
Scientific Programming 20 (2012) 129–150 129
DOI 10.3233/SPR-2012-0342
IOS Press

The Zoltan and Isorropia parallel toolkits for
combinatorial scientific computing:
Partitioning, ordering and coloring

Erik G. Boman a, Ümit V. Çatalyürek b, Cédric Chevalier c and Karen D. Devine a,∗

a Department of Scalable Algorithms, Sandia National Laboratories**, Albuquerque, NM, USA
b Department of Biomedical Informatics and Department of Electrical and Computer Engineering, The Ohio State
University, Columbus, OH, USA
c Commissariat à l’Énergie Atomique et aux Énergies Alternatives, Direction des Applications Militaires, CEA,
DAM, DIF, Arpajon, France

Abstract. Partitioning and load balancing are important problems in scientific computing that can be modeled as combinatorial
problems using graphs or hypergraphs. The Zoltan toolkit was developed primarily for partitioning and load balancing to support
dynamic parallel applications, but has expanded to support other problems in combinatorial scientific computing, including
matrix ordering and graph coloring. Zoltan is based on abstract user interfaces and uses callback functions. To simplify the use
and integration of Zoltan with other matrix-based frameworks, such as the ones in Trilinos, we developed Isorropia as a Trilinos
package, which supports most of Zoltan’s features via a matrix-based interface. In addition to providing an easy-to-use matrix-
based interface to Zoltan, Isorropia also serves as a platform for additional matrix algorithms. In this paper, we give an overview
of the Zoltan and Isorropia toolkits, their design, capabilities and use. We also show how Zoltan and Isorropia enable large-scale,
parallel scientific simulations, and describe current and future development in the next-generation package Zoltan2.

Keywords: Partitioning, load balancing, matrix ordering, fill-reducing ordering, graph coloring, parallel computing, combinatorial
scientific computing

1. Introduction

The Zoltan project started in 1998 with the goal of
providing a toolkit for partitioning and dynamic load
balancing in dynamic applications [23]. Over the years,
the scope of Zoltan has expanded to provide a collec-
tion of utilities within the area of combinatorial scien-
tific computing. The three main capabilities of Zoltan
are now partitioning, ordering, and coloring. Having all
these capabilities in a single toolkit gives users a single
interface to a wide range of capabilities. For example,

*Corresponding author: Karen D. Devine, Department of Scal-
able Algorithms, Sandia National Laboratories, Albuquerque,
NM 87185-1318, USA. E-mail: kddevin@sandia.gov.

**Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the US Depart-
ment of Energy’s National Nuclear Security Administration under
contract DE-AC04-94AL85000. This work was supported by the
NNSA’s ASC program and by the DOE Office of Science through
the CSCAPES SciDAC Institute and ITAPS SciDAC Center.

the ShyLU hybrid solver [51] uses all the main capabil-
ities. Partitioning is used to decompose a sparse matrix
into smaller submatrices that are loosely coupled. Ma-
trix ordering is used to reorder the submatrices to min-
imize fill. Coloring is used within a “probing” scheme
to form a sparse approximation to the Schur comple-
ment (see Section 2.4.2).

A key element of Zoltan’s design was the separa-
tion of its data structures from the interfaces to sup-
port a wide range of applications. Zoltan relies on a
small set of callback (query) functions that must be im-
plemented by the user. When Zoltan was incorporated
into the Trilinos solver framework [34], the need for
a more “Trilinos-friendly” interface became clear. The
solution was a new package called Isorropia. Isorropia
is primarily a C++ layer on top of Zoltan that pro-
vides matrix-based interfaces to Zoltan capabilities for
Trilinos’ Epetra matrix/vector classes [35]. Isorropia
provides the translation from a user’s Epetra matrices
and vectors to the data model (e.g., graph, hypergraph,

1058-9244/12/$27.50  2012 – IOS Press and the authors. All rights reserved

130 E.G. Boman et al. / The Zoltan and Isorropia parallel toolkits for combinatorial scientific computing

coordinates) needed by Zoltan for partitioning, color-
ing and ordering. While Zoltan’s more general inter-
face supports a broad set of applications, application
developers using Epetra find Isorropia’s interface to be
much simpler in terms of the amount and complexity
of application code needed.

The main purpose of this paper is to give an up-
to-date description of the Zoltan and Isorropia pack-
ages. In Section 2, we give an overview of the capabil-
ities and algorithms offered. In Section 3, we discuss
the software design. Finally, in Section 4, we introduce
Zoltan2, the planned successor to both Zoltan and Isor-
ropia.

2. Capabilities and algorithms

2.1. Partitioning and load-balancing

Partitioning and dynamic load balancing are key
components of scientific computations. Their goal is
to divide applications’ data and work among processes
in a way that minimizes the overall application ex-
ecution time. The goal is most often achieved when
work is distributed evenly to processes (eliminating
process idle time) while minimizing data dependence
and movement between processes. A partition is an as-
signment of data and work to subsets called parts that
are mapped to processes. More precisely, given a set of
items V , a k-way partition P = {V1, V2, . . . , Vk} as-
signs members vi ∈ V with weight wi to k parts such
that Vp ∩ Vq = ∅ for p �= q and

⋃k
p=1 Vp = V . A par-

tition is said to be balanced if Wp � Wavg(1 + ǫ) for
p = 1, 2, . . . , k, where part weight Wp =

∑
vi ∈Vp

wi,

Wavg =
1
k

∑
vi∈V wi, and ǫ > 0 is a predetermined

maximum tolerable imbalance.
Items vi ∈ V may depend on other vj for, say, com-

puting solution values at vi. A dependence that ex-
tends between two or more parts requires communica-
tion or data movement to satisfy the dependence. The
“quality” of a partition is typically considered to be in-
versely proportional to some measure of the costs to
satisfy inter-part dependence. Various cost measures
(e.g., number of neighboring parts, number of depen-
dences split between parts) can be used, but the most
common cost metric is the total volume of communi-
cation between parts.

A common partitioning use-case arises in finite el-
ement and volume methods used in structural anal-
ysis and fluid dynamics simulations. In these meth-
ods, mesh entities (elements, cells, mesh nodes) must

be distributed among processes. Each entity vi can
have an associated computational weight wi repre-
senting, say, its number of degrees of freedom or the
time to perform computations on the entity. Mesh ad-
jacencies define data dependence; for example, a mesh
node’s solution values may be determined by integra-
tions across its adjacent elements, or fluxes across an
element face may depend on solution values from ele-
ments on both sides of the face. Thus, solutions of the
partitioning problem above distribute specified mesh
entities’ computational weight evenly across processes
while attempting to minimize the cost of communi-
cating data for relevant mesh adjacencies that extend
across two or more processes.

The partition used to distribute a mesh often induces
a partition on a related linear system Ax = b represent-
ing the physics on the mesh. For example, each mesh
node vi may correspond to a matrix row ai in A; so-
lution values at vi are represented by vector entries xi.
Non-zeros aij in the matrix represent a data depen-
dence between mesh nodes vi and vj . Thus, a partition
of mesh nodes results in a row-based partition of the
linear system. In this case, the communication metric is
taken to be the total amount of communication needed
to perform a matrix–vector multiplication Ax.

Other parallel applications needing partitioning in-
clude (but are certainly not limited to) particle meth-
ods (e.g., for hydrodynamics or biological simula-
tions), contact detection (e.g., for crash simulations),
device-based electrical circuit simulations, circuit de-
sign and layout, semantic analysis for term-document
databases, and graph analysis on networks. Character-
istics of these applications and appropriate partition-
ing strategies for them will be discussed in more detail
below.

An application’s characteristics determine the parti-
tioning strategy best-suited to the application. No sin-
gle algorithm is best for all applications. Trade-offs be-
tween partitioning strategies include geometric-based
data locality versus connectivity-based data locality,
static versus dynamic redistribution, and speed of par-
titioning versus quality of the resulting partition. For
this reason, we have included a suite of partitioning al-
gorithms in Zoltan, each of which is accessible from
Isorropia as well. These algorithms range from fast,
medium quality geometric partitioners to more expen-
sive, higher quality graph and hypergraph-based meth-
ods.

Geometric partitioning. Geometric methods parti-
tion data based on their geometric locality. Items as-
signed to the same part are physically close to each

E.G. Boman et al. / The Zoltan and Isorropia parallel toolkits for combinatorial scientific computing 131

other in space. This geometric locality makes geomet-
ric methods ideal for particle-based applications and
contact detection algorithms. In particle methods, the
vi are particles to be distributed to processes. Depen-
dence arises, not between vi and other fixed vj , but
rather between vi and all other particles within a cer-
tain distance of vi. Thus, in addition to maintaining
load balance, partitioners must maintain data locality
of the particles within processes for efficient force cal-
culations. Similarly, in contact detection, searches for
contact between entities are optimized when physically
close entities are assigned to the same process; parti-
tioners must account for the geometric locality of en-
tities to maintain efficient local search as the geometry
deforms. Geometric methods are also useful for appli-
cations requiring frequent partitioning (e.g., adaptive
mesh-based simulations), because they are fast and re-
quire only coordinate information as input. However,
because they do not explicitly model communication,
they can produce partitions with only medium partition
quality.

Geometric methods in Zoltan include Recursive Co-
ordinate Bisection, Recursive Inertial Bisection and
Hilbert Space-Filling Curve partitioning. Recursive
Coordinate Bisection (RCB) [2] was originally de-
signed for adaptive mesh refinement methods, because
it assigns parent and child elements to the same pro-
cess, eliminating the need for communication between
mesh levels. In RCB, the work of a problem is di-
vided in two equally weighted halves using a cutting
plane orthogonal to a coordinate axis. Items are as-
signed to sub-domains based on their geometric po-
sition relative to the cutting plane. The resulting sub-
domains are then recursively cut, until the number of

sub-domains equals the number of parts requested (see
Fig. 1, left). (Although we have described the algo-
rithm for k = 2m parts for some m, the Zoltan imple-
mentation is applicable for all values of k.) RCB has
the property that its resulting partitions are “incremen-
tal”; that is, small changes in the input data result in
only small changes to the partition. This property can
be exploited to reduce data movement costs when fre-
quent repartitioning is needed. Recursive Inertial Bi-
section (RIB) [58,60] is a variant of RCB in which
cutting planes are chosen to be orthogonal to the prin-
cipal axes of the geometry, rather than to the coordi-
nate axes. Hilbert space-filling curve (HSFC) partition-
ing [49,63] has been used for gravitational simulations,
smoothed particle hydrodynamics, and adaptive finite
element methods. In HSFC partitioning (Fig. 1, right),
each item’s position along a Hilbert space-filling curve
is computed based on its coordinate values. The re-
sulting positions provide a one-dimensional ordering
of the three-dimensional items in the domain, with the
property that items that are close to each other in the
one-dimensional ordering are also close to each other
in three-dimensional space. This one-dimensional or-
dering is then cut into k equally weighted parts. Like
RCB, HSFC partitioning is fast and incremental, and
creates parts containing geometrically close items.

With the geometric partitioners in Zoltan, each pro-
cess can inexpensively store information about the en-
tire partition. By storing the cutting-plane locations
and directions used in RCB or RIB, or the cut positions
in HSFC partitioning, each process can know the re-
gion of physical space assigned to every part; the to-
tal storage is O(k) for k parts. Zoltan includes addi-
tional functionality for querying this cut information

Fig. 1. Examples of Recursive Coordinate Bisection (RCB) (left) and Hilbert space-filling curve (HSFC) partitioning (right) in Zoltan. RCB
recursively cuts the domain into equally weighted halves. HSFC partitioning linearly orders elements according to their position along
a Hilbert space-filling curve (red), and cuts the curve equally among parts. (The colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-2012-0342.)

132 E.G. Boman et al. / The Zoltan and Isorropia parallel toolkits for combinatorial scientific computing

Fig. 2. The graph (left) and hypergraph (right) models for connectivity-based partitioning. In the graph example, graph vertices (white) represent
mesh elements, while graph edges (blue) represent face adjacencies; element colors indicate part assignments. In the hypergraph, vertices (circles)
are connected by hyperedges (squares); vertex colors indicate part assignments. (The colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-2012-0342.)

to determine which part owns a given point in space,
or which parts overlap a given bounding box in space.
These functions (Zoltan_Point_PP_Assign and
Zoltan_Box_PP_Assign) are useful for global
searches in contact detection where a process needs
to know which other processes contain potential con-
tacts with a given entity, based on the entity’s position
in space; local searches for contact can then be done
within each of the processes with potential contacts.

Connectivity-based partitioning. Connectivity-
based partitioning methods explicitly represent data
dependence and use it to attempt to minimize com-
munication and data movement costs. In connectivity-
based methods, application data are represented by a
weighted graph or hypergraph. Items to be partitioned
are vertices. Pairwise or multiway data dependence is
represented by graph or hypergraph edges, respectively
(see Fig. 2). Any edge that has vertices in two or more
parts requires communication to satisfy the data de-
pendence it represents. Thus, partitioning vertices into
equally weighted parts while minimizing the weight of
edges that are split among one or more parts provides
a balanced work distribution with approximately min-
imal total communication volume.

Graph partitioning [31] is perhaps the most well-
known partitioning method. It has been applied exten-
sively in finite element/volume applications and lin-
ear algebra frameworks. In linear systems, for exam-
ple, the structure of matrix A can be interpreted as the
adjacency matrix of a graph, with non-zero entry aij

representing an edge from vi to vj . Since graph parti-
tioners use an undirected model, the linear systems that
can be represented are limited to square, structurally
symmetric matrices. For structurally non-symmetric

matrices, symmetrization via A + AT or AAT allows
graph partitioners to be applied, but reduces the ac-
curacy of the communication model. Zoltan includes
interfaces to two popular graph partitioning libraries:
PT-Scotch [48] and ParMETIS [42]. It also has native
graph-partitioning capabilities through its hypergraph
partitioner.

Hypergraph partitioning [14] improves the model
used in graph partitioning. In row-partitioning of a lin-
ear system, for example, matrix rows are hypergraph
vertices, and matrix columns are hypergraph edges
(with non-zero column entries specifying which ver-
tices are in the edges) [8]. There is no restriction that
the matrix be square or structurally symmetric. Thus,
hypergraphs can represent a much broader class of
problems (e.g., term-document matrices, circuit net-
works). While graph models must approximate multi-
way data dependence by several pairwise edges, hy-
pergraph models accurately represent multiway depen-
dence within a single hyperedge. Thus, hypergraph
models more accurately represent communication vol-
ume for edges split by part boundaries, allowing hyper-
graph partitioners to generate higher quality partitions.
The main drawback of hypergraph partitions is that
they often require more time to be generated than graph
partitions. Zoltan has a native parallel hypergraph par-
titioner [24], as well as an interface to the serial hyper-
graph partitioner PaToH [9].

Optimally balancing vertex weight while minimiz-
ing the weight of split edges is an NP-hard optimiza-
tion problem [26], but fast multilevel algorithms and
software produce good solutions in practice [7,9,24,32,
42]. In multilevel algorithms, an input (hyper)graph is
repeatedly coarsened, with coarse vertices represent-

E.G. Boman et al. / The Zoltan and Isorropia parallel toolkits for combinatorial scientific computing 133

ing clusters of input vertices. The coarse (hyper)graph
can be partitioned easily. The coarse partition is then
projected back to the finer (hyper)graphs, with local
improvements of the partition performed at each finer
level. This approach produces very high quality par-
titions for many applications, but is more expensive
computationally than geometric methods.

Static versus dynamic partitioning. The amount of
change in an applications’ computation over time de-
termines whether static or dynamic partitioning should
be used. In applications such as traditional finite ele-
ment methods, the mesh and the work associated with
each mesh entity do not change during the course of a
computation. Thus, a good static partition can be com-
puted once at the beginning of a simulation and will re-
main effective throughout a simulation. Because static
partitioning is done only once, its cost can be amor-
tized over the entire computation and, thus, more ex-
pensive partitioners (e.g., graph and hypergraph parti-
tioning) can be used to obtain higher quality partitions.
Moreover, because data is moved only once to the new
partition, the partitioner does not have to minimize the
cost of moving data from its old part assignment to
its new one; that is, it does not have to account for
an existing partition in computing the new one. All of
Zoltan’s geometric, graph-based and hypergraph-based
methods can be used for static partitioning.

Applications whose computational loads or data lo-
cality vary during the course of a computation require
dynamic partitioning or load balancing. In h-adaptive
finite element methods, for example, the mesh is lo-
cally refined or coarsened to satisfy accuracy con-
straints, thus dynamically changing the amount of
work per process and creating load imbalance. Geo-
metric locality and load balance in particle methods
and crash simulations are often lost as particles move
and structures deform, respectively. Dynamic parti-
tioning methods restore load balance and/or geomet-
ric locality by redistributing data and work among pro-
cesses. But since they are working with data that is al-
ready distributed, dynamic partitioning methods must
attempt to also minimize the cost to move data from
the existing partition to the new one. Some dynamic
methods (e.g., RCB, HSFC partitioning) achieve this
goal implicitly; small changes in the data naturally
result in only small changes to the partition. Other
dynamic methods (e.g., Zoltan’s hypergraph reparti-
tioner, graph-based adaptive-refinement methods) ex-
plicitly account for an existing distribution in com-
puting the new distribution. Diffusive algorithms, for
example [56], in which work is shifted from heavily

loaded processors to more lightly loaded neighboring
processors, provide one way to obtain incremental par-
titions in connectivity-based models, but their quality
can degrade over several invocations of the partitioning
algorithm; this approach is available in Zoltan through
its interfaces to ParMETIS’ adaptive-refinement graph
algorithms [42]. The approach used in Zoltan’s hyper-
graph and native graph algorithms [12] connects each
vertex to its current process by an edge weighted by the
cost of moving the vertex’s data to a new part; Zoltan’s
partitioners then account for both data movement costs
and data dependence costs in the new partition.

Additional partitioning functionality. Zoltan is the
container for all partitioning algorithms in Trilinos. It
includes the algorithms described above, as well as
random and block partitioning. Random partitioning
simply randomly assigns items to parts. Block parti-
tioning assigns |V | items to parts in a linear fashion,
with the first |V |/k items going to the first part, the
next |V |/k items going to the second part and so on.

Hierarchical partitioning strategies are also available
in Zoltan. These methods can be used to exploit user-
provided information about the underlying machine ar-
chitecture in heterogeneous parallel computers. For ex-
ample, in a parallel machine with 10 nodes, where each
node is a 16-core processor, users can choose to parti-
tion first into 10 parts, and then further partition each
of those parts into 16 parts. Different partitioning algo-
rithms can be applied at each level to attempt to mini-
mize costs related to data movement at the level. This
hierarchical partitioning has shown benefit in some
shared-memory clusters [61]; further experimentation
for multicore systems is underway.

Isorropia provides a Trilinos Epetra matrix-parti-
tioning interface to Zoltan. It maps matrix data struc-
tures (e.g., rows, non-zeros) to the partitioning models
(e.g., vertices, edges) in Zoltan, provides access to all
Zoltan partitioners, and provides data redistribution ca-
pabilities for Epetra matrices and vectors. The default
Epetra partition is row-based; that is, entire rows of a
matrix (along with corresponding vector entries) are
assigned to parts. However, Isorropia provides more
sophisticated partitions as well. For example, in two-
dimensional matrix partitions, individual non-zeros of
the matrix are assigned to parts, allowing greater flexi-
bility to reduce total communication volume or number
of neighboring processes in matrix–vector multiplica-
tion [11]. Two-dimensional matrix partitioning meth-
ods available in Isorropia include fine-grained hyper-
graph partitioning [11], Cartesian methods [11], and
RCB partitioning of the (i, j) indices of the matrix non-
zeros [22].

134 E.G. Boman et al. / The Zoltan and Isorropia parallel toolkits for combinatorial scientific computing

2.2. Ordering

The ordering of sparse data structures (graphs, ma-
trices, meshes) is important to obtain good perfor-
mance on modern architectures. In Zoltan/Isorropia,
we have focused on two different goals: ordering ir-
regular data for locality, and fill-reducing ordering for
sparse matrix factorizations. The same interfaces and
classes are used for both types of ordering.

2.2.1. Locality-enhancing orderings
A very common kernel in scientific computing is

to loop over an irregular (unstructured) data structure
such as a mesh or a sparse matrix. For example, in
sparse matrix–vector multiplication y = Ax, each non-
zero entry in A has to be traversed. Mathematically, the
visit order does not matter because the result is invari-
ant. However, the performance on a modern computer
is highly dependent on the ordering since memory ac-
cess is relatively slow compared to computation. The
goal is thus to reorder the data such as to maximize
locality and reduce the number of cache misses. This
is also known as loop permutation. Typically, the or-
dering (permutation) is computed once but can be used
many times.

In Zoltan/Isorropia, we provide two such orderings.
One is based on space-filling curves, where items are
ordered in local memory according to their position
along a space-filling curve through the items (Fig. 1).
The other is the Reverse Cuthill–McKee (RCM) algo-
rithm [20], which attempts to minimize the bandwidth
of a sparse matrix. RCM is also often used to reorder
matrices for iterative methods [25].

The typical use case is to use locality-enhancing or-
dering on local data within a single compute node or
core. Thus, only a serial implementation is provided in
Zoltan/Isorropia.

2.2.2. Fill-reducing ordering of sparse matrices
In many scientific computing applications, it is nec-

essary to solve linear systems Ax = b. Either di-
rect or iterative methods can be used. When A is ill-
conditioned or no good preconditioner is known, direct
solvers are preferred since iterative solvers will con-
verge slowly or not at all. The work and memory re-
quired to solve Ax = b depends on the fill in the factor-
ization. A standard technique is therefore to permute
(reorder) the matrix A such that one solves the equiv-
alent system (PAQ)(QTx) = Pb, where P and Q are
permutation matrices. This reordering is usually per-
formed as a preprocessing step, and depends only on
the non-zero structure, not on the numerical values. In

the symmetric positive definite case, a symmetric per-
mutation is used to preserve symmetry and definite-
ness, i.e., Q = P T. In the non-symmetric case, numer-
ical pivoting is required for stability during the factor-
ization phase. Generally, only a column permutation is
therefore performed in the setup phase to reduce fill.

There are two broad categories of fill-reducing or-
dering methods: minimum degree [62] and nested dis-
section [29] methods. The minimum-degree class takes
a local perspective and the algorithms are greedy. The
algorithms are inherently sequential but fast to com-
pute. The nested dissection methods, on the other hand,
take a global perspective. Typically, recursive bisection
is used, which is suited for parallel processing. Nested
dissection methods usually give less fill for large prob-
lems, and are better suited for parallel factorization. In
practice, hybrid methods that combine nested dissec-
tion with a local ordering are most effective.

Symmetric positive definite case. Most of the state-
of-the-art symmetric ordering tools [10,16,33,40] are
hybrid methods that combine multilevel (hyper)graph
partitioning for computing nested dissections with a
variant of minimum degree for local ordering. The
main idea of nested dissection is as follows. Consider
a partitioning of vertices (V) into three sets: V1, V2 and
VS , such that the removal of VS , called a separator,
decouples two parts V1 and V2. If we order the vertices
of VS after the vertices of V1 and V2, i.e., if the elim-
ination process starts with vertices of either V1 or V2,
no fill will occur between the vertices of V1 and V2.
Furthermore, the elimination process in V1 and V2 are
independent from each other and their elimination only
incurs fill to themselves and VS . In the nested dissec-
tion, the ordering of the vertices of V1 and V2 is simply
computed by applying the same process recursively. In
the hybrid methods, recursion is stopped when a part
becomes smaller than predetermined size, and mini-
mum degree-based local ordering is used to order the
vertices in that part.

Non-symmetric case. In non-symmetric direct solv-
ers, partial pivoting is required for numerical stability
and to avoid breakdown. Partial pivoting is usually per-
formed by looking down a column for a large entry and
then swapping rows. This defines a row permutation
but it is determined during the numerical factorization.
Therefore, fill-reducing ordering has focused on col-
umn ordering. Consider Â = PAQ. The column per-
mutation Q can be computed in a preprocessing step
based on the structure of A. Note that P is not known
at this point, so Q should reduce fill for any P .

There are two popular approaches to column order-
ing. First, one can simply symmetrize A and compute

E.G. Boman et al. / The Zoltan and Isorropia parallel toolkits for combinatorial scientific computing 135

a nested dissection ordering for either A+AT or ATA.
This is attractive because one can use the same algo-
rithms and software as in the symmetric case. How-
ever, ordering based on A + AT does not necessar-
ily give good quality ordering for A. Ordering based
on ATA generally works better and has a theoretical
foundation since the fill for LU factors of A is con-
tained within the Cholesky factor of ATA. Unfortu-
nately, ATA is often much denser than A and takes
too much memory to form explicitly. The second ap-
proach is therefore to order the columns of A to re-
duce fill in the Cholesky factor of ATA but without
forming ATA. Several versions of minimum degree
have been adapted in this way; the most popular is CO-
LAMD [21]. A limitation of COLAMD is that it is in-
herently sequential and not suited for parallel compu-
tations.

A third approach, the HUND method, was recently
proposed in [30]. The idea is to use hypergraphs to
perform a non-symmetric version of nested dissection,
then switch to CCOLAMD on small subproblems. Hy-
pergraph partitioning is used to obtain a singly bor-
dered block diagonal (SBBD) form [1], see Fig. 3. It is
shown in [30] that the fill in LU factorization is con-
tained within the blocks in the SBBD form, even with
partial pivoting. Experiments with serial LU factor-
ization show that HUND compares favorably to other
methods both in terms of fill and flops. Perhaps the
greatest advantage of HUND, though, is that it can both
be computed in parallel and produces orderings well
suited for parallel factorization.

The fill-reducing orderings are intended for solving
large systems, and thus must be computed in paral-
lel. The focus in Zoltan is on nested-dissection meth-
ods, since these generally work best on large problems.

Fig. 3. Sparse matrix reordered by the HUND algorithm. All fill in
LU factorization is limited to the colored blocks. (Colors are vis-
ible in the online version of the article; http://dx.doi.org/10.3233/
SPR-2012-0342.)

Classic nested dissection for symmetric problems is
provided through interfaces to the third-party libraries
Scotch [16] and ParMETIS [41]. For non-symmetric
problems, Zoltan contains a native parallel implemen-
tation of HUND. HUND can also be applied to sym-
metric systems, but works best in the non-symmetric
case.

Isorropia provides the same capabilities as Zoltan,
and in fact calls Zoltan. Zoltan and Isorropia do not
provide a sparse direct solver; rather, they should be
used to compute a permutation vector before calling
a direct solver. Isorropia provides the most convenient
interfaces for Trilinos solvers such as Amesos (Ame-
sos2) [54], while Zoltan may be simpler to use for other
solvers.

2.3. Coloring

Graph coloring is an archetypal model in many sci-
entific applications. Its applications vary from identify-
ing concurrent computations, such as in iterative solu-
tion of sparse linear systems [39], preconditioners [52],
sparse tiling [59], and eigenvalue computation [45], to
efficient computation of Jacobian and Hessian matrices
[27], as well as channel assignment problems in radio
networks [43,44]. A distance-k coloring of a graph is
an assignment of colors to vertices such that any two
vertices connected by a path consisting of at most k
edges receive different colors, and the goal of the as-
sociated problem is to minimize the number of colors
used.

The distance-k coloring problem is formally defined
as follows. Let G = (V , E) be a graph with |V | ver-
tices and |E| edges. We call two distinct vertices in
the graph distance-k neighbors if a shortest path con-
necting them consists of at most k edges. The set
of distance-k neighbors of a vertex v is denoted by
adjk(v); its cardinality, also called the degree-k of v,
is denoted by δk(v). The degree of the vertex having
the most neighbors is ∆k = maxv δk(v). A distance-
k coloring φ : V → N is a function that maps each
vertex of the graph to a color (represented by an inte-
ger), such that two distance-k neighbor vertices have
different colors, i.e., ∀u ∈ adjk(v), φ(u) �= φ(v). With-
out loss of generality, the number of colors used is
maxu∈V φ(u). The optimization problem at hand is
to find a coloring with as few colors as possible. In
distance-1 coloring, the minimal number of colors a
graph can be colored with is called the chromatic num-
ber of the graph χ(G). The problem of finding χ(G) for
an arbitrary graph G is known to be an NP-Complete

136 E.G. Boman et al. / The Zoltan and Isorropia parallel toolkits for combinatorial scientific computing

Fig. 4. A sample Jacobian matrix A and its compressed representation B. (Colors are visible in the online version of the article; http://dx.doi.org/
10.3233/SPR-2012-0342.)

problem [46]; thus, finding optimal graph colorings for
general graphs is NP-Hard. Fortunately, simple heuris-
tics often work well in practice.

Partial distance-2 coloring is another variant of col-
oring that is used to identify a structurally orthogo-
nal partition of a Jacobian matrix A [19]. Here struc-
turally orthogonal means a partition of the columns of
A in which no two columns in a group share a non-
zero at the same row index. This approach yields a seed
matrix S where the entries of A can be directly re-
covered from the compressed representation B ≡ AS
(see Fig. 4). In this problem, the structure of a Jaco-
bian matrix A can be represented by the bipartite graph
Gb(A) = (V1, V2, E), where V1 is the row vertex set,
V2 is the column vertex set, and (ri, cj) ∈ E when-
ever the matrix entry aij is non-zero. A partitioning of
the columns of the matrix A into groups consisting of
structurally orthogonal columns is equivalent to a par-
tial distance-2 coloring of the bipartite graph Gb(A) on
the vertex set V2 [27]. The coloring, also known as bi-
partite coloring, is called “partial” distance-2 coloring
because the row vertex set V1 is left uncolored.

In large scientific parallel applications, the compu-
tational model (hence the graph) is already distributed
onto the nodes of the parallel machine; therefore, col-
oring needs to be performed in parallel. An alternative

approach, if the graph is sufficiently small, is to aggre-
gate it on a single node and color it there sequentially.
A better approach would be taking advantage of the
partitioning of the graph, and color the interior vertices
(vertices for which all their distance-k neighbors are
local) in parallel and then color the remaining (vertices
that have at least one non-local distance-j neighbor)
sequentially, by aggregating the graph induced by them
on a single processor. However, as shown in [4], one
can perform significantly better by using a distributed
memory coloring algorithm.

The distributed memory coloring frameworks for
distance-1 [4] and distance-2 [3] coloring have been
implemented in Zoltan. The framework provides ef-
ficient implementation for greedy graph coloring al-
gorithms [17]. In greedy coloring, the vertices of the
graph are visited in some order and the smallest per-
missible color at each iteration is assigned to the ver-
tex. Choosing the smallest permissible color is known
as the First Fit strategy. This simple algorithm has two
nice properties. First, for any vertex visit ordering, it
produces a coloring with at most 1 + ∆k colors. Sec-
ond, for some vertex-visit orderings it will produce an
optimal coloring [18]. Many heuristics for ordering the
vertices have been proposed in the literature [18,27].
Commonly known vertex orderings are Largest First,

E.G. Boman et al. / The Zoltan and Isorropia parallel toolkits for combinatorial scientific computing 137

Smallest Last, Saturation Degree, and Incidence De-
gree orderings. We refer the reader to [27] for a suc-
cinct summary of these ordering techniques, and to
ColPack [28] for a sequential implementation of var-
ious coloring, ordering, matrix recovery and other sup-
porting algorithms for Jacobian and Hessian computa-
tions.

Zoltan provides a parallel coloring framework. In
this framework, a coloring is constructed in multi-
ple rounds. In each round, all the uncolored vertices
are tentatively colored using the greedy coloring al-
gorithm. This process may yield conflicts that can de-
tected independently by each processor after coloring.
When a conflict occurs, one of the vertices that are in
conflict is marked for recoloring in the next round. The
vertex to be colored is chosen based on a random to-
tal ordering generated beforehand to avoid load imbal-
ance that may arise due to natural vertex numbering.
The algorithm iterates until there are no more conflicts.

In order to reduce the number of conflicts at each
round, the coloring of the vertices is performed in su-
persteps. In each superstep, each processor colors a
given number of its own vertices. Then it exchanges
the colors of the boundary vertices colored in that su-
perstep, if any, with its neighbor processors. If car-
ried out synchronously, this communication mecha-
nism ensures that two vertices can be in a conflict only
if they are colored in the same superstep. The size of
the superstep becomes an important parameter since
a smaller size increases the number of messages ex-
changed on the network while a larger size is likely to
increase the number of conflicts.

Coloring itself can be used to order vertices for re-
coloring. Culberson [18] showed that in recoloring, if
the vertices belonging to the same color class (i.e., the
vertices of the same color) in a previous coloring are
colored consecutively, the number of colors will either
decrease or stay the same. Zoltan currently provides
three different heuristics to obtain new permutations
of color classes for recoloring of distance-1 coloring:
Reverse order of colors [18], non-increasing number
of vertices, where the color classes are ordered in the
non-increasing order of their vertex counts, and non-
decreasing number of vertices, where the color classes
are ordered in the non-decreasing order of their vertex
counts.

There are five main parameters affecting the be-
havior of the framework in Zoltan and all are tun-
able by the user. These are superstep size, synchronous
or asynchronous execution of supersteps, coloring or-
der of the vertices, color selection strategy and recol-

oring (multiple passes of coloring). Several combina-
tions of those were experimentally investigated to de-
termine the best parameters for reducing the number of
colors and the runtime. The studies [3,4,13,55] show
that there is no single combination that outperforms
the others both in terms of the number of colors and
the runtime. In general, the best runtime is achieved
by a single pass of greedy coloring, coloring internal
vertices first and using asynchronous communication,
whereas the best number of colors is achieved by mul-
tiple passes of recoloring using Smallest Last vertex
visit ordering and synchronous communication.

2.4. Utilities

While the focus of Zoltan and Isorropia is on com-
binatorial algorithms, a few utilities related to and
included in Zoltan and Isorropia functionality have
proven useful. Two examples are described below.

2.4.1. Distributed data directories
Dynamic applications often need to locate off-

processor information. After repartitioning, for exam-
ple, a processor may need to rebuild ghost cells and
lists of items to be communicated; it may know which
items it needs, but may not know where they are lo-
cated. After global ordering, data values such as the
permuted global numbering associated with items may
need to be shared among processors.

To allow applications to locate off-processor data,
Zoltan includes distributed data-directory utilities
based on a rendezvous algorithm [50]. Zoltan’s dis-
tributed data directories have been used for updating
ghost information and building communication maps
in finite element and particle simulations.

Each data directory is distributed evenly across pro-
cesses in a predictable fashion (through either a linear
decomposition of the IDs or a hashing of IDs to pro-
cesses). Within a process, directory entries are stored
in hash tables to allow constant-time searches for spe-
cific entries. Processes register their owned items’ IDs
along with their process number and desired user data
by calling Zoltan_DD_Update. Other processes
can obtain the process number and user data associ-
ated with a given item by calling Zoltan_DD_Find,
which, using the same distribution scheme, requests
the information from the process holding the direc-
tory entry. In this way, distributed data directories pro-
vide memory efficient, constant time look-ups of off-
process data. Total memory usage across all processes
is proportional to the number of items. Distributing

138 E.G. Boman et al. / The Zoltan and Isorropia parallel toolkits for combinatorial scientific computing

the directory across processes avoids performance bot-
tlenecks and memory limitations that would arise if
the directory were stored on only one process. Using
predictable, hash-based distribution and local-search
schemes allows constant-time access to the data.

2.4.2. Probing
A special feature in Isorropia (not included in

Zoltan) is the ability to perform probing on an op-
erator. Often a linear operator is given only implic-
itly, not explicitly as a matrix. In some situations, it
is necessary to build an explicit matrix that represents
or approximates the operator. The probing technique
was first suggested by Chan and Matthews [15] to ap-
proximate Schur complements in PDE solvers, but was
restricted to banded approximations. An extension to
general graphs was suggested in [57], where they use
graph coloring as a tool. The probing method in Isor-
ropia is based on this approach.

The input to an Isoroppia::Prober is an
Epetra_Operator and the sparsity pattern given
by a Epetra_CrsGraph, while the output is an
Epetra_CrsMatrix that represents (approxi-
mates) the operator by using the given sparsity pattern.
The use of probing is best explained by an example.
Suppose a user has a matrix-free numerical method
where the operator is given as a “black-box” but she
wants to use an algebraic preconditioner (e.g., Ifpack
or ML). Ifpack/ML needs a concrete sparse matrix, not
an operator. A simple but inefficient way to solve this
problem is to apply the desired operator to all the iden-
tity vectors, ei, i = 1, . . . , n, where n is the dimen-
sion of the operator. This would require n applications
of the operator, which is usually too expensive to be
practical. However, if the user knows the sparsity pat-
tern (or can estimate it), then he can use the prober to
construct the desired matrix much more efficiently.

Internally, the prober applies the operator to a care-
fully chosen set of vectors. To minimize the cost of
probing, graph coloring is used to generate a mini-
mal set of probing vectors. In fact, the probing vectors
correspond to the seed matrix S as described in Sec-
tion 2.3. Hence the main cost of the probing is to ap-
ply the operator c times, where c is the number of col-
ors. (This is analogous to Jacobian compression.) Typi-
cally, c ≪ n so there is a substantial reduction of work.
The coloring and reconstruction happen transparently
to the user, and the coloring capabilities in Zoltan/Isor-
ropia are leveraged.

3. Software design

The Trilinos packages Zoltan and Isorropia provide
combinatorial algorithms to a wide range of applica-
tions. Zoltan is the base package, containing the par-
tititioning, ordering and coloring algorithms described
above. It requires users to map their data into the par-
ticular combinatorial model (e.g., graph, hypergraph,
coordinates) to be used in partitioning, ordering and
coloring. For users of Trilinos’ Epetra [35], the most
widely used matrix/vector classes in Trilinos, the Isor-
ropia package performs this mapping from matrices
to the combinatorial models and passes these models
to Zoltan. Thus, the Isorropia interface is much sim-
pler for Epetra users, and can provide richer algorithms
(e.g., two-dimensional matrix partitioning) for matrix-
based applications.

Both Zoltan and Isorropia assume an owner-com-
putes model, where each process “owns” a distinct
set of items and may optionally have copies of other
needed items. Both can operate in serial; for parallel
operation, they rely on MPI [47] to perform interpro-
cess message-passing communication. Zoltan is writ-
ten in C and provides C, C++ and Fortran90 inter-
faces; Isorropia’s Epetra-based interface is written in
C++, with C++ and Python interfaces (through Trili-
nos’ PyTrilinos package [53]). Details of Zoltan and
Isorropia’s software design are below.

3.1. Zoltan

Zoltan is designed to provide parallel partitioning,
coloring, and ordering to a wide range of parallel ap-
plications. Zoltan uses a distributed-memory program-
ming model with the Message-Passing Interface (MPI)
library [47] performing interprocess communication.
Although it is a Trilinos package, it does not depend on
any other Trilinos package or data structure, and, in-
deed, it can be built and used separately from Trilinos.
Its callback-function user interface is “data-structure
neutral” in that Zoltan users do not have to use a spe-
cific data structure in their applications, nor do they
have to build a specific data structure for Zoltan. This
interface has served well to support a variety of appli-
cations, including finite element methods with adap-
tive mesh refinement for multiphysics simulations, par-
ticle methods for accelerator and biological simula-
tions, crash simulations with contact detection, circuit
simulations, multigrid preconditioning, simulations of
emerging computer architectures, and peridynamics
simulations. Zoltan’s design and implementation en-

E.G. Boman et al. / The Zoltan and Isorropia parallel toolkits for combinatorial scientific computing 139

Table 1

Examples of large-scale partitioning performed by Zoltan

Partitioning Application Problem Number of Number of Architecture Source

algorithm size processes parts

Graph PHASTA 34M elements 16K 16K BG/P M. Zhou et al.,

computational RPI

fluid dynamics

Hypergraph PHASTA 1B elements 4096 160K Cray XT/5 M. Zhou et al.,

computational RPI

fluid dynamics

Hypergraph SPARTA load 800M zones 8192 262K Hera K. Lewis,

balancing toolkit AMD Quadcore LLNL

Geometric Pic3P particle 5B particles 24K 24K Cray XT/4 A. Candel,

(RCB) in cell SLAC

Geometric MPSalsa 208M mesh nodes 12K 12K Redstorm P. Lin,

(RCB) computational SNL

fluid dynamics

Geometric Trilinos/ML 24.6M rows; 24K 24K Redstorm J. Hu et al.,

(RCB) multigrid in 1.2B non-zeros SNL

shock physics

ables it to be used for large scale simulations, partition-
ing for more than 200K processes; see Table 1 for some
examples. Zoltan’s design also supports research and
development of new algorithms, such as its recently
developed hypergraph and hierarchical partitioners.

In the set of applications that use Zoltan, data to be
operated on include (but are not limited to) mesh ele-
ments and nodes, particles, matrix rows/columns/non-
zeros, circuits, and agents. Rather than limit Zoltan’s
capabilities to a specific type of data, we consider each
data entity to be merely an item on which Zoltan oper-
ates. Each item must have a globally unique identifier
(ID) that can be represented as an array of unsigned
integers. Examples of single-integer global identifiers
include global element numbers and global matrix row
numbers. Applications that do not support global num-
bering can use, e.g., a two-integer tuple consisting of
the process rank of the process that owns the entity and
a local entity counter in the process. Zoltan uses these
global identifiers only to identify items; any unique
naming scheme is acceptable. Zoltan also gives users
the option of providing a local identifier (also an array
of unsigned integers) for each item. These local identi-
fiers allow applications to access data more directly in
callback functions by avoiding a mapping from global
identifiers to the local location of items. Examples of
useful local identifiers include items’ indices in data
arrays and pointers to items’ locations in memory.

Zoltan uses a callback-function interface, through
which applications describe their data to Zoltan. Call-
back functions are small functions written by the user
that access the user’s data structures and return needed
data to Zoltan. When applications invoke Zoltan’s
methods, Zoltan calls these user-provided callback
functions to build the data structures (coordinates,
graphs, hypergraphs, etc.) it needs for partitioning, col-
oring and ordering. Figure 5 contains an example of
the geometric callback functions for a simple particle-
based simulation. Callback function num_geom re-
turns the dimension of the problem domain, in this
case, three for a three-dimensional problem. Call-
back function geom_multi returns the coordinates
for each on-process particle in arrays allocated by
Zoltan and provided to the application. Pointers to
these functions are registered with Zoltan through calls
to Zoltan_Set_Fn. A complete example program
using these functions is included in the Appendix.

The set of callback functions used in Zoltan has been
kept quite small (see Table 2) and the same interface
is used for partitioning, ordering, and coloring. More-
over, users need to implement only those callbacks re-
quired by the specific Zoltan capability they wish to
use. At a minimum, users must provide callback func-
tions that return the number of items owned by a pro-
cess, and the unique global and optional local IDs for
those items. Other callback functions needed depend
on the operations to be performed by Zoltan. Geomet-

140 E.G. Boman et al. / The Zoltan and Isorropia parallel toolkits for combinatorial scientific computing

1 / / / / / / / / / / / / / / / / / A p p l i c a t i o n d a t a f o r p a r t i c l e s i m u l a t i o n / / / / / / / / / / / /
2 struct UserData {

3 int numMyParticles;

4 struct Particle {

5 int id; / / u n i q u e g l o b a l name f o r p a r t i c l e
6 double x, y, z; / / g e o m e t r i c c o o r d i n a t e s f o r p a r t i c l e
7 / / . . . s o l u t i o n v a l u e s , e t c
8 } *myParticles;

9 };

10
11 / / / / / / / / / / / / User−p r o v i d e d que ry f u n c t i o n s f o r c o o r d i n a t e s / / / / / / / / / / /
12 / / Re tu rn d imens ion of problem .
13 int num_geom(void *data, int *ierr)

14 {

15 return 3; / / 3D problem
16 }

17
18 / / R e t u r n c o o r d i n a t e s f o r o b j e c t s r e q u e s t e d by Z o l t a n i n g l o b a l I D s a r r a y .
19 void geom_multi(void *data, int nge, int nle, int numObj,

20 ZOLTAN_ID_PTR globalIDs, ZOLTAN_ID_PTR localIDs,

21 int dim, double *geomVec, int *ierr)

22 {

23 / / Ca s t d a t a p o i n t e r p r o v i d e d i n Z o l t a n _ S e t _ F n t o a p p l i c a t i o n d a t a t y p e .
24 struct UserData *myData = (struct UserData *) data;

25
26 / / Copy c o o r d i n a t e s f o r p a r t i c l e g l o b a l I D [i] (w i th l o c a l I D [i])
27 / / i n t o geomVec .
28 int i, j = 0;

29 for (i = 0; i < numObj; i++) {

30 geomVec[j++] = myData->myParticles[localIDs[i]].x;

31 if (dim > 1) geomVec[j++] = myData->myParticles[localIDs[i]].y;

32 if (dim > 2) geomVec[j++] = myData->myParticles[localIDs[i]].z;

33 }

34 *ierr = ZOLTAN_OK;

35 }

Fig. 5. Example of the geometric callback functions Zoltan_Num_Geom_Fn and Zoltan_Geom_Multi_Fn for simple particle-based
application. A full program using these callbacks is included in the Appendix.

ric partitioning and ordering methods, for example, re-
quire two callback functions as in Fig. 5 to return the
geometric dimension of the data and each item’s ge-
ometric coordinates. Graph-based partitioning, color-
ing and ordering algorithms require graph-based call-
backs that return information about edge connectivity
between items. Hypergraph-based methods can use ei-
ther graph-based callbacks (from which a hypergraph
structure is constructed) or hypergraph-based callbacks
that enable the full expressiveness of the hypergraph
model to be used for, say, structurally non-symmetric
problems.

Figure 6 shows the basic use of Zoltan in an ap-
plication needing dynamic load balancing. The appli-
cation begins as usual, reading input files and creat-
ing its data structures. Then it calls several Zoltan set-
up functions. It initializes Zoltan by calling Zoltan_
Initialize, which checks that MPI is initialized.

It also calls Zoltan_Create to allocate memory
for Zoltan; a pointer to this memory is returned by
Zoltan_Create and must be passed to all other
Zoltan functions. Next, by calling Zoltan_Set_

Param, the application selects the partitioning method
it wishes to use and sets method-specific parameters.
It registers pointers to callback functions through calls
to Zoltan_Set_Fn. After the set-up is completed,
the application computes a new partition by calling
Zoltan_LB_Partition and moves the data to its
new part assignments by calling Zoltan_Migrate.
After migration, Zoltan_LB_Free_Data frees the
arrays returned by Zoltan_LB_Partition. The
application then proceeds with its computation using
the newly balanced partition. Partitioning and compu-
tation can occur in many iterations of the application,
with part assignments changing to adjust for changes in
the computation. After the iterations are completed, the

E.G. Boman et al. / The Zoltan and Isorropia parallel toolkits for combinatorial scientific computing 141

Table 2

Zoltan callback functions and their return values

Callback Return values

All methods

ZOLTAN_NUM_OBJ_FN Number of items on processor

ZOLTAN_OBJ_LIST_FN List of global/local IDs and weights

Geometric partitioning and ordering

ZOLTAN_NUM_GEOM_FN Dimensionality of domain

ZOLTAN_GEOM_MULTI_FN Coordinates of items

Hypergraph partitioning

ZOLTAN_HG_SIZE_CS_FN Number of hyperedge pins

ZOLTAN_HG_CS_FN List of hyperedge pins

ZOLTAN_HG_SIZE_EDGE_WTS_FN Number of hyperedge weights

ZOLTAN_HG_EDGE_WTS_FN List of hyperedge weights

Graph/hypergraph partitioning, ordering, coloring

ZOLTAN_NUM_EDGE_MULTI_FN Number of graph edges

ZOLTAN_EDGE_LIST_MULTI_FN List of graph edges and weights

Data migration

ZOLTAN_PACK_OBJ_MULTI_FN Copy item data in a communication buffer

ZOLTAN_UNPACK_OBJ_MULTI_FN Copy item data inserted in data structure

Note: Applications need to implement only the callbacks required by the specific capa-
bility (partitioning, coloring, ordering, migration) and methods (geometric, graph-based,
hypergraph-based) the application is using.

application calls Zoltan_Destroy to free the mem-
ory allocated in Zoltan_Create, and completes its
execution by returning the results of the computation.

The basic set-up of Zoltan – initializing, allocating
memory, setting parameters, and registering callback
functions, and freeing memory – is the same regardless
of whether one uses Zoltan for partitioning, ordering
or coloring. Only the operations in the iteration loop
would change if ordering (Zoltan_Order) or color-
ing (Zoltan_Color) were needed.

3.2. Isorropia

Isorropia was first designed to provide load-balanc-
ing capabilities for Trilinos objects. It provided an easy
and convenient way to perform partitioning and repar-
titioning on Epetra objects. Isorropia can be viewed
as an interface between Trilinos’ Epetra matrices and
Zoltan callbacks. Starting with Trilinos v9, Isorropia
provides access to most Zoltan features related to ma-
trices; therefore, it is possible for Trilinos users to par-
tition, color or order Epetra_RowMatrix objects
without having to write any specific Zoltan callbacks.
Isorropia is designed to also extend Zoltan, by apply-
ing higher level algorithms using Zoltan kernels.

As with most Trilinos packages, Isorropia is written
in C++, and an effort has been made to obtain a con-

venient and robust interface for the user. Isorropia ca-
pabilities are described by interfaces (abstract classes)
for which an Epetra implementation is provided. How-
ever, an implementation based on the templated ma-
trix/vector classes in Tpetra [36] will use the same in-
terface.

The interface by itself is divided in three main
classes – Isorropia::Colorer, Isorropia::
Orderer and Isorropia::Partitioner –
which are designed to perform the associated task. As
all these tasks have similarities, they all inherit from a
Isorropia::Operator class. It provides a stan-
dard way to compute the task and also provides ac-
cessors to the result. Indeed, coloring, ordering or par-
titioning processes have almost identical signatures:
they compute on a matrix (only the structure of the
matrix is needed) and their result is an integer (color,
number, part assignment) associated with every row
and/or column. Having Isorropia::Operator as
a common ancestor provides a standard and coherent
way to access results. In our case, the bracket operator
is the most natural way to access local results, but more
advanced methods are also available.

Isorropia’s interface is implemented for Epetra ob-
jects. An UML class diagram for the main classes is
presented Fig. 7.

142 E.G. Boman et al. / The Zoltan and Isorropia parallel toolkits for combinatorial scientific computing

Fig. 6. Use of Zoltan partitioning in a typical dynamic application. Calls to Zoltan functions are shown in red; application operations are in blue.
(The colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-2012-0342.)

Fig. 7. Isorropia main UML class diagram. This architecture allows flexibility to support different combinatorial kernels (provided by Zoltan
here) as well as object target types (here Epetra objects). (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/
SPR-2012-0342.)

E.G. Boman et al. / The Zoltan and Isorropia parallel toolkits for combinatorial scientific computing 143

While Isorropia::Operator is used to share
the methods for defining problems or for accessing
results, its (partial) implementation Isorropia::

Epetra::Operator is responsible for providing
code used to access data.

For Epetra matrices, we use only Zoltan for com-
binatorial kernels; however, Zoltan calls are issued
through a specific class Isorropia::Epetra::

ZoltanLib which provides an implementation of
the Isorropia::Epetra::Library interface.
Thus, using another combinatorial toolkit requires
mainly implementation of this library interface.

Another goal of Isorropia was to provide some
highly specialized solutions for combinatorial prob-
lems on Trilinos objects. Thus, the architecture is de-
signed to be more than a simple wrapper on Zoltan. For
example, two-dimensional matrix partitioning in Isor-
ropia is implemented as an extension of the partitioner
class.

The examples below show that Isorropia greatly re-
duces the number of lines of source code for Epetra
users. First, given an Epetra sparse matrix, one can ob-
tain a row partitioning in one line:

// crsmatrix is an Epetra_CrsMatrix

Isorropia::Epetra::Partitioner

partitioner(crsmatrix);

By default, the constructor also performs the partition-
ing. In more advanced use cases, the constructor just
creates the object and the partition() method is
explicitly called later:

// crsmatrix is an Epetra_CrsMatrix

Teuchos::ParameterList params;

params.set("PARTITIONING_METHOD",

"GRAPH"); // default is HYPERGRAPH

params.set("IMBALANCE_TOL", "1.03");

// allow 3% imbalance

Isorropia::Epetra::Partitioner

partitioner(crsmatrix, params,

false);

// do some other work ...

partitioner.partition();

The result of the partitioning is stored in the Parti-
tioner and can be accessed in several ways. A com-
mon use case is to redistribute the distributed object ac-
cording to the computed partition. This is easily done

using a redistributor:

// Assume partitioner was

constructed as above

Isorropia::Epetra::Redistributor

rd(partitioner);

// Redistribute the matrix

newmatrix =

rd.redistribute(crsmatrix, true);

It is possible to reuse the redistributor to also distribute
vectors or another matrix.

Isorropia has its own parameters defined by a
Teuchos::ParameterList with options names
that are more relevant for an Epetra user. However, it
is still possible to pass advanced parameters directly to
Zoltan.

To summarize, Isorropia provides solutions to com-
binatorial problems such as partitioning, coloring or
ordering by an easy to use common interface which
currently deals with Epetra objects. Isorropia also pro-
vides methods to apply these results so they can be
used in complex Epetra-based codes with minimal ef-
fort.

4. Next generation: Zoltan2

We have begun a refactoring of Zoltan and Isor-
ropia, embodied in the new Trilinos package Zoltan2.
Zoltan2 combines features of Isorropia and Zoltan in
a uniform abstract interface. It will continue to sup-
port a broad range of applications and provide the
most commonly used features of Zoltan and Isorropia.
It will also include new features and algorithms de-
signed specifically for exascale computing, including
support for heterogeneous computers, multicore algo-
rithms, and scalability to million-way parallelism. This
refactoring is motivated by a number of algorithmic
and software engineering issues.

Zoltan2 enables future combinatorial algorithm re-
search to better support exascale computing. As com-
puter architectures evolve to include increasing het-
erogeneity, new combinatorial algorithms are required.
Zoltan was designed strictly for distributed memory
environments, but hybrid MPI+threads programming
models are becoming common in parallel comput-
ers built from multicore processors. For applications
using hybrid programming models, partitioning with
awareness of the underlying computing architecture
and memory hierarchies can increase data locality for

144 E.G. Boman et al. / The Zoltan and Isorropia parallel toolkits for combinatorial scientific computing

efficient computation, and ordering algorithms and
iterators can improve data access within multicore ar-
chitectures. Within the combinatorial algorithms them-
selves, adopting hybrid programming models can
improve the scalability of partitioning, coloring and
ordering. These features will be supported in Zoltan2
through incorporation of architecture models and sys-
tem information from systems such as the OVIS re-
source analysis toolkit [5] and Portable Hardware Lo-
cality toolkit (hwloc) [6], as well as node-level pro-
gramming primitives from the Trilinos’ Kokkos node
package [37].

Zoltan2 exploits recent advances in compiler tech-
nology and software design principles. Next-genera-
tion packages in Trilinos (e.g., the Tpetra [36] ma-
trix/vector classes and Belos [38] linear solvers) rely
on templating to enable computations on large-scale
problems (i.e., those with more than two billion (max-
imum integer value on a 32-bit system) rows and
non-zeros). Global and local row/column numbers are
templated separately to accommodate integers, long in-
tegers, long long integers, etc. Scalar values are also
templated to allow reduced, increased, or mixed preci-
sion computations. While Zoltan has been modified to
allow more than two billion items to be partitioned, it
does not yet support the full range of templating op-
tions available in next-generation Trilinos packages.
In addition to templated ordinal types, Zoltan2 allows
templated types for global and local IDs, analogous to
the arbitrary IDs in Zoltan. Data types for weights are
also templated.

Zoltan2 also provides a more natural interface for
application developers. At the time of Zoltan’s ini-
tial design, C++ compilers were immature, particu-
larly on massively parallel computers such as ASCI
Red. Thus, while using an object-oriented design, the
Zoltan library is written in C. Isorropia simplifies use
of Zoltan for applications with Epetra matrices, but
other users must rely on the original C interface. To
preserve backward compatibility for long-time users,
Zoltan’s interface is largely unchanged since its origi-
nal design and can be improved by the user feedback
and lessons we have learned through many years of
Zoltan use. In particular, Zoltan2 separates the user’s
data model from the data model used in Zoltan2’s al-
gorithms, no longer requiring users to understand the
details of graphs and hypergraphs to use partitioning,
ordering and coloring algorithms.

Zoltan2 has an improved object-oriented design
compared to Zoltan; the improvements are enabled by
class hierarchies available in C++. We use a combina-

tion of templating and inheritance to abstract user data
from the combinatorial model and algorithms. A high-
level view of our design is shown in Fig. 8.

At the user level, users may provide parameters
controlling the choice of combinatorial model and al-
gorithms, and configuration options such as debug-
ging levels and memory allocation routines. Users de-
scribe their application data through InputAdapter
objects. Several types of InputAdapter objects –
meshes, matrices, vectors, particles, networks – are de-
fined to support different applications. These adapters
allow users to describe their data in its native for-
mat, rather than mapping it to a particular model
(e.g., graph, hypergraph) as in Zoltan. For exam-
ple, the matrix InputAdapter has methods return-
ing data about matrix rows and non-zeros; the mesh
InputAdapter describes the elements-node adja-
cencies of a mesh. An InputAdapter also describes
how to redistribute data after partitioning or ordering.
In the future, users will be able to provide descriptions
of the machine network and/or node architecture as
well. While a number of input classes are shown, many
are optional, allowing Zoltan2 to provide a novice in-
terface suitable for the most common use cases (e.g.,
TPetra matrix partitioning).

The user’s InputAdapter, parameters and con-
figuration information are used to create a Problem,
which may be a PartitioningProblem, Order-
ingProblem, or ColoringProblem. As in Isor-
ropia, the Problem manages the requested opera-
tion (partitioning, ordering, coloring) and maintains
state containing the result of the operation. Using
the given input, the Problem creates an appropriate
Model – the combinatorial representation of the in-
put. This model describes how to use functions in the
InputAdapter to build the representation needed
for an algorithm, bridging the separation between the
application data and the data structures needed by a
combinatorial algorithm. This model is then passed to
an Algorithm that performs the requested opera-
tion (partitioning, ordering, coloring); as in Zoltan and
Isorropia, geometric, graph, and hypergraph-based al-
gorithms will be supported. The Algorithm pop-
ulates a Solution within the Problem. As with
the Problem class, the Solution class has specific
subclasses PartitioningSolution (containing
import and export lists and part maps), Ordering-
Solution (containing permutations and iterators),
and ColoringSolution (containing coloring
maps and iterators).

E.G. Boman et al. / The Zoltan and Isorropia parallel toolkits for combinatorial scientific computing 145

Fig. 8. High-level view of Zoltan2 design.

Initial release of Zoltan2 in Trilinos is scheduled for
2012. It will support only a small subset of Zoltan/Isor-
ropia capabilities initially, but anticipated future devel-
opment will provide richer capabilities in future Trili-
nos releases.

5. Conclusion and future work

We have described the design of two Trilinos pack-
ages focused on combinatorial scientific computing:
the Zoltan toolkit of partitioning, ordering and coloring
algorithms and the Isorropia toolkit of combinatorial
algorithms for Trilinos’ Epetra matrix/vector classes.
These packages provide critical capabilities for a wide
range of scientific computing applications, leading to
improved application performance through better load
balancing, data locality, memory usage, and algorith-
mic efficiency. We also introduced our next-generation
package for combinatorial algorithms, Zoltan2, that

will support more robustly the needs of exascale com-
puting and integrate more closely with other Trilinos
packages.

Our future efforts focus on Zoltan2. In addition to
implementing the classes and algorithms that make up
Zoltan2’s base capability, we will pursue a number
of research directions. We will examine architecture-
aware partitioning strategies, accounting for the un-
derlying machine architecture and resource state in
making partitioning decisions. We will support multi-
core architectures through improved data layouts via
ordering and partitioning. And we will begin imple-
mentation of thread-enabled combinatorial algorithms.
A greater amount of data can be made available to
each task via shared memory than via distributed
memory; we can exploit this fact in heuristic algo-
rithms to make better decisions in partitioning, order-
ing and coloring. As with Zoltan and Isorropia, we
will integrate and distribute Zoltan2 with the Trilinos
toolkit.

146 E.G. Boman et al. / The Zoltan and Isorropia parallel toolkits for combinatorial scientific computing

Acknowledgements

Many people in addition to the authors have con-
tributed to the design and software for the Zoltan and
Isorropia toolkits: Doruk Bozdag, Jamal Faik, Luis
Gervasio, Robert Heaphy, Bruce Hendrickson, Arif
Khan, Vitus Leung, William Mitchell, Siva Rajaman-
ickam, Lee Ann Riesen, Chris Siefert, Matt St. John,
Jim Teresco, Courtenay Vaughan, Alan Williams and
Michael Wolf. In addition, the Zoltan and Isorropia
teams benefit from technical support personnel in
the Trilinos framework: Roscoe Bartlett, Brent Per-
schbacher and James Willenbring. This work was
partially supported by the US Department of En-
ergy SciDAC Grant DE-FC02-06ER2775 and NSF
Grants CNS-0643969, OCI-0904809 and OCI-
0904802.

Appendix

Below is a complete example of a program using
Zoltan for geometric partitioning in a simple particle-
based application. The application’s data is stored in
a simple structure User_Data, containing particles’
unique IDs and their coordinates in space.

Four Zoltan query functions are needed to perform
geometric partitioning. The Zoltan_Num_Obj_Fn
num_obj returns the number of particles owned
by the process. The Zoltan_Obj_List_Fn obj_

list returns the global IDs of each of the particles
owned by the process, as well as local IDs that are
the indices into the local particles array data struc-
ture. This example does not use particle weights but
if it did, they would also be returned in this function.
The Zoltan_Num_Geom_Fn num_geom returns
the geometric dimension of the application’s domain –
in this case, three. The Zoltan_Geom_Multi_Fn
geom_multi returns the geometric coordinates of

each of the particles. The local IDs provided in
obj_list are used here to quickly locate the coordi-
nates for each requested particle.

In the main program, the application initializes MPI
and its particle data. It creates a Zoltan_Struct

data structure by calling Zoltan_Create. This data
structure contains state information needed by Zoltan;
it is an input argument to subsequent Zoltan function
calls. The program registers pointers to its callback
functions through calls to Zoltan_Set_Fn. It also
sets Zoltan parameters via Zoltan_Set_Param,
in this case, selecting RCB to be the load-balancing
method. It then calls Zoltan_LB_Partition to
compute a new partition. The return arguments of
Zoltan_LB_Partition are lists of particles to be
imported to the process from other processes, and par-
ticles to be exported from the process to other pro-
cesses. Both process ranks and part numbers are in-
cluded in the import and export lists, to allow the
number of parts to differ from the number of pro-
cesses. These import and export lists are then in-
put to a routine to actually move the particles to the
new partition. In the example, we assume the user
has provided his own function to perform the migra-
tion. However, the Zoltan_Migrate function can
be used to move data. Zoltan_Migrate requires
additional callback functions to specify the size of
the particles to be moved, along with methods for
loading particle data into communication buffers be-
fore migration and unloading it into the application
data structures after migration. Since the import and
export lists are allocated by Zoltan, the user should
use Zoltan_LB_Free_Part to free the lists af-
ter migration. At this point, the application has a bal-
anced decomposition that maintains geometric locality
of the particles, and it is ready to compute. It can use
this partition throughout its computation, or repartition
using the same Zoltan_Struct and callbacks as
needed. When the application no longer needs to repar-
tition, it deallocates its Zoltan_Struct by calling
Zoltan_Destroy.

1 #include " z o l t a n . h "
2
3 / / / / / / / / / / / / / / / / / A p p l i c a t i o n d a t a f o r p a r t i c l e s i m u l a t i o n / / / / / / / / / / / /
4 struct UserData {

5 int numMyParticles;

6 struct Particle {

7 int id; / / u n i q u e g l o b a l name f o r p a r t i c l e
8 double x, y, z; / / g e o m e t r i c c o o r d i n a t e s f o r p a r t i c l e
9 / / . . . s o l u t i o n v a l u e s , e t c

10 } *myParticles;

11 };

E.G. Boman et al. / The Zoltan and Isorropia parallel toolkits for combinatorial scientific computing 147

12
13 / / / / / / / / / / / / / / / / / / User−p r o v i d e d que ry f u n c t i o n s f o r IDs / / / / / / / / / / / / / / /
14
15 / / R e t u r n number o f p a r t i c l e s on t h i s p r o c e s s .
16 int num_obj(void *data, int *ierr)

17 {

18 / / Ca s t d a t a p o i n t e r p r o v i d e d i n Z o l t a n _ S e t _ F n t o a p p l i c a t i o n d a t a t y p e .
19 struct UserData *myData = (struct UserData *) data;

20 *ierr = ZOLTAN_OK;

21 return myData->numMyParticles;

22 }

23
24 / / R e t u r n g l o b a l and l o c a l i d s f o r p a r t i c l e s on t h i s p r o c e s s .
25 / / No p a r t i c l e w e i g h t s used i n t h i s example .
26 void obj_list(void *data, int nge, int nle,

27 ZOLTAN_ID_PTR globalIDs, ZOLTAN_ID_PTR localIDs,

28 int wgtDim, float *objWgts, int *ierr)

29 {

30 / / Ca s t d a t a p o i n t e r p r o v i d e d i n Z o l t a n _ S e t _ F n t o a p p l i c a t i o n d a t a t y p e .
31 struct UserData *myData = (struct UserData *) data;

32
33 / / Copy g l o b a l ID f o r each p a r t i c l e i n t o g l o b a l I D s a r r a y .
34 / / Pa s s l o c a l i n d e x i n t o p a r t i c l e a r r a y as t h e l o c a l I D .
35 for (int i = 0; i < myData->numMyParticles; i++) {

36 globalIDs[i] = myData->myParticles[i].id;

37 localIDs[i] = i;

38 }

39 *ierr = ZOLTAN_OK;

40 }

41
42 / / / / / / / / / / / / User−p r o v i d e d que ry f u n c t i o n s f o r c o o r d i n a t e s / / / / / / / / / / /
43 / / Re tu rn d imens ion of problem .
44 int num_geom(void *data, int *ierr)

45 {

46 return 3; / / 3D problem
47 }

48
49 / / R e t u r n c o o r d i n a t e s f o r o b j e c t s r e q u e s t e d by Z o l t a n i n g l o b a l I D s a r r a y .
50 void geom_multi(void *data, int nge, int nle, int numObj,

51 ZOLTAN_ID_PTR globalIDs, ZOLTAN_ID_PTR localIDs,

52 int dim, double *geomVec, int *ierr)

53 {

54 / / Ca s t d a t a p o i n t e r p r o v i d e d i n Z o l t a n _ S e t _ F n t o a p p l i c a t i o n d a t a t y p e .
55 struct UserData *myData = (struct UserData *) data;

56
57 / / Copy c o o r d i n a t e s f o r p a r t i c l e g l o b a l I D [i] (w i th l o c a l I D [i])
58 / / i n t o geomVec .
59 int i, j = 0;

60 for (i = 0; i < numObj; i++) {

61 geomVec[j++] = myData->myParticles[localIDs[i]].x;

62 if (dim > 1) geomVec[j++] = myData->myParticles[localIDs[i]].y;

63 if (dim > 2) geomVec[j++] = myData->myParticles[localIDs[i]].z;

64 }

65 *ierr = ZOLTAN_OK;

66 }

67
68 / Main program /
69 int main(int narg, char **arg)

70 {

71 / / User c r e a t e s and i n i t i a l i z e s h i s d a t a h e r e as a p p r o p r i a t e .
72 MPI_Init(&narg, &arg);

148 E.G. Boman et al. / The Zoltan and Isorropia parallel toolkits for combinatorial scientific computing

73 struct UserData myData;

74 user_initialize(&myData);

75
76 / / i n i t i a l i z e Z o l t a n and c r e a t e Z o l t a n d a t a s t r u c t u r e .
77 float version;

78 int ierr = Zoltan_Initialize(narg, arg, &version);

79 struct Zoltan_Struct *zz = Zoltan_Create(MPI_COMM_WORLD);

80
81 / / r e g i s t e r Z o l t a n c a l l b a c k f u n c t i o n s .
82 ierr = Zoltan_Set_Fn(zz, ZOLTAN_NUM_OBJ_FN_TYPE, (void (*)())num_obj, &myData);

83 ierr = Zoltan_Set_Fn(zz, ZOLTAN_OBJ_LIST_FN_TYPE, (void (*)())obj_list, &myData);

84 ierr = Zoltan_Set_Fn(zz, ZOLTAN_NUM_GEOM_FN_TYPE, (void (*)())num_geom, &myData);

85 ierr = Zoltan_Set_Fn(zz, ZOLTAN_GEOM_MULTI_FN_TYPE, (void (*)())geom_multi, &myData);

86
87 / / s e t Z o l t a n p a r a m e t e r s : s e l e c t RCB p a r t i t i o n i n g
88 ierr = Zoltan_Set_Param(zz, "LB_METHOD", "RCB");
89
90 / / a rgume n t s r e t u r n e d by Z o l t a n _ L B _ P a r t i t i o n ; a r r a y s a r e a l l o c a t e d by Z o l t a n .
91 int anyChanges = 0;

92 int ngid, nlid, numImport, numExport;

93 ZOLTAN_ID_PTR importGIDs, importLIDs, exportGIDs, exportLIDs;

94 int *importProc, *importPart, *exportProc, *exportPart;

95
96 / / c a l l Z o l t a n t o compute a new p a r t i t i o n .
97 ierr = Zoltan_LB_Partition(zz, &anyChanges, &ngid, &nlid,

98 &numImport, &importGIDs, &importLIDs, &importProc, &importPart,

99 &numExport, &exportGIDs, &exportLIDs, &exportProc, &exportPart);

100
101 / / m i g r a t e d a t a a s s p e c i f i e d by i m p o r t / e x p o r t l i s t s ;
102 / / u s e r s can use Z o l t a n _ M i g r a t e i f d e s i r e d , b u t i t i s n o t r e q u i r e d .
103 if (anyChanges)

104 migrate(&myData, numImport, importGIDs, importLIDs, importProc, importPart,

105 numExport, exportGIDs, exportLIDs, exportProc, exportPart);

106
107 / / f r e e d a t a a l l o c a t e d by Z o l t a n .
108 Zoltan_LB_Free_Part(&importGIDs, &importLIDs, &importProc, &importPart);

109 Zoltan_LB_Free_Part(&exportGIDs, &exportLIDs, &exportProc, &exportPart);

110
111 / / t h e Z o l t a n _ S t r u c t can be used f o r a d d i t i o n a l r e p a r t i t i o n i n g , b u t
112 / / when i t i s no l o n g e r needed , i t s h o u l d be d e s t r o y e d .
113 Zoltan_Destroy(&zz);

114
115 / / now t h e u s e r can compute w i th a b a l a n c e d p a r t i t i o n w i th g e o m e t r i c
116 / / l o c a l i t y f o r t h e p a r t i c l e s .
117 user_computation(&myData);

118
119 MPI_Finalize();

120 }

References

[1] C. Aykanat, A. Pınar and Ü.V. Çatalyürek, Permuting sparse
rectangular matrices into block-diagonal form, SIAM J. Sci.
Comput. 26(6) (2004), 1860–1879.

[2] M.J. Berger and S.H. Bokhari, A partitioning strategy for
nonuniform problems on multiprocessors, IEEE Trans. Com-
put. C-36(5) (1987), 570–580.

[3] D. Bozdağ, Ü.V. Çatalyürek, A.H. Gebremedhin, F. Manne,
E.G. Boman and F. Özgünner, Distributed-memory parallel
algorithms for distance-2 coloring and related problems in
derivative computation, SIAM J. Sci.Comput. 32(4) (2010),
2418–2446.

[4] D. Bozdağ, A.H. Gebremedhin, F. Manne, E.G. Boman and
Ü.V. Çatalyürek, A framework for scalable greedy coloring
on distributed memory parallel computers, J. Parallel Distrib.
Comput. 68(4) (2008), 515–535.

E.G. Boman et al. / The Zoltan and Isorropia parallel toolkits for combinatorial scientific computing 149

[5] J. Brandt, B. Debusschere, A. Gentile, J. Mayo, P. Pébay,
D. Thompson and M. Wong, OVIS-2: a robust distributed ar-
chitecture for scalable RAS, in: Proc. 4th Workshop on Sys-
tem Management Techniques, Processes and Services at 22nd
IEEE Int. Parallel and Distributed Processing Symposium, Mi-
ami, FL, 2008.

[6] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento,
B. Goglin, G. Mercier, S. Thibault and R. Namyst, hwloc:
a generic framework for managing hardware affinities in HPC
applications, in: Proc. 18th Euromicro Int. Conf. on Parallel,
Distributed and Network-Based Computing, Pisa, 2010.

[7] T.N. Bui and C. Jones, A heuristic for reducing fill-in sparse
matrix factorization, in: Proc. 6th SIAM Conf. Parallel Pro-
cessing for Scientific Computing, SIAM, 1993, pp. 445–452.

[8] Ü.V. Çatalyürek and C. Aykanat, Hypergraph-partitioning-
based decomposition for parallel sparse-matrix vector multipli-
cation, IEEE Trans. Parallel Dist. Syst. 10(7) (1999), 673–693.

[9] Ü.V. Çatalyürek and C. Aykanat, PaToH: a multilevel hy-
pergraph partitioning tool, Version 3.0, Bilkent University,
Department of Computer Engineering, Ankara, PaToH is
available at: http://bmi.osu.edu/~umit/software.htm, 1999.

[10] Ü.V. Çatalyürek, C. Aykanat and E. Kayaaslan, Hypergraph
partitioning-based fill-reducing ordering for symmetric
matrices, SIAM J. Sci. Comput. 33 (2011), 1996–2023.

[11] Ü.V. Çatalyürek, C. Aykanat and B. Uçar, On two-dimensional
sparse matrix partitioning: Models, methods and a recipe,
SIAM J. Sci. Comput. 32(2) (2010), 656–683.

[12] Ü.V. Çatalyürek, E.G. Boman, K.D. Devine, D. Bozdağ,
R.T. Heaphy and L.A. Riesen, A repartitioning hypergraph
model for dynamic load balancing, J. Parallel Distrib. Comput.
69(8) (2009), 711–724.

[13] Ü.V. Çatalyürek, F. Dobrian, A. Gebremedhin, M. Halap-
panavar and A. Pothen, Distributed-memory parallel algo-
rithms for matching and coloring, in: Proc. Int. Symp. on
Parallel and Distributed Processing, Workshops and PhD
Forum, Workshop on Parallel Computing and Optimization,
IEEE Press, 2011, pp. 1966–1975.

[14] Ü.V. Çatalyürek, B. Uçar and C. Aykanat, Hypergraph par-
titioning, in: Encyclopedia of Parallel Computing, D. Padua,
ed., Springer, 2011, pp. 871–881.

[15] T.F.C. Chan and T.P. Mathew, The interface probing technique
in domain decomposition, SIAM J. Matrix Anal. Appl. 13

(1992), 212–238.
[16] C. Chevalier and F. Pellegrini, PT-SCOTCH: a tool for efficient

parallel graph ordering, Parallel Comput. 34(6–8) (2008),
318–331.

[17] T.F. Coleman and J.J. Moré, Estimation of sparse Jacobian
matrices and graph coloring problems, SIAM J. Numer. Anal.
1(20) (1983), 187–209.

[18] J.C. Culberson, Iterated greedy graph coloring and the dif-
ficulty landscape, Technical Report TR 92-07, University of
Alberta, June 1992.

[19] A.R. Curtis, M.J.D. Powell and J.K. Reid, On the estimation
of sparse Jacobian matrices, J. Inst. Math. Appl. 13 (1974),
117–119.

[20] E. Cuthill and J. McKee, Reducing the bandwidth of sparse
symmetric matrices, in: Proceedings of the 24th National
Conference, ACM, New York, NY, USA, 1969, pp. 157–172.

[21] T. Davis, J. Gilbert, S. Larimore and E. Ng, A column approx-
imate minimum degree ordering algorithm, ACM Trans. Math.
Software 30(3) (2004), 353–376.

[22] J. DeBlasio, K. Ewing, A. Lawrence and M. Leece, Exploring
the feasibility of 2D matrix partitioning, Technical report,
Department of Computer Science, Harvey Mudd College,
May 2011.

[23] K. Devine, E. Boman, R. Heaphy, B. Hendrickson and
C. Vaughan, Zoltan data management services for parallel
dynamic applications, Comput. Sci. Eng. 4(2) (2002), 90–97.

[24] K.D. Devine, E.G. Boman, R.T. Heaphy, R.H. Bisseling and
Ü.V. Çatalyürek, Parallel hypergraph partitioning for scien-
tific computing, in: Proc. 20th Int. Parallel and Distributed
Processing Symp., IEEE, 2006.

[25] I.S. Duff and G.A. Meurant, The effect of ordering on
preconditioned conjugate gradients, BIT 29 (1989), 635–657.

[26] M. Garey, D. Johnson and L. Stockmeyer, Some simplified
NP-complete graph problems, Theoret. Comput. Sci. 1 (1976),
237–267.

[27] A.H. Gebremedhin, F. Manne and A. Pothen, What color is
your Jacobian? Graph coloring for computing derivatives,
SIAM Rev. 47(4) (2005), 629–705.

[28] A.H. Gebremedhin, D. Nguyen, M.M.A. Patwary and
A. Pothen, ColPack: graph coloring software for sparse
derivative matrix computation and beyond, ACM Trans. Math.
Software (2012), to appear.

[29] J.A. George, Nested dissection of a regular finite element
mesh, SIAM J. Numer. Anal. 10 (1973), 345–363.

[30] L. Grigori, E. Boman, S. Donfack and T. Davis, Hypergraph-
based unsymmetric nested dissection ordering for sparse LU
factorization, SIAM J. Sci. Comp. 32(6) (2010), 3426–3446.

[31] B. Hendrickson and T.G. Kolda, Graph partitioning models for
parallel computing, Parallel Comput. 26 (2000), 1519–1534.

[32] B. Hendrickson and R. Leland, A multilevel algorithm for
partitioning graphs, in: Proc. Supercomputing’95, ACM, 1995.

[33] B. Hendrickson and E. Rothberg, Effective sparse matrix
ordering: just around the bend, in: Proc. 8th SIAM Conference
on Parallel Processing for Scientific Computing, Atlanta, GA,
1997.

[34] M. Heroux, R. Bartlett, V. Howle, R. Hoekstra, J. Hu, T. Kolda,
R. Lehoucq, K. Long, R. Pawlowski, E. Phipps, A. Salinger,
H. Thornquist, R. Tuminaro, J. Willenbring and A. Williams,
An overview of Trilinos, Technical Report SAND2003-2927,
Sandia National Laboratories, Albuquerque, NM, 2003.

[35] http://trilinos.sandia.gov/packages/epetra.
[36] http://trilinos.sandia.gov/packages/tpetra.
[37] http://trilinos.sandia.gov/packages/kokkos.
[38] http://trilinos.sandia.gov/packages/belos.
[39] M. Jones and P. Plassmann, Scalable iterative solution

of sparse linear systems, Parallel Comput. 20(5) (1994),
753–773.

[40] G. Karypis and V. Kumar, METIS: unstructured graph parti-
tioning and sparse matrix ordering system, Technical report,
Department of Computer Science, University of Minnesota,
1995, available at: http://www.cs.umn.edu/~karypis/metis.

[41] G. Karypis and V. Kumar, A fast and high quality multilevel
scheme for partitioning irregular graphs, SIAM J. Sci. Comp.
20(1) (1998), 359–392.

[42] G. Karypis, K. Schloegel and V. Kumar, ParMETIS: parallel
graph partitioning and sparse matrix ordering library, ver-
sion 3.1, Technical report, Department of Computer Science,
University of Minnesota, 2003, available at: http://www-
users.cs.umn.edu/~karypis/metis/parmetis/download.html.

150 E.G. Boman et al. / The Zoltan and Isorropia parallel toolkits for combinatorial scientific computing

[43] S.O. Krumke, M. Marathe and S. Ravi, Models and approxi-
mation algorithms for channel assignment in radio networks,
Wireless Networks 7(6) (2001), 575–584.

[44] V.S.A. Kumar, M.V. Marathe, S. Parthasarathy and A. Srini-
vasan, End-to-end packet-scheduling in wireless ad-hoc
networks, in: Proceedings of the 15th Annual ACM–SIAM
Symp. on Discrete Algorithms, SIAM, 2004, pp. 1021–1030.

[45] F. Manne, A parallel algorithm for computing the extremal
eigenvalues of very large sparse matrices, in: Proceedings of
Para, Lecture Notes in Computer Science, Vol. 1541, Springer,
1998, pp. 332–336.

[46] D.W. Matula, A min–max theorem for graphs with application
to graph coloring, SIAM Rev. 10 (1968), 481–482.

[47] Message Passing Interface Forum, MPI: a message-passing
interface standard, May 1994, available at: http://www.mpi-
forum.org.

[48] F. Pellegrini, PT-SCOTCH 5.1 user’s guide, Technical report,
LaBRI, September 2008.

[49] J.R. Pilkington and S.B. Baden, Partitioning with spacefilling
curves, CSE Technical Report CS94–349, Department of
Computer Science and Engineering, University of California,
San Diego, CA, 1994.

[50] A. Pınar, Combinatorial algorithms in scientific computing,
PhD thesis, University of Illinois at Urbana–Champaign, 2001.

[51] S. Rajamanickam, E.G. Boman and M.A. Heroux, ShyLU:
a hybrid–hybrid solver for multicore platforms, in: Proc. of
26th IEEE Int. Parallel and Distributed Processing Symp.,
IEEE, 2012.

[52] Y. Saad, ILUM: a multi-elimination ILU preconditioner for
general sparse matrices, SIAM J. Sci. Comput. 17 (1996),
830–847.

[53] M. Sala, W. Spotz and M. Heroux, PyTrilinos: high-
performance distributed-memory solvers for Python, ACM
Trans. Math. Software 34(2) (2008), 1–33.

[54] M. Sala, K.S. Stanley and M.A. Heroux, On the design of
interfaces to sparse direct solvers, ACM Trans. Math. Software
34(9) (2008), 1–22.

[55] A.E. Sarıyüce, E. Saule and Ü.V. Çatalyürek, Improving
graph coloring on distributed-memory parallel computers, in:
Proceedings of the 18th Annual International Conference on
High Performance Computing, Bangalore, India, 2011.

[56] K. Schloegel, G. Karypis and V. Kumar, Multilevel diffusion
algorithms for repartitioning of adaptive meshes, J. Parallel
Distrib. Comput. 47(2) (1997), 109–124.

[57] C. Siefert and E. de Sturler, Probing methods for saddle-point
problems, Electr. Trans. Numer. Anal. 22 (2006), 163–183.

[58] H.D. Simon, Partitioning of unstructured problems for parallel
processing, Comput. Syst. Eng. 2 (1991), 135–148.

[59] M.M. Strout, L. Carter, J. Ferrante, J. Freeman and
B. Kreaseck, Combining performance aspects of irregular
Gauss–Seidel via sparse tiling, in: LCPC, W. Pugh and
C.-W. Tseng, eds, Lecture Notes in Computer Science,
Vol. 2481, Springer, 2002, pp. 90–110.

[60] V.E. Taylor and B. Nour-Omid, A study of the factorization
fill-in for a parallel implementation of the finite element
method, Int. J. Numer. Meth. Eng. 37 (1994), 3809–3823.

[61] J.D. Teresco, M.W. Beall, J.E. Flaherty and M.S. Shephard,
A hierarchical partition model for adaptive finite element
computation, Comput. Methods Appl. Mech. Eng. 184 (2000),
269–285.

[62] W.F. Tinney and J.W. Walker, Direct solution of sparse net-
work equations by optimally ordered triangular factorization,
Proc. IEEE 55 (1967), 1801–1809.

[63] M.S. Warren and J.K. Salmon, A parallel hashed oct-tree
n-body algorithm, in: Proc. Supercomputing’93, Portland,
OR, 1993.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

