γ θα)

)2
(2.36)

φ = 2π

L

(
−H(m · t̂) + m · n̂ + π

L
P0(γ θα)

)
.(2.37)
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To prove the estimates for φ and φ, we apply Lemma A.8 from Appendix A. We

only point out that the term involving Lt and Ltt can easily be treated by using the

expression of Lt (2.14). �

When surface tension is taken into account we have just to add

1

We

2π2

L2
θααα

to the equation for δαt , and system (2.35) should be replaced by

(2.38)

{
δαt = 1

We
2π2

L2 θααα − 2π
L

δδαα − cθα + ψ,

θt = − 2π
L

δθα + 2π
L

H(δα) + φ.

The formulae for φ, ψ , and c are exactly the same.

2.5 Statement of the Results

Now we are able to restate Theorems 1.1 and 1.2. For any We, we take an initial

data for the water wave problem, namely,

(2.39)

{
zWe(α, t = 0) = zWe

0 (α),

γ We(α, t = 0) = γ We
0 (α),

where zWe
0 (α) − α and γ We

0 (α) are 2π-periodic and zWe
0 (α) satisfies the non-self-

intersection condition (1.2) uniformly in We. Moreover, α is an arc length parame-

trization, namely, |DαzWe
0 (α)| is constant and is equal to LWe

0 /2π . Any initial data

for the water wave problem can easily be restated in terms of an initial data for

(2.38). Hence, we can define (δWe
0 (α), θWe

0 (α)) by solving the following equations:

DαzWe
0 (α) = LWe

0

2π

(
cos θWe

0 (α), sin θWe
0 (α)

)
.

Next, we can compute WWe
0 by using (2.4); then, U We

0 is determined by U We
0 =

WWe
0 · n̂. We compute LWe

t (t = 0) = 2πsαt(t = 0) by using (2.14). And finally,

we can compute T by (2.2). This allows us to define δWe
0 .

We take s big enough (s ≥ 6 is enough for our calculation). But we do not

intend to give the best regularity here. We assume that for all We, (δWe
0 (α), θWe

0 (α))

is in H s+1/2 × H s+1, that (δWe
0 (α), θWe

0 (α)) converges to (δ0(α), θ0(α)) in H s+1/2 ×
H s when We goes to ∞, and that ‖θWe

0 (α))‖Hs+1 ≤ C
√

We. Then we have the

following:

THEOREM 2.2 There exist a We0 and a T ∗ > 0 such that for all We > We0,

there exists a unique solution (δWe, θWe) of (2.38) in C([0, T ∗); H s+1/2 × H s+1).

Moreover, as We goes to ∞, (δWe, θWe) converges in Cloc([0, T ∗); H s′+1/2 × H s′
)

to the unique solution (δ, θ) of (2.35) for all s ′ < s.

Remark 2.3. Theorem 2.2 gives a new existence result about the water wave equa-

tion (2.35) without surface tension.
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The proof of this theorem is based on proving some estimates for (2.38) that

are uniform in We and then passing to the limit in We. It is only for this reason that

we take We > We0, since the energy we use to solve (2.38) requires that We be big

enough to ensure that c > c0/2.

2.6 Calculation of cα

In order to perform the estimates of the following sections, it will be necessary

to understand the smoothness of cα. To this end, we perform a rather long calcula-

tion here which demonstrates that cα is smoother than might first be expected. In

particular, at the end of this section, we will see an important cancellation between

two terms with a high number of derivatives.

To begin, we explicitly write what c is. We restate the definition of the previous

section:

(2.40) c(α, t) = Wt · n̂ + δ

sα

Wα · n̂ + γ

2sα

θt + γ

2s2
α

δθα − gĝ · n̂.

From this formula it seems that cα has the same regularity as γαα or θαα. One

of the crucial steps in what follows is to prove that the combination of the deriva-

tives of the terms on the right-hand side of the definition of c is smoother than the

individual terms.

PROPOSITION 2.4 cα can be written as

(2.41) cα = H(δαt) + f,

where, in the case without surface tension,

‖ f ‖s−3/2 ≤ C(‖δ‖s+1/2, ‖θ‖s, |L|)
and in the case with surface tension

‖ f ‖s−3/2 ≤ C

(
‖δ‖s+1/2, ‖θ‖s,

1√
We

‖θ‖s+1, |L|
)

PROOF: To begin, we observe that in order to calculate cα, we need to calculate

Wαt · n̂. We will also need later a convenient form of Wαt · t̂. In the next section,

we find the relevant formulae. By the same kind of argument we presented at the

end of Section 2.2, we can see that our conclusion will be that

Wαt ≈ π

L
H(γαt)n̂ − π

L
H(γ θαt)t̂.

Calculation of Wα t

To calculate Wαt · n̂, we use (2.5). We first have

(2.42) �(Wαt)
∗ =

(
1

2π i
PV

∫
γ (α′)

z(α) − z(α′)
dα′

)
αt

.

We use the fact that

PV

∫
zα(α

′)
z(α) − z(α′)

dα′ = 0
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to rewrite (2.42) as

�(Wαt)
∗ =

(
1

2π i
PV

∫ (
γ (α′)
zα(α′)

− γ (α)

zα(α)

)
zα(α

′)
z(α) − z(α′)

dα′
)

αt

= −
(

1

2π i
PV

∫ (
γ (α′)
zα(α′)

− γ (α)

zα(α)

)
zα(α

′)zα(α)

(z(α) − z(α′))2
dα′

)
t

.

(2.43)

In the final integral in (2.43), we recognize that there is an α′-derivative, and we

integrate by parts:

�(Wαt)
∗ = −

(
zα(α)

2π i
PV

∫ (
γ (α′)
zα(α′)

− γ (α)

zα(α)

)
Dα′

1

z(α) − z(α′)
dα′

)
t

=
(

zα(α)

2π i
PV

∫ (
γ (α′)
zα(α′)

)
α′

1

z(α) − z(α′)
dα′

)
t

.

(2.44)

Applying the time derivative, we have

�(Wαt)
∗ = zαt(α)

2π i
PV

∫ (
γ (α′)
zα(α′)

)
α′

1

z(α) − z(α′)
dα′

+ zα(α)

2π i
PV

∫ (
γ (α′)
zα(α′)

)
α′t

1

z(α) − z(α′)
dα′

− zα(α)

2π i
PV

∫ (
γ (α′)
zα(α′)

)
α′

zt(α) − zt(α
′)

(z(α) − z(α′))2
dα′

= �(Y1)
∗ + �(Y2)

∗ + �(Y3)
∗.

(2.45)

To calculate Wαt · n̂, we now calculate Y1 · n̂, Y2 · n̂, and Y3 · n̂.

Before doing this, we recall the following formulae involving zα and its deriva-

tives; these stem from the relationship zα/sα = eiθ :

Re

(
zαt

i zα

)
= Re

(
(sαeiθ )t

i sαeiθ

)
= θt ,(2.46)

Re

(
zαt

zα

)
= Re

(
(sαeiθ )t

sαeiθ

)
= sαt

sα

,(2.47)

Re

(
zαα

i zα

)
= Re

(
(sαeiθ )α

isαeiθ

)
= θα,(2.48)

Re

(
zαα

zα

)
= Re

(
(sαeiθ )α

sαeiθ

)
= 0.(2.49)

We see immediately that

�(Y1)
∗ = zαt

2i z2
α

H

(
γα − γ zαα

zα

)
+ zαt

zα

�(m)∗.
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Taking the dot product Y1 · n̂, we get

Y1 · n̂ = Re

{
zαt

2i z2
α

i zα

sα

H(γα)

}
+ Re

{
zαt

2i z2
α

i zα

sα

H

(
γ zαα

zα

)}

+ Re

{
zαt

zα

�(m)∗ i zα

sα

}
.

(2.50)

The first term on the right-hand side is equal to π Lt H(γα)/L2 by (2.47). To un-

derstand the second and third terms on the right-hand side, we use the formula for

two complex numbers u and v

Re{uv} = Re{u} Re{v} − Re{iu} Re{iv}.

We get that the second term is

Re

{
zαt z

∗
α

2s3
α

}
Re

{
H

(
γ zααz∗

α

s2
α

)}
− Re

{
i zαt z

∗
α

2s3
α

}
Re

{
H

(
iγ zααz∗

α

s2
α

)}
.

The first of these two is identically 0 by (2.49). The second of these is equal to

πθt H(γ θα)/L . Also, we see that the third term on the right-hand side of (2.50) is

Lt m · n̂/L − θt m · t̂.

From the definitions of Y2 and the integral remainder operator K, we see first

that we can write

�(Y2)
∗ = zα

2i
H

((
γ

zα

)
αt

1

zα

)
+ zαK[z]

((
γ

zα

)
αt

)
.

We apply the derivatives in the first term on the right-hand side to get

zα

2i
H

((
γ

zα

)
αt

1

zα

)

= zα

2i
H

(
γαt

z2
α

− γαzαt

z3
α

− γ zααt

z3
α

+ 2
γ zααzαt

z4
α

− γt zαα

z3
α

)

= 1

2i zα

(
H(γαt) − H

(
γαzαt

zα

)
− H

(
γ zααt

zα

)
+ 2H

(
γ zααzαt

z2
α

))

− H

(
γt zαα

zα

)
+ zα

2i

[
H,

1

z2
α

](
zα

(
γ

zα

)
αt

)
.

(2.51)
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When we take the dot product of Y2 with the normal vector, we get the following

contribution from the right-hand side of the above line:

1

2sα

H(γαt) − 1

2sα

H

(
γα Re

{
zαt z

∗
α

s2
α

})
− 1

2sα

H

(
γ Re

{
zααt z

∗
α

s2
α

})

+ 1

sα

H

(
γ Re

{
zααz∗

α

s2
α

}
Re

{
zαt z

∗
α

s2
α

})

− 1

sα

H

(
γ Re

{
zαα(i zα)

∗

s2
α

}
Re

{
zαt(i zα)

∗

s2
α

})

− 1

2sα

H

(
γt Re

{
zααz∗

α

s2
α

})
+ Re

{
z2
α

2sα

[
H,

1

z2
α

] (
zα

(
γ

zα

)
αt

)}
.

(2.52)

We can make the calculation (similarly to (2.46))

(2.53) Re

{
zααt z

∗
α

s2
α

}
= −θαθt .

Finally, we make the conclusion that

Y2 · n̂ = π

L
H(γαt) − π Lt

L2
H(γα) − π

L
H(γ θαθt)

+ Re

{
i z2

α

sα

K[z]
((

γ

zα

)
αt

)}

+ Re

{
z2
α

2sα

[
H,

1

z2
α

] (
zα

(
γ

zα

)
αt

)}
.

(2.54)

We now rewrite Y3 as

�(Y3)
∗ = − zα

2π i
PV

∫ (
γ

zα

)
α′

zt(α) − zt(α
′)

(z(α) − z(α′))2
dα′

= − zα

2π i
PV

∫ ((
γ

zα

)
α′

1

zα

)
(zt(α)

− zt(α
′))Dα′

(
1

z(α) − z(α′)

)
dα′.

(2.55)

We integrate this by parts and get two kinds of terms. The α′-derivative can fall

on zt(α) − zt(α
′). This will be the only significant source of terms from Y3. The

other kind of term occurs when the α′-derivative does not fall on zt(α) − zt(α
′);

these terms are smooth by Lemmas A.6 and A.7. When the derivative falls on the

zt(α) − zt(α
′), we get

− zα

2i
H

((
γ

zα

)
α

zαt

z2
α

)
− zαK[z]

((
γ

zα

)
α

zαt

zα

)
.
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When we take the dot product with n̂, we get a contribution of

−π

L
H

(
γα Re

{
zαt

zα

})
− π

L
H

(
γ Re

{
zαα

i zα

}
Re

{
zαt

i zα

})
.

Using our identities, we conclude that

Y3 · n̂ = −π Lt

L2
H(γα) − π

L
H(γ θαθt) + ϒ1,

where ϒ1 is a large collection of smooth terms.

We are finally able to write

(2.56) Wαt · n̂ = π

L
H(γαt) + f1 + ϒ2,

where f1 is a collection of lower-order terms and ϒ2 is a collection of very smooth

terms. We define f1 as

f1 = −π

L
θt H(γ θα) − θt m · t̂ − π Lt

L2
H(γα) − 2π

L
H(γ θαθt).

In both the case without surface tension and the case with surface tension, we

will estimate δ in H s+1/2. Since δαt contains terms that involve c(α, t), we hope

to be able to estimate cα in H s−3/2. To simplify the equations, we introduce a

new notation. The notation f will appear many times below, and it has a different

meaning from line to line. In the case without surface tension, it represents any

term whose H s−3/2 norm can be estimated in terms of the H s+1/2 norm of δ, the

H s norm of θ , and |L|, namely,

‖ f ‖s−3/2 ≤ C(‖δ‖s+1/2, ‖θ‖s, |L|).

In the case with surface tension, f can also depend (uniformly) on 1√
We

‖θ‖s+1 :

‖ f ‖s−3/2 ≤ C

(
‖δ‖s+1/2, ‖θ‖s,

1√
We

‖θ‖s+1, |L|
)

.

Note that this includes terms that can be estimated in terms of the H s norm of γ (see

the appendix for Lemma A.3). Thus, we can summarize the above calculation as

(2.57) Wαt · n̂ = π

L
H(γαt) + f.

A similar lengthy calculation yields

(2.58) Wαt · t̂ = −π

L
H(γ θαt) + f.
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Conclusion of the Calculation of cα

To begin, we differentiate (2.40) with respect to α to get

cα = Wαt · n̂ + δ

sα

Wαα · n̂ + γ

2sα

θαt + γ

2s2
α

δθαα

− θαWt · t̂ + δα

sα

Wα · n̂ − δ

sα

θαWα · t̂

+ γα

2sα

θt + γα

2s2
α

δθα + γ

2s2
α

δαθα + gθαĝ · t̂.

(2.59)

The most singular terms are those that appear in the box. The rest of the terms are

obviously bounded in H s−3/2 by ‖γ ‖s , ‖θ‖s , ‖δ‖s−1/2 (and by 1√
We

‖θ‖s+1 in the

case with surface tension), and |L|; see Appendix A for relevant lemmas.

For the boxed terms, we first calculate the sum of the first two:

(2.60) Wαt · n̂ + δ

sα

Wαα · n̂ = π

L
H(γαt) + 2π2

L2
δH(γαα) + f.

We now rewrite (2.60) by using the equation

(2.61) δαt = π

L
γαt + Wαt · t̂ + 2Uθαt + f,

which can be found by differentiating (2.22) with respect to α. We find

Wαt · n̂ + δ

sα

Wαα · n̂ = H(δαt) − H(Wαt · t̂)

− 2H(Uθαt) + 2π2

L2
δH(γαα) + f.

(2.62)

Using (2.58), we rewrite this as

(2.63) Wαt · n̂ + δ

sα

Wαα · n̂ = H(δαt) − π

L
γ θαt + 2π2

L2
δH(γαα) + f.

Substituting in θt = 2π2

L2 H(γα) + 2π
L

(T − W·t̂)θα + f and δ = π
L
γ − (T − W·t̂),

we get

Wαt · n̂ + δ

sα

Wαα · n̂ = H(δαt) − 2π3

L3
γ H(γαα) − 2π3

L3
γ (T − W·t̂)θαα

+ 2π2

L2

(π

L
γ − (T − W·t̂)

)
H(γαα).

(2.64)

There is an important cancellation here between the two terms with γ H(γαα); we

are left with

(2.65) Wαt · n̂ + δ

sα

Wαα · n̂ = H(δαt) − 2π

L
(T − W·t̂)H(δαα) + f.
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This concludes the calculation of the first two of the boxed terms. For the third and

the fourth of the boxed terms, we get

πγ

L

(
θαt + 2π

L
δθαα

)
= 2π2γ

L2
H(δαα) + f.

In summary, we have found the following formula for cα:

(2.66) cα = H(δαt) + 2π

L
δH(δαα) + f.

and the proof of Proposition 2.4 is complete. �

3 Estimates Without Surface Tension

In this section, we perform energy estimates for triples (θ, δ, L). The energy

function is related to the H s norm of θ , the H s+1/2 norm of δ, and the absolute

value of L . First, notice that we only include the absolute value of L for technical

reasons—since it is also an unknown, we need to bound its growth in order to

achieve an existence theorem. However, if θ and δ are sufficiently regular, we can

see immediately from (2.14) that the growth of L is bounded by their norms. We

define the energy as

(3.1) E(t) = ‖θ‖2
0(t) + ‖δ‖2

0(t) + ‖γ ‖2
s−1(t) +

s∑
k=1

Ek(t) + L2(t),

where Ek is like the square of the H k norm of θ and the square of the H k+1/2 norm

of δ. In particular,

(3.2) Ek(t) = 1

2

∫ 2π

0

c
L

2π

(
Dk

αθ
)2 + (

Dk
αδ

)


(
Dk

αδ
)
dα.

The operator  is equal to H Dα. This is a positive operator since the symbol of

the Fourier transform of  is |ξ |. Thus, for any function f , the integral
∫

f  f

is related to Sobolev norms of f in half-integer spaces. We write the integral in

(3.2) as Ek,1 + Ek,2. We remark here that although only s − 1 derivatives of γ

appear explicitly in the definition of the energy, we are actually able to estimate s

derivatives of γ . This is explained in Appendix A, and it is because of the close

relationship between δ and γ and θ .

PROPOSITION 3.1 If (δ, θ) solves (2.35), then the time derivative of the energy, E,

is bounded in terms of E as long as (1.2) holds with a replaced by εa. This leads

to an a priori estimate for E until a certain time.

PROOF: We first address the least important parts of the energy; that is, we

will first discuss how to bound the time derivative of all of the components of the

energy except Ek . As we have mentioned above, we can bound Lt by the energy as

long as s is large enough. Clearly, we can also bound θt and δt in H 0 as long as s

is large enough. By recalling equation (2.21), we can see that the H s−1 norm of γt
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can be bounded by ‖δ‖s , |Lt |, |L|, ‖T − W·t̂‖s−1, ‖Wt · t̂‖s−1, and ‖z‖s . The first

three of these are clearly bounded by the energy. By Lemma A.1 (in the appendix)

‖z‖s can be bounded by ‖θ‖s−1 and |L|. Lemma A.5 demonstrates that Wt · t̂

can be bounded by the energy. Instead of considering ‖T − W·t̂‖s−1, we consider

‖Dα(T − W·t̂)‖s−2; using (2.12) and (2.8), we see that this can be bounded by

‖γ ‖s−2, ‖θ‖s−1, ‖m‖s−2, and ‖t̂‖s−2. Of these, the first two are clearly bounded by

the energy. The second two are also, by Lemmas A.2 and A.8.

We begin to investigate the time derivative of Ek by calculating

(3.3)
d Ek,1

dt
= L

2π

∫ (
cDk

αθ
)(

Dk
αθt

) + ct

2

(
Dk

αθ
)2

dα + Lt

L
Ek,1.

For θ and δ sufficiently smooth, we can bound |ct | and |Lt | by the energy; so we

concern ourselves with the first term. Using (2.35), it is

(3.4)

∫
c
(
Dk

αθ
)(

Dk
α H(δα) − Dk

α(δθα) + L

2π
Dk

αφ

)
dα.

Of these terms, only the one that includes H(δα) is significant. The second term is

a transport term, and we only need to treat the case where all the k derivatives hit

on θα. Then, by integration by parts we get

(3.5)

∫
c
(
Dk

αθ
)(

δDk
αθα

) = −1

2

∫
(cδ)α

(
Dk

αθ
)2

,

and we can use the energy to bound it. Recalling the definition of φ in (2.37),

we see that we can bound the term in (3.4), which includes φ by the energy using

Lemmas A.2 and A.8.

Now we turn our attention to Ek,2. We clearly have

(3.6)
d Ek,2

dt
=

∫ (
Dk

αδ
)
H

(
Dk+1

α δt

)
dα.

Using the equation δαt = − 2π
L

δδαα − cθα + ψ from (2.35), we have

d Ek,2

dt
=

∫ (
Dk

αδ
)
H

(
Dk

αδαt

)
dα

= −
∫ (

Dk
αδ

)
H

(
Dk

α(cθα)
)
dα

−
∫ (

Dk
αδ

)
H

(
Dk

α

(
2π

L
δδαα

))
dα +

∫ (
Dk

αδ
)
H

(
Dk

αψ
)
dα.

(3.7)

The second term on the right-hand side is a transport term and can be treated in

a slightly more complicated way than (3.5). Using the fact that  = H Dα is

self-adjoint, we have∫ (
Dk

αδ
)
H

(
Dk

α(δδαα)
)
dα =

∫ (
H Dk+1

α δ
)(

Dk−1
α (δδαα)

)
dα.
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Distributing the k − 1 derivatives in the second factor on the right-hand side, we

have ∫ (
Dk

αδ
)
H

(
Dk

α(δδαα)
)
dα =

∫ (
H Dk+1

α δ
)(

δDk+1
α δ

)
dα + l.o.t.

We rewrite the integral on the right-hand side using the fact that the adjoint of H

is −H , ∫ (
H Dk+1

α δ
)(

δDk+1
α δ

)
dα = −

∫ (
Dk+1

α δ
)
H

(
δDk+1

α δ
)
dα.

We pull δ through the Hilbert transform to find∫ (
H Dk+1

α δ
)(

δDk+1
α δ

)
dα = −

∫
δ
(
Dk+1

α δ
)
H

(
Dk+1

α δ
)
dα

−
∫ ([H, δ]Dk+1

α δ
) (

Dk+1
α δ

)
dα.

Rearranging this slightly, we have∫
δ
(
Dk+1

α δ
)
H

(
Dk+1

α δ
)
dα = −1

2

∫ ([H, δ]Dk+1
α δ

) (
Dk+1

α δ
)
dα.

We can use Lemma A.7 (in the appendix) to control the commutator term. Thus,

the second term in (3.7) can be bounded in terms of the energy.

The third term is a lower-order term and is easily bounded by the energy. We

rewrite the first one to emphasize the fact that the most important contribution is

when all derivatives fall on θ or when they all fall on c. We get

d Ek,2

dt
= −

∫ (
Dk

αδ
)


(
cDk

αθ
)
dα −

∫ (
Dk

αδ
)


((
Dk−1

α c
)
(θα)

)
dα

−
∫ (

Dk
αδ

)



k−2∑

j=1

(
k − 1

j

)(
D j

αc
)(

Dk− j
α θ

) dα

− 2π

L

∫ (
Dk

αδ
)
H

(
Dk

α(δδα)
)
dα +

∫ (
Dk

αδ
)
H

(
Dk

αψ
)
dα.

(3.8)

Adding (3.4) and (3.8), we see that the first term on the right-hand side of

each cancels with the other (because  is self-adjoint). To complete the proof of

the proposition, we need only prove that we can estimate cα in the space H s−3/2,

which allows us to estimate the second term on the right-hand of (3.8). Indeed,

using Proposition 2.4, we see that∣∣∣∣
∫ (

Dk
αδ

)


((
Dk−1

α c
)
(θα)

)
dα

∣∣∣∣ ≤ C‖δ‖k+1/2‖cα‖k−3/2‖θ‖2

≤ C E3
k .

The proof of Proposition 3.1 is complete. �
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4 Estimates with Surface Tension and Convergence

In this section, we study the problem with surface tension by adding an extra

term to the energy.

4.1 Estimates with Surface Tension

We can prove estimates similar to those proven in the last section as long as c

is bounded away from 0. The argument given in [18] can easily be adapted to the

case with small surface tension, and we can easily prove that if We is big enough,

then c is uniformly bounded away from 0. Hence, we consider the case We > We0

for some We0. Then, we introduce the following modified energy:

(4.1) EWe(t) = ‖θ‖2
0(t) + ‖δ‖2

0(t) + ‖γ ‖2
s−1(t) +

s∑
k=1

EWe
k (t) + L2(t),

where EWe
k (t) is given by

(4.2) EWe
k (t) = 1

2

∫ 2π

0

c
L

2π

(
Dk

αθ
)2 + 1

We

π

L

(
Dk+1

α θ
)2 + (

Dk
αδ

)


(
Dk

αδ
)
dα.

PROPOSITION 4.1 If (δWe, θWe) solves (2.38), then the time derivative of the en-

ergy, EWe, is uniformly bounded in terms of EWe as long as (1.2) holds with a

replaced by εa. This leads to an a priori estimate for EWe until a certain time T ∗,

which is independent of We.

PROOF: The proof is similar to the proof of Proposition 3.1. We can decom-

pose as above EWe
k = EWe

k,1 + EWe
k,2. Then

d EWe
k,1

dt
=

∫
L

2π

(
cDk

αθ
)(

Dk
αθt

) + 1

We

π

L

(
Dk+1

α θ
)(

Dk+1
α θt

)
+ L

2π
ct

(
Dk

αθ
)2 + Lt

( c

2π

(
Dk

αθ
)2 − π

L2We

(
Dk+1

α θ
)2

)
dα,

(4.3)

and the important contributions can be rewritten as

(4.4)

∫
c
(
Dk

αθ
)
Dk

α H(δα) + 1

We

2π2

L2

(
Dk+1

α θ
)
Dk+1

α H(δα)dα

+
∫

− 1

We

2π2

L2

(
Dk+1

α θ
)(

Dk+1
α δ

)
θα + 1

We

(
Dk+1

α θ
)(

Dk+1
α φ

)
.

On the other hand, we have

d EWe
k,2

dt
=

∫ (
Dk

αδ
)
H

(
Dk

αδαt

)
dα

=
∫

1

We

2π2

L2

(
Dk

αδ
)
H

(
Dk

α(θααα)
)
dα −

∫ (
Dk

αδ
)
H

(
Dk

α(cθα)
)
dα

−
∫ (

Dk
αδ

)
H

(
Dk

α

(
2π

L
δδαα

))
dα +

∫ (
Dk

αδ
)
H

(
Dk

αψ
)
dα.

(4.5)
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By a simple integration by parts, the first term on the right-hand side of (4.5) can-

cels with the second term of (4.4). The second term of the right-hand side of (4.5)

has two important contributions, namely when all the k derivatives hit on c or on θα:

(4.6) −
∫ (

Dk
αδ

)
H

(
cDk+1

α θ
)
dα −

∫ (
Dk

αδ
)
H

((
Dk

αc
)
θα

)
dα

By a simple integration by parts the first term of (4.6) cancels with the first term of

(4.4) modulo some low-order terms.

Using Proposition 2.4, we deduce that

Dk
αc = 1

We

2π2

L2
H

(
Dk+2

α θ
) + Dk−1

α f.

Hence the second term of (4.6) can be written as

(4.7) − 1

We

2π2

L2

∫ (
Dk

αδ
)
H

(
H

(
Dk+2

α θ
)
θα

)
dα −

∫ (
Dk

αδ
)


((
Dk−2

α f
)
θα

)
dα.

By a simple integration by parts, the first term of (4.7) cancels with the third term

of (4.4) modulo low-order terms. The second term of (4.7) can easily be controlled

by the energy.

Finally, let us explain how we can control the fourth term of (4.4). Using that

‖φ‖k+1 ≤ C(‖θ‖k, ‖δ‖k+1/2)‖θ‖k+1,

we deduce that the fourth term of (4.4) can be controlled by the energy. This ends

the proof of the proposition. �

Remark 4.2. The condition (1.2) with a replaced by εa holds on some time interval

that is uniform in We since the energy controls ∂t z (and its spatial derivatives) in

the sup norm.

Remark 4.3. If we take We ≤ We0, then the energy introduced in (4.1) can also be

used to yield existence for the water wave with surface tension (2.38) by using the

fact that θWe is uniformly bounded in H s+1.

4.2 Convergence Proof

From the uniform bounds we have proven in the last section, there exists a fam-

ily of solutions (δWe, θWe) of (2.38) that is bounded in Cloc([0, T ∗); H s+1/2 × H s).

We can then extract a subsequence that converges weakly to some (δ, θ) and by a

very standard compactness argument we can prove that (δ, θ) is a solution of the

water wave without surface tension (2.35). We only point out that to get compact-

ness in time, we have to use that (δWe
t , θWe

t ) are bounded in Cloc([0, T ∗); H s−2 ×
H s−1) by using the evolution equations.

Hence, we deduce that for all s ′ < s as We → ∞, (δWe, θWe) converges to

(δ, θ) in Cloc([0, T ∗); H s′+1/2 × H s′
).
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Appendix A: Basic Estimates

In this section, we provide details of several estimates used in earlier sections.

Much of what we state here is proven in more detail in [1] and [2]. In the following

lemmas, if the range of possible values of s is not specified, it is understood that s

is taken to be large enough (s ≥ 6 is always sufficient).

LEMMA A.1 If θ ∈ H s, then z ∈ H s+1, with the estimate ‖z‖s+1 ≤ C |L|(1+‖θ‖s).

PROOF: This follows from the relationship (xα, yα) = L
2π

(cos(θ), sin(θ)) and

a standard composition estimate. Note that C can depend on |θ |∞. �

COROLLARY A.2 If θ ∈ H s, the vectors t̂ and n̂ are in H s.

PROOF: This follows from the relationship t̂ = (cos(θ), sin(θ)) and the fact

that n̂ and t̂ have the same regularity. �

We next give a lemma that tells us that γ has the same regularity as θ . Recall

that our energy functional in Section 3 only included estimates for s −1 derivatives

of γ . Since we estimated θ in H s , this lemma gives a gain of one derivative for γ .

LEMMA A.3 If δ ∈ H s+1/2, θ ∈ H s, and γ ∈ H s−1, then γ ∈ H s.

PROOF: The definition of δ is δ = π
L
γ − (T − W·t̂). Solving this for γ and

differentiating, we get

(A.1) γα = L

π

(
δα + Lt

2π
− Wα · t̂

)
.

Using the representation Wα · t̂ = −π
L

H(γ θα) + m · t̂, we see that everything on

the left side of (A.1) can be estimated in H s−1. (See Lemma A.8 for an estimate

for m.) �

In Section 3, we needed to provide an estimate for cα. This required estimating

both Wt · t̂ and Wαt · n̂. To make these estimates, we first need to provide estimates

for γt . To this end, first notice that (2.16) is actually an integral equation for γt

because of the presence of Wt · t̂ on the right-hand side. It was demonstrated in [3]

that this integral equation is solvable; discussion of this can be found in [5] and [1].

LEMMA A.4 If θ ∈ H s, δ ∈ H s+1/2, and γ ∈ H s−1, then γt ∈ H s−1 in the case

without surface tension. In the case with surface tension, γt ∈ H s−1 if we also

have θ ∈ H s+1.

PROOF: We first write (2.16) as γt = J γt +τ , where J is the integral operator

given by

J [z] f (α) = − PV

∫
f (α′) Re

(
i zα(α) cot

1

2
(z(α) − z(α′))

)
dα′.
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The theorem proven in [3] says that the operator (I −J )−1 is bounded from H 0 to

H 0. We have taken s large enough to guarantee that τ ∈ H 0, which implies γt ∈
H 0. Then, as in the proof of lemma 6.2 in [2], we can examine the integral operator

to conclude that J γt has the same regularity as zα. Thus, J γt is in H s . Examining

τ , we see that it has the same regularity as γα in the case without surface tension.

Using the previous lemma, we see that γα is in H s−1. In the case with surface

tension, τ has the regularity of θαα, which is also in H s−1. Thus, we conclude that

γt is in H s−1. �

LEMMA A.5 If θ ∈ H s, δ ∈ H s+1/2, and γ ∈ H s−1, then Wt · t̂ ∈ H s−1 in the

case without surface tension. With surface tension, Wt · t̂ ∈ H s−1 if we also have

that θ ∈ H s+1.

Remark. This is immediate from the definition of W and the previous lemma.

Our final goal in this appendix is to provide estimates for the operator K and for

the commutator of the Hilbert transform and multiplication by a smooth function.

These are both integral operators, and they were defined in (2.6) and (2.7). The

kernels of both of these operators involve divided differences; for K, the kernel is

q2/q1, where

q1(α, α′) = z(α) − z(α′)
α − α′ =

∫ 1

0

zα(tα + (1 − t)α′) dt,

q2(α, α′) = z(α) − z(α′) − zα(α)(α − α′)
(α − α′)2

=
∫ 1

0

(t − 1)zαα((1 − t)α + tα′) dt.

The proof of Lemma A.6 makes use of this representation of the kernel. Similarly,

the kernel in (2.7) is a divided difference for f , and the proof of Lemma A.7 makes

use of the corresponding representation. We omit these proofs.

LEMMA A.6 Let s be an integer such that s ≥ 2. If z ∈ H s, then K[z] :
H 1→H s−1, and, in particular, there is a positive function C1 such that

‖K[z] f ‖s−1 ≤ C1(‖z‖s−1)‖ f ‖1 ‖z‖s .

Similarly, K[z] : H 0→H s−2 and ‖K[z] f ‖s−2 ≤ C2(‖z‖s−1)‖ f ‖0 ‖z‖s .

LEMMA A.7 For s ≥ 3 and g ∈ H s, the operator [H, g] is bounded from H s−2 to

H s. For s ≥ 4 and g ∈ H s−1/2, [H, g] is bounded from H s−2 to H s−1/2. For i = 0

or i = − 1
2
, we have the estimates ‖[H, g] f ‖s+i ≤ C‖ f ‖s−2‖g‖s+i .

By the definition of m (see (2.9)) and the above lemmas on the regularity of the

associated operators, we have the following lemma:

LEMMA A.8 For s ≥ 4, if θ ∈ H s and γ ∈ H s−1, then m ∈ H s. Moreover,

‖m‖s ≤ C(‖γ ‖s−1, ‖θ‖s−1)‖θ‖s .
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Appendix B: Details of the Formulation

In this appendix, we derive the evolution equation (2.15) for γ from the Eu-

ler equations with the appropriate boundary conditions. The main tools used are

Bernoulli’s equations of motion for potential flow and the Laplace-Young jump

condition for the pressure. Our derivation is a generalization of that found in [3];

a version also appears in the appendix of [1]. We give a derivation for an Atwood

number that is not necessarily equal to 1. We will take an upper fluid of density ρ2

and a lower fluid of density ρ1.

Since the flow is both irrotational and incompressible, there exist both a velocity

potential φ and a stream function ψ . That is, the fluid velocity (u, v) is equal to

both (φx , φy) and (ψy,−ψx). If we let � = φ + iψ be the complex potential, then

the complex velocity is given by

u − iv =
(

d�

dz

)∗
=

(
�α

zα

)∗
.

For z away from the interface, we have a double-layer potential representation

of �. We give the name µ to the dipole strength associated with this double-layer

potential. This gives the formula

�(z) = 1

4π i

∫
µ(α)zα(α) cot

(
1

2
(z − z(α))

)
dα.

The vortex sheet strength is γ = µα.

For irrotational flow the Euler equation reads ∇φt + ∇φ · ∇(∇φ) = − 1
ρ
∇ p −

(0, g). Hence, in Eulerian coordinates, Bernoulli’s equation is φt + 1
2
|∇φ|2 + p

ρ
+

gy = 0. More generally, if we follow a particle of coordinates (x, y), we have

(B.1)
dφi

dt
− ∇φi · (xt , yt) + 1

2
|∇φi |2 + pi

ρi

+ gy = 0.

The limiting values of the velocity from below and above the interface can be found

by the Plemelj formulae (see [11]):

(B.2) ∇φ1 = W + γ

2sα

t̂, ∇φ2 = W − γ

2sα

t̂.

Also, for (x, y) on the interface, we write (xt , yt) = W+(T −W·t̂)t̂. The Laplace-

Young condition for the pressure jump at the interface is

(B.3) p2 − p1 = Sκ = S
θα

sα

,

where S is the coefficient of surface tension and κ is the curvature.

Subtracting (B.1) for i = 2 from (B.1) for i = 1, we have (since the stream

function is continuous across the interface but the potential is discontinuous)

(B.4)
∂µ

∂t
− γ

sα

(T − W·t̂) + p1

ρ1

− p2

ρ2

= 0.
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If we instead add the same equations, we get

(B.5) 2 Re

(
∂�

∂t

)
− W · W − 2(W·t̂)(T − W·t̂) + γ 2

4s2
α

+ p1

ρ1

+ p2

ρ2

+ 2gy = 0.

We solve (B.4) and (B.5) for p1 and p2, and subtract. We substitute (B.3) for

the pressure difference. The result is

∂µ

∂t
= 2Sκ

ρ1 + ρ2

+ γ

sα

(T − W·t̂)

− ρ1 − ρ2

ρ1 + ρ2

(
2 Re

(
∂�

∂t

)

− W · W − 2(W·t̂)(T − W·t̂) + γ 2

4s2
α

+ 2gy

)
.

(B.6)

Differentiating (B.6) with respect to α, denoting At = ρ1−ρ2

ρ1+ρ2
and We = ρ1+ρ2

2S

and simplifying yields equation (2.15) (for the water wave, At = 1, and in the

formulation used in this paper, sα = L/2π).
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