
Theme: An Approach for Aspect-Oriented Analysis and Design

Elisa Baniassad and Siobhán Clarke
Department of Computer Science
Trinity College, Dublin 2, Ireland

{Elisa.Baniassad, Siobhan.Clarke}@cs.tcd.ie

Abstract

Aspects are behaviours that are tangled and scattered
across a system. In requirements documentation, aspects
manifest themselves as descriptions of behaviours that are
intertwined, and woven throughout. Some aspects may be
obvious, as specifications of typical crosscutting behaviour.
Others may be more subtle, making them hard to identify. In
either case, it is difficult to analyse requirements to locate
all points in the system where aspects should be applied.
These issues lead to problems achieving traceability of as-
pects throughout the development lifecycle. To identify as-
pects early in the software lifecycle, and establish sufficient
traceability, developers need support for aspect identifica-
tion and analysis in requirements documentation. To ad-
dress this, we have devised the Theme approach for viewing
the relationships between behaviours in a requirements doc-
ument, identifying and isolating aspects in the requirements,
and modelling those aspects using a design language. This
paper describes the approach, and illustrates it with a case
study and analysis.

1. Introduction

The intent of aspect-orientation is to allow developers
to encapsulate system behaviour that does not fit cleanly
into the particular programming model in use; it is aimed at
breaking the hegemony of the dominant decomposition.

Behaviour that cannot be encapsulated because of its
impact across the whole system is called crosscutting be-
haviour. Before encapsulating crosscutting behaviour into
an aspect, the developer must first identify it in the require-
ments. This is difficult, because, by their nature, aspects are
tangled with other behaviours, and are likely to be described
in multiple parts of the requirements document. Using intu-
ition or even domain knowledge is not necessarily sufficient
for identifying the potentially broad range of aspects within
a reasonable amount of time. For example, it required sig-
nificant effort to identify and characterise that prefetching

could be modeled as an aspect in the FreeBSD operating
system [7].

When identifying aspects early in the lifecycle, devel-
opers can currently apply three approaches. The common
approach for aspect-identification is to look for the objects
in a system first, and then attempt to spot the tangled and
scattered behaviour as it becomes evident. This is an ad-
hoc approach that is likely to necessitate re-design as as-
pects are discovered late in the design process. Alterna-
tively, before the design process starts, developers might
scan requirements for mentions of typical aspect-style be-
haviour, such as logging, tracing, or debugging functional-
ity. This only covers a narrow range of potential aspects; it
does not help with identifying crosscutting behaviour that
does not fall into these categories, or that might be domain
specific. To address this need, a developer might start by
applying an aspect-oriented requirements engineering tech-
nology, and target non-functional requirements as an initial
set of aspects [13, 11, 16]. However, there are likely to be
many functional requirements in the system that probably
break down into complicated and interrelated behaviours.
Would any of those be aspects? Where would they crosscut
the system?

We believe that in order to identify and model a broad
range of aspects early in the lifecycle, and assess where
they crosscut the system, developers need support for anal-
ysis of the relationships between all behaviours described
in requirements documentation. They also need support for
translation of the results of the analysis into design models
which can then be implemented in code.

The model we propose is the Theme approach. Theme
provides support for aspect-oriented development at two
levels. At the requirements level, Theme/Doc provides
views of requirements specification text, exposing the re-
lationship between behaviours in a system. At the design
level, Theme/UML [4, 6] allows a developer to model fea-
tures and aspects of a system, and specify how they should
be combined. Our central claim is that Theme/Doc allows
the developer to refine views of the requirements in order
to reveal which functionality in the system is crosscutting,

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

register

unregister

logged

flagged

give

student can for a course

student can for a course

when a student then it must be in their record

when a student it must be

professors can student

when professor a student it must be

when professor a student it must be as special

professor can marks for courses

when a professor a mark this must be in the record

Figure 1. Action View of CMS Requirements

and where in the system it crosscuts. We also claim that the
Theme approach assists with maintaining traceability from
requirements to design, since requirements map directly
to Theme/Doc views which map directly to Theme/UML
models. This traceability also provides cues about require-
ments coverage in the design.

In this paper we present the approach by means of a
small example (Section 2), and provide a case study to as-
sess its effectiveness at aspect identification, the provision
of traceability and coverage cues, and scalability of the ap-
proach (Section 3). We then discuss other issues and make
observations about the approach (Section 4), review related
work (Section 5), and conclude (Section 6).

2. Theme

In the Theme approach, a theme is an element of design:
a collection of structures and behaviours that represent one
feature. Multiple themes can be combined or integrated to
form a system [17]. Themes were introduced at the design-
level in [4]. The Theme model has two kinds of themes:
base themes, which may share some structure and behaviour
with other base themes, while modelling these from their
own perspective, and crosscutting themes which have be-
haviour that overlays the functionality of the base themes.
Crosscutting themes are aspects [6].

The Theme approach is divided into two segments:
Theme/Doc and Theme/UML. These both operate on and
refer to the same themes, but depict them at different phases
of the lifecycle. Theme/Doc provides views1 and func-
tional support for identification and depiction at the analysis

1All Theme/Doc views are generated automatically in dot [12] format
given the text of the requirements document, a list of key entities, and a

phase, whereas Theme/UML allows standard UML model-
ing of relevant structure and behaviour for each theme at the
design phase.2

In this section we work through a small example to il-
lustrate the basic points of how to use Theme/Doc and
Theme/UML to support the identification, design, and de-
sign checking of aspects in a set of requirements.

2.1. Course Management System

The Course Management System (CMS) is a very small
system, with nine requirements:

• R1. Students can register for courses.

• R2. Students can unregister for courses.

• R3. When a student registers then it must be logged in their
record.

• R4. When a student unregisters it must also be logged.

• R5. Professors can unregister students.

• R6. When a professor unregisters a student it must be logged.

• R7 When a professor unregisters a student it must be flagged
as special.

• R8. Professors can give marks for courses.

• R9. When a professor gives a mark this must be logged in
the record.

2.2. Identifying Aspects Using Action Views

Using the Theme/Doc tool, a developer can view the relation-
ship between behaviours described in requirements documenta-
tion, and determine which behaviours are base, and which are
crosscutting.

To help identify crosscutting behaviours we use the action view
of the requirements document. Two inputs are needed to create
the action view: a list of key actions identified by the developer
by looking at the requirements document and picking out sensible
verbs, and the requirements as written in the original document.
Theme/Doc then performs lexical analysis of the text and gener-
ates the action view.3

Each action is potentially a theme to be designed separately in
Theme/UML. For the CMS, we have identified five actions: regis-
ter, unregister, logged, flagged, and give. Figure 1 shows the ac-
tion view created by the Theme/Doc tool for the CMS. In the view
we see the five actions as diamonds. The requirements from the
text are shown as rounded boxes (sentence records) which contain

list of key actions. The dotty graph visualization package is used for the
layout and display of the views.

2Theme/UML designs are created by a developer using an appropriate
UML editor. In Theme/UML all classes and behaviour related to a par-
ticular theme are placed together in one package-style structure. These
are then integrated with other themes using composition semantics such as
merge and override. This is described in more detail in [4].

3Due to the lexical nature of the tool, any block of text could be defined
as one requirement. With use-cases, for instance, the supporting text could
be blocked as one or more requirements.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

registerunregister

logged

giveflagged

student can for a coursestudent can for a course

when a student then it must be in their record when a student it must be

professors can student

when professor a student it must be

when professor a student it must be as special professor can marks for courses

when a professor a mark this must be in the record

Figure 2. Clipped Action View

the words from the original sentence. If the requirement sentence
contains a key action, it will be linked to the sentence record. The
intent of the action view is to highlight relationships between ac-
tions; the text of the individual requirements themselves is not the
point at this stage, and so is not intended to be legible. Of course, a
user may choose to enlarge any requirement for their information.
In this view we have chosen to enlarge R3, which reads “when a
student registers then it must be logged in their record”.

As we might expect, none of the actions in the requirements
is isolated from the rest. They all relate in some way to the rest
of the actions. The fact that they are linked shows us that there is
crosscutting and tangling of behaviours within the requirements.
For instance, we can see from this figure that the logged action
is mentioned in four requirements, and that the register action is
mentioned in two requirements.

Requirements often refer to more than one action. For instance,
R3 refers to both the register and logged actions. We identify as-
pects by examining these shared requirements. Our aim is to sep-
arate and isolate groups of actions and requirements in the action
view, arriving at two kinds of action/requirement groupings. The
first are self-contained and have no requirements that refer to ac-
tion in other groups, which we determine to be “base”. The second
kind are crosscutting and have requirements referring to actions in
other groups.

We use the clipping functionality of the tool to achieve this
separation and isolation. First, we examine each shared require-
ment to see which action it is more appropriately coupled with.
If the requirement is too ambiguous to associate with one action
or the other, we must resolve the ambiguity, either by re-writing,
splitting, or refining the requirement. The requirement that links
logged to register is R3, which describes logged behaviour that is
added to registration behaviour. We intuit that logging is the pri-
mary behaviour of this requirement, and hence that R3 should be
coupled with the logged theme. In deciding this, we have deter-
mined that logging is crosscutting and register is base. Second,
we clip the arrow from R3 to register so that it is only linked to
logging. That arrow is replaced by a grey arrow with a dot at its
head which points from logged to register, indicating that logged
crosscuts register.

We then visit each requirement that logged shares with other
actions, to determine whether they belong with logged or the other
action. Since we have determined that logged crosscuts register
it is likely that it also crosscuts the other actions with which it
is linked. We continue to snip the links between the shared re-
quirements and the base actions, and leave them with the logged
action. Finally, we arrive at our goal as shown in the clipped action
view displayed in Figure 2: four actions with requirements that re-

Legend

student can

for
course

register Entity
requirement
 phrase 1

requirement
 phrase 2

Action

Figure 3. Theme/Doc Theme view: register

fer only to themselves and are therefore base, and one action that
mentions others and is therefore crosscutting. In clipped action
views, crosscutting themes are placed above the themes that they
crosscut. The grey arrows indicating crosscutting in the clipped
view (Figure 2) will help guide the configuration of aspect-base
relationships at design.

We now make one final observation from the action groupings.
In this view we see that the flagged action is linked to the unreg-
ister action. We examine the requirement they share and make
the decision that the flagging functionality should be included in
the professor’s behaviour in the unregister theme. An alternative
might have been to consider that flagging behaviour crosscut un-
registering behaviour. Now, each grouping becomes a theme we
wish to model using Theme/UML.

2.3. Planning for Design Using the Theme View

Theme/Doc’s theme view is used to plan the design and mod-
elling of the themes identified in the previous step. Theme views
differ from action views in that they do not only show require-
ments and actions, but also show key elements of the system that
will need to be considered for each theme design in Theme/UML.
To construct a theme view, a developer must supply an additional
set of keywords: key entities. Like the action view, the theme view
is created through lexical analysis of the text of the requirements
document.

Figure 3 shows the theme view of the register theme clipped
of crosscutting behaviour. We can see that it has only one require-
ment, which mentions nothing other than registration behaviour.
When reading sentences in Theme/Doc, first read the element that
points into the sentence record, then read the first phrase in the
record, and then read the element pointed to by that phrase. If the
phrase is empty, it just means there was only a space between the
first and second element, with no connecting phrase. Then read
the subsequent connecting phrase, and then the element to which
it points. Continue back and forth between the record and its at-
tached elements until the record ends. To read a sentence, do not
read more than one element out from the sentence record. This
sentence reads “Student(s) can Register for Course(s)”.

We can use the theme view to plan which classes and methods
appear in our Theme/UML for register. When modelling using
Theme/UML good object-oriented design practices should be used
to help determine which classes and methods are described. As is
evident in Figure 4, in this case, we simply decide that each action
in the theme view is a method, and each entity is a class. We also
make some additional design decisions to make course registration
work.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

Course
+courseCode : int

+addStudent(Student)

Student
+name : String
+ID : String

+register(Course)
1..*

«theme»
Register

:Student :Course

addStudent(self)
register(course)

Figure 4. Theme/UML: register

logged

record

student

it must be

then it must be

in their

professor

a

it must be

a

this must be

in the
mark

unregister

register

give

Figure 5. Theme/Doc Theme View: logged

When modelling a crosscutting theme we want to model the
crosscutting behaviour in an abstract and potentially re-usable
way. We do not want explicit references to any base actions or
entities. The theme view for crosscutting themes helps with identi-
fication of such elements by greying out actions and entities found
in other themes. The remaining white actions and entities can then
be used to guide the design of the abstract crosscutting behaviour.
The grey actions are also used to determine the joining, or binding
of the crosscutting behaviour to the greyed-out base.

An example of this is shown in Figure 5. We can see that only
elements that are unique to the logged theme are logged and
record. We can now model the abstract behaviour for logging
records without refering directly to registration, unregistration,
students, professors or giving marks. The model for the logged
theme is shown in Figure 6 in which we can see that the record
element of the logged theme has become a database in this design,
and that the logged action has been loosely translated into the
logRecord method. Theme/UML allows reasoning about ele-
ments from a base by using templates that will be bound to real
base elements at a later stage.

To determine how the crosscutting theme should hook into the
base features, we look back at the theme view for logged (Fig-
ure 5). All of the grey actions are behaviours that are crosscut by
the logged behaviour. The Theme/UML for logged provides the
log() template method as the handle method for the base be-

«theme»
Logger <Logged, _log(..)>

Collab_LoggerPattern
:Logged

log(..)
logRecord()

_log(..)

Logged

#record: DB

- logRecord()
- log(..)
#_log(..)

Figure 6. Theme/UML: logged

bind[<{Person, Student, Professor} ,
 {Student.register(), Person.unregister(), Professor.giveMark()}>]

«theme»
Logger

«theme»
CMS<Logged, _log(..)>

Figure 7. Composition of logged and other
themes

haviour. To resolve which method the log() method actually
is, we use the bind feature of Theme/UML to bind it to a con-
crete method from another feature of the system. So, we bind
the log method to the grey actions in the logged theme view:
register, unregister, and give(mark). To determine the classes to
which methods belong, we can look at Figure 5 and the relevant
Theme/UML models for each action. We see that the register
method is associated with the Student class (also illustrated in
Figure 4) and the giveMarkmethod belongs to the Professor
class. Both the Student and Professor classes are linked to
the unregistermethod, so we use their parent class, Person,
specified in a Theme/UML model not shown here, for the binding.
Figure 7 depicts the bind statement to integrate the Logger theme
into the CMS theme, which is a product of a previous merging of
all other base themes.

2.4. Re-checking Themes Using the Augmented
Theme View

After the themes have been designed using Theme/UML, we
revisit the Theme/Doc theme views for help in verifying that the
design choices we made align with the requirements. To do this,
we augment the Theme/Doc theme view with representations of
those design decisions. To augment the register theme view, for
instance, we need to add one method, and three associations. The
result is shown in Figure 8. In the augmented view, “has” rela-
tionships are shown using an inverted arrow at the container ele-
ment, pointing to the contained element. The “calls” relationship

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

student

registerhas

can

for a

name

has

ID

has

course

addStudent

has

courseCode

has

calls

Figure 8. Augmented View: register

is shown with a dashed arrow. We’ve added a method to the view,
which is shown as an action, and also a class, which is shown as
an entity. To distinguish these as augmentations, the corners are
marked. These augmentations are specified by the user and fed
into the Theme/Doc tool which generates the augmented graph.

By looking at Figure 8, we can see that the Theme/UML de-
sign seems to align with the requirement shown in Theme/Doc.
If there were other design elements (other classes or methods) in-
cluded in the Theme/UML design, we would see them here, and
would be able to assess their correctness with a view to the re-
quirements. This view is not intended to provide any formal ba-
sis for analysis; there will not necessarily be a 1-1 mapping be-
tween requirements-level actions/entities and design-level opera-
tions/structures. Rather, it is intended to place, in the context of the
requirements, the design decisions that were made. This context
then gives the developer a view for verifying the design decisions
themselves.

Since the Theme/UML for a crosscutting theme only includes
information about the abstract crosscutting behaviour, only the
structures related to the behaviour are added to the theme view.
This view is shown in Figure 9, in which all augmented elements
are enlarged. As before, all elements not unique to the crosscutting
behaviour are shown in grey. This view has two relationships the
register augmented view did not: “is-a” relationships, shown with
a bi-directional arrow, and “bound” relationships which are shown
with bi-directional dashed arrows, as they are in the Theme/UML
bind notation. Elements that are involved in the binding but that
are not shown in the view are also added. For instance, the action
giveMark is in grey because it is not in the Theme/UML for the
logged theme, but is included because the giveMark method is
bound to the logRecord method. To assess the completeness
of the design decisions for this theme we look at whether all the
greyed actions are bound to the action representing the crosscut-
ting behaviour. We also scan to see that all the structures men-
tioned are dealt with in some way. We can see that mark, for
instance, is included in the crosscutting behaviour because it is
used by the giveMark method which is bound to logRecord.

3. Case Study

The goals of this case study were to test the Theme approach
on a larger example, and perform preliminary assessment of it in
terms of effectiveness for finding aspects, support for assessment

logged logRecord
is

record

uses

student

it must be

then it must be

in their

professor

a

it must be

a

this must be

in the

mark

giveMark

uses

unregister
bound

register bound

give is
bound

Figure 9. Augmented View: logged

of requirements coverage, facilitation of requirements traceability,
and scalability. We will first give a general description of the lo-
cation aware game that was the basis for the case study, and then
provide results and analysis.

3.1. Location Aware Game

The set of requirements used in this case study are those for
a location aware game called the Crystal Game, which was devel-
oped in an independent research project. The game has 89 require-
ments, so is roughly ten times larger than the example provided
in Section 2. The game involves any number of human players,
each of whom is provided hand-held devices. The game can be
set in any location, as long as the location has the necessary in-
frastructure. The object of the game is to collect crystals that are
deposited throughout the location. As a player moves around the
game space, their hand-held device will alert them when they have
encountered a crystal. Computer-generated characters also take
part in the game. When a player encounters one of them, they
will interact, and perhaps duel. When a player encounters another
player, they will duel, and the loser of the duel will turn all of their
crystals over to the winner. The game ends after a specified time
period. The winner is decided by how many crystals each player
has. There are other constraints and requirements in this game
which will be of interest and will be described in later sections.

3.2. Results

In this section we review the steps we took to apply the Theme
approach to the Crystal Game requirements.

3.2.1. Finding Themes We identified 59 actions in the game re-
quirements, and generated an action view to examine their rela-
tionships. Based on intuition and some cursory analysis of the
view, we determined that all of these actions should not be mod-
eled as separate themes. Instead, we examined the view to deter-
mine the relationships between the actions, to decide how to group
the actions into larger themes. This was a mainly analytical pro-
cess, but it was supported by the action view. Because actions that
share requirements are displayed close to one another in the view,
we were able to examine closely located actions to assess whether
they should be grouped into a common theme.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

accumulate

give track-energy crystal collect by discover a crystal when in world or by receive a crystal

enter-location

player can enter a location from any direction player enter location by walk into location on map player enter location character present character set player task discover crystal in location and no character or other player then pick-up crystal a player may meet another player in a location when they enter it

set-task

assign-location

location are random assign to player location are random assign to character game will random distibute crystal throughout world create-new

game player should choose begin_new from the option_menu

declare-winner

player with most crystal in throne_room at end of game is declare winner winner crown king of realm player with equal number of crystal at end must duel in order to declare winner

display

explore_modemap zoom out show entire world

end-game

game end when timer elapse all player should be in throne_room game can end for a player by leave game or winner declare player forfeit game if doesn’t return to throne_room before time limit elapse

sage ask player a question about the world or ask riddle wizard task is to send player to run an errand for them usually to bring them magical item warrior challenge player to physical_feet if character has no crystal player then they can not challenge or duel player meet another then automatically challenge them to duel duel consists of play game of rock paper scissors winner of duel take both crystal player challenge another, each wager one crystal on the outcome of a duel outcome is fail or succeed

join-game

member player computer will send up-to-date game_state to new player new player choose join_existing from the option_menu

leave_game

room_mode player start game gain 10 unit of energy player fail at a they lose 2 unit energy player succeed at a they gain 3 unit energy player may possess 10 unit maximum player lose 1 unit of energy for every 5 minute in player lose 2 unit of energy for every 5 minute in player fail challenge to player lose 5 unit of energy player succeed in challenge energy gain to maximum player lose energy player sends audio signal in form of buzzer and reason why is show on screen of wearable computer player gain energy player gets audio signal in form of ding and reason why is shown on screen of wearable computer

new-game

prompt

player chosen to game

when a player enter a location a description of the room is in the message board at the bottom left of the screen

player is in while explore world player has wearable computer contain led which light-up while player meet with other player in they must duel when a player an outside location they go into

loser of duel the wager crystal wizard player a crystal when they complete their player meet with character that is same type then that character player crystal to player must be in contact with a player already a member of game

player should select the option from the option_menu to leave a game player drop all crystal in location they are in and

small map of world in upper left-hand corner of gui smaller scale map in main part of gui shows data about world and character or player in vicinity of player map on gui player explore world in main map follow and change view when player in map shows room zoomed in

player a crystal gain 2 unit of energy player to input a port number for the game to take place on

player to choose a time limit and name for the

player wants to to input the machine name or ip address of the other player and port number on which the game is being play when player to input their name and choose character_type from character_list

while player in a yellow_light will light on wearable computer when a player a room the player goes into

Figure 11. Clipped Action View of Major Game Actions

Figure 10. Game Action View: All Actions

We used the view shown in Figure 10 to perform such an as-
sessment. This figure shows the initial action view for the game,
with the centre portion of the view enlarged. The enlarged view
shows four actions, duel, wager, challenge and meet. We exam-
ined the requirements they shared, considered the meaning of the
actions, and determined that duel, wager, and challenge should all
be grouped under the general heading of duel, since players chal-
lenge one another to duel, and wager crystals on the outcome of a
duel. In that case, we classified duel as being more major than wa-
ger and challenge, which we saw as sub-actions of duel. The meet
action was connected to duel because when players encounter one
another they duel. We examined requirements shared by meeting
and duelling and determined that since they were not synonymous,
they should not be grouped into one theme. Later, we determined
that duel and its sub-actions should be grouped under the more
major action, set-task. In the end, we arrived at the view shown in
Figure 11, which displays the 16 major actions which became our
themes. Of those actions, five are independent, while others share
requirements, and hence crosscut one another in some way.

The clipping functionality of the tool helped us investigate the

major action view to determine which themes are crosscutting and
which are base. In the case of the prompt theme this was straight-
forward. The prompt theme (shown to the right of Figure 11)
shared requirements with two other themes, new-game and join-
game. By examining the shared requirements it could be seen that
the prompting behaviour crosscut these two themes.

As is visible on the left side of Figure 11, there are several re-
lated themes. To determine which of those was crosscutting, we
began by assessing the requirements between the explore-mode
and enter-location themes. We determined that explore-mode
crosscut enter-location. By continuing to examine themes that
shared requirements with enter-location we further determined
that room-mode was crosscutting, as was give, accumulate, set-
task, and display. We then examined the remaining shared re-
quirements, and encountered themes that crosscut other crosscut-
ting themes. For instance, the track-energy theme was determined
to crosscut set-task, room-mode and explore-mode, all of which
crosscut enter-location. There are five themes that crosscut other
crosscutting themes: display, set-task, give, track-energy and ac-
cumulate.4

3.2.2. Modelling and Composing Themes The theme view was
used to drive the modelling and composition semantics for design
of the game using Theme/UML. Figure 12 shows the Theme/UML
for the give theme. The give theme handles the situation in which a
player or a character gives a crystal to another player. This happens
in three situations: when a player meets a character, the character
gives them a crystal; when a player loses to another player, the
loser gives the winner a crystal; and when a player completes a
task for a character, the character gives the player a crystal.

To ensure that the developer carefully considers the order
in which crosscutting themes are composed with base themes,
Theme/UML allows only one crosscutting theme per composition.
We therefore needed to inspect the crosscutting relationships to
determine the order of binding. For this we used the clipped ac-
tion view shown in Figure 11. In this view, the themes are posi-
tioned hierarchically, based on whether they crosscut one another.
The grey arrows indicate which themes crosscut other themes. We
can see, for instance, that there are no grey arrows extending from

4AspectJ [1], allows specification of join-points in aspect code as well
as core code, allowing for the expression of aspects that weave into other
aspects. This can be done by providing the aspect name and method in the
pointcut statement of the aspect to be crosscut.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

enter-location, which indicates that it is base functionality. This
is also suggested by the fact that enter-location is positioned low-
est in the graph. To determine the binding order, we begin with
the lowest themes, and work to the highest, incrementally binding
in one crosscutting theme at a time. To determine what is first in
the binding we identify the themes that crosscut only that theme
(room-mode and explore-mode), and placed those first, and sec-
ond in the binding order. The final bindings were done with the
“more” crosscutting themes: display, give and track-energy. The
very last binding is of accumulate, since it crosscuts the give and
track-energy themes.

The give theme bindings are also shown in Figure 12. Give
is bound fifth in the general order, and is bound to an al-
ready composed theme, enterLocation-exploreMode-roomMode-
display-setTask. As the name suggests, the composed theme is the
product of binding enter-location to its closest four crosscutting
themes.

3.2.3. Checking Theme/UML Finally, we used the augmented
theme view to check the validity of the design choices we made.
An example of this is shown in Figure 13. In this figure we can
see that four elements have been added to the view: giver,
receiver, receive, and item. The relationships from the
Theme/UML are also shown. We can see that all the grey actions
have been bound to give, except for wager and duel, which
are drawn in through lose. We can see that both players and
characters are givers, but only a player is bound to receiver.

3.3. Analysis

In this section we discuss how the results of the application of
the Theme approach reflect on the four areas of interest: effective-
ness at support for aspect identification, requirements coverage,
traceability, and scalability.

3.3.1. Effectiveness of Support for Aspect Identification
Through the application of the Theme approach, we were able
to identify eight aspects: explore-mode, room-mode, accumulate,
track-energy, give, set-task, display and prompt. Had we carefully
read the requirements document we may have identified seven of
these behaviours as aspect behaviours since they provide track-
ing or logging style functionality. However, it is unlikely that we
would have identified the give functionality as an aspect because
mentions of the give action are spread throughout the document,
and it might have been difficult to recall that the same abstract
behaviour is occurring with relation to different system features.
Also, since in the document text it is described as a consequence
of other actions, such as meeting, and duelling, it is possible that
we would have automatically thought of give as a method in those
actions. It wouldn’t have been until we were modelling or im-
plementing it that we would have noticed its crosscutting nature.
We can see from Figure 12 that the give functionality works as
an aspect, as it can be expressed in an abstract way, and can be
overlayed on the appropriate behaviour through bindings.

We also found our approach effective support for determining
the binding order for multiple crosscutting themes. This may be
otherwise difficult to determine.

«theme»
Give

<Giver, _give(..,Receiver,..)>
<Item>

give(..)
 _give(..)

Giver

receive()

Receiver

Item

1

: Giver : Receiver

give(..)

receive(item)

_give(..)

bind[<Character, meet(Player)> <Crystal>]
 [<Player, lose(Player)> <Crystal>]
 [<Character, complete(Player)> <Crystal>]

«theme»
enterLocation-exploreMode-
roomMode-display-setTask

Figure 12. Theme/UML: give

3.3.2. Requirements Coverage We were initially concerned that
it may also be difficult to assess whether all the requirements have
been associated with a theme. We noted that the action view can
be used to monitor requirements coverage, because if a require-
ment is not associated with a theme it is orphaned in the view.
By orphaned, we mean that only the sentence record for the re-
quirement appears, without being linked to a diamond-shaped ac-
tion. We found that a requirement could be orphaned in two ways.
Orphans can appear in the initial action view if the requirement
contains no key actions. This may happen if it refers to another
action, but does not mention it explicitly. By inspecting the re-
quirement we can identify the requirement’s original location in
the text, and can read the requirement in context to determine to
which action it refers. The other way orphans can appear is when
forming the major action view. As major actions are identified,
they are added to a new list of keywords. The minor actions that
have been grouped under the major action will be annotated so that
they will be linked to the major action in the view. Minor actions
that are not grouped with major actions will disapear, and their
requirements will appear to be orphaned. We systematically vis-
ited the orphaned requirements to determine whether any of their
minor actions should be promoted to major, or whether to group
those requirements under other major actions.

3.3.3. Traceability We found that the Theme approach provides
traceability by explicitly linking portions of a requirements docu-
ment to their outcome in a design model. Action views directly
represent the requirements documentation, and are traceably re-
fined into major action views. These maintain both the original
content of the requirements, and also a developer’s choices about
how the requirement should be grouped into features. Major ac-
tion views can then be transformed into theme views, which have a
1-to-1 mapping to their modelling in Theme/UML. As a final step,
the design choices made at the modelling level are then added into
the theme view to form the augmented view, which places those
design choices in context with the requirements. The developer

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

lose

give

bound

wager
uses

crystal
itembound

character

a

when they

their set-

giver

bound

type

duel
uses

complete

bound

receiveuses

meet
bound

player

to

the

with

that is same

then that

bound

receiver

bound

task

uses

has

has

has

Figure 13. Augmented View: give

can examine any Theme artifact and view backward and forward
traceability links. For instance, when looking at a theme view we
obtain backwards mappings by inspecting the sentences displayed
to find their location in the original text, and by observing which
actions were deemed to be minor. We can also obtain forward
mappings identifying the Theme/UML that models the view based
on their common name.

For example, in Figure 13 we see the augmented view for the
give theme. If we inspect the sentences shown in this view we
would find that they are sentences 4, 18 and 69 from the orig-
inal text. We can see that actions duel, lose, wager, meet, and
complete are all contained in other themes. By visiting the action
view we can infer that they were deemed minor actions since there
is no major theme named after any of them, and that three were
grouped under the set-task theme, and one was grouped under the
enter-location theme. This is further confirmed by viewing the
give Theme/UML shown in Figure 12.

3.3.4. Scalability of Action Views In the small CMS example,
almost every action became a theme. This allowed for easy asso-
ciation of requirements with themes, and for easy viewing. How-
ever, in the larger game example, we classified actions into two
types: major and minor. Major actions became themes, while mi-
nor actions were slotted to become methods within a theme. When
forming the action views for this larger example, we chose only to
use the major actions to form the view, rather than viewing all the
major and minor actions. This allowed us to determine and assess
the relationships between themes without the added “noise” of the
minor actions.

Were we to scale the requirements further, it would be neces-
sary to apply other approaches, since it would not be feasible to
fit an entire action view for a very large system onto a screen or a
page. In this case, query functionality, provided by the Theme/Doc
tool, is needed to form sub-views that could be examined sepa-
rately from the entire action view.

The current approach has essentially provided two “zoom-
levels” of action view; a developer can zoom-in to see all the ac-
tions, or can zoom-out and just see the major actions. It would
likely be useful, in a larger system, to provide more degrees of

zooming so at some level the entirety of the system could be seen
in one view.

4. Discussion

In this section, we provide further discussion of issues we noted
while evaluating the Theme approach.

4.1. Synonyms

Synonyms are handled through a synonym dictionary which,
for the sake of the action view, automatically augments the re-
quirements text so that the correct associations will be made. This
is more complicated when two words are the same but have dif-
ferent meanings in terms of the system. For instance, the term
give was used in the Crystal Game not only for giving crystals, but
also for giving audio and visual signals to players. The action view
helped identify instances where this occured, because the common
action brought together other actions which, upon analysis, should
not be linked. For instance, the common term give brought closer
together accumulate and prompt. We could intuit from having read
the requirements document that these two actions should be unre-
lated. When inspecting the relationships around the give action, it
was clear that the term was being used in different senses. We then
used the annotation feature of the tool to replace the audio sense
with the term give-audio. These annotations are not shown in the
theme view.

4.2. Scattered Requirements

When analyzing the requirements for the context aware game,
we found that not only did behaviours crosscut other behaviours
(such as give crossutting the meet action in the enter-location
theme), but behaviours were also described in a way that crosscut
the requirements. The give behaviour was described in three loca-
tions in the text: at lines 4, 18, and 69. This is because the original
authors of the requirements did not see the give behaviour as a ma-
jor enough behaviour to discuss separately, though they did orga-

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

nize the document in terms of the features as they saw them. This
scattering was also true of the other crosscutting themes, with the
exception of room-mode and explore-mode which were described
in their own sections.

4.3. Ambiguities Found in Requirements

We found that the Theme approach helped us identify ambi-
guities in the original requirements specification. While refining
the 59 actions into the 16 themes we found that there were subtle
ambiguities in the initial requirements document. For instance, we
found that it was not explicitly mentioned how crystals were col-
lected by a player, unless the crystal was actually given to them
by another player or a game character. One requirement men-
tioned picking up crystals (“a player explores the world and picks
up crystals”), and another mentioned the accumulation of crystals
(“a player collects crystals by discovery in a location, or when a
player or character gives one to them.”) Though it was implied,
there was no specific description of a player actually picking up
a crystal when they discover it in a location. This subtle ambigu-
ity was discovered when we saw that the pick-up action, and the
collect action were not located close to one another in the view
shown in Figure 10, though we knew intuitively that they should
be related. This was highlighted because the collect action was
closely placed to the give action.

4.4. Evolution of Requirements

There are two situations in which requirements can change:
during the requirements gathering and analysis stage, or after mod-
eling has begun. In either situation, the evolution can be handled
by re-generating the views for the set of requirements, and decid-
ing under which themes the new requirements should fall. A de-
veloper would follow the same process as outlined for the original
requirements set for the new or changed set of requirements.

5. Related Work

The intent of this work is to support analysis of requirements
documents for identification of aspects, and traceability of those
aspects to (and from) the design. For this reason, our related work
primarily describes work on identification of aspects from require-
ments; we do not focus on standalone aspect-oriented design ap-
proaches. Previous publications on Theme/UML [4, 6, 5] describe
other work on design.

5.1. Aspect-Oriented Requirements Engineering

There have been several efforts in capturing and relating
aspect-oriented requirements [16, 18, 8, 13, 11, 10, 3]. Here we
consider the two which relate most closely to the Theme approach.

Rashid et al [13] provide the AORE (Aspect-Oriented Require-
ments Engineering) model and ARCaDe (Aspectual Requirements
Composition and Decision support) approach and tool for de-
scribing components and requirements-level aspects. Examples
of these aspects are compatibility, availability, or security. This

work builds on the ViewPoints model [9], which is intended to
support the integration of heterogeneous requirements specified
from multiple perspectives. An early stage in the AORE model
is the identification and specification of concerns. The approach
to this differs from the Theme approach to concern identification
in that it relies on the domain knowledge of the developer to iden-
tify possible non-functional requirements to be taken into account
when implementing a particular requirement. Those concerns are
not explicitly mentioned in the requirements specification; it is up
to the developer to ascertain their relevance on their own. We
see this as a complemetary approach to our own. Such domain
knowledge will always play a large part in system design. The
Theme/Doc approach aims to support the analysis of relationships
between behaviours described in requirements specifications. It
is possible that the Theme/Doc approach to aspect identification
could be used during the concern identification phase of AORE, or
could support AORE’s extension to include functional as well as
non-functional requirements.

Katera and Katz [11] propose architectural views of aspects as
a means for reasoning about the relationships among aspects in a
system. They describe aspects as crosscutting augmentations to
an existing design. In particular, they allow for specification of
the overlap between aspects through the concept of a sub-aspect
that provides the overlapping functionality, and they make rela-
tionships between aspects explicit. A UML approach is given to
support these views which differs from the Theme/UML approach:
it provides additional architectural support for aspect modelling to
that provided by Theme/UML, and it uses aspect mappings rather
than multi-dimensional composition style semantics. Theme/Doc
could be integrated into this approach since the relationships ex-
posed between behaviours in a set of requirements could be used
to establish the behaviours between aspects and sub-aspects in
this approach, as well as support the identification of functionality
shared between components.

5.2. Concept Graphing

The graphical approach employed by Theme/Doc is similar in
spirit to conceptual graphs (CGs), as introduced by Sowa [14].
These are visual systems of logic that are readable by humans.
CGs provide a formal graphical representation of concepts and
the relationships between concepts. CGs have been used for au-
tomating consistency checking in multiple-perspective software
specifications [15]. This work differs from the approach used in
Theme/Doc in that it is concerned with the integration of het-
erogeneous requirements, whereas we are focused on providing
views which expose relationships between functions and entities
described in requirements. More investigation would be needed to
see whether the formalisms employed by these techniques could
be integrated into the Theme/Doc approach as a way to blend it
with aspect-oriented requirements engineering approaches.

The Theme/Doc approach draws from experience developing
the Design Pattern Rational Graph [2] (DPRG) approach and tool,
which provides developers with a way to link high-level concepts
described in a design pattern with their implementation in source.
Part of a DPRG graphically represents sentences from design pat-
tern text. This representation differs from the views offered in
Theme/Doc. These approaches also differ in intent: the pattern

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

level graph of a DPRG is intended to assist a developer in under-
standing an existing design by decomposing its textual description
and relating it to design and implementation. Theme/Doc pro-
vides visual cues for requirements analysis, and aspect identifica-
tion, composition, and design. As such, the views presented in
this paper are designed to map directly to Theme/UML, and to ex-
pose relationships in requirements text to facilitate identification
of aspects.

6. Conclusions

In order to identify aspects in a set of requirements and map
them to design, we need to see how behaviours described in the
requirements relate to one another. In this paper we have pre-
sented the Theme approach, which provides a model and tool sup-
port for identification of aspects in requirements specifications, de-
sign level modelling of aspects and their composition, and check-
ing design decisions in the context of the requirements. The
Theme approach is based on Theme/UML which is augmented
by the Theme/Doc process presented here. Theme/Doc provides
four views of a requirements specification: the action view; the
clipped action view, which clusters requirements with particular
behaviour, and shows which actions were chosen to crosscut oth-
ers; the theme view, which depicts the entities and actions of a
cluster from the clipped view; and the augmented theme view,
which places design decisions into the context of the requirements.
Our case study showed that this approach is effective in helping to
identify aspects in requirements specifications. In addition, these
views provide traceability links from the requirements to the de-
sign as modeled in Theme/UML. We also found that the approach
could be used to check coverage of requirements in design, and
we identified functionality that would enhance the scalability of
the approach.

7. Acknowledgements

We would like to thank Conor Ryan, Alan Gray, David McKit-
terick, Karl Quinn and Tonya McMorrow from the original Crys-
tal Game development team, on which our case study was based.
Also thanks to Mary Lee for early work applying the Theme ap-
proach, and to Cormac Driver and Ryan van Roode for comments
on earlier drafts of this paper. We would also like to thank the
anonymous reviewers for their comments and insight.

References

[1] Aspectj home page, Xerox PARC, USA, http://aspectj.org/.
[2] E. Baniassad, G. Murphy, and C. Schwanninger. Design pat-

tern rationale graphs: Linking design to source. In Proceed-
ings of the International Conference on Software Engineer-
ing, pages 352–362, 2003.

[3] J. Castro, M. Kolp, and J. Mylopoulos. Towards
requirements-driven information systems engineering: The
tropos project, 2002.

[4] S. Clarke. Extending standard uml with model composition
semantics. Science of Computer Programming, 44(1):71–
100, July 2002.

[5] S. Clarke and R. Walker. Towards a standard design language
for AOSD. In Proceedings of the International Conference
on Aspect-Oriented Software Development, pages 113–119.
ACM Press, 2002.

[6] S. Clarke and R. J. Walker. Composition patterns: An ap-
proach to designing reusable aspects. In International Con-
ference on Software Engineering, pages 5–14, 2001.

[7] Y. Coady and G. Kiczales. Back to the future: A retroactive
study of aspect evolution in operating system code. In Pro-
ceedings of the International Conference on Aspect-oriented
Software Development, pages 50–59, 2003.

[8] R. Darimont and A. van Lamsweerde. Formal refinement
patterns for goal-driven requirements elaboration. In Foun-
dations of Software Engineering, pages 179–190, 1996.

[9] A. Finkelstein. The viewpoints faq. BCS/IEE Software En-
gineering Journal, 11(1), 1996.

[10] J. Grundy. Aspect-oriented requirements engineering for
component based software systems. In 4th IEEE Interna-
tional Symposium on Requirements Engineering, pages 84–
91.

[11] M. Katera and S. Katz. Architectural views of aspects.
In Proceedings of the International Conference on Aspect-
oriented Software Development, pages 1–10, 2003.

[12] E. Koutsofios and S. North. Drawing graphs with dot. Mur-
ray Hill, NJ.

[13] A. Rashid, A. Moreira, and J. Araujo. Modularisation and
composition of aspectual requirements. In Proceedings of the
International Conference on Aspect-oriented Software De-
velopment, pages 11–20, 2003.

[14] F. Sowa. Conceptual Structures: Information Processing in
Mind and Machine. Addison-Wesley, 1998.

[15] T. T. Sunetnanta and A. Finkelstein. Automated consistency
checking for multiperspective software applications. In Pro-
ceedings of the International Conference on Software En-
gineering Workshop on Advanced Separation of Concerns,
2001.

[16] S. Sutton and I. Rouvellou. Modeling of software concerns
in cosmos. In Proceedings of the International Conference
on Aspect-oriented Software Development, pages 127–133,
2002.

[17] P. Tarr, H. Ossher, W. H. Harrison, and S. S. Jr. N degrees
of separation: Multi-dimensional separation of concerns. In
Proceedings of the International Conference on Software En-
gineering, pages 107–119. IEEE Computer Society Press,
1999.

[18] X. Wang and Y. Lesperance. Agent-oriented require-
ments engineering using congolog and i*. In Submitted to
AOIS-2001, Bi-Conference Workshop at Agents 2001 and
CAiSE’01., 2001.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

