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Abstract

We critically revisit the definition of thermal equilibrium, in its operational formula-

tion, provided by standard thermodynamics. We show that it refers to experimental 

conditions which break the covariance of the theory at a fundamental level and that, 

therefore, it cannot be applied to the case of moving bodies. We propose an exten-

sion of this definition which is manifestly covariant and can be applied to the study 

of isolated systems in special relativity. The zeroth law of thermodynamics is, then, 

proven to establish an equivalence relation among bodies which have not only the 

same temperature, but also the same center of mass four-velocity.

Keywords Thermodynamics · Special relativity

1 Introduction

The modern covariant formulation of the second law of thermodynamics relies on 

the assumption that it is possible to define an entropy four-current s� with non-neg-

ative divergence, ∇
�
s
� ≥ 0 [19, 20]. The validity of this assumption is strongly sup-

ported by relativistic kinetic theory, both classical [9] and quantum [10, 13], and by 

the hydrodynamics of locally isotropic fluids [15], including perfect fluids [42] and 

chemically reacting fluids [6]. This approach finds application in every branch of the 

relativistic hydrodynamics, including the problem of relativistic dissipation [21, 31] 

and multifluid hydrodynamics [1, 7, 8].

In the absence of dissipation ( ∇
�
s
�
= 0 ), it is possible to define the total entropy 

of a system as the flux of the entropy current through an arbitrary spacelike hyper-

surface � crossing the system,

(1)S = −∫
�

s
�
d�

�
.
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Since the result of the integral does not depend on the choice of � , the entropy is a 

Lorentz scalar, in agreement with [41] and with the microscopic statistical interpre-

tations of the entropy [18, 22, 23, 40, 45]. This enables us to define, starting from 

a theory which is necessarily local (to ensure causality), the equilibrium thermody-

namics of an isolated macroscopic body, which allows to make a contact with statis-

tical mechanics [17].

The long-lasting debate on the definition of the temperature of moving bodies, 

traditionally called Planck–Ott imbroglio [32], originates at this point. At first [28, 

35, 41, 44], the discussion was oriented in the direction of defining a transforma-

tion law of the temperature under Lorentz boosts and work in this direction is still 

ongoing (see [12] for a recent review). Supporters of both Planck’s and Ott’s views 

agree on the fact that the transformation should involve a Lorentz factor, however 

the opinions diverge on its position (at the denominator according to Planck [41], at 

the numerator according to Ott [35]). Nowadays this approach has become a quest 

for the most natural-looking choice of variables in the differential of the energy of a 

moving body (see e.g. [2, 37]).

Other authors have approached the problem studying the equilibrium state of two 

weakly interacting bodies in motion with respect to each other, trying to understand 

whether a body “looks hotter or colder” from the point of view of the other. van 

Kampen [24] and Israel [18] have argued that in a covariant framework one must 

consider that the two bodies can exchange both energy and momentum and therefore 

the result will depend on the exact circumstance of the experiment. Following the 

same line of thoughts, Bíró, and Ván [3] have shown that, depending on the phenom-

enological model of heat transfer which is invoked, one can recover Planck’s, Ott’s 

or Landsberg’s transformation law. Landsberg and Matsas[27, 29] arrive at simi-

lar conclusions considering that a moving photon detector in a heat bath of black 

body radiation might in general measure different temperatures depending on how it 

averages the energies of the incoming photons with respect to the direction. Finally, 

Sewell [43] has studied the problem in the context of quantum statistical mechanics, 

proving that a body cannot satisfy the KMS conditions for different inertial frames 

in motion with respect to one another, arriving at the conclusion that a body has a 

well defined temperature only in its rest frame.

In this paper we propose a new view on the Planck–Ott imbroglio. Using simple 

arguments of thermodynamics and statistical mechanics we show that the zeroth law 

of thermodynamics plays a fundamental role in the experimental definition of the 

temperature and that the deep origin of the controversy is in the fact that the opera-

tional notion of thermal equilibrium provided by standard thermodynamics (see e.g. 

[16]) is not covariant. The purpose of our work is to revisit its definition, in a form 

which is manifestly covariant. Once this new formulation is provided, it will become 

clear that, in the absence of spontaneously broken symmetries, two bodies are in 

thermal equilibrium if and only if they are at rest with respect to each other and they 

have the same rest-frame temperature. Any condition in which two interacting bod-

ies maintain a relative motion with respect to each other for infinite time will then be 

shown to be a non-ergodic system and should, therefore, be considered a metastable 

state, for which a complete description in the framework of equilibrium thermody-

namics is not guaranteed to exist.
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Throughout the paper natural units are employed: c = ℏ = k
B
= 1 . For the flat 

space-time metric we adopt the signature (−,+,+,+) and we set �
0123

= +1.

2  Need for a Zeroth Law

In this first section we prove that, in order to provide a unique definition for the tem-

perature of a system exhibiting further constants of motion apart from the energy, it 

is necessary to specify how a thermometer is supposed to interact with the system. 

Our aim is to show that the concept of thermal equilibrium appearing in the zeroth 

law of thermodynamics relies on strict assumptions about this interaction.

2.1  Ambiguity of the Notion of Temperature

Under the condition that the microscopic Hamiltonian is fixed and time-independ-

ent, the second principle of thermodynamics implies that the macrostate of an iso-

lated thermodynamic system in equilibrium is in general fully determined once all 

the constants of motion (fundamental, like e.g. the energy E, or emergent, like e.g. 

the winding numbers of the superfluid order parameter phases) are assigned. So, it is 

natural to write the entropy as a function of these variables, namely

where the X
A
 are l conserved quantities of the dynamics of the system and we intro-

duced the label A = 1,… , l . Once an equation of state of this form is given, one is 

naturally tempted, following the standard textbook convention, to introduce the tem-

perature through the equation

This, however, can lead to an ambiguity. In fact, if the X
A
 are constants of motion, 

then this is also true for any set of quantities

with B = 1, ..., l . The Y
B
 would, thus, constitute an equivalently good choice 

of variables in the construction of the equation of state, provided that the map 

(E, X
A
) ⟶ (E, Y

B
) is one-to-one. So if we start from the equation S = S (E, Y

B
) , 

then we are naturally lead to identify the temperature as

(2)S = S (E, X
A
),

(3)
1

T
=

�S

�E

|
|
|
|X

A

.

(4)Y
B
= Y

B
(E, X

A
),

(5)
1

T �
=

�S

�E

|
|||YB

=
1

T
+

l∑

A=1

�S

�X
A

|
|
|
|E

�X
A

�E

|
|||YB

,
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which may be a priori different from the definition of T. So it is clear that we need to 

provide a more rigorous and general way to define the temperature, which must be 

invariant under this change of variables in the equation of state.

2.2  The Role of the Thermometer

To identify a unique definition for the temperature we need to introduce the notion 

of a thermometer. In standard thermodynamics an ideal thermometer is a system 

which interacts very weakly with the body object of study. Formally, this means that 

the interaction enables an exchange of heat among the thermometer and the system, 

but it plays a negligible role in the definition of the thermodynamic quantities and 

can be neglected in their computation. Thus the total energy E
tot

 and entropy S
tot

 can 

be written as

where E
�
 and S

�
 are respectively the energy and entropy of the thermometer. We 

remark that the two conditions of (6) are presented here as defining properties of 

the thermometer. Their validity is necessary in thermodynamics to avoid the risk of 

producing further ambiguities in the definition of the temperature associated with 

the need of specifying the interaction or the correlations [34]. In the presence of 

strong gravitational fields it might become hard to ensure the additivity of the ener-

gies, however, since we are working in special relativity, the space-time is flat and 

it is in principle possible to make the interaction potential between the body and the 

hypothetical thermometer arbitrarily small.

We impose that the only constant of motion of the ideal thermometer is the 

energy, so it is described by an equation of state

and there is no ambiguity in the definition of its temperature:

After the thermometer is put into contact with the body, they interact exchanging 

energy until they reach equilibrium. In equilibrium they must have the same tem-

perature, so we can use the final value of T
�
 as a measure of T.1

Let us assume that the interaction of the body with the thermometer does not 

break the conservation of the quantities X
A
 . Thus E

tot
 and all the X

A
 are constant dur-

ing the evolution of the total system body+thermometer towards equilibrium, which 

is then given by the condition of maximum entropy

(6)E
tot

= E + E
�

S
tot

= S + S
�
,

(7)S
�
= S

�
(E

�
)

(8)
1

T
�

=

dS
�

dE
�

.

1 An additional property of the thermometer is that its heat capacity is infinitesimal, which implies that 

the heat exchange does not affect the state of the body relevantly. This requirement, however, does not 

need to be invoked in our study. In this sense, if we replace the thermometer with its formal opposite, the 

heat bath, all our analysis is left unchanged.
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or, equivalently,

So, under the assumption that the X
A
 are conserved by the interaction with the ther-

mometer, we find that the thermometer measures T, given in Eq. (3). One can show 

with analogous calculations that if, on the other hand, the quantities Y
B
 were con-

served by the interaction with the thermometer, then it would measure T ′ , given by 

Eq. (5). So, to solve the ambiguity in the definition of the temperature, one needs to 

find the X
A
 which are constants of motion not only when the system is isolated, but 

also when an exchange of energy with a thermometer is enabled.

Note that the X
A
 and the Y

B
 are all simultaneously conserved in the interaction 

with the thermometer only if Y
B
= Y

B
(X

A
) , so in the case in which T = T

� , see 

Eq. (5). Therefore if the X
A
 are conserved and T ≠ T

′ , there must be at least one 

variable Y
B
 whose conservation is broken due to the exchange of energy with the 

thermometer.

2.3  An Unconventional Thermometer

In standard thermodynamics of continuous media, the issue we presented in the 

previous subsection does not seem to appear because in this case there is only one 

independent constant of motion, apart from energy, which is the number of particles 

N. It is natural to assume that, in the conventional experimental setting in which a 

thermometer is in contact with a substance, the conservation of N is not broken, pro-

viding a unique definition of the temperature as2

However it is possible to imagine unconventional thermometers which, to measure 

the temperature, need to break the conservation of N, while keeping fixed an other 

function Z = Z(E, N) . In this subsection we make a simple hypothetical example of 

this kind of thermometer. Our aim is to convince the reader that the ambiguity we 

described in this section is not merely formal, but represents a real possibility.

Let us consider an ideal gas. If we assume the particle number N to be conserved 

when the system is isolated (in the absence of the thermometer), the equation of 

state can be written in the form

(9)
�Stot

�E
�

|
|
|
|Etot,XA

= 0,

(10)
1

T
�

=

�S

�E

|
|
|
|X

A

.

(11)T =

(
�S

�E

|
|
|
|N

)
−1

.

2 Note that the volume is not a constant of motion, but it is imposed through an external potential. 

Therefore it is a parameter in the Hamiltonian [26], which is assumed from the beginning of our discus-

sion to be fixed and time-independent. Thus, in our discussion it does not even need to appear in the 

equation of state and the fact that it is kept constant in the calculation of the temperature is obvious.
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and we can define the temperature T and the chemical potential � of the gas accord-

ing to the conventional prescription

Now let us imagine to put it into contact with a thermometer, with equation of state 

of the form (7), which can interact with the gas only by absorbing (in an annihi-

lation process) or emitting (in a creation process) particles with a given (positive) 

energy � . The total system gas+thermometer now is characterised by two constants 

of motion: the total energy E
tot

= E
�
+ E and the quantity

Thus we have built a thermometer which breaks the conservation of N, replacing it 

with the conservation of Z. The condition of maximum entropy with respect to the 

exchange of energy between the gas and the thermometer now reads

which produces the condition

Therefore we have proven that a thermometer of this kind, in equilibrium, has a tem-

perature which is different from the (standard) one of the gas.

The reader who was skeptical about the possibility of building such a thermom-

eter without invoking the existence of any sort of Maxwell demon which selects the 

particles with energy � can see Appendix A for a very simple hypothetical example 

of this kind of device. There, Eq. (16) is proven again using pure quantum statistical 

mechanical arguments.

2.4  The Zeroth Law of Thermodynamics

One can immediately convince oneself that the thermometer that measures the tem-

perature T and the one that measures the temperature T ′ , presented in Section 2.2, 

cannot be considered to both reach thermal equilibrium with the system. In fact, hav-

ing different temperatures, they are not in thermal equilibrium with each other and 

the zeroth law of thermodynamics states that the condition of thermal equilibrium 

is an equivalence relation. Luckily, in the particular case of systems contained in 

boxes, at rest with respect to each other, the zeroth law, as it is formulated in stand-

ard textbooks, offers a simple unambiguous way to select the constants of motion X
A
 

to keep constant in the calculation of the temperature, removing any ambiguity.

(12)S = S (E, N)

(13)dS =

1

T
dE −

�

T
dN.

(14)Z ∶= E − �N.

(15)
�Stot

�E
�

|
|
|
|Etot,Z

= 0,

(16)T
�
=

�

� − �
T .
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The resolution is given by the definition of the concept of thermal equilibrium 

appearing in the zeroth law: “two systems are said to be in thermal equilibrium if 

they are linked by a wall permeable only to heat and they do not change over time” 

[5]. In the original formulation, walls permeable only to heat (WPOH) are fixed 

walls which allow the exchange of energy, but not of particles. In the context of 

quantum optics or high energy physics, where the interactions are mediated by parti-

cles, one cannot require the impermeability to every kind of particle, otherwise there 

would be no interaction at all. However we can redefine the WPOHs as fixed walls 

which allow the exchange of energy, but not of any Noether charge QA arising from 

internal symmetries of the microscopic theory (for a general definition of conserved 

charge in Quantum Field Theory see [39]).

Therefore if we make the ergodic hypothesis [25, 36], i.e. if we assume that the 

only constants of motion of a macroscopic system in a box are the energy and the 

charges QA (which can be typically interpreted as linear combinations of particle 

minus antiparticle numbers), then we can write the entropy as

and unambiguously define the temperature as

Every thermometer which is in thermal equilibrium with the system must interact in 

a way to conserve the amount of QA in the system. In fact, the charge is fundamen-

tally conserved and cannot flow from the system to the thermometer (or vice versa), 

because they are separated by a WPOH. Thus every thermometer measures T.

The unconventional thermometer presented in Subsect. 2.3 can never be in ther-

mal equilibrium with the gas. In fact if we try to link it to the gas through a WPOH 

and we assume the particles to carry a conserved charge (e.g. a positive baryon 

number), then no exchange of particles is allowed, so no interaction can occur and 

the two bodies remain isolated with respect to each other.

Note that Noether charges are, by construction, extensive quantities, being the 

flux over 3D hypersurfaces of conserved Noether currents,

thus Eq. (17) also justifies the usual assumption that the entropy should be written 

as a function of extensive variables [4]. So the zeroth law plays a fundamental role 

in thermodynamics, not only because it solves the problem of ambiguity of the tem-

perature, but also because it selects the quantities which must be used as primary 

variables in the fundamental relation. In fact, without a zeroth law, any constant of 

motion of the system would be an equally acceptable free variable to be used in the 

equation of the entropy.

We remark that there are thermodynamic systems, such as superfluids and more 

in general systems with broken symmetries, which exhibit emergent constants of 

(17)S = S (E, QA),

(18)T =

(
�S

�E

||||QA

)
−1

.

(19)QA = −∫
�

J�
A
d�

�
∇

�
J�

A
= 0,
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motion which are not conserved charges (and might not even be extensive). In these 

cases, however, the new constants of motion are collective quantities which can only 

be altered through the action of very strong interactions, while are conserved by 

every weak perturbation. Therefore they do not introduce any ambiguity in the defi-

nition of temperature and thermal equilibrium (see e.g. [14]) and will be ignored in 

the present discussion, even if in general they should be included in the equation of 

state [4].

3  Covariant Equation of State of an Ergodic Body

In this section we derive from first principles the covariant equation of state of an iso-

lated system in special relativity. The aim is to show that the Planck–Ott controversy is 

simply a particular case of the general problem underlined in Subsect. 2.1.

In a standard thermodynamic language, the term isolated means that the system does 

not exchange energy with the environment, but it may exchange momentum, through 

e.g. the interaction with adiabatic walls. This asymmetry between energy and momen-

tum cannot hold in a covariant formulation of thermodynamics, because we want to 

require that the physics (and therefore the form of the Hamiltonian) of the system are 

the same in any reference frame. Therefore by the term isolated we now mean that the 

system does not have any interaction with any external field, which otherwise would 

select a preferred reference frame. This immediately rules out the possibility to have an 

externally imposed volume, removing at the root the annoying (and not well defined) 

problem of the relativistic transformation of the thermodynamic pressure.

In this context, if a system has finite size it must be self-bounded. If, for example, it 

is a fluid in a box, the box should be regarded as a dynamical part of the system itself, 

which can be accelerated, deformed or heated (it has an entropy, c.f. with Landau and 

Lifshitz [26]). This implies that its shape and volume is only an equilibrium property, 

not a parameter in the Hamiltonian.

3.1  Deriving the Equation of State

Since, by definition, an isolated system does not have any interaction with the envi-

ronment, its total four-momentum p
� is necessarily conserved. The norm of the four-

momentum is the mass of the system,

and we assume it to be different from zero.

For an isolated system also the angular momentum tensor J�� is conserved, so spe-

cial relativity provides automatically other 6 constants of motion which a priori should 

be included as thermodynamics variable. However, if we go to the reference frame in 

which p�
= M�

�

0
 , we find that [46]

(20)M =

√

−p�p
�
,
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where �
CM

 is the position of the center of mass (or, more precisely, “center of 

energy”) of the system, while

is the Pauli–Lubanski pseudovector (proportional to the spin of the body, intended 

as the irreducible part of its angular momentum). Using the invariance of the laws 

of physics under global translations, we can set the origin in a way that �
CM

= 0 , so 

we have that

Thus, considering also that it must be true that

the physically relevant (in the construction of the equation of state of a body) con-

stants of motion which the conservation of the tensor J�� introduces are only three 

out the four components of the Pauli–Lubanski pseudovector.

We call a body ergodic, in analogy with Subsect. 2.4, if the remaining constants of 

motion are just the Noether charges QA of the underlying field theory. We assume that 

these charges transform as scalars under Lorentz transformations. This is the case for 

normal continuous media, where they can be typically interpreted as particle (minus 

antiparticle) numbers. Recalling that the physics of the system is invariant under Lor-

entz transformations and that the entropy is a scalar, the most general equation of state 

that an ergodic body can have has, therefore, the form

This result could be equivalently proved in the context of a quantum theory as fol-

lows: since the von Neumann entropy is invariant under unitary transformations, it 

is a Poincaré invariant and therefore it can be written as a function of the Poincaré 

invariants of the theory, which are the arguments appearing in the equation of state 

given above.

Equation (25) generalizes the formula of Israel [19], valid for static systems, to the 

case of rotating objects.

3.2  The Planck–Ott Controversy Reinterpreted

Since our aim is to understand only the role of the motion on the definition of the tem-

perature we assume for simplicity that the Pauli–Lubanski pseudovector is zero and 

(21)J
�� =

⎡
⎢
⎢
⎢
⎣

0 −Mx
1

CM
−Mx

2

CM
−Mx

3

CM

Mx
1

CM
0 W

3∕M −W
2∕M

Mx
2

CM
−W

3∕M 0 W
1∕M

Mx
3

CM
W

2∕M −W
1∕M 0

,

⎤
⎥
⎥
⎥
⎦

(22)W
�
= −

1

2
�
����

J��p�

(23)J�� =
1

M2
�
��

��
p�W�

.

(24)W
�
p�

= 0,

(25)S = S (
√

−p�p
�
,

√

W�W
�
, QA).
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remains such also in the interaction with the thermometer. We also require that no 

exchange of Noether charges QA is allowed between the body and the thermometer, in 

agreement with the discussion of Subsect. 2.4. Thus all the arguments in the equation 

of state (25) apart from the first one are fixed and can be ignored, leaving

Taking the differential of this equation of state we obtain

with

where we have introduced the rest-frame temperature through the equation3

and the normalised four-velocity of the center of mass

Now the origin of the controversy becomes clear: the system, as a result of covari-

ance requirements, is naturally given in the form (2), with l = 3 . In fact, chosen a 

reference frame, apart from the energy E = p0 , there are other three constants of 

motion implied by the conservation of the linear momentum. If we choose to write

where from now on j = 1, 2, 3 , then Eq. (27) implies

and we are naturally lead to define the temperature according to Planck’s 

prescription:

If, on the other hand, we choose to write

(26)S = S (
√

−p�p
�
).

(27)dS = −��dp�
,

(28)�� =
u
�

T
RF

,

(29)
1

T
RF

∶=
dS

dM
,

(30)u�

∶=

p�

M
.

(31)S = S (E, pj),

(32)dS =

u0

TRF

dE −

uj

TRF

dpj

(33)T =

T
RF

u0
.

3 Note that Eq. (29) defines the rest-frame temperature as a manifest scalar. In late times, Einstein sug-

gested that we should identify this scalar with the thermodynamic temperature [30]. This approach is a 

convenient linguistic solution currently adopted in relativistic hydrodynamics [33], but it does not solve 

the problem of predicting the equilibrium state of two bodies in motion with respect to each other.
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where

is the three-velocity of the center of mass of the system, then Eq. (27) implies

This would lead to Ott’s prescription for the temperature

So the ambiguity in the definition of the temperature in covariant thermodynamics is 

a particular case of the general problem exposed in Subsect. 2.1.

3.3  A Third Option

Note that pj and vj are not the only two possible examples of constants of motion we 

could choose. Since any triplet of independent functions Zj = Zj(E, p1, p2, p3) could 

be put in the equation of state, there might even be definitions in disagreement with 

both Planck’s and Ott’s prescriptions.

For example, in analogy with the unconventional thermometer proposed in Sub-

sect. 2.3, we can imagine the following situation. Let us assume a photon gas to be 

the body of which we want to measure the temperature. Chosen a reference frame, 

we build a hypothetical thermometer which is kept at rest in this frame by an exter-

nal force4 and which can exchange energy only by absorbing or emitting photons 

with a fixed four-momentum

Then, the conserved quantities of the system gas+thermometer are E
tot

 and the 

triplet

With calculations which are analogous to those performed in Subsect. 2.3, with the 

aid of Eq. (32), we can prove that when the equilibrium is reached the thermometer 

reports a temperature

(34)S = S (E, vj),

(35)vj
=

pj

p0

(36)dS =

1

u0 TRF

dE −

E uj

TRF

dvj
.

(37)T
�
= u

0
T

RF
.

(38)q = (�, �, 0, 0), � > 0.

(39)Z
1
= p

1
− E Z

2
= p

2
Z

3
= p

3
.

4 Since the external force acts on the thermometer and not on the body, it does not break the covariance 

of internal Hamiltonian of the body, therefore the equation of state (26) remains valid.
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meaning that it measures a Doppler-shifted temperature, which is different from 

both (33) and (37).

So, we have clarified that the real source of ambiguity is not special relativity by 

itself, but the conservation of the total linear momentum, which introduces three 

new constants of motion in the equation of state.

4  Thermometers in Relativity

In Subsect. 2.4 we have shown how the standard formulation of the zeroth law of 

thermodynamics can be used to solve the ambiguity presented in 2.1. However, that 

formulation was referring to the case in which the different bodies are linked by a 

WPOH, which is clearly an external field, whose presence breaks the covariance of 

the theory and the conservation of the momentum itself. For these reasons we can-

not rely on it in our case. Furthermore, the definition of thermometer we introduced 

in Sect. 2.2 is not well suited for covariant thermodynamics because the relation (7) 

is not covariant, but defines an object which must be kept at rest in a given frame by 

the action of an external force, as in the case presented in Subsect. 3.3.

In this section we outline the steps of an ideal measurement of temperature in a 

context in which the physics of the body and of the thermometer are the same in any 

reference frame.

4.1  Operational De�nition of Temperature

If we assume the thermometer to be a physical object (which does not break the 

covariance of the theory) with the least amount of macroscopic degrees of freedom 

possible, we need to impose it to have an equation of state of the form (26):

with M
�
 the mass of the thermometer, given by

where p�

�
 is its four-momentum. Let us consider the following idealized experiment:

– A thermometer is prepared with an initial mass and located inside the system in a 

not specified state of motion (formally, this means that the four-momentum p�

�
 in 

the initial conditions is arbitrary)

– A weak interaction between the body and the thermometer is switched on and 

the whole system evolves towards its equilibrium state (formally, this is obtained 

maximizing the total entropy of the full system body+thermometer compatibly 

with the constants of motion, which are assigned in the initial conditions).

(40)T
�
=

1

1 − v1

T
RF

u0
,

(41)S
�
= S

�
(M

�
),

(42)M
�
=

√

−p�

�
p
��

,
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– After the state of equilibrium is reached, the interaction is switched off and the 

thermometer is extracted from the body. An experimenter, then, weighs the ther-

mometer accurately, without altering its internal state, obtaining a measure of its 

mass and therefore, using (41), of its (rest-frame) temperature: 

The experiment we presented constitutes the ideal temperature measurement procedure 

in special relativity. Note that the experimental setting presented in Subsect. 3.3 is natu-

rally ruled out in a fully covariant context. In fact the thermometer, absorbing photons, 

exchanges momentum with the gas, and therefore should accelerate. The only way to 

prevent it is to admit the existence of an external force which counteracts this effect, 

breaking the covariance of the theory.

4.2  The Constants of Motion

In the experimental procedure outlined in the previous subsection, the equilibrium state 

that the isolated system body+thermometer reaches at the end of a transient is the one 

which maximizes

Thus, we need to impose, see Eq. (28),

for every perturbation of the eight variables p
� , p

�

�
 allowed by the conservation of 

the constants of motion. The conservation of the total four-momentum

however, implies that

so Eq. (45) becomes

Thus, we immediately obtain that if the thermometer is able to exchange freely 

energy and momentum with the body, then the variations �p
�

�
 are completely free 

and Eq. (48) implies

The first equation is the thermodynamic explanation of the friction as an entropic 

force. If the two bodies are free to exchange both energy and momentum, the 

(43)T
�
=

(

dS
�

dM
�

)

−1

.

(44)S
tot

= S (
√

−p�p
�
) + S

�
(
√

−p�

�
p
��
).

(45)�S
tot

= −���p�
− ����p�

�
= 0

(46)p
�

tot
= p

�

+ p
�

�
,

(47)�p
�
= −�p

�

�
,

(48)(�� − ���)�p
�

�
= 0.

(49)u
�

�
= u

�

T
�
= T

RF
.
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exchange will lead them to a final state in which they comove and have the same 

rest-frame temperature.

The only way to avoid the trivial outcome of a thermometer comoving with the body 

is to impose the presence of other constants of motion, which can force the existence 

of relative motions also in equilibrium. The easiest way to do this consists of imposing 

that the four-velocity u�

�
 of the thermometer is conserved in the interaction with the 

body (as has been proposed by Becattini [2]). If this is the case, then the variation �p
�

�
 

in (48) are no more completely free, but satisfy

Therefore, the condition for the entropy to be maximum with respect to M
�
 , with p�

tot
 

and u�

�
 constant, reads

which in the rest frame of the thermometer becomes Planck’s prescription, Eq. (33). 

However, this is only one possibility. One could instead design a situation in which 

the thermometer does not alter the state of motion of the body. In this case the con-

stants of motion would be the components of u� , giving

The final condition would read

in agreement with Ott’s prescription, Eq. (37). There are, clearly, other possible 

assumptions for �p
�

�
 which lead to alternative equilibrium conditions.

We have shown that the result of a temperature measurement can vary from ther-

mometer to thermometer if the we admit the presence of a relative motion in equi-

librium. Everything depends on which energy-momentum exchanges are allowed by 

the interaction and this, in turn, depends on how the thermometer is designed. This 

formalizes from a statistical perspective the results of Bíró and Ván [3], who have 

shown that different phenomenological models of heat transfer (i.e. different direc-

tions of allowed four-momentum exchanges) lead to different equilibrium states.

It is, however, clear that a constraint of the kind (50) or (52) represents a non-

ergodicity of the system body+thermometer which is unlikely to arise in realistic 

situations where a form of friction, even if small, always exists.5 For the interested 

reader, we propose in Appendix B an ideal system which seems, at first, to allow for 

(50)�p�

�
= u�

�
�M

�
.

(51)
u
�
u
�

�

T
RF

+
1

T
�

= 0,

(52)�p�

�
= −u�

�M.

(53)
1

T
RF

+

u
�
u
�

�

T
�

= 0,

5 Again we remark that in this work systems with spontaneously broken symmetries, like superfluids, are 

not considered because the role of their emergent constants of motion in the definition of the temperature 

has already been clarified. The systems under consideration are only the ergodic bodies presented in Sub-

sect. 3.
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a permanent relative motion in equilibrium. Then we show how nature finds a way 

to prevent its existence.

4.3  Indirect Thermometers

Motivated by the work of Landsberg and Matsas [29], we need to clarify a point 

before moving on with the general discussion. In the context of thermodynam-

ics, a rigorously defined thermometer is an object which always reports only its 

own temperature. Its operating mechanism is based on the zeroth law and not on 

the knowledge of the microphysics of the body. To clarify the importance of this 

distinction we give the following example.

Let us suppose that we need to measure the temperature of a photon gas in 

equilibrium, at rest with respect to us. Since the number of photons is not con-

served, all the local properties of the gas depend on a single parameter. This 

implies that the average value of any intensive observable can be written as a 

function of the temperature. The famous equation of state of the radiation gas

where � is the energy density and a is the radiation constant, is an example. As a 

result, any device which measures an observable whose average value is monotonic 

in the temperature can be used as an indirect thermometer. We take as an example a 

hypothetical instrument which measures the energy density and then is calibrated to 

report on a screen the quantity

Clearly, if Eq. (54) holds, we have T
m
= T  , therefore this seems to be a reliable ther-

mometer. Now let us imagine that the conditions in the environment change and 

suddenly all the interactions conserve the number of photons. Now the gas can have 

in principle a finite chemical potential � and will have an equation of state

If now we try to measure the temperature with the device we presented above we 

may get a wrong answer, because of the additional dependence of � on the chemical 

potential.

So we have shown that there is no guarantee that a device which is calibrated 

to associate a temperature to the mean value of a different observable will give 

the correct result when unexpected constants of motion arise. This is the expla-

nation of the non-uniqueness of the outcome of the temperature measurement 

proposed by Landsberg and Matsas [29] in their thought experiment. In fact, 

they consider a detector which is calibrated to associate a temperature to the 

spectral properties of the photon gas at rest and they imagine to use it in a situa-

tion in which the total momentum is conserved and different from zero.

In this work we are not dealing with this kind of devices, but only with the 

ideal thermometers we presented in Subsect. 4.1.

(54)� = a T
4
,

(55)T
m
∶= (�∕a)1∕4

.

(56)� = �(T ,�).
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5  Covariant Formulation of the Zeroth Law

We are finally able to revisit the concept of thermal equilibrium, presented in 

Subsect. 2.4, and adapt it to a relativistic context. As a result, we will also show 

that it is achieved only when the bodies are at rest with respect to each other.

5.1  A New Notion of Thermal Equilibrium

Since any kind of externally imposed wall breaks the covariance of the theory, we 

need to revisit the notion of thermal equilibrium replacing the WPOH with a more 

general interaction. From a microscopic perspective, the wall only permeable to 

heat is an idealization invoked to describe a condition in which the two systems are 

linked by a very weak interaction which does not allow the exchange of conserved 

charges (of the kind described in Subsect.  2.4) among the bodies. Formally, this 

means that the total Hamiltonian H is the sum of the Hamiltonians of the individual 

systems, plus a small interaction potential V
I
 such that

where Q
(i)

A
 is the amount of conserved charge A contained in the system i. To make 

this theory covariant and compatible at a fundamental level with an underlying 

Quantum Field Theory, we can require the interaction to have a form

where L
I
 is a scalar and constitutes the interaction term of the Lagrangian density 

(function of the fields and not of their derivatives). In general, the term L
I
 will be 

a coupling of the two bodies with some particles which are exchanged by the sys-

tems and therefore mediate the interaction. It is, then, clear that the condition (57) 

is fulfilled, provided that the mediator does not carry any conserved charge. Thus 

we can formulate the covariant notion of thermal equilibrium in special relativity as 

follows: “two systems are said to be in thermal equilibrium if they weakly interact 

through charge-neutral (in the sense of Noether’s theorem) mediators and there is 

an inertial frame in which they are both in a stationary state”.

Note that, even if this new definition has been derived in a fully covariant con-

text, it can still be applied to those cases in which external agents (like walls) are 

included. In this sense it represents only a generalization of the previous one, able 

to include the problem of the moving objects. In fact an ideal wall only permeable 

to heat is formally described as a surface which acts as a perfectly reflecting wall for 

baryons and leptons, but which is permeable to photon radiation (a photon does not 

carry any charge, being its own antiparticle).

(57)

[

Q
(i)

A
, VI

]

= 0 ∀A, i,

(58)V
I
= −∫ L

I
d3x,
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5.2  The Zeroth Law in Special Relativity

Now that an extended notion of thermal equilibrium has been proposed, we are able 

to address from a statistical perspective the question about whether or not the zeroth 

law can hold also in a fully covariant context.

When two bodies exchange a mediator, this will transfer its four-momentum, which, 

if the sender body is macroscopic, will be in general randomly oriented and its fre-

quency will take values in a continuous spectrum. Therefore we can conclude that in 

equilibrium the entropy is maximized with respect to any infinitesimal exchange of 

four-momentum. Formally this means that we need to take �p
�

�
 arbitrary in Eq. (48), 

leading to Eq. (49), which we present again here for two arbitrary bodies a and b:

If now we go to the common rest-frame of the two bodies, they are both in a station-

ary state, proving that indeed they are in thermal equilibrium, according to the defi-

nition proposed in the foregoing subsection.

It is in principle not impossible to design ad hoc interactions which make one of 

the bodies opaque only to one specific value of four-momentum of the mediator and 

transparent to all the others, producing a constraint on the exchange of four-momentum 

�p
�

�
 in Eq. (48). However, considering that at a fundamental level the interaction is not 

arbitrary, but has the form (58), we can assume that in realistic situations, if we take 

into account the processes at all the orders, this phenomenon will be in the end broken 

(in agreement with the thought experiment proposed in Appendix B). As we explained 

in Subsect. 4.2, this assumption corresponds to a statement of non-existence of addi-

tional constants of motion apart from the Noether charges of the theory. We can, thus, 

consider it a manifestation of the ergodic hypothesis.

We have shown that in covariant thermodynamics two bodies are in full thermal 

equilibrium if they have the same rest-frame temperature and are at rest with respect to 

each other. This immediately implies that the condition of being in thermal equilibrium 

is still an equivalence relation, whose equivalence classes are all the sets of bodies with 

the same �� = T
−1

RF
u
� . The zeroth law of thermodynamics is, then, still valid.

6  Applications

Below we propose three simple applications of our study.

6.1  Heat Baths in Special Relativity and the Covariant Free-Energy Principle

A heat bath is a body whose macroscopic properties are not relevantly altered by the 

interaction with the system object of study. In standard thermodynamics this is ensured 

by imposing an infinite heat capacity. It is clear that in special relativity, when both 

exchanges of energy and momentum are included, we need to provide a specification 

also of its inertia. We therefore define a heat bath as body with (effectively) infinite 

heat capacity and mass. Its equation of state needs to be expressed in a covariant form 

(59)u
�

a
= u

�

b
T

a

RF
= T

b

RF
.
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as a relationship between its mass M
H

 and entropy S
H

 (see Eq. (26)), therefore we may 

write an expanded effective fundamental relation

where S
H0

 and T
H

 are two constants. The quantity T
H

 is the rest-frame temperature 

and the fact that it is a constant guarantees the divergence of the heat capacity.

When an interaction with a system (whose thermodynamic variables will not 

carry any label, as usual) is enabled, system and heat bath will exchange energy 

and momentum, conserving the total four-momentum

Thus, considering that

where u�

H
 is the center of mass four-velocity of the bath, we obtain that

In the limit in which M
H
⟶ +∞ , with finite exchanges of four-momentum,

so the heat bath does not accelerate. As a result, a heat bath in special relativity is 

an object with constant temperature and center of mass four-velocity. The manifestly 

covariant formulation of this statement is

Let us study the condition of equilibrium of a system in contact with a heat bath. 

The law of non-decreasing entropy reads

With the aid of Eq. (60) we can rewrite this condition as

Invoking the conservation of the total four-momentum we find

Since u
H�

 and T
H

 are constant, they can be brought inside the variation, producing 

the condition

(60)S
H
= S

H0 +
M

H

T
H

,

(61)p�

tot
= p�

H
+ p�

.

(62)p�

H
= MHu�

H
,

(63)�u�

H
= −

�p�
+ u�

H
�MH

MH

.

(64)�u
�

H
⟶ 0,

(65)��
H
=

u
�
H

T
H

= const.

(66)�S
tot

= �S
H
+ �S ≥ 0.

(67)�(THStot) = −uH�
�p�

H
+ TH�S ≥ 0.

(68)� (THStot) = uH�
�p� + TH�S ≥ 0.

(69)�F ≤ 0,
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with

This is the covariant formulation of the principle of minimum free energy for a sys-

tem in contact with a heat bath. Note that in the reference frame of the bath the 

expression for the covariant free energy reduces to

Thus we have proven that the equilibrium state of a system in contact with a heat 

bath is the one which minimizes the Helmholtz free energy (over the manifold of 

states with T
RF

= T
H

 ) measured in the rest-frame of the heat bath.

This is in agreement with the quantum statistical result of Sewell [43], who proved 

that a body that serves as a heat bath (in the sense of the zeroth law) can obey the KMS 

conditions only in its own rest-frame, making Eq. (70) the only possible covariant gen-

eralization of the free energy.

Finally we note that if we search for the equilibrium state of the system imposing

we obtain the conditions

in accordance with our formulation of the zeroth law.

6.2  Relativistic Uni�cation of Heat and Friction

The root of the Planck–Ott imbroglio was the disagreement on the relativistic transfor-

mation of the heat [12]. The two views, and a simple way of deriving them, are sum-

marized in Appendix C. Now we are able to clarify this issue.

In standard thermodynamics, the work exerted on a system is its change of energy 

due the time-dependence of external macroscopic forces. Following Landau and Lif-

shitz [26], a macroscopic force can be modelled as an external field which appears in 

the microscopic Hamiltonian of the system and the work it makes is the result of a 

time-dependence of it. In fact, if this field changes with time, this breaks the invariance 

of the microscopic theory under time translations and, as a result, the (Noether) conser-

vation of the energy of the body.

If we follow this interpretation, the generalization to special relativity is straightfor-

ward. Let us consider a system in contact with a heat bath and interacting with an exter-

nal field (which does not act on the bath directly). From (61) we find

The presence of the field now breaks the invariance of the theory under the whole 

Poincaré group, because the field might have an arbitrary dependence both on space 

and time. Therefore the total four-momentum is not conserved and we call its varia-

tion work four-vector:

(70)F = −uH�
p�

− THS.

(71)F = E − T
H

S.

(72)�F = 0,

(73)u
�

= u
�

H
T

RF
= T

H
,

(74)�p�

tot
= �p�

H
+ �p�

.
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Note that if we consider the whole universe (external field included) as a bigger sys-

tem, and the field becomes a dynamical variable itself, then the Poincaré invariance 

is restored and the four-momentum of the universe is again conserved. Thus −�W� 

represents the four-momentum transferred from the body to the external environ-

ment mediated by the action of the field, in agreement with the common practical 

interpretations.

Considering that the heat bath does not interact directly with the field, its vari-

ation of four-momentum can only be the outcome of a transfer to the body, which 

allows the introduction of a heat four-vector

As a result, Eq. (74) becomes the first law in special relativity:

Formally, this four-vectorial construction reminds the one proposed by Ott (see 

Appendix C), but the separation into contributions is completely different. It is inter-

esting to study two particular cases which will clarify its physical meaning and show 

its consistency with the standard definitions.

Let us consider the case in which no interaction with the heat bath occurs. From 

(76) we have �Q�
= 0 . Now if we choose a reference frame and decompose (77) into 

its time and space components we obtain the equations

Let us assume that, in this reference frame, the external field does not depend on 

time. Then the invariance under time translations is restored and the energy of the 

body is conserved, giving �E = �W
0
= 0 . However, if the field depends on space, 

the momentum is not conserved and in principle �Wj
≠ 0 . This is the case, for 

example, of a gas enclosed in a box with perfectly reflecting walls. These ideal 

walls are nothing but an external stationary potential which break the conservation 

of the momentum of the gas. If, on the other hand, the walls start moving slowly, 

then also the energy can change, and it does according to the well known formula 

�E = −P�V  , where P and V are respectively pressure and volume. Thus in this case 

we have

So we hope we have convinced the reader that the four-vector �W� is the natural 

relativistic generalization of the thermodynamic work.

Now we can focus on the heat. To do this we consider an opposite situation in 

which no external field is applied and the body interacts only with a heat bath. Then 

�W
�
= 0 and we have

(75)�W
�
∶= �p

�

tot
≠ 0.

(76)�Q
�
∶= −�p�

H
.

(77)�p
�
= �Q

�
+ �W

�
.

(78)�E = �W
0

�pj
= �W

j
.

(79)�W
0
= −P�V .

(80)�p
�
= �Q

�
.
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To study the physical interpretation of this equation, we work in the reference frame 

of the heat bath and write the decomposition

In this frame the condition of non-increasing free energy (69) can be easily rewritten 

in the form

If we impose that the body is at rest with respect to the bath, then we have uj
= 0 and 

Eq. (82), combined with (81), becomes

This allows us to identify �Q0 with the heat exchange and we have recovered the 

Clausius formulation of the second law6, which holds strictly for bodies which are at 

rest with respect to each other. On the other hand, if we impose that the two bodies 

have the same temperature T
RF

= T
H

 and their relative speed is non-zero, but small 

compared to the speed of light (i.e. u0
≈ 1 ), we find from the combination of (82) 

and (81) the condition

However, the only force which acts on a body which is moving with respect to the 

environment, in the absence of external fields, is the friction with the environment 

f
j

F
 . Thus from Newton’s second law we find

where �t is the time interval in which the exchange of momentum occurs. Plugging 

(85) into (84) we obtain the other familiar law

which states that the friction always acts in a way to reduce the relative speed 

between the bodies (in agreement with our formulation of the zeroth law).

The analysis we have made shows that we can interpret the heat four-vector �Q� 

as the joint action of friction and heat exchanges with the bath. Special relativity 

has dictated the fundamental non-divisibility of these two dissipative phenomena, 

as different components of the same four-vector. Our analysis in Subsect. 5.1 also 

provides a microscopic interpretation of this unification. It shows that, since any 

(81)�E = �Q
0

�pj
= �Q

j
.

(82)

(

1 −
TH

TRF

u0

)

�E +
TH

TRF

uj�pj
≤ 0.

(83)

(

1 −

T
H

T
RF

)

�Q
0
≤ 0.

(84)uj�Q
j
≤ 0.

(85)�pj
= f

j

F
�t,

(86)ujf
j

F
≤ 0,

6 “There is no thermodynamic transformation whose sole effect is to extract a quantity of heat from a 

colder reservoir and to deliver it to a hotter reservoir” (see e.g. Huang [17])



1575

1 3

Foundations of Physics (2020) 50:1554–1586 

interaction is the result of the exchange of a mediator, it always involves a transfer 

of both energy and momentum, making any separation of the contributions merely 

artificial.

In conclusion, heat transforms as a four-vector in special relativity. However, 

its space components do not necessarily vanish in the rest-frame of the body, thus 

Ott’s transformation law does not apply in general.

6.3  Temperature of Rotating Objects

It is well known that rotating relativistic objects in full thermodynamic equilib-

rium have non-uniform temperature [9]. The Killing condition for the tempera-

ture vector field implies that the local rest-frame temperature of the volume ele-

ments has a dependence

where � is the (uniform) angular velocity of the body and R is the distance from 

the axis of rotation. The natural question which now arises is how we can define the 

temperature of a rotating object which is compatible with the zeroth law. To address 

this issue we need to consider Eq. (25) (ignoring the presence of charges) including 

a non-zero norm

of the Pauli–Lubanski pseudovector. The equation of state then reads

Our intuition tells us that we can define the inverse of the temperature as the partial 

derivative of S with respect to M, but again we face the problem that we do not know 

which variables we should keep constant. Thus, in analogy with what we did in the 

previous sections, we consider an interaction with an ideal (spin-less) thermometer 

and we search for the maximum of the function

The maximum needs to be computed compatibly with the constraints of conserva-

tion of the total four-momentum and angular momentum tensor:

If one performs the calculation of the variations explicitly, imposing

(87)T(R) =
T(0)

√

1 − �
2R2

,

(88)W =

√

W
�
W�

(89)S = S (M, W).

(90)S
tot

= S (M, W) + S
�
(M

�
).

(91)
p�

tot
= p�

+ p�

�

J
��

tot = J�� + J��
�

.

(92)�Stot = 0 �p�
= −�p�

�
�J�� = −�J��

�
,
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they will find, as a unique result, that the thermometer has to be at rest in the center 

of mass of the rotating body, measuring a temperature

It turns out, however, that this is not the maximum of the entropy, but only a saddle 

point, which results from the mathematical symmetries of the problem. The entropy 

does not admit a maximum, but only a supremum, which can be computed using the 

following argument.

It is natural to assume that

because, as the spin grows at constant mass, we are subtracting energy from the 

“chaotic” motions, forcing it into the collective rotation. We consider a state in 

which the thermometer and the body are far away from each other, in the limit in 

which the center of mass of the thermometer goes to infinity. If we remove the spin-

angular momentum from the body entirely, setting

this needs to be transferred into orbital angular momentum to ensure the overall con-

servation. However the orbital angular momentum of the thermometer scales as

where R is the distance of the thermometer from the chosen pole (which can be set 

in the center of mass of the body) and p
�
 is the spatial transversal component of 

the momentum. Thus we have that, for R ⟶ +∞ , only a negligible value of p
�
 is 

required to provide enough angular momentum to ensure the conservation of the 

total. Therefore we have proven that with an infinitesimal variation of the momen-

tum of the thermometer we can always remove the spin angular momentum from 

the body and impose Eq. (95) without violating the conservation of the total angular 

momentum.

Considering Eq. (94), we see that this transformation is always favourable 

and leads to a growth of entropy. Thus we obtain that the supremum entropy is 

achieved for

which is reached only in the limit in which body and thermometer are infinitely far 

from each other. This result remarkably shows that, even if a rotating body can be, in 

principle, in thermodynamic equilibrium, it is impossible to associate a temperature 

to its state from the zeroth law if W ≠ 0 . This, obviously, does not prevent one from 

defining a generalised notion of temperature through, e.g., the saddle point Eq. (93). 

However, assuming this as the temperature, all the machinery of equilibrium ther-

modynamics is not guaranteed to apply consistently.

(93)T
�
=

(
�S

�M

|
|
|
|W∕M

)−1

.

(94)
�S

�W

|
|
|
|M

≤ 0,

(95)W = 0,

(96)L
�
∼ R p

�
,

(97)W = 0 T
�
= T u

�

�
= u

�

,
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7  Conclusions

We have shown that the presence of other constants of motion apart from the 

energy in a thermodynamic system can lead to a fundamental ambiguity in the 

definition of the temperature. The Planck-Ott imbroglio has been explained to 

arise as a direct consequence of this problem, produced by the need of requiring 

the conservation of the total linear momentum.

We have explained that the zeroth law of thermodynamics plays a crucial 

role in selecting the appropriate experimental setting which defines a tempera-

ture measurement, removing all the ambiguities. However, we have seen that 

the standard notion of thermal equilibrium invoked in classical thermodynamics 

refers to experimental conditions which break the covariance of the theory at a 

fundamental level and therefore has to be revisited to be applicable to the case of 

moving bodies in special relativity.

We have proposed a new notion of thermal equilibrium which is fully covariant 

and well suited for applications in both relativistic and non-relativistic contexts 

(provided that the gravitational field is negligible). Under the ergodic assumption 

we have proven that, using this definition, the zeroth law of thermodynamics is 

still valid and full thermal equilibrium is achieved only when all the systems have 

the same rest-frame temperature and are at rest with respect to each other.

We have, then, applied our results to three selected open problems of relativis-

tic thermodynamics. We have provided a covariant formulation of the notion of a 

heat bath and of the principle of minimum free energy. The result is in complete 

agreement with quantum statistical mechanical calculations [43], establishing a 

direct connection of our approach with microphysics. Then, we have proposed 

a solution to the long-lasting debate about the relativistic notions of thermody-

namic work and heat. Our minimal approach has been to generalize the defini-

tion provided in standard textbooks [26] to a relativistic spacetime. This exten-

sion was constructed in a way to be rigorously defined at every scale, this making 

it well suited for both theoretical modeling and practical application. In the end, 

we studied the problem of defining the temperature of rotating relativistic objects. 

We found that it is not possible to attribute to them a temperature from the zeroth 

law. This is in accordance with the fact that, since their temperature is not uni-

form [9], thermometers located at different distances from the rotation axis meas-

ure a different temperature.

This work completes the axiomatisation of the relativistic thermodynamics 

proposed by Israel [19, 20], solving the major open controversies. The formalism 

was already fully self-consistent (encompassing the first and the second law) and 

represents the theoretical ground upon which the modern formulations of relativ-

istic hydrodynamics are constructed. Our consistent implementation of the zeroth 

law provides a direct contact with statistical mechanics and with the standard for-

mulation of thermodynamics.

The take-home message is that heat and friction are the components of a four-

vector, representing respectively the exchange of energy and momentum between 

two thermodynamic bodies. This unification solves the controversy about the 
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relativistic transformation of the heat and, at the same time, changes our under-

standing of the zeroth law. In fact, since relativity treats energy and momentum 

symmetrically, so the relativistic thermodynamics will do, adding to the condition 

of equilibrium with respect to energy exchanges other three conditions associated 

with the exchanges of momentum. This produces in equilibrium four constraints, 

instead of one, proving that in relativity the zeroth law is still valid and still estab-

lishes an equivalence relation. However, the equivalence classes now need to be 

parametrized using four independent parameters (temperature and velocity of the 

center of mass) instead of just one.
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Appendix

Two-Level Thermometer

We consider an ideal non-relativistic Fermi gas enclosed in a box with periodic 

boundary conditions. Let C�,�
 be the annihilation operator of a particle occupying 

the single-particle state of (discrete) momentum � and spin � = ±1∕2 . They satisfy 

the standard anticommutation relations

and

(98)

{

C
�,� , C

�,�

}

=

{

C
†

�,�
, C

†

�,�

}

= 0

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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The Hamiltonian of the gas is

where �
�
 is the single-particle energy of a fermion of momentum � . The operator 

number of particles is

We imagine the thermometer to be a two-level system7 with energy separation � > 0 

and ground-state energy conventionally set to zero. Therefore the Hamiltonian of the 

isolated thermometer has the form, in an appropriate basis,

where �
±
 are constructed as

the operators �
x
 , �

y
 , �

z
 being the Pauli matrices acting on the two-dimensional state 

space of the thermometer. The total Hilbert space is assumed to be the tensor prod-

uct between the space of the thermometer and the Fock space of the fermions and 

we have

When the thermometer is put into contact with the gas, we assume the total Hamil-

tonian to be

where the interaction term Vg� has the form

where g
�
 are real coefficients (reassuring Hermitianity). This potential models a pro-

cess in which the thermometer makes level transitions absorbing and destroying (or 

(99)

{

C
�,� , C

†

�,�

}

= �
�,�

��,� .

(100)
Hg =

∑

�,�

�
�

C†

�,�
C
�,�

,

(101)
N =

∑

�,�

C
†

�,�
C
�,�

.

(102)H
�
= � �+�− =

�

2
(1 + �z),

(103)�− =
1

2
(�x − i�y) �+ =

1

2
(�x + i�y) = �

†

−
,

(104)

[

�j, C
�,�

]

= 0.

(105)H = Hg + H
�
+ Vg� ,

(106)Vg� =
∑

�,�

g
�

[

�+C
�,�

+ C†

�,�
�−

]

,

7 We consider a single two-level system for simplicity, but the discussion can be easily generalized to 

a large number of two-level systems in the thermodynamic limit, producing a rigorously macroscopic 

object.
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creating and emitting) a fermion, breaking the particle number conservation. How-

ever it is easy to check that the operator

commutes with H and therefore describes a constant of motion. In the limit of small 

Vg� (weak interaction) the quantity Z introduced in Eq. (14) is represented by the 

operator

and is, thus, conserved.

When the system gas+thermometer is in thermal equilibrium, its density matrix 

can be assumed to be the Generalised Gibbs ensemble [38]

In the limit Vg� → 0 it splits into the tensor product

with

The state �
g
 is the thermal state of the Fermi gas with temperature Tg and chemical 

potential � given by

On the other hand, �
�
 is the thermal state of the thermometer with temperature

Combining (112) with (113) we find

which is in agreement with Eq. (16). Note that, since the gas is a Fermi gas, � can 

in principle be positive. So T
�
 can be infinite (for � = � ) or negative (for � > � ). In 

the diluted limit (for � → −∞ ) the temperature of the thermometer goes to zero, 

because the number of fermions is small compared to the number of available single 

particle states, so the probability to have a particle with exactly the energy � to be 

absorbed is small.

We remark that having T
�
≠ Tg is possible only as a result of the existence of an 

other constant of motion apart from the energy, as we clarified in Sect. 2. In fact, if 

we break the conservation of Q, then � = 0 (so the chemical potential � is in turn 

zero) and (114) becomes T
�
= Tg.

(107)Q = N + �
+
�
−

(108)Z = H − �Q,

(109)� ∝ exp(−�H + �Q).

(110)� = �
g
⊗ �� ,

(111)
�g ∝ exp (−�Hg + �N)

�� ∝ exp (−�H� + � �+�−).

(112)Tg = �−1 � = ��−1
.

(113)T� =

(

� −

�

�

)−1

.

(114)T
�
=

�

� − �
Tg,
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A Problem of Ergodicity

We have proven that a thermometer can maintain, in equilibrium, a relative motion 

with the body only if we impose some limitations on the possible exchanges of four-

momentum allowed by the interaction, preventing �p
�

�
 from having arbitrary direc-

tion. It is clear that, for macroscopic (i.e. comprised of large numbers of particles) 

systems with realistic interactions, the existence of an exact constant of motion of 

this kind is nearly impossible to occur. We propose the following thought experi-

ment to explain the basic mechanisms which prevent it.

Measuring Planck’s and Ott’s Temperature: An Attempt

Consider a real scalar boson � of mass m, which self-interacts with a short-range 

(compared with the average distance among the bosons) interaction. Since this parti-

cle coincides with its own antiparticle we can assume reactions of the type

to be allowed, implying that the particle number is not conserved (the chemical 

potential of the boson vanishes). There are, therefore, no conserved charges and the 

thermal state of this scalar boson can be characterised by an equation of state of the 

type (26). We will consider a gas of bosons � to be the body of which we measure 

the temperature.

We construct the thermometer as a collection of comoving, with respect to each 

other, distinguishable two-level systems, where the ground state is denoted by �0⟩ 

and the excited state is denoted by �1⟩ . We impose the mass separation between the 

two levels to be equal to the mass of the boson:

The interaction between the thermometer and the gas is assumed to happen only 

through the absorption or the emission of a boson � by a two-level system, namely 

through a reaction

where B�0⟩ represents a two-level system in the ground state and B�1⟩ represents a 

two-level system in the excited state. Equation (116) implies that the reaction (117) 

can happen only in the case in which the boson � is at rest with respect to the ther-

mometer, to conserve the total four-momentum. Therefore the reaction alters the 

mass of the thermometer but not its state of motion. We have constructed a ther-

mometer whose four-velocity u�

�
 is conserved by the interaction with the body.

According to the statistical arguments we exposed in Subsect. 4, this thermometer 

will measure, in equilibrium, Planck’s temperature. This can be also shown directly 

from kinetic theory. In fact, if we work in the reference frame of the thermometer, it 

is easy to show that the number N�1⟩ of two-level systems in the excited state evolves 

according to the Eq. [11]

(115)� + �⇌� + � + �

(116)M�1⟩ − M�0⟩ = m.

(117)B�0⟩ + �⇌B�1⟩
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where R is the spontaneous decay rate of the state �1⟩ , N�0⟩ is the number of two-

level systems in the ground state and n
�
 is the average number of bosons � with 

spatial momentum � . Once thermal equilibrium is reached, N�1⟩ becomes constant 

and from (118) we obtain

Recalling that the interaction is short range, we can approximate the gas as ideal. 

The equilibrium occupation number n
�
 of the ideal boson gas in a thermal state is

thus equation (119) becomes

which describes the macrostate of the thermometer having temperature

Recalling Eq. (28), we see that the above equilibrium condition reduces to Planck’s 

prescription. Thus, this thought experiment might seem, at the first sight, to sup-

port Eq. (33) as the transformation law of the temperature under Lorentz boosts. A 

supporter of Ott’s view, however, performing the same experiment might consider 

the collection of two-level systems to be body of which they are measuring the tem-

perature and the boson gas as the thermometer. They will therefore exchange T
�
 with 

T
RF

 , obtaining a measurement of the temperature of the two-level system in agree-

ment with Ott’s law, Eq. (37).

Realistic Interactions

The situation we have proposed represents an idealised system in which the ther-

mometer can exchange energy but not momentum (in its reference frame). Unfor-

tunately such a system cannot be constructed in realistic conditions and represents 

only a non-physical limit. In fact the spontaneous decay rate R appearing in Eq. 

(118) is given by the Fermi Golden Rule and must be equal to [39]

(118)
dN�1⟩

dt
= R

�
N�0⟩n0 − N�1⟩(1 + n0)

�
,

(119)
N�1⟩

N�0⟩

=

n
0

1 + n
0

.

(120)n
�
=

1

e−��q�
− 1

,

(121)
N�1⟩

N�0⟩

= e
−�0

m
,

(122)T� =
1

�0
.

(123)R =

��f �

8�M�1⟩
2
�⟨0,��VI�1⟩�

2
,
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where �⟨0,��V�1⟩�2 is the matrix element of the interaction potential responsible for 

the transition and �f  is the momentum of the emitted particle � in the original frame 

of the two-level system. So if we set �f = 0 , which is the necessary condition to 

guarantee the conservation of u�

�
 , we will find that the reaction cannot occur and 

the thermometer does not interact with the body at all. The only way to make the 

transfusion of energy possible is to set |�f | ≠ 0 , breaking the conservation of u�

�
 . The 

typical acceleration that the thermometer will, then, experience is

which is a second order in ��f �∕M�0⟩ . Therefore the system presented in Subsect. B.1 

can exist only as a limit in which the time required for the thermometer to reach 

comotion with the body is much longer than the time of the experiment.

There is, however, an other complication. Interactions coming from an underlying 

field theory in general admit the possibility of having higher order processes, of the 

kind

where a spectator � takes part of the four-momentum. In this situation the two-

level system does not need to be at rest at the end of the process, breaking again 

the conservation of u
�

�
 . This process is not suppressed by the phase space and 

therefore becomes dominant, leading anyway to the inevitable acceleration of the 

thermometer.

Ambiguity in the De�nition of the Heat

Let us start from the general differential

This represents an orthogonal decomposition of the variation of the four-momen-

tum, because

which is ensured by the conservation of the normalization condition u
�
u
�
= −1 . Let 

us assume an equation of state (26), which implies that we do not have chemical-

type forms of work �A�QA (where �A is the chemical potential of the charge QA ), 

but the only possible way to exert work on the body is by impressing an acceleration 

through the action of a force. This suggests a relativistic first-law

with

(124)ac ∼ R
��f �

M�0⟩

,

(125)B�0⟩ + � + �⇌B�1⟩ + �,

(126)�p�
= u�

�M + M�u�
.

(127)u
�
�u

�
= 0,

(128)�p
�
= �Q

�
+ �W

�
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The four-vector �W� can be interpreted as the four-dimensional generalization of the 

work element. In fact, in a given reference frame,

which is the formula for the relativistic work of an external force acting on a moving 

particle. From Eq. (129) one finds that in a given frame

where we have employed the definition (29). This formula is the relativistic transfor-

mation of the heat proposed by Ott [12].

There is, however, an other possibility. Let us rewrite Eq. (20) in a chosen refer-

ence frame in the form

Its differential reads

The second term reminds the standard formula of the variation of the kinetic energy 

provided in Hamiltonian mechanics, which then suggests the decomposition

with

and

This is the relativistic transformation for the heat proposed by Planck [12]. We see 

that the source of ambiguity is in the definition of the work as the variation of the 

kinetic energy of the system in situations in which the mass is changing with time 

(in the case in which �M = 0 the formulas of the work (130) and (135) coincide, as 

it happens in point-particle mechanics).

As we clarify in the main text, none of these two subdivisions reflects the stand-

ard physical interpretation of the splitting of the energy variation into heat and work. 

The subdivision needs to be performed considering how the environment is acting 

on the body and cannot be uniquely determined in terms of internal properties of the 

body itself.

(129)�Q
�
= u

�
�M �W

�
= M�u

�
.

(130)�W
0 = (u0)3Mvj�vj

,

(131)�Q
0
= u

0
�M = u

0
T

RF
�S,

(132)E =

√

M2 + pjp
j.

(133)�E =
�M

u0
+ vj

�pj.

(134)�E = �Q + �W,

(135)�W = vj
�pj

(136)�Q =

�M

u0
=

T
RF
�S

u0
.
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