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THE ZEROS OF THE SECOND DERIVATIVE
OF THE RECIPROCAL OF AN ENTIRE FUNCTION

BY

SIMON HELLERSTEIN1 AND JACK WILLIAMSON

Abstract. Let / be a real entire function of finite order with only real zeros.
Assuming that /' has only real zeros, we show that the number of nonreal zeros of
/" equals the number of real zeros of F", where F — 1//. From this, we show that
F" has only real zeros if and only if f(z) = exp(az2 + bz + c), a > 0, or f(z) =
(Az + BY, A =¡>= 0, n a positive integer.

1. Introduction. The authors recently proved in [1], [2]

Theorem A. Let fiz) be a (constant multiple of a) real entire function (i.e., z real
implies fiz) real) with only real zeros. Assume that f'(z) has only real zeros. Then
f"(z) has only real zeros if and only if fiz) is of the form

fiz) = z"e-"I+ta+cII(l - z/z„)e*/z"
n

where m is a nonnegative integer, a > 0, b and the zn are real, and 2„ z~2 < oo.

The class of functions of this form is called the Laguerre-Pólya class and will be
denoted by U0. The "if" half of Theorem A was well known and is an easy
consequence of the classical result of Laguerre [3] and Pólya [6] that / E U0if and
only if it can be uniformly approximated on compact sets in the plane by a
sequence of polynomials with only real zeros.

In this note we shall prove the following, rather striking, symmetric analog of
Theorem A.

Theorem 1. Let F(z) = 1 /fiz) where fiz) is a (constant multiple of a) real entire
function of finite order with only real zeros. Assume that F'(z) (equivalently f'(z)) has
only real zeros. Then F"(z) has only nonreal zeros if and only if f E U0.

In [1] we obtained the exact number of nonreal zeros of /" for a real entire
function / of finite order for which / and /' have only real zeros. For such / we
shall show here that if F = 1 //, the number of real zeros of F" is the same as the
number of nonreal zeros of/"-a surprising duality.

In order to state this result precisely, we recall the following notation used in [1].
For each integer/? > 0, denote by V2p the class of entire functions of the form

fiz) = exp(-az^2)g(z)

_
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502 SIMON HELLERSTEIN AND JACK WILLIAMSON

where a > 0 and g(z) is a constant multiple of a real entire function of genus
< 2p + 1 with only real zeros. That is, g is of the form

g(z) = cz-e^IKl -z/zjexp z/zn + \(z/zn)2+--- +-q(z/zn)"

where c is a constant, Q a real polynomial of degree  < 2p + 1, the z„ are real,
2„kr-1 < °°> and a < 2p + I. Now set 170 = V0 and for/? > 1, Uy, = K^ -
K2/)_2. We note that every real entire function of finite order with only real zeros
belongs to some U2p and that U0 is the aforementioned Laguerre-Pólya class.

In [1] we showed

Theorem B. Iff E U^ and f has only real zeros, then f" has exactly 2p nonreal
zeros.

Here, our main result is given by

Theorem 2. Let f E U2p. If F = 1// and F' (equivalently /') has only real zeros,
then F" has exactly 2p real zeros.

Clearly, Theorem 1 is a consequence of Theorem 2.
For p = 0, Theorem 2 is elementary and is contained in the following

Proposition. Suppose f E U0 and F = l/f. Thenf has only real zeros and, unless
fiz) = cebz, logl^l (and hence \F\) is strictly convex on any interval containing no
zero off.

Proof. Let/ E U0. Then an immediate consequence of the characterization of
t/0 given by Laguerre and Pólya (mentioned previously) is that /' E U0 and
therefore has only real zeros. Now let 7 be a real interval containing no zero of/
We assume / > 0 on 7 (otherwise consider -/). Then (log F)" = (-log/)" =
-(/'//)'. Since, as is well known, (/'/f)'(x) < 0 for all x in 7 (with equality
holding if and only if fiz) = cebz, b a real constant), the proof is complete.

We remark that when F is the gamma function T, this is the usual proof of the
log-convexity of |T| on real intervals of continuity of T.

We shall also prove

Theorem 3. Let F = l/f, where f is a real entire function of finite order with only
real zeros. Suppose F' (equivalently f) has only real zeros. Then

(a) F" has only real zeros if and only if fiz) = eaz2 + bz+c, a > 0, or fiz) =
(Az + B)n, A ^ 0,for some positive integer n.

(b) If f has infinitely many zeros, then F" has infinitely many nonreal zeros.

The "if" part of (a) is clear. For the converse, assume that / has finitely many
zeros. Then since/ E U^ for somep, we have/(z) = P(z)eQ(z) where P and Q are
polynomials, and the degree of Q is 2p, 2p + 1, or 2p + 2. Then it is easily verified
that F" has more than 2p zeros unless p < 1 and fiz) = e^2+b' + c or fiz) =
(Az + B)", A t^ 0, n a positive integer. In the former case F" has only real zeros
only if a > 0. Thus in view of Theorem 2, in order to prove Theorem 3 it will be
sufficient to prove part (b) of the theorem. Since Theorem 1 also follows from
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Theorem 2, the remainder of this paper is devoted to the proofs of Theorem 2 and
Theorem 3(b).

2. Preliminaries. Let / be a (constant multiple of a) real entire function with only
real zeros. Assume that/' has only real zeros. Many of the ideas used in the proofs
of Theorems 2 and 3 are found in [1] and [2]. We summarize these and set the stage
for the proofs to appear in §§3 and 4.

Without loss of generality we assume throughout that /(0) ^ 0 and f'(0) ¥= 0.
Denote by {an) the distinct zeros of/and enumerate them as follows:

• • •  < ak _, < ak < ak_x < ■ ■ ■ (-oo <a</c<w< +00, A: finite).   (2.1)

According to Rolle's Theorem,/' has at least one zero in each interval (ak, ak+x);
choose exactly one and denote it by bk so that we have (reindexing if necessary)

ak <bk <ak + x    for all k with b_x < 0 < ax. (2.2)
Now set

^(z) =

b0   TT    1  - z/bk -f ,  _— J L -,--,— if w = +00,
-'O  A:#0 1 - z/ak

z ~ b0 TT    1 — z/bk ,n -,—-7a if w < + 002
(2.3)

(z - a0)(aa - z) fc#0,M ! ~ zlak

and note, as in [1], that \p is meromorphic and maps the upper half-plane into the
upper half-plane. This follows from the interlacing property (2.2) (cf. [4, pp.
308-309]).

We have, therefore

fj(z) = $(z)t(z) (2.4)

where <¡> is real entire and has only real zeros. Using the growth estimates of
Carathéodory [4, p. 18] implied by the mapping property of \p together with some
estimates from Nevanlinna's theory of meromorphic functions, in particular
Nevanlinna's lemma on the logarithmic derivative, we find that iff is of finite order
(the case considered here), <j> is a polynomial (cf. [1 Lemma 2], [5, pp. 335-336]).
Thus, for f E £/->„, we can write

Ç(z) = P(z)t(z) (2.5)
J

where \p is given by (2.3) and P(z) is a polynomial. We shall call the zeros of P(z)
extraordinary zeros of /' and shall call the other zeros of /'-those bk whose
multiplicity equals 1 and those ak whose multiplicity exceeds l-ordinary zeros off.

If we denote by {>„}"_„' the sequence of distinct zeros of/'// then by (2.3) and
(2.5) we see that this sequence is made up of the bks and the distinct zeros of P(z)
(which are real in view of our assumption that/' has only real zeros) not contained

2If / has only one zero, set 4>(z) — ("o — z) '; if / has no zeros, set ij/(z) = 1.
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504 SIMON HELLERSTEIN AND JACK WILLIAMSON

in {bk}. For convenience we set

ya'_[ = -co if -oo < a'    and   ya,+ x = + oo if u'< + oo. (2.6)

Now observe that for any fixed n either
(i) (yn, Yn+i) contains exactly one zero ak off with multiplicity mk or
(ii) (yn, Y„+i) contains no zero of/.

We shall call the interval (yn, yn + x) typical in case (i) and shall call it atypical in
case (ii). If / has no zeros, then each distinct zero of P(z) determines an atypical
interval; if / has zeros, each distinct zero of P(z) which is different from a bk
determines an atypical interval. In this latter case, it follows that the number of
atypical intervals of zeros of f'/f does not exceed the degree of P(z). (Note that if
-oo < a' or if w' < + oo, it is possible that /'// has semi-infinite atypical
intervals.) In an earlier work [1, Lemma 8] we were able to determine the degree of
P(z); we restate that result now as

Lemma 1. Let f E U2p. If f has an infinite number of zeros, then P(z) is of degree
2p or 2p + 1. If f has a finite number of zeros and at least one, then P(z) is of degree
equal to the genus of f (i.e., is of degree 2p, 2p + 1, or 2p + 2).

Before turning to the proofs of Theorems 2 and 3 we need some technical
lemmas on the growth properties of entire functions and of the function \p(z).

Lemma 2. Let il(z) be a canonical product of genus p with only real zeros, let
e > 0, and let

6¡) = {z = rei<>: r>0ande <\9\<tt- e}. (2.7)

Then

TT(z) o(rp)        (|z| = r->+oo,z E <$). (2.8)

Lemma 3. Let g(z) be an entire function of genus a > 2 with only real zeros. Let
M = [a/2], e = TT/2(a + 1), N be any positive integer, and let ty be as in (2.7).
Then there are at least M rays re'*', . . . , re'*" (0 < r < oo) in ^ such that for
k = 1, . . . , M

\g(re^)\ = o(r-N)       (r-oo). (2.9)

Lemma 4. Let g(z) be a real entire function of genus a = 0 or 1 with only real
zeros. If g has an infinite number of zeros, then

Mminf \g(±iy)\\y\~N = oo (2.10)

for any positive integer N.

Lemma 5. Let \p(z) be the meromorphic function given by (2.3). Then, for Im z = y
j= 0,

|^'(z)/Im^(z)|< l/\y\. (2.11)
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The proof of Lemma 2 is by an easy growth argument, while the proofs of
Lemmas 3 and 4 follow by using the Hadamard representation to write g = eQU
= eGn,n2, where g is a polynomial and Tlx and Il2 are the products of the
positive and negative zeros of/respectively. Then, in the proof of Lemma 3, we use
the Valiron representation [7, p. 237] for login,| and log|IT2| to find rays along
which log| g\ (and hence | g\) has the appropriate asymptotic behavior. In the proof
of Lemma 4, an examination of log|nt(±(y)|, k = 1, 2, yields the appropriate
growth for log| g( ± i»| (and hence | g( ± iy)\).

The proof of Lemma 5, for y > 0, follows by applying Schwarz's lemma to the
function Tx xp T2X where Tx and T2 are appropriate linear fractional transforma-
tions from the upper half plane onto the unit disk. A similar proof gives the result
for j < 0.

3. The proof of Theorem 2. We assume that

F(z) = l/fiz) (3.1)
where/ E U2p. We also will assume that/7 > 1, since the case/? = 0 was treated in
the introduction. If / has no zeros; i.e., if / = eQ for some polynomial Q, then F is
entire. If, in addition, /' has only real zeros, an application of Theorem B to F and
a simple counting argument show that F" has exactly 2p real zeros. Hence, in the
remainder of this section we will assume that/has at least one zero.

Using the notation and terminology introduced in §2, we have, by (3.1) and (2.5),
that

nz) = -fhJi{z) = -jvyp{zmz) (3-2)
where, by assumption, F' (/') has only real zeros. Since (3.2) shows that the zeros
of F' correspond to the zeros of /'//-the yn's-we will prove Theorem 2 by first
showing that in a typical interval of zeros of/'//, F" has no zeros and in a finite
(an infinite) atypical interval of zeros of/'//, F" has a (at most a) single zero of
multiplicity one. From this it will follow that the number of real zeros of F" is
equal to the degree of P(z) minus the number of semi-infinite atypical intervals of
/'// in which F" has no zeros. We will then determine the precise number of zeros
of F" in any semi-infinite atypical interval of /'// and thereby conclude that F"
has exactly 2p real zeros.

Suppose then that (yn, yn+x) is a typical interval of zeros of f'/f so that (yn, y„+x)
contains exactly one zero ak of / of multiplicity mk. Assume in what follows that
(yn, y„ + x) is a finite interval (the analysis is similar to that which follows if (yn,
Yn+i) is a semi-infinite interval). Then each of the intervals (y„, ak), (ak,y„+x)

contains an even number of zeros of F". To see this observe that since yn is a zero
of F', it follows that in some neighborhood 17 of yn,

F'(z) = (z - yn)'h(z) (3.3)

where I > I, h(z) is holomorphic in tj, and h(yn) ¥= 0. From this it follows that

Ç^'J—^+J^) i*«* "*'*?„) (3.4)
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and hence that

lim    -pr(x) = +00    for Re z = x £ 17.
x—*tn      r

(3.5)

On the other hand, since ak is a zero of / and therefore by (3.2) a pole of F', a
similar analysis shows that

lim ——(x) = + 00.
x->"k    F

(3.6)

Thus, since F" is analytic on (yk, ak), (3.5) and (3.6) imply that F" has an even
number of zeros in (yn, ak). The same analysis yields the same conclusion for the
interval (ak,yn+x).

We will now show that F" can have at most one simple zero in each of the
intervals (yn, ak), (ak, y„+x). In view of the above, it will then follow that F" has no
zeros in the typical interval (yn, yn+x). To do this we use the representation (3.2)
and set

Hk(z) =
F'

(z - ak)P(z)xp(z) = -(z - ak) — (z),     z ¥=ak,

mk,
(3.7)

z = ak.

Then, in view of (3.7), we can write

F " Ff'
7(Z)=^(Z)

Hk{z)
z — ük      z — a¡. (3.8)

Now we will analyze the function Hk(x) for yn < x = Re z < y„+l. Since we are
assuming (yn, yn+x) is a finite interval, we observe that

Hk(x) is analytic on [y„, yn+l], (3.9)

Hk(yn) = Hk(yn + x) = 0, (3.10)
and

Hk(x)^0   on(Yn,Yn+1). (3.11)
Consequently, since

Hk(ak) = mk>l (3.12)
(3.9), (3.11), and (3.12) imply that

Hk(x)>0    fory„<x<yn + 1. (3.13)

Repeating the arguments used in the proof of Lemma 7 of [1], we find that

(x)    <0   forY„<x<Yn + 1 (3.14)

and that there exists x0 E (yn, yn + 1) such that

> 0   f or y„ < x < Xq,
Hk(x)\ =0    forx = x0, (3.15)

<0    forx0 <x < yn+x.
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Thus (3.13) and (3.15) imply that

>

> 0    for y„ < x < x0,
= 0   for x = x0,
<0   forx0 < x <y„+,

(3.16)

Now suppose that

Y„ < x0 < «*• (3.17)

(In case ak < x0 < yn+x or x0 = a^., the analysis is similar to that which follows.)
Then (3.8), (3.13), (3.16), and (3.17) imply that

F" 77'
(* - ak)yr(x) - (x - ak)j±(x) - 1 - 7/^jc)

<0   fora* <x <y„+1.

Thus, (3.18) implies that F" has no zero on (ak, yn + x).
An analysis similar to that which led to (3.18) shows that

F"

(3.18)

(x - ak)-Fr(x) < 0    fory„<x<x0. (3.19)

Next, differentiating (3.18) we obtain

(x - ak) — (x) = (x - ak)

= (x - ak)

Hk

Hi

(x)

(x)

+ §-k(x)-Hk-(x)

+ [l-Hk(x)]-^f(x).   (3.20)H,

Since (3.15) implies that

Hk(x) > Hk(ak) = mk> I    for x0 < x < ak,

it follows from (3.14), (3.16), (3.17), (3.20), and (3.21) that

(x - ak)-pr(x) > 0   for x0 < x < ak.

(3.21)

(3.22)

Thus, (3.19) and (3.22) imply that F" has at most one simple zero on (yn, ak).
This completes the proof that F" has no zeros in a typical interval.
Suppose now that the interval (yn, y„ + x) is an atypical interval of zeros off; that

is, suppose that it contains no zero off. We will show that if it is a finite interval, it
contains exactly one simple zero of F" and that if it is a semi-infinite interval it
contains at most one simple zero of F". Observe that in the former case yn and
y„+x are zeros of F'; hence, the analysis in (3.3) — (3.5) shows that

hm+^(x)= +oo (3.23)

while
F"

(3.24)

Thus, in case (y„, yn + 1) is a finite interval, F" has at least one zero in (yn, yn+x).
Clearly then, we will be done if we can show that F" has at most one simple zero in

lim   -tt(x) = -oo.
*->Y„+l
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the finite or infinite interval (yn, Y„+1). To do this we set

77(z) = P(z)t(z) = -Ç(z).

Thus,

Ç(z)=-HT(z)-H(z).

(3.25)

(3.26)

As before, we analyze the function H(x) on the interval yn < x = Re z <y„ + x. We
will assume, also as before, that (yn, y„+x) is a finite interval since the analysis is
similar to that which follows if (yn, yn + x) is a semi-infinite interval.

Now

H(x) is analytic on [y„, yn + 1],

H{yn) = #(y„+i) = 0,
and

77(x)^0    forYn<x<Y„+1.

thus (3.27) and (3.29) imply that 77(jc) is of constant sign on (yn, yn+x), say

77(x)>0    on(y„, Yn + 1).

(The analysis is similar to that which follows if 77(x) < 0 on (yn, y„+x).)
Again, it follows from arguments used in the proof of Lemma 7 of [1] that

H'(  \ < 0    fory„ <x <Y„ + i

and that there exists x0 E (yn, yn + x) such that

> 0    for y„ < x < x0,
H'(x)\ =0    for x = x,o>

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)
< 0    for x0 < x < y„+i-

Thus (3.30) and (3.32) imply that

H' (  \
> 0    for y„ < x < x0,
= 0     for X = Xn,

<0   forx0 <x < yn+x.

It now follows from (3.26) and (3.30)-(3.33) that
77'F"

yr(x) H ix) H'(x) < 0   fory„ <x < x0

and that
F" 77'
yr(x)=—(x)-H(x)<0   forx0 < x <yn+x.

(3.33)

(3.34)

(3.35)

Clearly then, (3.34) and (3.35) imply that F" has at most one simple zero in

(Y„. Y„ + i)-
In summary, the foregoing analysis together with (3.2) shows that real zeros of

F" can arise only from atypical intervals of zeros of/'// or from multiple zeros of
/'//. Precisely: the exact number of real zeros of F" is equal to the number of
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atypical intervals of/'//plus 2„(/„ — 1) minus the number of semi-infinite atypical
intervals of/'// in which F" has no zeros. Here /„ = multiplicity of yn; the sum is
finite since by (2.3) and (2.5) /„ = 1 for all but a finite number of yn. Since each
distinct zero of P(z) which is different from a bk determines an atypical interval
and since by (2.3) and (2.5) every bk which is also a zero of P(z) is multiple zero of
/'//, it follows that the exact number of real zeros of F" equals the degree of P(z)
minus the number of semi-infinite atypical intervals off/fin which F" has no zeros.

To determine whether a semi-infinite atypical interval of /'// contains a zero of
F", suppose that w < + oo and that au < ya. < + oo, where, recall, yu, denotes
the largest zero of/'//(i.e., in this situation, of P).

Then, (yu-, + oo) is a semi-infinite atypical interval of/'// and by (3.23), with yn
replaced by yw„

lim  ^r(x)= +oo. (3.36)*-*y2  P
To determine whether F" has one or no zero in (ya,, + oo) we will use (3.36) and
the behavior of (F"/F')(x) at + oo. To obtain the latter, note that (3.2) implies

F" _ (f/f)'      f

and thus, by (2.5),

Now

and (2.3) easily implies

F' f/f        f

F'       P%       /' l-     '

^(x) = o(l) (3.38)

^-(jc) = 0(1)        (x-> +00, u < +00). (3.39)
W

Hence (3.38) and (3.39) imply that for w < + oo the behavior of (F"/F')(x) at
+ oo is determined by the behavior of (f/f)(x) at + oo. To see what this is, first
note that it is not hard to deduce from (2.3) that for w < + oo

\4ix)\>A/x       (*>*0>K|) (3.40)
where A is positive constant. Further, since we are assuming p > 1, Lemma 1
implies

\P(x)\ > Bx2       (x > xx) (3.41)

for some positive constant B. Thus, (2.5), (3.40), and (3.41) imply

flim   J—(x)=+oo       (w<+oo) (3.42)
x—»+oo   J

or
rr

lim   —(x) = -oo        (o¡ < +oo). (3.43)
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If (3.42) holds then (3.37) - (3.39) imply

Because of (3.36), (3.44), and the behavior of F" in atypical intervals, it follows that
//(3.42) holds F" has exactly one (simple) zero in the atypical interval (yu,, + oo). On
the other hand, if (3.43) holds then (3.37)-(3.39) imply

F"
lim   -=(x) = +00. (3.45)

Hence (3.36) and (3.45) imply that ;/ (3.43) holds F" has no zeros in the atypical
interval (yu,, + oo). With a change of variable from x to -x analogous conclusions
can be drawn if -oo < ya. <aa.

To complete the proof of Theorem 2 we consider separately the cases where/has
an infinite number of zeros and where it has a finite number of zeros. We will use
the previous remarks to show that in each case F" has exactly 2p real zeros. If/has
an infinite number of zeros, then by Lemma 1 P(z) is of degree 2p or 2p + 1. The
proof of this lemma (see [1, equation (3.57)]) shows that

P(ak) < 0,       a < k < co. (3.46)
Thus it is clear that if / has an infinite number of positive zeros and an infinite
number of negative zeros then degree P(z) = 2p, and therefore F" has exactly 2p
real zeros.

Now suppose that / has a finite number of zeros (or perpaps none at all) on one
of the axes, say the positive axis (the analysis is similar to that which follows in the
other situation). To show that F" has exactly 2p real zeros in this case also, we
need to make several observations. First,

f
lim  J—(x) = +00. (3.47)

x—*a*   J

If (3.42) also holds, then (2.3), (2.5), and (3.47) imply that P(z) has an even number
of zeros in (aa, + oo); hence, by (3.46) P(z) is of even degree; i.e., of degree 2/7. If
P(z) has no zeros in (aa, + oo), then it follows that F" has exactly 2/7 real zeros. On
the other hand, if P(z) has some zeros in (au, + oo), then /'// has an infinite
atypical interval in which, by the remark following (3.44), F" has a simple zero.
Thus F" has exactly 2/7 real zeros. On the other hand, if (3.43) holds instead of
(3.42), then (2.3), (2.5), and (3.47) imply that P(z) has an odd number of zeros in
(aw, + oo). Hence/'// will have an infinite atypical interval and, by (3.46), P(z) is
of degree 2/7+1. But then, by the remark following (3.45), F" has no zeros in this
infinite atypical interval; consequently, F" has exactly 2/7+1 — 1=2/7 real zeros.

In the case that /has a finite number of zeros,

fiz) = eQ^tr(z) (3.48)

where tt(z) is a polynomial and where

Q(z) = -az2p + 2 + bz2p+x + cz2p + ■ ■ ■ ,       a > 0. (3.49)
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Since/ E U2p,

a2 + b2 + c2 > 0   and   c > 0    if a = b = 0. (3.50)
Since each of the three cases a > 0; a = 0, b ¥= 0; a = b = 0, c > 0 is similarly
handled, we will treat only the case a > 0. If a > 0, then / is of genus 2/7 + 2, and,
by Lemma 1, P(z) is of degree 2/7 + 2. Since (3.48) and (3.49) imply

^(z) = -a(2p + 2)z2p+x + b(2p + l)z^ + 2cpz2p-

+ 2  -J^L-        (a > 0) (3.51)
k- z - at

it is clear that

and

F Flim  ¿r(x)=+oo; lim   ^(x) = -oo (3.52)
*-►<!"   f x-» + oo   j

lim4(*) = -°°; lim   í7(x)=+oo; (3.53)

henee, (2.5) implies that P(z) has an odd number of zeros in each of the intervals
(-oo, aa), (aa, +oo). Thus, if a > 0, /'// has 2 semi-infinite atypical intervals.
Since the last equation in (3.52) corresponds to (3.43) and the last equation in (3.53)
is the analogue of (3.43) for the atypical interval (-oo, y„), it follows from the
remarks following (3.45) that F" has no zeros in each of the 2 semi-infinite atypical
intervals of /'//. Thus F" has exactly 2/7 + 2 — 2 = 2/7 real zeros. Since, as we
remarked, the other two cases a = 0, b ^ 0; a = b = 0, c > 0, are similarly
handled, it follows that if / has a finite number of zeros, F" has exactly 2/7 real
zeros.

This completes the proof of Theorem 2.

4. The proof of Theorem 3(b). As we indicated in the Introduction the idea
behind the proof is the following: Since Theorem 2 tells us that F" has a finite
number of real zeros, it is sufficient to show that iff has an infinite number of zeros
then the same is true of F". To do this, we observe that on the one hand by (3.37),

Ç(z)=Ç(z) + ̂ (z)-Ç(z). (4.1)
P P W f

On the other hand, if F" has only finitely many zeros, then

CW = £Í (4.2)
where s(z) is a polynomial and g(z) is a real entire function of finite order with
only real zeros; indeed, g(z) will have infinitely many zeros in view of the
hypothesis on / We will use the growth properties expressed in Lemmas 2-5 to
show that (4.1) and (4.2) are incompatible.

To obtain the contradiction between (4.1) and (4.2) we assume/ E U2p for some
p and treat separately the cases that g(z) has genus a > 2 and has genus a = 0 or 1.
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We first consider the case that a > 2. On the one hand, (4.2) and Lemma 3 imply
that if öD is as in (2.7), then there are [a/2] rays re'* E ty such that

F"
yr(re^) >r2p + 2        (r>r0,j= 1,2,..., [a/2]).

On the other hand, turning to (4.1) we see that

?T<*)
P'

(z) + Vw + f «
Since P is a polynomial, it is clear that

= 0(r~x)T« (1*1 = r)

and it follows easily from (2.11) that

O(l)       (z E 6D).

(4.3)

(4.4)

(4.5)

(4.6)

To estimate the last term on the right-hand side of (4.4) note that since/ E t/^,

fiz) = ce^lJ(z) (4.7)
where c is a constant, Q(z) is a real polynomial of degree < 2/> + 2, and n(z) is a
canonical product of genus < 2/7 + 1 (recall the assumption from §2 that/(0) ^ 0).
Thus Lemma 2 and (4.7) imply that

(*) = 0(r2p+x)        (\z\ = r,z £<$).

In view of (4.4)-(4.8), it follows that

= 0(r2p + x)F"
(|z| = r,z E ¿D)

(4.8)

(4.9)

which is incompatible with (4.3). This establishes the desired contradiction in the
case that g(z) has genus a > 2.

In case g(z) has genus a = 0 or 1, (4.2) and Lemma 4 imply that
1Ci-)< — (r > 'o)- (4.10)

To obtain a contradiction to this estimate from (4.1), we first treat the case where
/ E U2p with/7 > 1. In this situation, by (2.5) and the remarks preceding Lemma 1,
we have in particular that for all r > 0,

(/'//)(«>)= P(ir)Hir), (4.11)
where P is a polynomial of degree at least 2/7. Since \p is holomorphic in the upper
half plane and maps this region into the upper half plane, we also have by the
Carathéodory inequality [4, p. 18],

Ax/r<\>p(ir)\<A2r        (r > 0), (4.12)
where Ax and A2 are positive constants independent of r. We see, thus, that

l(/7/)('>)l > Ar2p~x        (r >r0,A> 0). (4.13)
It now follows readily from (4.1), Lemma 5, (4.5), and (4.13), that for/7 > 1
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\(F"/F')(ir)\*o(l/r), (4.14)
which contradicts (4.10).

If on the other hand, / E UQ, then

(/'//)(*) = az + ß + (nyn)(z), (4.15)
where a and ß are real and II is the canonical product of the zeros of / and has
genus 0 or 1.

For a^O, Lemma 2 and (4.15) imply that

l(/y/)(<>)l > (|«|/2)r        (r > r0), (4.16)
and from (4.1), (4.5), and (4.6) we again have a contradiction to (4.10).

If a = 0, then

f-(z) -ß + E.(z) = ß + z*S "* (4.17)
J II k  ak\z - ak)

where px = genus of n(z) = 0 or 1, and mk = multiplicity of the zero ak. From
(4.17) it follows that

F Im=Ç(ir)-^ mk -^ mk 1    "(0 ,.   ,„s= '2 "TtH > r  2   ̂ -S > T    r (4-18)
A:   /-z+ a¿        \ak\<r r1 + a2      ¿    r

where n(r) denotes the number of zeros of fiz) (counting multiplicity) in the disc
\z\ < r (i.e., in the interval [—r, r] since the zeros of / are real). Since / has an
infinite number of zeros, (4.18) implies that

lim inf r\(f/f)(ir)\ = oo. (4.19)

Combining (4.19) with (4.5) and Lemma 5 in (4.1) we see that

Çiir)> 7        (r > rx).

Since this gives the contradiction to (4.10) in this final case, the proof is now
complete.
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