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Abstract

Theca cells function in a diverse range of necessary roles during folliculogenesis; to synthesize androgens, provide crosstalk with granulosa

cells and oocytes during development, and provide structural support of the growing follicle as it progresses through the developmental

stages to produce a mature and fertilizable oocyte. Thecal cells are thought to be recruited from surrounding stromal tissue by factors

secreted from an activated primary follicle. The precise origin and identity of these recruiting factors are currently not clear, but it appears

that thecal recruitment and/or differentiation involves not just one signal, but a complex and tightly controlled combination of multiple

factors. It is clear that thecal cells are fundamental for follicular growth, providing all the androgens required by the developing follicle(s)

for conversion into estrogens by the granulosa cells. Their function is enabled through the establishment of a vascular system providing

communication with the pituitary axis throughout the reproductive cycle, and delivering essential nutrients to these highly active cells.

During development, the majority of follicles undergo atresia, and the theca cells are often the final follicular cell type to die. For those

follicles that do ovulate, the theca cells then undergo hormone-dependent differentiation into luteinized thecal cells of the corpus luteum.

While the theca is an essential component of follicle development and ovulation, we do not yet fully understand the control of recruitment

and function of theca cells, an important consideration since their function appears to be altered in certain causes of infertility.
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What are theca cells?

Reproduction is the result of a coordinated signaling
network between the gonads, pituitary, and hypo-
thalamus. The ovary is responsible for nurturing growing
oocytes until an estradiol signal from primed preovulatory
follicles induces GNRH, and a consequent luteinising
hormone (LH) surge, to release a mature oocyte, which is
then capable of being fertilized to produce an embryo.
Within the ovary, there are a number of cell types that
support the growth and development of oocytes until
ovulation. The oocyte is surrounded by a layer of
granulosa cells, which change morphology and prolifer-
ate when an oocyte begins the process of folliculogenesis.
Activated follicles are thought to recruit precursor thecal
cells from the stromal layer surrounding the granulosa
cells and oocyte. Together, these form the follicle
structure that synthesizes steroid hormones (Hillier et al.
1994). Thecal cells are not capable of producing estrogen
but do produce androgens in response to LH, which are
then converted into estrogen by follicle stimulating
hormone (FSH)-induced aromatase in the neighboring
granulosa cells of selected growing follicles. Over the past
decade, research has focused on granulosa cells and their
interaction with the oocyte, and the theca has been
somewhat forgotten as a necessary and vital part of the
developmental process.
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The classification system for folliculogenesis has been
well defined in numerous publications (McNatty et al.
1999, 2007, Montgomery et al. 2001, Barnett et al.
2006, Edson et al. 2009). Briefly (see Fig. 1), primordial
follicles (type 1) are in the resting stage before being
activated to start development and the oocyte is
surrounded by one layer of flattened granulosa cells;
type 1a are the follicles transitioning through to the
primary (type 2) stage when the granulosa cells become
cuboidal. Primary follicles have one layer of cuboidal
granulosa cells, secondary follicles (type 3) have two to
four layers of granulosa cells, large preantral (type 4)
follicles have four to six layers of granulosa cells, and
antral follicles (type 5) have more than five layers of
granulosa cells. It is after secondary follicle formation
that the thecal cells begin to emerge and form a layer
around the granulosa–oocyte structure. Throughout
folliculogenesis, the rates of atresia increase, and the
early stages of folliculogenesis proceed very slowly
(Gougeon 1986, Hirshfield 1994); therefore, most
follicles are observed at early stages of development.
At the antral stage, follicles become gonadotropin
dependent and form large antral follicles (type 5C),
most of which undergo atresia, and few are selected for
ovulation (reviewed by Scaramuzzi et al. (1993) and
Edson et al. (2009)).
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Figure 1 Thecal cell development and function during folliculogenesis. Thecal cells are vital for successful folliculogenesis. A primordial follicle
consists of an oocyte and surrounding granulosa cells (GCs), and thecal layers are not formed until the follicle is activated and reaches the secondary
stage of development. Thecal cells are required for the production of androgens to provide a structural scaffold, and they form the network of cells
that support the vascular system, and after ovulation, thecal cells luteinize and form cells of the corpus luteum.
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Origin of theca cells

Theca cells are first observed once a follicle has two or
more layers of granulosa cells, which is around the time
when thecal cells become LH responsive and steroido-
genic enzymes are activated (Magoffin & Weitsman
1994). These specialized cells have long been thought to
originate from fibroblast-like precursor cells within the
ovarian stroma (Erickson et al. 1985, Orisaka et al. 2006,
Honda et al. 2007). The putative undifferentiated
progenitor theca cells do not express LH receptors
(LHRs) or steroidogenic enzymes and are therefore not
LH responsive, showing that initiation of theca cell
differentiation is gonadotropin independent (Magoffin &
Weitsman 1994). As theca cells are only associated
with growing follicles, one would assume that the
follicle itself produces factors that signal to the stroma
to recruit cells that form the theca. Very few studies have
investigated the factors that recruit thecal cells to the
activated primary and secondary follicles. It is not
currently clear whether cells surrounding the activated
Reproduction (2010) 140 489–504
follicle differentiate into the theca layer, or whether they
are in fact recruited from the stroma to form the theca
layers. However, results from mature thecal cells
cultured in vitro do provide clues about the origin of
some recruiting factors and, more importantly, the
complexity of this system and provide evidence of
steroidogenic regulators with potential differentiative
roles. Selected factors are discussed later in the review.
Structure of theca cells

Electron microscopic analysis of normal thecal develop-
ment in ovine follicles throughout folliculogenesis
showed that thecal layers from small follicles (!3 mm
diameter) were composed of flattened theca cells
together with capillaries and bundles of collagen lying
next to the basal lamina (O’Shea et al. 1978). The thecal
cells were either fibroblast-like cells or presumed
steroidogenic cells with large amounts of smooth
endoplasmic reticulum. As the follicles grew, the thecal
www.reproduction-online.org
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cells hypertrophied, became less flattened and richer in
endoplasmic reticulum, eventually producing pseudo-
podia, and contained many droplets of lipid but showed
no signs of degradation.

Theca cells are highly differentiated with structural
features characteristic of steroid-secreting cells including
abundant mitochondria with vesicular cristae, agranular
endoplasmic reticulum, and lipid vesicles (reviewed by
Magoffin (2005)). The mitochondria contain the first
enzyme in the steroidogenic pathway, cholesterol side-
chain cleavage cytochrome P450 (CYP11A), and the
endoplasmic reticulum contains the remaining enzymes
necessary to produce androgens. The lipid vesicles store
the precursors for steroid hormone synthesis as choles-
terol esters which are transported into the mitochondria
by steroidogenic acute regulatory protein (STAR;
reviewed by Manna et al. (2009)). Thecal cells are vital
components of the follicle, providing both structural
support and being the exclusive producer of ovarian
androgens, which are necessary as substrates for
estradiol production in the neighboring granulosa cells.
Steroidogenesis

Androgens synthesized in thecal cells are transported to
the granulosa cells where P450 aromatase converts these
androgens to estrone and 17b-estradiol. The steroido-
genic enzymes are produced in a cell-specific manner
(Wood & Strauss 2002), and in addition to the large
amount of androgen receptor expressed in thecal and
granulosa cells (but not in oocytes; Li et al. 2009a),
studies indicate that a complete oocyte-independent
system for androgen production exists within the
growing follicle. Indeed, androgen and subsequent
estradiol production can occur in mouse ovaries
devoid of oocytes (McNeilly et al. 2000). Silencing
17a-hydroxylase (CYP17) in the rat ovary caused a
decline in androstenedione, 17a-hydroxyprogesterone,
and testosterone production, and also reduced pro-
gesterone levels (Li et al. 2009b); showing ovarian
androgen biosynthesis can be inhibited by silencing
CYP17 expression alone, and indicating a potential
target for therapeutic development.

Androgen production from thecal cells in the gonado-
tropin-dependent stage is largely under the control of
LH from the pituitary (Baird et al. 1981, Palermo 2007).
LH is released in a pulsatile manner, and the frequency
and amplitude of these pulses vary across the reproduc-
tive cycle in response to ovarian steroidogenic feedback.
The pulse frequency of LH dictates the amounts of steroid
hormones produced, where each pulse of LH is followed
by an increase in androstenedione and estradiol secreted
from the ovary in many species (Baird et al. 1976, 1981,
Peluso et al. 1984, Schallenberger et al. 1984, Walters &
Schallenberger 1984). When theca cells were cultured
in vitro, low levels of LH also stimulated androgen
production (Campbell et al. 1998, Ryan et al. 2008),
www.reproduction-online.org
whereas, at high doses, LH inhibited androstenedione
production and stimulated progesterone secretion as
well as changing cell morphology indicating that the high
LH levels induced luteinization in these cells (Campbell
et al. 1998). LH has been shown to increase levels of
STAR and steroidogenic enzymes (CYP11A1, CYP17,
and 3-b-hydroxysteroid dehydrogenase (HSD3B)) and
LHR gene expression (Magoffin & Weitsman 1993a,
1993b, 1993c, 1994, Lavoie & King 2009; see Fig. 2).

Insulin also plays an important role in thecal cell
function. In vitro studies using thecal cells from porcine,
bovine, and ovine ovaries have shown that insulin
induced dose-dependent cell proliferation, increased
steroid production, and increased the expression of
genes encoding STAR, CYP11A1, and CYP17, thus
promoting steroidogenesis (Morley et al. 1989,
Campbell et al. 1995, 1998, Wrathall & Knight 1995,
Mamluk et al. 1999, Smith et al. 2005; see Fig. 2).

The onset of thecal steroidogenic enzyme gene
expression is similar in those mammalian species studied
in depth (Pollack et al. 1997, Kerban et al. 1999, Lundy
et al. 1999, Watson et al. 2000, Logan et al. 2002). Theca
cells are first able to produce steroids just prior to antrum
formation, as shown by the onset of expression of STAR,
CYP11A1, CYP17, HSD3B, and LHR in thecal cells of
preantral (large type 4) follicles, and the mRNA and
protein localization at specific stages mirrored one
another (Logan et al. 2002) and does not require
gonadotropins (Scaramuzzi et al. 1993). mRNA encoding
steroidogenic enzymes were also observed in the theca of
bovine preantral follicles, although, unlike sheep, STAR
expression was limited to thecal cells (Bao & Garverick
1998). Steroidogenic factor 1, a well-studied transcrip-
tion factor regulating P450 enzymes and STAR, was
expressed by granulosa cells, and protein was observed
in both thecal and granulosa cells (Logan et al. 2002).
Overall, the expression patterns found in the sheep ovary
are similar to those observed in other mammalian species.
Angiogenesis

Small primordial follicles are located in the avascular
region of the ovarian cortex, especially in larger species,
and do not have their own vascular system. Once follicle
growth is activated and a thecal layer has been recruited,
a follicle develops its own vascular network within the
surrounding thecal layer (see Fig. 1). Thecal cell
proliferation begins early in the secondary stage of
follicle development, although endothelial cell staining
is still absent at this point showing that the theca forms
before vascularization begins (Fraser & Duncan 2009).
There are many potential factors involved in controlling
angiogenesis in the developing follicle but vascular
endothelial growth factor (VEGF) has a central role
and has been studied extensively. VEGF, a potent
mitogen for endothelial cells (Ferrara & Davis-Smyth
1997), stimulates vascular permeability (Connolly 1991,
Reproduction (2010) 140 489–504
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Figure 2 Modulation of steroidogenic enzymes.
Expression levels of genes encoding steroidogenic
enzymes are regulated by many different factors
within the ovary. The process of androgen
production requires the following enzymes:
cholesterol side-chain cleavage cytochrome P450
(CYP11A1), 17a-hydroxylase (CYP17) and 3-b-
hydroxysteroid dehydrogenase (HSD3B), as well
as steroidogenic acute regulatory protein (STAR).
Theca cells from sheep, humans, and primates
principally produce androstenedione, whereas
rodents produce testosterone as precursors for
estradiol production in the neighboring granulosa
cells. The modulating factors are depicted here,
where in green circles the stimulatory factors are
shown, and the inhibitory factors are listed in red
boxes. BMP, bone morphogenetic protein;
GDF9, growth differentiation factor 9; HGF,
hepatocyte growth factor; hCG, human chorionic
gonadotropin; IGF, insulin-like growth factor;
SCF, stem cell factor/kit ligand; TGFB,
transforming growth factor b.
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Senger et al. 1993), and is highly expressed in granulosa
cells and at lower levels in the thecal layer of follicles
from the secondary stage onwards in primate ovaries
(Taylor et al. 2004). In rodents, cows, and pigs, VEGF
expression is weak in early follicle development but
increases as the follicle progresses to ovulation
(Maisonpierre et al. 1997, Barboni et al. 2000, Greenaway
et al. 2005), although levels of VEGF decrease in
granulosa cells in sheep and marmoset follicles just
prior to ovulation (Ravindranath et al. 1992, Redmer
et al. 2001, Taylor et al. 2004). In primates, mRNA
encoding VEGF has been observed at the secondary
stage in both the theca and granulosa cells (Taylor et al.
2004). VEGF was upregulated in rat ovaries during the
primordial to primary transition thus preceding vascular-
ization (Kezele et al. 2005). Certainly at early stages of
follicle development, inhibition of VEGF prevents
endothelial cell proliferation, and decreases thecal cell
proliferation therefore hindering follicle development
(Wulff et al. 2002, Fraser et al. 2005, Fraser & Duncan
2009). Suppression of gonadotropins using a GNRH
antagonist results in reduced thecal and endothelial cell
proliferation, and lower vascular density in antral
follicles (Taylor et al. 2004), an effect probably due to
reduced production of VEGF (Fraser & Duncan 2009).

While VEGF is critically involved in regulating follicle
development in many species (Barboni et al. 2000,
Mattioli et al. 2001, Wulff et al. 2001a, 2001b, 2002,
Hunter et al. 2004, Martelli et al. 2008), many other
Reproduction (2010) 140 489–504
factors also contribute and modulate angiogenesis and
vasculogenesis in mammals, such as transforming
growth factor b (TGFB) superfamily members and their
antagonists, angiopoietins, fibroblast growth factor
(FGF), and gonadotropins, but whether they directly
affect theca cell function remains to be explored.
Life span of theca cells

Folliculogenesis is a process that spans many weeks
where the majority of follicles undergo atresia and only a
few become dominant and go on to ovulate successfully
(reviewed by Scaramuzzi et al. (1993)). During atresia,
cell death is not confined to a specific cell type, but the
entire follicle is degraded during this process. There are
various ways that ovarian cells have been reported to die
including apoptosis, autophagy, necrosis, and cornifica-
tion (Jolly et al. 1994, Van Wezel et al. 1999,
D’Haeseleer et al. 2006). In bovine follicles, oocytes of
preantral follicles are the first component to die, whereas
in later stages of development, the granulosa cells die
first, although in particular types of atresia, thecal cells
also die very early (Rodgers & Irving-Rodgers 2009; see
Fig. 3). In the cow, atretic antral follicles have been
classified into two types; antral atresia and basal atresia.
Basal atresia occurred only in small antral follicles
(!5 mm in bovine ovaries) where the theca cell layer
becomes disrupted, having high levels of collagen,
early death of endothelial and thecal cells, reduced
www.reproduction-online.org

Downloaded from Bioscientifica.com at 08/23/2022 01:39:34PM
via free access



Healthy
follicle

Preantral follicle
atresia

Folliculogenesis

Basal atresia

Pyknotic
nuclei

Oocytes die first Androgen production

Insulin like growth factor 3

Disrupted theca organization
(decline of theca), ↓ vasculature

Progesterone
in FF

Macrophage
invasion

All follicle sizes

-  More androgens than in
   healthy follicles

-  Granulosa cells first to
   become atretic

-  Theca last cells to die

-  Smaller cells derived
   from theca cells (larger
   cells from granulosa
   cells)

-  Small cells produce
   androgen precursors

Antral atresia Luteinisation

Ovulation

Pyknotic
nuclei

Corpus
luteum

↑

↑

↑

Figure 3 Theca cell fate. Atresia during follicle development is a more common fate of thecal cells than progression through to luteinization. In
preantral follicles, the oocytes die first, and as follicles progress through development, follicles undergo basal or antral atresia. Thecal cells appear to
be more susceptible to cell death early in follicular development, whereas in basally atretic follicles, the thecal layers are disrupted and are less
vascular. Throughout all stages of development, antral granulosa cells are commonly the first cells to become atretic; hence, thecal cells are often the
last to die during follicle atresia and the entire follicle is degraded during this process. FF, follicular fluid.
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insulin-like factor 3 expression, and reduced androgen
production associated with higher levels of progesterone
in the follicular fluid in these follicles (Irving-Rodgers
et al. 2003, Clark et al. 2004). These observations suggest
that the theca is more susceptible to cell death early in
follicular development compared to at later stages
(Irving-Rodgers et al. 2001). In contrast, in atretic antral
follicles where pyknotic nuclei were first observed in
antral granulosa cells, thecal cells were the last to be
disrupted (see Fig. 3). Thus, thecal cells from follicles
undergoing atresia appear to respond differently depend-
ing on the stage of follicle development.

Since the blood supply is vital for follicle survival and
transport of endocrine factors, vascularization is import-
ant in determining the fate of the follicle, and maintaining
the blood supply is necessary for follicular health. The
effect of atresia in the vasculature depends on the stage of
follicle development when atresia is occurring. Small
atretic follicles have reduced the numbers of capillaries in
the thecal layers; the endothelium begins to degrade, and
thecal capillaries become blocked by degrading material
(O’Shea et al. 1977). Extensive hypertrophy of theca cells
is observed during the early stages of atresia in human, rat,
and rabbit, but not in sheep or bovine follicles
(Himelstein-Braw et al. 1976, O’Shea et al. 1978,
Erickson et al. 1985, Clark et al. 2004), which, together
with the loss of granulosa cell function as they undergo
www.reproduction-online.org
apoptosis, results in androgens being the predominant
steroids secreted by atretic antral follicles (Moor et al.
1978). In larger bovine antral follicles, the vasculature is
well established in non-atretic follicles (Shimizu et al.
2003), while the thecal layers of atretic follicles show
signs of apoptosis from the outer layers progressing
internally, and throughout the vascular network (Jiang
et al. 2003). Whether the changes in the vasculature
observed during follicle atresia are the cause or the
effect of the atretic process itself is yet to be established.

Follicle fate is regulated by apoptotic factors such as
nodal, which is produced by the thecal cells and acts to
promote apoptosis in the neighboring granulosa cells
(Wang et al. 2006, Craig et al. 2007). The oncogene Skil
(also known as SnoN), involved in regulating TGFB
superfamily signal transduction, has been mapped in the
mouse ovary recently and is expressed in the theca
throughout development and during atresia (Xu et al.
2009). This factor can modulate differentiation, prolifer-
ation, and apoptosis of several cell types (reviewed by
Deheuninck & Luo (2009)), and was shown to have a
specific manner of expression relating to follicle atresia
and luteinization, suggesting that SKIL may play roles in
these processes (Xu et al. 2009). VEGF (Redmer et al.
2001, Fraser et al. 2005), FGF (Shimizu et al. 2002,
2003), and TGFB superfamily members (Tomic et al.
2002) have also been linked to follicle atresia.
Reproduction (2010) 140 489–504
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Major factors influencing theca cell differentiation

The current evidence suggests that an activated follicle
produces factors that induce thecal cell differentiation
from stroma, but the exact identity and combination of
the proteins remain unknown. Not unexpectedly, it
appears that no single factor appears to be responsible,
but complex networks of signals function synergistically
to result in a fully functional steroidogenic thecal layer
surrounding a developing follicle.

A recent in vitro study using bovine ovarian tissue
showed that ovarian stromal cells cultured in the
presence of granulosa cells from small antral follicles
transformed into putative thecal cells with increased
lipid droplets and androstenedione production (Orisaka
et al. 2006). Studies suggest that granulosa cells, but not
activated oocytes, are involved in the functional
differentiation and acquisition of LH responsiveness in
stromal cells, and the cellular origin of the stroma
determines whether or not granulosa cells influence
thecal cell differentiation and functionality such as
expression of necessary steroidogenic enzymes and
LHRs (Orisaka et al. 2006). It appears that stromal cells
from the cortical region may be preprogrammed
differently to medullary stromal cells, and able to
respond to granulosa cell communication in a manner
that medullary stromal cells are not.

Using neonatal mouse ovaries, putative thecal stem
cells were purified and induced to differentiate in vitro
(Honda et al. 2007). When these cells were treated with
LH, insulin-like growth factor 1 (IGF1), stem cell factor
(SCF, also known as kit ligand), or granulosa cell-
conditioned media, the cells differentiated into thecal
cells, and showed signs of lipid droplet accumulation,
formation of smooth endoplasmic reticulum,
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mitochondria with tubular cristae, and produced
androstenedione at later stages of culture. When these
putative thecal cells were injected into ovaries of live
mice, they were found to surround growing follicles akin
to natural thecal cells in vivo.

Various factors have been studied in vitro for their
effects on promoting thecal steroidogenesis. Selected
molecules are discussed in the following sections.
Insulin-like growth factor

The ovary has a complete repertoire of IGF system
components. IGF receptors are found on human thecal
cells (Poretsky et al. 1985), and IGF1, the synthesis of
which is regulated by FSH in the granulosa cells (Adashi
et al. 1985, Hammond et al. 1985, Hernandez et al.
1989, Oliver et al. 1989), increases thecal cell
proliferation in vitro (Hillier et al. 1991a, Stewart et al.
1995, Spicer & Chamberlain 1998, Huang et al. 2001,
Mazerbourg & Hsueh 2003, Campbell et al. 2006,
Kwintkiewicz & Giudice 2009). IGF1 alone stimulated
the expression of LHRs (Magoffin & Weitsman 1994) and
steroidogenic enzymes, CYP11A1 and HSD3B but not
CYP17, and acts synergistically with LH to increase
expression of these enzymes (Magoffin & Weitsman
1993a, 1993b, 1993c), and hence androgen synthesis in
thecal cells in vitro (Hillier et al. 1991b; see Fig. 2).
Interestingly, human stromal tissue cultured in vitro
synthesized androgens when stimulated by insulin and
IGF (Barbieri et al. 1983, 1984) giving additional
evidence of IGF involvement in promoting thecal
differentiation (see Fig. 4). IGF2 can stimulate bovine
thecal steroidogenesis and acts through the type 1 IGF
receptors (Spicer et al. 2004), so it may also play
important roles in theca functionality.
cyte

Basal lamina

Cuboidal
granulosa cells

ved in thecal
 differentiation

Figure 4 Thecal cell recruitment and differen-
tiation. Evidence suggests that thecal stem cells
reside in the ovarian stroma and are recruited by
factors released from follicles after they are
activated. Individual factors may be responsible
for the recruitment of these cells, whereas others
may promote differentiation and proliferation.
The origin of these factors is not currently clear,
but it appears that a complex and tightly
controlled set of signals from multiple factors is
required for thecal recruitment and differen-
tiation. AMH, anti-Müllerian hormone; bFGF,
basic fibroblast growth factor; BMP, bone
morphogenetic protein; GDF9, growth differen-
tiation factor 9; IGF, insulin-like growth factor;
KGF, keratinocyte growth factor; LIF, leukemia
inhibitory factor; SCF, stem cell factor (kit ligand).
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Stem cell factor (SCF/kit ligand)

SCF, also known as kit ligand, is a growth factor that acts
through the c-kit tyrosine kinase receptor (Zsebo et al.
1990, Besmer 1991), is synthesized by granulosa cells,
and acts on differentiated thecal cells as well as
undifferentiated stromal cells and oocytes where the
receptor c-kit is located (Manova et al. 1990, 1993,
Motro et al. 1991, Horie & Broxmeyer 1993, Motro &
Bernstein 1993, Parrott & Skinner 1997). The addition of
neutralizing antibodies to SCF and IGF1 together to
follicle-conditioned media reduced the stimulatory
effects on theca cell differentiation by more than 90%
in vitro (Huang et al. 2001). In rat theca, neither SCF nor
IGF1 alone stimulated androstenedione production,
whereas, in combination, these factors dose dependently
induced androgen production, but to a lesser extent than
that induced by LH. The effects of adding these factors
together with LH showed that IGF1 acted synergistically
with LH to increase androgen production, whereas SCF
had no added effect when in combination with LH. SCF
alone decreased CYP17 and had no effect on the
expression of CYP11A, HSD3B, or LHR expression
(see Fig. 2). IGF1 alone had no effect on the expression
of STAR and CYP17, but increased mRNA levels of LHR,
CYP11A, and HSD3B. However, the combination of
IGF1 and SCF increased the expression of STAR,
CYP11A, CYP17, HSD3B, and LHR, giving strong
evidence that these factors may act synergistically to
regulate thecal cell differentiation into steroid-producing
cells, at least in the rat.
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SCF stimulated the growth of bovine primary cell
cultures of theca and stromal cells under sub-confluent
conditions in vitro, but when the cells were grown to
confluence, SCF stimulated androstenedione production
(Parrott & Skinner 1997). In contrast, SCF did not affect
human chorionic gonadotropin-induced androgen pro-
duction by bovine stromal cells (Parrott & Skinner 2000)
suggesting that, in contrast to the rat, SCF alone affects
bovine thecal cells once they have been differentiated.

The expression of SCF can also be modulated by
leukemia inhibitory factor (LIF), keratinocyte growth
factor (KGF), and hepatocyte growth factor (HGF; Parrott
et al. 1994, Parrott & Skinner 1998, Nilsson et al. 2002).
Thecal cells produce KGF and HGF (Parrott et al. 1994),
which act on granulosa cells to produce SCF, which then
signals back to the theca to produce KGF and HGF in a
positive feedback mechanism (Parrott & Skinner 1998;
see Fig. 5). Therefore, SCF may potentially act as a final
common factor involved in thecal cell differentiation and
activation.
Basic bFGF

Basic FGF (bFGF) has been shown to affect somatic cell
mitosis, steroid synthesis, differentiation, and apoptosis
(Tilly et al. 1992, Lavranos et al. 1994, Vernon & Spicer
1994). bFGF is expressed by primordial and primary
oocytes, and granulosa cells of larger preantral follicles,
and in the theca of rodent, bovine, and human follicles
(van Wezel et al. 1995, Yamamoto et al. 1997, Berisha
et al. 2000, Nilsson et al. 2001). The receptors for bFGF
l

BMPs
activins

mina

Figure 5 Androgen production from theca cells.
Factors released by cells comprising the follicle
(granulosa cells, thecal cells, and oocytes) can
modulate androgen production in thecal cells in
addition to external influences such as gonado-
tropins and insulin. These molecules can stimulate
(green) or inhibit (red) thecal androgen production
both directly and/or indirectly. Specific molecules
have been observed to act in opposing manners,
indicating species-specific differences. bFGF,
basic fibroblast growth factor; BMP, bone
morphogenetic protein; GDF9, growth differen-
tiation factor 9; HGF, hepatocyte growth factor;
IGF, insulin-like growth factor; IGFBP, IGF-binding
protein; IL1, interleukin-1; KGF, keratinocyte
growth factor; LIF, leukemia inhibitory factor; SCF,
stem cell factor/kit ligand; TGFB, transforming
growth factor b; TNF, tumor necrosis factor a.
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have been found in granulosa and theca cells (Shikone
et al. 1992, Wandji et al. 1992, Shimizu et al. 2002,
Schams et al. 2009). In rat follicle cultures, bFGF
activated primordial follicle development to the same
extent as SCF (Nilsson et al. 2001) and also promoted
cell growth in bovine thecal and stromal cells, and is
therefore thought to act in a similar fashion to SCF by
regulating somatic cell growth and development
(Nilsson et al. 2001). While bFGF may also influence
thecal development indirectly through stimulating SCF
expression (Nilsson & Skinner 2004), bFGF, at least in the
mouse, is not essential for folliculogenesis since the
bFGF null mouse is fertile (Ortega et al. 1998).
TGFB superfamily members

TGFB superfamily members are now well established as
having vital roles in controlling follicular growth and
development (Shimasaki et al. 2004, Knight & Glister
2006, Xia & Schneyer 2009). The superfamily consists of
a large group of proteins that include the bone
morphogenetic proteins (BMPs), growth differentiation
factors (GDFs), anti-Müllerian hormone (AMH; also
known as Müllerian inhibiting substance (MIS)), activins,
and inhibin, all of which are expressed in the ovary.
These molecules bind to the BMP/TGFB/activin
receptors to initiate phosphorylation cascades to
influence gene expression in the cell nucleus. BMPs
act through the SMAD1/5/8 pathway, whereas TGFB/
activin/GDFs act through SMAD2/3. Evidence shows
that specific members are involved in thecal cell
recruitment, proliferation, and differentiation, which
may or may not interact with the gonadotropins. Specific
proteins will be discussed in this section, outlining the
relevant research in this area and how each factor may
contribute to theca growth and function.

Activin and inhibin

Activin and inhibin influence follicle activation, hor-
mone synthesis, and luteolysis within the ovary
(reviewed by Knight & Glister (2001)). Activin promoted
the development of preantral follicles in sheep (Thomas
et al. 2003) and human (Telfer et al. 2008) ovarian strips
in culture, and this was also observed in rat studies
(Li et al. 1995, Zhao et al. 2001), while in the mouse,
activin from secondary follicles inhibited activation of
small follicles (Mizunuma et al. 1999).

Studies on isolated human thecal cells cultured
in vitro showed that activin suppressed androgen and
progesterone production (Hillier et al. 1991a, Shukovski
et al. 1993), while the activin antagonist inhibin
enhanced LH-mediated androgen production (Hillier
et al. 1991b). It has been suggested that granulosa
cells secrete inhibin to control the amount of androgen
synthesized by theca cells as substrates for estrogen
synthesis in granulosa cells (Hillier et al. 1991b).
Reproduction (2010) 140 489–504
Thus, activins have direct effects on thecal cell function,
and are regulated by the extracellular antagonists inhibin
and follistatin (Findlay 1993, Welt et al. 2002).

In some species, an indirect effect of activins may
occur through stimulation of granulosa cell proliferation
or preantral follicle development (Li et al. 1995, Choi
et al. 2008), which may be enhanced by additional IGF1
(Li et al. 1998). Activin can act by upregulating FSH
receptors and aromatase gene expression in granulosa
cells, and is involved in promoting estradiol production
(Nakamura et al. 1993, El-Hefnawy & Zeleznik 2001,
Ogawa et al. 2003, Park et al. 2005). Furthermore, since
estradiol may suppress activin expression, this forms a
possible interaction between activin and estrogen
signaling during folliculogenesis (Kipp et al. 2007).
Increased estradiol and inhibin production by the
putative preovulatory follicle(s) would act to suppress
activin production through estradiol, and block activin
action at the theca through inhibin, thus enhancing
thecal androgen production.

Inhibin is a critical factor in the control of steroid
production and for control of gonadotropin secretion
(McNeilly 2001, Padmanabhan & McNeilly 2001,
McNeilly et al. 2003), but the effects of inhibin on
thecal cell recruitment and differentiation are not
known. Inhibin alone increased androgen production
from human thecal cells in culture and also blocked the
inhibitory effect of added activins (Hillier et al. 1991b).
Inhibin is thought to modulate hormone production
through antagonizing activin and BMPs, rather than
through a signal cascade of its own (Wiater & Vale 2003,
Farnworth et al. 2006).

Bone morphogenetic proteins

During folliculogenesis, BMPs are released at specific
time points and act in either an autocrine or paracrine
manner to modulate growth, differentiation, and func-
tion of follicular cells. BMP expression patterns have
been investigated in rodents, ruminants, and primates,
and observations suggest that species-specific
differences occur for some molecules (reviewed by
Shimasaki et al. (2004)).

BMP4 is expressed in the stromal cells surrounding
primordial follicles, and BMP4/7 are expressed in the
theca layer of antral follicles (Shimasaki et al. 1999,
Nilsson & Skinner 2003, Lee et al. 2004). In neonatal rat
ovaries, BMP4/7 increased the formation of primary
follicles (Nilsson & Skinner 2003) and the percentage of
growing follicles in the adult rat ovary (Nilsson & Skinner
2003, Lee et al. 2004).

BMP6 is produced by oocytes, but its function appears
to differ between rodents and ruminants (Otsuka et al.
2001, Glister et al. 2004, Shi et al. 2009b). In sheep
(Souza et al. 2002) and bovine (Kayani et al. 2009)
ovaries, full complements of BMP/activin receptors were
observed in granulosa, theca, and luteal tissues.
www.reproduction-online.org
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Human theca-derived tumor cells show reduced
androstenedione production in vitro when treated with
BMP4, and this effect is enhanced in the presence of
cAMP agonists (Dooley et al. 2000). BMPs 2/4/6/7 all
significantly decreased androstenedione secretion from
ovine and bovine thecal cells in vitro while moderately
increasing progesterone production and cell numbers
(Glister et al. 2005, Campbell et al. 2006), and reducing
CYP17 gene expression, and to a lesser effect for STAR,
CYP11A1, and HSD3B (Glister et al. 2005; see Fig. 2).
The BMP antagonist, chordin, reversed the inhibitory
effects of BMP7 on androgen production in bovine theca
cells (Glister et al. 2005), while gremlin selectively
reversed the effects of BMP4 but not BMP6 or 7. The BMP
antagonist follistatin did not affect BMP-inhibited
androgen production (Glister et al. 2005). Taken
together, observations indicate that BMPs may act
directly on theca to inhibit androgen production and
also function to regulate the expression of factors from
granulosa cells that act in a paracrine manner on thecal
steroidogenesis. There are many BMP mutations that
lead to aberrant fertility (McNatty et al. 2005), and these
proteins may play roles in theca recruitment.

Growth differentiation factor 9

GDF9 is primarily produced specifically by the oocyte
(McNatty et al. 2004), although it may also be produced
in human (Shi et al. 2009a) and porcine (Paradis et al.
2009) granulosa and porcine theca cells (Paradis et al.
2009). Mutations of the GDF9 gene lead to arrested
folliculogenesis at the primary stage in mice, sheep, and
humans (Shimasaki et al. 2004, Laissue et al. 2006,
Kovanci et al. 2007, Nicol et al. 2009), suggesting that
GDF9 is not vital for follicle activation but it is vital for
onward primary growth. Follicles from GDF9 null mice
and sheep (Thoka) lack supporting thecal cells indicating
a role for GDF9 in the regulation of thecal recruitment,
differentiation, and proliferation, but this appears to be
dependent on the stage of follicle development (Dong
et al. 1996, Elvin et al. 1999a, 1999b, Nicol et al. 2009).
GDF9 alone, and in combination with IGF1, stimulated
bovine thecal cell proliferation, but was found to inhibit
IGF1- and LH-induced progesterone and androgen
production, as well as decreasing LHR, LH-induced
cAMP, and CYP11A1 expression levels without altering
IGF1 receptor, STAR, or CYP17 levels (Spicer et al. 2008;
see Fig. 2). The level of proliferation appeared higher
in theca cells from small follicles compared to those
from large follicles, and this may be related to higher
levels of the putative GDF9 receptor, ALK5, in theca
cells from small follicles. Thus, in small follicles, GDF9
could enhance proliferation, yet have no effect on
promoting differentiation of thecal cells. GDF9
increased androgen production in rat thecal cells
(Solovyeva et al. 2000), but reduced androgen pro-
duction from human thecal cells indicating some
www.reproduction-online.org
important species-specific differences (Yamamoto et al.
2002). Alternatively, the difference may be due to
luteinization of the cells in culture.

GDF9 may also act in an indirect manner to modulate
theca cell function, perhaps through regulating SCF
expression (Dong et al. 1996, Joyce et al. 2000, Nilsson
& Skinner 2002, Wang & Roy 2004). GDF9 also
stimulated inhibin production (Hayashi et al. 1999,
Kaivo-Oja et al. 2003, Roh et al. 2003), and the GDF9–
inhibin-a double knockout mouse model is observed to
have morphological thecal cells surrounding preantral
follicles (Wu et al. 2004). However, these cells do not
appear to have been differentiated into thecal cells since
the expression of theca cell markers such as CYP17A1,
LHR, or KIT are absent. These findings indicate that
recruitment of putative theca-like cells can occur in the
absence of GDF9, but differentiation of these cells does
not appear to occur. GDF9 appears to have an indirect
function on thecal cells, perhaps by promoting granulosa
cell proliferation.

Transforming growth factor b

Both TGFB1 and TGFB2 are present in theca cells from
follicles at the small preantral stage of development
onwards and in stromal tissue and vascular systems in
sheep ovaries, but not in granulosa cells or oocytes
(Juengel et al. 2004). The receptors, TGFBR1 and
TGFBR2, had variable expression, and R1 was found in
stromal and vascular cells, whereas R2 mRNA was found
in thecal cells from the preantral stage onwards through
development, as well as in the surface epithelium and
some stromal cells. Furthermore, latent TGFB-binding
proteins, which affect the bioavailability of TGFBs in
tissues, are localized to the ovarian cortical stroma and
theca externa of bovine antral follicles (Prodoehl et al.
2009). TGFB1 has been reported to suppress androgen
synthesis from human and rat thecal cells (Fournet et al.
1996, Attia et al. 2000; see Fig. 5), while in the mouse,
TGFB1 increased Cyp11a, Cyp17, and Hsd3b gene
expression at various times during the culture period
(Fournet et al. 1996), but inhibited STAR expression in a
human thecal-like tumor cell line (Attia et al. 2000; see
Fig. 2). A study using whole rat ovarian dispersed cell
cultures suggested that TGFB1 blocks steroidogenesis at
the level of CYP17 (Hernandez et al. 1990). These results
are not clear-cut, but it appears that in the human at
least, TGFB has a similar role to activin and BMPs in
suppressing androgen production.
Hedgehog proteins

The hedgehog pathway has recently been shown to
intersect with pathways involved with FGF receptor 2,
BMPs, and other regulatory networks (Katoh 2009).
Theca cells appear to be modulated by hedgehog
signaling with the expression of hedgehog target genes
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Ptch1, Ptch2, Hip1, and Gli1 all present within theca
cells (Wijgerde et al. 2005). Hedgehog proteins are
expressed in the granulosa cells, but oocytes are unable
to respond since they do not contain the necessary
receptors. Hedgehog target genes are expressed in the
pre-thecal cell compartment, and are therefore possible
markers of pre-thecal cells and potentially involved in
inducing theca cell differentiation. In cultured bovine
thecal cells, sonic hedgehog-induced cell proliferation
and androstenedione production (see Fig. 4), and
hedgehog genes were shown to activate Gli1 transcrip-
tion factor in thecal cells (Spicer et al. 2009). In a
transgenic mouse model, the hedgehog pathway was
dominantly activated, and these mice displayed defec-
tive thecal development with reduced or absent smooth
muscle actin normally seen in the thecal layer of growing
follicles (Ren et al. 2009). The dominant activation of the
hedgehog pathway therefore appears to block the
differentiation of precursor cells into muscle cells that
are normally located in the outer thecal layers, and are
perhaps required for ovulation.
Synergism

A common trend appears to be emerging where the
TGFB superfamily members are involved in fine tuning
the modulation of androgen biosynthesis and steroido-
genic enzyme gene expression. TGFBs, activin, and
GDF9 all signal through SMAD2/3, whereas BMPs signal
through the SMAD1/5/8 signaling pathway (Shimasaki
et al. 2004). It makes sense that these two independent
pathways influence the expression of completely
separate groups of genes; otherwise, they would simply
utilize the same pathway for the same effects. If the two
pathways do in fact activate separate sets of genes, then
these genes appear to be having similar effects on
steroidogenesis. BMP4/6/7 suppress STAR, CYP11A1,
CYP17, and HSD3B (Glister et al. 2005), and TGFB acts
similarly by suppressing CYP17. GDF9 conversely
appears to function in a more complicated manner,
where it increases CYP17 expression while suppressing
CYP11A1 levels. These contrasting results in different
species coincide with the observed effects on androgen
production, where in rat theca cells, GDF9 enhanced
androgen synthesis (Solovyeva et al. 2000), but in bovine
theca cells, GDF9 acted in an inhibitory manner (Spicer
et al. 2008). There may be important species-specific
differences in the function of GDF9 in particular, and this
may also be the case with other TGFB superfamily
members and therefore requires closer investigation.

There are also important species differences between
rodents and humans with regard to stem cells. Mouse ES
cells require LIF (Smith et al. 1992) and BMPs (Ying et al.
2003) to maintain pluripotency, whereas human
counterparts rely on activin/nodal (Vallier et al. 2004,
2005, James et al. 2005) and FGFs (Xu et al. 2005).
However, studies have shown that the same genes;
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POU5F1 (OCT4), SOX2, and NANOG, are required for
pluripotency in both species. Activin/nodal signaling
controls expression of the key pluripotency factor
NANOG. NANOG prevents differentiation induced by
FGF signaling and limits transcriptional activity of
SMAD2/3 (Vallier et al. 2009). By studying each factor
in isolation, one is able to infer a specific function and
role in ovarian folliculogenesis. However, we know that
in vivo this is clearly not the case, and many different
factors at varying, tightly controlled, concentrations all
work synergistically to control the very delicate balance
between the life and death of an ovarian follicle. The
level and pattern of gene expression are vital factors;
moreover, crosstalk between pathways and the presence
of antagonists are additional levels of control for
folliculogenesis and are yet to be fully elucidated.
Concluding remarks

Classically, it was thought that the oocyte was passively
carried along the developmental process, and its
maturation was controlled entirely by the production of
endocrine hormones and surrounding somatic cell
factors influencing the follicle as a whole. The latest
concept in reproductive biology is that the oocyte itself is
actively involved in regulating the surrounding somatic
cells in order to provide an environment suitable for its
own maturation. With this new and exciting theory in
mind, it is possible that the oocyte itself is responsible for
sending the signal for primordial follicle activation and
thecal cell recruitment. However, since oocytes produce
only limited factors, it is most likely that the interaction
and communication between the oocyte and its somatic
cells control the follicle development as a whole, and
when one component fails, the entire process is halted.
Nevertheless, thecal cells are vital for folliculogenesis in
the ovary. They are specialized cells that are recruited to
surround an activated follicle and provide structural
support at first, and then by proliferating and differentiat-
ing, and acquiring a capillary network, they have
become essential components of developing follicles.
Their primary function is to synthesize androgens which
act as substrates for estrogen production in granulosa
cells, which is crucial for the pituitary–gonadal axis and
endocrine control of reproduction. Androgen production
is largely under the control of LH produced by the
pituitary and transported to thecal cells via the blood
stream. However, it is now clear that many other factors
play an essential and important role in the modulation of
theca function, including IGFs, insulin, FGF, SCF, TGFB
superfamily members, and their related pathways and
regulators. Theca cells have been somewhat forgotten
more recently, where topical research has focused on
granulosa cells and oocytes, but these specialized cells
have a highly significant role in follicular function and
are crucial for normal follicular development.
www.reproduction-online.org
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