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Cardiovascular diseases

Despite excellent pharmacological treatment possibilities, cardiovascular diseases 

(CVD) are still the leading cause of death worldwide.1 CVD are caused by disorders 
of the blood vessels and the heart and involve a group of syndromes, including 

cerebrovascular disease, coronary heart disease (CHD), and peripheral arterial 
disease. Many pharmacological treatment options are focused on lowering the risk 
for CHD by decreasing serum low density lipoprotein (LDL) cholesterol (LDL-C) 
concentrations. However, despite successful intervention strategies, there is still a 
substantial residual cardiovascular risk.2 This clearly indicates the need for other 

approaches to prevent the initiation and progression of this disease. Therefore, 
other pathways to lower CHD risk needs to be investigated. Increasing serum high 
density lipoprotein (HDL) cholesterol (HDL-C) concentrations was thought to be 
promising, since these are inversely associated with CVD risk.3 However, several 

clinical studies failed to show cardioprotective effects of actively increasing serum 
HDL-C concentrations.4-6 New evidence, however, suggests that the focus should be 

on optimizing HDL functionality instead of increasing serum HDL-C concentrations 
itself.7

HDL functionality 

Optimized HDL functionality is related to HDL particles that have the ability to take 
up more cholesterol from peripheral tissues, leading to an increased cholesterol efflux.8 

The major protein in HDL particles is apolipoprotein A-I (apoA-I).9 Epidemiological 

studies have shown that not only higher serum HDL-C but also higher serum apoA-I 
concentrations are associated with a lower CVD risk.10 Furthermore, apoA-I is 
correlated with cholesterol efflux capacity.11 It is now postulated that raising apoA-I 
production might improve HDL functionality and therefore protect against CVD 
development.8 In this respect, diet may play an important role, as recent studies have 
indicated a relation between diet and cholesterol efflux capacity.12,13

ApoA-I synthesis and clearance is briefly discussed in chapter 2. In addition, 
possibilities to specifically optimize apoA-I metabolism by using dietary or novel 
pharmacological interventions is systematically reviewed. Only few dietary 
compounds were found to increase fasting apoA-I concentrations. One of these 
components was theobromine. Theobromine is found in cocoa and may have several 
health benefits.14 In this dissertation we will therefore focus on the effects of adding 
theobromine to our habitual diet. 
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1Theobromine

Several studies have shown benefi cial eff ects of cocoa or dark chocolate consumption 
on circulating lipids, lipoproteins14,15 and other CVD risk markers.16 It is possible that 
these positive eff ects can be explained by theobromine, which is also a metabolite 
of caff eine. Dietary intake of theobromine is low; 50-100 g cocoa contains only 
800-1500 mg theobromine,17 whereas 50 g dark chocolate contains 240-520 mg 
theobromine.18 Theobromine is eff ectively absorbed in the intestine19,20 and reaches 

the portal vein by diff usion through the enterocytes.19 In the portal vein, theobromine 
is bound to the carrier protein Human Serum Albumin, via which it is transported 

to the liver.21 Maximal serum concentrations of theobromine are reached 2 hours 
post-ingestion19 and the half-life in the circulation is 6–10 hours.19,22 In the liver, 
theobromine is metabolized by 2 cytochrome P450 enzymes: CYP1A2 and CYP2E1.23 

The main metabolites of theobromine are 7-methylxanthine, 3-methylxanthine, and 
3,7-dimethyluric acid (Figure 1).23 Theobromine and its metabolites are extracted by 

the kidneys and excreted via the urine.19,20,24 

F igure 1 Metabolism of theobromine by cytochrome P450 enzymes
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So far, the effects of pure theobromine have only been evaluated in one study. In 
healthy volunteers, 850 mg of theobromine for 4-weeks significantly increased serum 
HDL-C and apoA-I concentrations and decreased serum LDL-C and apolipoprotein 
B100 (apoB100) concentrations.25 Because of these promising effects of theobromine 
on apoA-I and circulating fasting lipids, effects of theobromine on postprandial 
metabolism and vascular function were examined in this dissertation (Chapter 3, 
5 and 6). Furthermore, underlying mechanisms of the effects of theobromine were 
investigated by studying changes in intestinal gene expression (Chapter 4 and 5).

Postprandial metabolism
Increasing evidence suggests that not only fasting lipid, lipoprotein and glucose 
concentrations, but also a disturbed postprandial triacylglycerol (TAG) and glucose 
metabolism are important risk markers for CVD.26 Furthermore, in the Western world 

the majority of the population spends a significant part of the day in the postprandial 
state. Therefore, we evaluated in two clinical studies the effects of acute (Chapter 
3) and 4-weeks of theobromine consumption on postprandial lipid, lipoprotein and 
glucose metabolism (Chapter 5).

Intestinal gene expression
Theobromine is absorbed in the intestine19,20 and metabolized by the liver.23 Also apoA-I 
is produced in the cells of the small intestine and the liver.27 To unravel underlying 

mechanisms of theobromine on apoA-I concentrations, we also investigated whether 
potential effects of theobromine on apoA-I concentrations were related to a higher de 
novo apoA-I production. For this, changes in gene expression in human duodenal 
biopsies were investigated, using microarray analysis after acute (Chapter 4) and 
4-weeks of theobromine consumption (Chapter 5).

Vascular function
Whether optimizing HDL functionality indeed translates into improved CHD 
outcomes such as myocardial infarction, atherosclerosis, and total mortality, has 

hardly been studied. However, novel surrogate risk markers related to CVD risk 
exist, such as vascular function markers,28-32 which are easier to study and have 

been related to CVD risk. Several of these markers reflecting vascular function, each 
addressing different aspect of the vasculature, were measured as read out parameters 
in one of the theobromine intervention studies as described in this thesis (Chapter 6). 

Endothelial function

The endothelium is the inner lining of the blood vessels and has several important 

functions, including the regulation of the vascular tone, hemostasis, angiogenesis and 
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1infl ammatory processes.33 A dysfunction of this endothelium is the fi rst steps towards 
atherosclerosis. However, in the early stage, dysfunctioning of the endothelium can 
still be reversed.34

Brachial artery fl ow mediated dilatation (FMD) is the current gold standard to 
non-invasively measure endothelial function.35 During this measurement, reactive 

hyperemia is induced by the infl ation of a forearm cuff . By release of this cuff , shear 
stress occurs, after which a blood vessel dilates, mediated by the release of nitric 

oxide (NO) from the endothelium (Figure 2). A blood vessel with dysfunctional 
endothelium will show a blunted response in comparison with a blood vessel with 

a healthy, more functional endothelium. Endothelial dysfunction, as measured with 
FMD, is a predictor for future CVD events.30 Although FMD is currently considered 

as the gold standard, it is operator specifi c and need extensive training for proper 
and reliable measurements. An easier way to measure endothelial function is via 
peripheral arterial tonometry (PAT). This measurement records changes in arterial 
pulse wave amplitude in the fi ngertip, following reactive hyperaemia caused by 
the release of a forearm cuff . The change in arterial pulse wave amplitude after this 
reactive hyperaemia is called the reactive hyperaemia index (RHI) and is a measure 
for endothelial function (Figure 2). In comparison to the FMD, this measurement is 
more related to the endothelial function of small arteries and of the microcirculation. 
A reduced RHI is related to the presence of CVD risk factors.29

Arterial stiff ness
Arterial stiff ness results from a degenerative process aff ecting mainly the extracellular 
matrix of elastic arteries. Changes in extracellular matrix proteins and in the 
mechanical properties of the vessel wall related to arterial stiff ening may lead to 
atherosclerosis.36

Pulse wave velocity of the carotid to femoral (PWVcf) artery is the gold standard 
to measure arterial stiff ness.37 It measures the speed of a pulse pressure wave, traveling 
trough the arterial tree (Figure 2). An increased PWVcf, is a predictor for a higher 
frequency of stroke, CVD and total mortality.31 Another measure refl ecting arterial 
stiff ness is the augmentation index (AIx). This index is defi ned as the diff erence 
between the fi rst and the second peak of the arterial waveform, the wave refl ection 
(Figure 2). A higher AIx indicates stiff er vessels, and is associated with higher CVD 
risk.32

Microvasculature

Characteristics of the microvasculature in relation to CVD risk can be studied by 
measuring the arteriolar and venular width of the blood vessels in the retina (Figure 

2). Cross-sectionally wider venules and narrower arterioles are associated with 
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an increased risk of CVD events in women, but not in men.28 Furthermore, larger 

venular diameters are independently associated with lower HDL-C concentrations38 

and more inflammation,39 while a higher blood pressure is a systemic determinant for 

smaller arteriolar calibers.40

Postprandial vascular function

It is known that both postprandial hyperlipidemia41 and hyperglycemia42 impair 

vascular function. Therefore, it is important not only to focus on nutritional strategies 
to improve fasting vascular function, but also to identify strategies that counterbalance 

impaired postprandial vascular function. A high fat mixed meal can be used as a 
physiological stressor, because it impairs postprandial endothelial function.43-45 

Furthermore, high fat meals apparently improve AIx,44,46 while results on PWV are 
conflicting46-48 and effects on arteriolar and venular calibers have hardly been studied 
(Figure 3). We therefore evaluated in a randomized human placebo controlled trial 
the effects of 4-weeks of theobromine consumption on vascular function in fasting 
state and after a high fat mixed meal challenge (Chapter 6). 

Figure 3 Effects of a high fat meal challenge on parameters reflecting vascular function
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Fi gure 2 Vascular function measurements 
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Theobromine vs. fat on apoA-I metabolism
From the systematic review presented in chapter 2, it was concluded that only a few 

foods or dietary components might increase serum apoA-I concentrations. One well-
studied macronutrient that can increase fasting serum apoA-I concentrations is fat.49 

Two recent meta-analyses showed that the exchange of carbohydrates for saturated, 

unsaturated or trans fatty acids increased fasting apoA-I concentrations.49,50 Therefore, 

in our first intervention study a meal high in fat was used as comparison for the effects 
of theobromine on apoA-I metabolism. Till now, only few studies have investigated 
the acute effects of a high fat meal on apoA-I concentrations. Furthermore, underlying 
mechanisms of the increase in apoA-I concentrations due to a high fat meal have 
not been studied before into great detail. Therefore, the effects of an acute high fat 
/ low carbohydrate and an acute low fat / high carbohydrate meal on postprandial 

metabolism (Chapter 3) and duodenal gene expression were investigated (Chapter 4).  

Thesis outline

The aim of this thesis was to investigate the effects of theobromine on postprandial 
metabolism, vascular function and intestinal gene expression in humans. In addition, 
it is of interest to investigate if theobromine is the component from cocoa that relates 

to the positive effects on lipid metabolism and on CVD risk. For this, a systematic 
review was written and two human intervention studies were performed. First, 
chapter 2 summarizes the effects of dietary or novel pharmacological interventions 
on apoA-I metabolism. It was concluded, that only few foods and dietary components 
might increase apoA-I concentrations, including theobromine. Next, chapter 3 and 4 
describe the results of the first human intervention study in which the acute effects 
of theobromine on postprandial lipid, lipoprotein and glucose metabolism (Chapter 
3) as well as on duodenal gene expression (Chapter 4) were investigated. Then, in 
chapter 5 and 6 the results of the second human intervention study investigating 

the effects of 4-weeks theobromine consumption on cardiometabolic risk markers are 
described. Chapter 5 focuses on the effects of theobromine on fasting and postprandial 
metabolism combined with the analysis of duodenal gene expression, while chapter 
6 describes the effects of theobromine on fasting and postprandial vascular function. 
Finally, chapter 7 summarizes the major findings of the different studies in the present 
thesis and the results are discussed in the context of the health benefits of cocoa.
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Abstract

The incidence of coronary heart diseases (CHD) is still increasing, which underscores 
the need for new preventive and therapeutic approaches to decrease CHD risk. 
In this respect, increasing apoA-I concentrations may be a promising approach, 
especially through increasing apoA-I synthesis. This review first provides insight into 
current knowledge on apoA-I production, clearance and degradation, followed by a 
systematic review of dietary and novel pharmacological approaches to target apoA-I 
metabolism. For this, a systematic search was performed to identify randomized 
controlled intervention studies that examined effects of whole foods and (non)
nutrients on apoA-I metabolism. In addition, novel pharmacological approaches 
were searched for, that were specifically developed to target apoA-I metabolism. 
We conclude that both dietary components and pharmacological approaches can be 

used to increase apoA-I concentrations or functionality. For the dietary components 
in particular, more knowledge about the underlying mechanisms is necessary, as 

increasing apoA-I per se does not necessarily translate into a reduced CHD risk.
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2

Background

The global incidence of coronary heart diseases (CHD) is still increasing, which 
underscores the need for novel and alternative approaches to prevent the initiation 

and progression of this disease already at an early stage. Since elevated serum low-
density lipoprotein cholesterol (LDL-C) concentrations are causally related to CHD, 
most dietary life style interventions and pharmaceutical treatments to prevent CHD 

so far are focused on lowering serum LDL-C concentrations. Despite successful 
intervention possibilities, there is still a substantial residual cardiovascular risk. 
Therefore, a possibility to further lower CHD risk is to target multiple metabolic 

pathways simultaneously.1,2 For example, statin treatment, to lower serum LDL-C 
concentrations, can be combined with other pharmaceutical agents, such as proprotein 

convertase subtilisin/kexin type 9 inhibitors, which substantially further lower 
serum LDL-C concentrations.3 Also, the Niemann-Pick Like Intracellular Cholesterol 
Transporter 1 inhibitor ezetimibe can be used, which has been shown to further lower 
the number of myocardial infarctions with 13%, strokes with 14% and ischemic strokes 
with 21%.4 Besides combined interventions to further increase the LDL-C lowering 
potential, it can be considered to mutually target at the same time other CHD risk 

parameters including serum high density lipoprotein (HDL) cholesterol (HDL-C), 
apolipoprotein A-I (apoA-I), triacylglycerol or lipoprotein(a) concentrations and/
or blood pressure.5 These parameters may be interrelated.  An inverse relationship 
exists, for example, between serum triacylglycerol and HDL-C concentrations. Thus, 
interventions that change triacylglycerol may therefore also aff ect HDL metabolism. 
In this review we will however focus on possibilities to further reduce CHD risk via 
novel and alternative dietary and pharmacological interventions targeting apoA-I 
metabolism.

Increasing HDL functionality by increasing apoA-I
So far, interventions specifi cally targeting to increase serum HDL-C concentrations 
did not report any protective cardiovascular eff ect, which has clearly negatively 
infl uenced the interest to develop novel interventions to elevate serum HDL-C. 
However, recent evidence suggests that the focus should be on optimizing HDL 
functionality instead of elevating circulating serum HDL-C concentrations.6 By 
increasing their functionality, HDL particles are able to take up more cholesterol 
from peripheral tissues; i.e. the so-called cholesterol effl  ux. In addition, a more 
functional HDL particle will be more anti-oxidative - in particular by inhibiting LDL 
oxidation - and more anti-thrombotic, and will have a higher anti-infl ammatory 
and anti-apoptotic activity.7 A wealth of evidence from epidemiological, in vitro 

and in vivo studies suggests that higher apoA-I concentrations protect against CHD 
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development.8 By increasing apoA-I concentrations, the resulting newly produced 
small HDL particles (i.e. pre-beta HDL) will be highly functional, thereby enhancing 
cholesterol efflux.7 Indeed, it has been found that apoA-I concentration is the 
strongest predictor for cholesterol efflux capacity.9 ApoA-I is the major protein of 
HDL particles10 contributing to approximately 33% of the total HDL particle mass, 
and up to 60% of the HDL protein mass.11 The most likely mechanism explaining 

the beneficial effects of elevated serum apoA-I concentrations origins from the 
fact that apoA-I is the ligand for ATP-binding cassette transporter A1 (ABCA1), as 
such mediating cholesterol efflux from lipid-loaden macrophages.7 Based on this 
information, Smits et al. wrote a clear plead for strategies to increase serum apoA-I 
concentrations as the most promising target for enhancing HDL functionality, thereby 
decreasing cardiovascular disease (CVD) risk.12 However, lowering CHD risk by 

increasing endogenous apoA-I production, by decreasing apoA-I degradation, or by 
providing exogenous apoA-I has for unknown reasons not yet been investigated into 
great detail. Therefore, the question remains whether specifically targeting apoA-I 
metabolism is a suitable target to reduce CHD risk. 

In this review we will first briefly provide insight into the current knowledge 
of apoA-I synthesis, clearance and degradation, followed by a detailed overview of 
dietary and novel experimental pharmaceutical developments targeting circulating 

apoA-I concentrations. 

ApoA-I

ApoA-I synthesis

ApoA-I mRNA is expressed in cells of the liver and small intestine,13 where it is translated 

into a pre-pro-apoA-I protein. The pre-segment needs co-translational cleavage,14 

which takes place during translocation of the protein into the endoplasmatic reticulum 

by a signal peptidase.15,16 This results in a stable intracellular pro-apoA-I protein,14 

which is secreted into blood and lymph. Directly after secretion of pro-apoA-I, the 
pro-protein is cleaved of by Bone Morphogenetic Protein-1 (BMP-1) and Procollagen 
C-proteinase Enhancer-2 Protein (PCPE2) (Figure 1).17,18 It is evident that the cleavage 
of the pro-segment is essential for the secretion of newly formed intracellular apoA-I. 
Deletion of the coding sequence of the pro-segment causes accumulation of apoA-I 
in the cell,19 decreases the efficiency of apoA-I mRNA expression,16 and impairs the 

secretion of apoA-I into blood and lymph.16,19 The cleavage of the pro-protein occurs 

relatively rapid, while the residence time for pro-apoA-I in plasma is only 5.5 hours, 
in contrast to the residence time for mature apoA-I of 6.5 days.20 About 4-8% of the 
circulating apoA-I pool is pro-apoA-I.14,21,22 After cleavage of the pro segment, apoA-I 
accepts cholesterol and phospholipids from ABCA123 to form a pre-β HDL particle 
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(Figure 1). In other words, apoA-I is the starting point for the synthesis of a functional 
HDL particle and therefore essential for the formation and maturation of novel HDL 
particles.15 In the circulation, lecithin:cholesterol acyltransferase esterifi es the free 
cholesterol in these pre-β HDL particles, thereby forming HDL3 and fi nally HDL2.

24 

The ATP binding cassette G1 transporter and scavenger receptor class B type 1 (SR-B1) 
contribute to the cholesterol effl  ux from peripheral tissues and macrophages to these 
mature HDL particles. After binding of HDL2 to SR-B1 on the liver, cholesterol esters 
are taken up and lipid-depleted apoA-I is returned to the circulation. These apoA-I-
rich lipid-depleted HDL particles can again acquire cholesterol and phospholipids 
forming an pre-β HDL particle or can be cleared from the circulation.25

ApoA-I clearance 

Several organs are involved in apoA-I clearance and degradation.25 Calculations in 

rabbits have indicated that renal apoA-I clearance accounts for approximately 68-70% 
of total apoA-I catabolism. Also in humans, the kidney is the major site for apoA-I 
clearance.25,26 In the kidneys, the uptake of HDL particles is limited, because the intact 
lipoprotein particles are too large to pass the glomerular fi ltration barrier. However, 
newly formed or recycled lipid free apoA-I, can pass this barrier. In the proximal 
tubule of the glomerulus apoA-I binds the receptors cubilin and megalin,27 which 

mediate endocytosis and delivery of the protein to the lysosomes,28,29 resulting in 

complete degradation of the apoA-I protein. The amino acids can be re-used for de 
novo protein synthesis.30 While the kidneys plays a major role in apoA-I degradation, 
the liver accounts for 26% of the apoA-I clearance, at least in rats. It is not known 
how the hepatocytes take up the apoA-I particles. The apoA-I catabolic products are 
excreted from the liver via the bile into the gut, where they are further digested and 

absorbed, or excreted from the body. Other tissues, besides kidney and liver, which 
are to a lesser extent involved in the degradation of apoA-I are ovaries, adrenals and 
spleen, which secrete apoA-I catabolic products into the urine (Figure 1).25

Increasing apoA-I concentrations via reducing apoA-I clearance is for unknown 
reasons not a subject of investigation. Consequently, it is also not known whether 
inhibiting apoA-I clearance, aff ects HDL functionality. Therefore, decreasing apoA-I 
clearance currently not a target for interventions, whereas elevating de novo apoA-I 
production certainly is.31
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Figure 1 Simplified scheme of the synthesis, metabolism and clearance of apoA-I. ApoA-I is synthesized in cells 
of the liver and intestine as pre-pro-apoA-I. After translocation to the endoplasmic reticulum, the pre-protein is 
cleaved of and pro-apoA-I is secreted into blood and lymph. In the circulation, the pro segment is directly cleaved 
of by Bone Morphogenetic Protein-1 (BMP-1) and Procollagen C-proteinase Enhancer-2 Protein (PCPE2). 
After this, apoA-I accepts cholesterol and phospholipids from ABCA1, forming a pre-β HDL particle. In the cir-
culation, lecithin:cholesterol acyltransferase (LCAT) esterifies the free cholesterol in these pre-β HDL particles, 
forming HDL3 and finally HDL2, as indicated by the black arrows. After binding of HDL2 to SR-B1 on the liver, 
the cholesterol esters are taken up and lipid-depleted apoA-I is returned to the circulation. These apoA-I-rich 
particles can again acquire cholesterol and phospholipids or can be cleared from the circulation. Clearance will 
take place for 70% by the kidney, where apoA-I is broken down into amino acids and ultimately excreted in the 
urine. 26% of the free apoA-I will be cleared by the liver, and apoA-I catabolic products will then be excreted via 
biliary secretion into the gut, and further digested and absorbed, or excreted from the body through the feces. 4% 
of the free apoA-I will go to other tissues and finally will end up in the urine, as indicated by the blue arrows. 

Dietary interventions affecting apoA-I metabolism

It has been clearly shown that dietary components can change serum apoA-I 
concentrations. We here provide an overview of randomized controlled dietary 
intervention studies that have examined the effects of whole foods and (non)nutrients 
on apoA-I concentrations or apoA-I metabolism. Only crossover and parallel studies 
were included. Potentially relevant studies published before January 2017 were 
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identifi ed by a systematic search of the database PubMed (www.ncbi.nlm.nih.gov). 
The following search terms were used to search in titles and abstracts: (((Clinical 
Trial[Publication Type]) OR randomized controlled trial[Publication Type])) AND 
apolipoprotein A*[MeSH Terms]. The selection was performed in two steps. First, 
titles and abstracts were screened. Studies were selected if they met the following 
inclusion criteria: human intervention study with adults, dietary intervention study, 
and measurement of apoA-I concentrations. In the second step, full-texts of the 
selected articles were read to extract fasting or postprandial apoA-I values. Then, 
a search was performed to fi nd meta-analysis of each food or (non)nutrient group. 
When a meta-analysis was found, it is included in this review together with the 

articles identifi ed by us, but which were not part of the meta-analysis. Changes in 
apoA-I concentrations were expressed as percentages, if possible. When percentages 
were not reported, they were calculated from the mean values as reported in the 

articles. Furthermore, the list of articles was screened for studies that investigated the 
eff ects on cholesterol effl  ux, apoA-I production rate (PR), or fractional catabolic rate 
(FCR). 

Alcohol
Based on a meta-analysis including 16 studies with in total 374 subjects, Brien et 
al. concluded that alcohol consumption (women: >15 g alcohol/day, men: >30 g 
alcohol/day) increased fasting plasma apoA-I concentrations with 10.1 mg/dL (95% 
CI 7.3 - 12.9 mg/dL).32 A later study, not included in this meta-analysis, also showed a 

higher fasting apoA-I concentration after alcohol consumption as compared with no 
alcohol consumption.33 Moreover, postprandial apoA-I concentrations also increased 
after alcohol consumption.34 These eff ects did not depend on the source (red wine, 
beer, Dutch gin) of alcohol.35 Lavy et al. however, reported that red wine increased 
apoA-I as compared with white wine consumption.36 Also, Gepner et al. observed 
that red wine increased apoA-I concentrations as compared with water consumption, 
but white wine did not signifi cantly change apoA-I concentrations as compared 
with water or red wine.37 Furthermore, alcohol consumption not only elevated 

circulating apoA-I concentrations but also improved HDL-functionality as shown by 
an increased cholesterol effl  ux capacity.35,38,39 In one study, the kinetics of apoA-I have 
been examined. It was reported that apoA-I PR increased and apoA-I FCR decreased 
after alcohol consumption (Table 1).40

Boiled and fi ltered coff ee, caff eine and tea 
In six studies, the eff ects of boiled or fi ltered coff ee, cafeïne and tea on fasting apoA-I 
concentrations have been compared. In none of the studies, signifi cant diff erences in 
apoA-I concentrations were observed (Table 2).41-46
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Fatty acids
In a recent meta-analysis including 104 diets from forty-two well-controlled 
intervention studies the eff ects of the various fatty acids on fasting serum apoA-I 
concentrations were estimated. Eff ects of fi sh fatty acids were not included in that meta-
analysis and will be discussed in the next paragraph. A signifi cant increase in serum 
apoA-I concentrations was found when 1 energy % of carbohydrates was replaced by 
saturated fatty acids (SFA; 8.4 mg/dL, 95% CI 6.4 - 10.5), cis-monounsaturated fatty 
acids (cis-MUFA; 5.5 mg/dL, 95% CI 3.7 - 7.3) and cis-polyunsaturated fatty acids (cis-
PUFA; 2.3 mg/dL, 95% CI 0.1 - 4.6). Cis-MUFA mainly referred to oleic acid and cis-
PUFA to linoleic acid plus some α-linolenic acid. This meta-analysis further showed 
that fasting apoA-I concentrations were signifi cantly increased by replacement of 1 
energy % from carbohydrates with lauric acid (C12:0; 19.2 mg/dL, 95% CI 14.6 - 12.7), 
myristic acid (C14:0; 8.8 mg/dL, 95% CI 0.5 - 13.1) and palmitic acid (C16:0; 6.5 mg/
dL, 95% CI 3.8 - 9.3), while replacement with stearic acid (C18:0) did not change apoA-I 
concentrations. For these latter analyses, 88 diets from 34 studies were included.47 In 
another meta-analysis based on 17 diets from 10 studies, Brouwer (2016) described 
the eff ects of trans fatty acids (TFA) on circulating fasting apoA-I concentrations. It 
was reported that replacement of 1 energy % of carbohydrates for total TFA increased 
apoA-I concentrations (3.3 mg/dL, 95% CI 4.7 - 1.9). When a diff erence was made 
between industrial and ruminant TFA, it was found that replacement with industrial 

TFA signifi cantly increased fasting apoA-I concentrations (3.3 mg/dL, 95% CI 4.8 - 
1.8), while ruminant TFA did not (4.6 mg/dL, 95% CI: –22.0 - 12.9). This may be due 
to a lack of power, since only two studies investigated ruminant TFA. Furthermore, 
this meta-analysis also showed that replacement of 1 energy % from TFA with 
SFA increased fasting apoA-I concentrations (2.6 mg/dL, 95% CI 1.4 - 3.9), while 
replacement with MUFA did not change apoA-I concentrations and replacement with 
cis-PUFA decreased fasting apoA-I concentrations (-1.7 mg/dL, 95% CI -2.8 - -0.6) 
(Table 3).48

Several studies have examined the eff ects of the various fatty acids on serum 
apoA-I metabolism. A TFA diet increased apoA-I FCR as compared with SFA, but the 
FCR after cis-PUFA consumption did not diff er from the TFA or SFA diets. ApoA-I PR 
was not diff erent between the various diets.49 Moreover, a cis-PUFA diet did not aff ect 
apoA-I FCR50 and both FCR and PR decreased after low fat consumption compared 
with high cis-MUFA consumption.51 In contrast, Labonte et al. have reported that 
replacing 13 energy % of carbohydrates with cis-MUFA decreased apoA-I FCR with 
no change in apoA-I PR  (Table 3).52 The diff erent results between these two studies 
51,52 may have been due to the signifi cant weight loss in the study of Desroches et al., 
which may have confounded to some extent the eff ect of MUFA on apoA-I kinetics.
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2

Fish and fi sh-fatty acids
Most studies investigating the eff ects of omega-3 fatty acids from fatty fi sh, mainly 
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), did not observe 
any diff erences in fasting and postprandial apoA-I concentrations.53-75 However, in 

two studies, all in healthy men, fasting apoA-I concentrations decreased after fi sh 
oil supplementation. The fi rst study showed lower apoA-I concentrations after 
pullock oil (rich in EPA) and salmon oil (rich in DHA), but not after tuna oil (rich 
in DHA) consumption as compared with butter.76 The second study found lower 

apoA-I concentrations after EPA oil supplementation compared with DHA oil 
supplementation.77 On the other hand, one study found an increase in fasting apoA-I 
concentrations after a diet high in fi sh-fatty acids compared with a diet low in fi sh-
fatty acids, in which diets were matched for total fat  (Table 4).78

Five studies have investigated the eff ects of fi sh on fasting apoA-I concentrations. 
In one study, fatty fi sh (salmon, rainbow trout, Baltic herring, whitefi sh, vendace and 
tuna) consumption increased apoA-I concentrations compared with lean fi sh (pike, 
pike-perch, perch, saithe and cod) consumption. However, it did not change apoA-I 
concentrations as compared with lean meat (beef and pork) consumption.79 The other 

three studies did not fi nd diff erences in apoA-I concentrations after fi sh consumption, 
of which two compared fatty fi sh with lean meat80,81 and one compared prawns with 

crab.82 A limitation of the study of Lindqvist et al. is that participants consumed in 
total 35 energy % of fat in the herring period and only 10 energy % of fat in the meat 
period,80 which may have aff ected apoA-I concentrations. Comparisons between fi sh 
and meat consumption are probably not confounded by diff erences in the intake 
of the source of protein, as suggested by Gascon et al. In that study, the eff ects of 
proteins in lean fi sh (cod, sole, pollack, and haddock) were compared with those of 
animal protein (lean beef, pork, veal, eggs, skimmed milk and milk products). No 
diff erences on fasting apoA-I concentrations were found  (Table 4).83

Fibers
Studies comparing the eff ects of oat germ – low in fi ber - with those of wheat 
germ – high in fi ber- consumption did not fi nd any diff erences in fasting apoA-I 
concentrations.84-89 In four of these studies, it was explicitly reported that the 
macronutrient composition of the experimental diets was comparable.84,85,87,88 Mekki 

et al. observed that a high-fi ber diet did not change fasting apoA-I concentrations 
as compared with a low-fi ber diet.90 On the other hand, decreased fasting apoA-I 
concentrations were found after a high β-glucan and psyllium diet as compared 
with a low fat, low cholesterol control diet.91 The water-soluble fi ber arabinoxylan 
also decreased fasting apoA-I concentrations as compared with the control diet, 
which had a similar macronutrient composition.92 Furthermore, no diff erences in 
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2

fasting apoA-I concentrations were observed between the soluble and insoluble 
forms of P. ovate.93 The water-soluble fi ber β-glucan did not aff ect fasting apoA-I 
concentrations.94 Furthermore, wheat germ consumption increased fasting apoA-I 
concentrations compared with fl axseed consumption (Table 5).95 

Nuts
In one short-term study, walnut consumption signifi cantly increased fasting serum 
apoA-I concentrations,96 but these eff ects were not found in two longer-term studies.97,98 

Almond consumption did also not aff ect fasting apoA-I concentrations.99,100 Likewise, 
hazelnuts101,102 and pistachio nuts did not change fasting apoA-I concentrations.103 

A limitation of some of the studies is, that not all experimental diets were matched 

for diff erences in fat and fatty acid composition. In some of these studies, the 
diets containing nuts provided more energy from fat than the control diets.98-101 

Furthermore, the nut diets were sometimes also lower in SFA and higher in PUFA 

than the control diets.98,100 Although these diff erences in nutrient intakes are inherent 
to consuming more nuts, it is not likely that the eff ects observed are due to minor 
component in nuts, since fatty acids increase apoA-I concentrations as compared with 
carbohydrates.47 However, most other studies that used a control diet with similar fat 

and fatty acid composition did also not fi nd any eff ects of the consumption of nuts on 
apoA-I concentrations  (Table 6).97,102,103

Plant sterols and stanols
Most studies examining the eff ects of plant sterols on serum lipids did not demonstrate 
an eff ect of plant sterols on fasting apoA-I concentrations.104-111 In one study, comparing 
olive oil, olive oil with plant sterol esters, and sunfl ower oil with plant sterol esters, 
fasting apoA-I concentrations increased when plant sterol esters where consumed 
together with olive oil, but apoA-I concentrations were comparable during the other 
two interventions.112 Furthermore, one study showed an increase in fasting apoA-I 
concentrations comparing 3 months of prudent diet consumption (National Cholesterol 
Education Program) with added plant sterols, with prudent diet consumption alone.105 

One study examined the eff ects of plant stanols on fasting apoA-I concentrations and 
found increased apoA-I concentrations comparing 6 weeks of sitostanol consumption 
with no sitostanol consumption.113 Finally, no changes in apoA-I PR and FCR were 
found after plant sterol or stanol consumption (Table 7).  107,113 

Soy proteins or isofl avones isolated from soy
Studies investigating the eff ects of soy protein on fasting apoA-I concentrations 
showed inconsistent outcomes. Eight studies using diff erent amounts of soy protein 
for 3 weeks till 3 months did not fi nd changes in fasting apoA-I concentrations.114-122 
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2

On the other hand, in one study products containing soy protein increased fasting 

apoA-I concentrations as compared with products containing casein,123 while in 

another study products with soy protein decreased fasting apoA-I as compared 
with products containing casein.124 Furthermore, two studies found diff erent eff ects 
of various soy products on fasting apoA-I concentrations.125,126 Soymilk increased 

apoA-I concentrations as compared with soy nuts and soy fl our, but no diff erences 
were found as compared with animal protein.126 Soy nut and soy protein consumption 

increased apoA-I concentrations as compared with the control group without soy.125 

Two studies have investigated the eff ects of isofl avones isolated from soy on apoA-I 
concentrations and showed no eff ect on fasting 127,128 and postprandial apoA-I 
concentrations (Table 8).127 

Others
Many other products and food components have been studied for their eff ects on apoA-I 
concentrations. In most of these studies, which included eggs,129 dried garlic,130,131 

beta-caroteen,132 phytochemicals with cytochrome P-450-inducing activity,133 

magnesium,134 eggplant,135 dry beans,136 kiwifruits137 and polyphenols,138 no eff ects 
on fasting apoA-I concentrations were observed. In addition, sphingolipids did not 
change postprandial apoA-I concentrations.139 On the other hand, red grape juice,140 

a mixture of citrus fl avonoids and tocotrienols,141 vitamin D supplementation,142,143 

vitamin D plus calcium supplementation,143 theobromine,144 orange juice,145 and a high 

dose of grape pomace and omija fruit,146 all increased fasting apoA-I concentrations 
(Table 9). 
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Dietary strategies and novel pharmaceutical approaches targeting serum apoA-I metabolism

2

 Pharmacological approaches targeting apoA-I 
metabolism

Although not always specifi cally developed for this purpose, several well-known 
drugs like statins6,147 and CETP inhibitors148-151 aff ect serum apoA-I concentrations. 
However, since this review focuses on novel strategies to increase serum apoA-I 
concentrations, we here describe only approaches, that are currently in development, 

and are specifi cally designed to target apoA-I metabolism. Potentially relevant 
studies published before January 2017 were identifi ed by a systematic search of the 
database PubMed (www.ncbi.nlm.nih.gov). The following search terms were used to 
search in titles and abstracts: (Pharmacological AND approaches AND apoA-I). First, 
all abstracts were screened and the pharmacological approaches were divided into 

three categories; apoA-I mimetics, apoA-I infusions, and others. Second, a new search 
was performed with the search terms: (apoA-I mimetics AND apoA-I infusions AND 
RVX-208 AND LCAT infusion) to select all studies published before January 2017 that 
investigate apoA-I mimetics, apoA-I infusions, and RVX-208.  

ApoA-I mimetics
ApoA-I mimetics are small amphipathic peptides that resemble apoA-I in biological 
function and structure.152 These mimetics are not the intact apoA-I protein, but small 
fragments of the protein with certain biological functions. These small peptides 
can be given orally or can be infused.14,153 Over the years, several mimetics have 

been produced, but none of them has all the anti-atherogenic functions of apoA-I. 
However, combining several mimetics can be a theoretical approach to mimic all anti-

atherosclerotic properties of apoA-I.154

In vitro as well as animal studies have shown that several apoA-I mimetics 
improved HDL functionality (Table 10).153  When cholesterol-enriched mouse 

macrophages were incubated in vitro with two mimetics (18A and 37pA), cholesterol 
effl  ux increased with 20%, which was comparable to the eff ects of adding lipid free 
apoA-I.155 However, in following in vitro experiments the 37pA peptide was found 
to be cytotoxic with adverse eff ects on the integrity of the plasma membrane of HeLa 
cells.156 All other mimetics reviewed here were not found to be toxic. Intraperitoneal 
injection of 20 μg 5F per day for 16 weeks in C57BL/6J mice reduced atherosclerotic 
lesion formation.157 Also the peptide ATI-5261 reduced aortic lesion area and plaque 
lipid content, and increased cholesterol effl  ux in both LDL-R and apoE knockout 
mice.158 In addition, in cells overexpressing ABCA1, ATI-5261 increased the specifi c 
ABCA1 dependent cholesterol effl  ux.159 In rabbits ETC-642 had anti-infl ammatory 
properties,160 lowered oxidized LDL, shifted the HDL subfractions towards the 
pre-β fraction and increased cholesterol effl  ux in a human macrophage assay.161 
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Both in cells and in New Zealand white rabbits, a single infusion of the 5A peptide 
reduced inflammation and oxidative stress.162 Moreover, in apoE knockout mice an 

increased cholesterol efflux and a reduction of aortic plaque surface area was seen 
after 5A infusion.163 Furthermore, the 6F peptide improved inflammatory biomarkers, 
antioxidant status and significantly reduced aortic lesion area in LDL-R knockout 
mice (Table 10).164 

The most promising mimetic is 4F, which has not only been evaluated in 
vitro and in animal models, but also in a human clinical trial (Table 10). In vitro, 4F 
increased cholesterol efflux capacity and anti-inflammatory properties, as measured 
by a reduced monocyte chemotactic activity.165 In human aortic endothelial cells, 
purified apoA-I and 4F both inhibited the cellular oxidation of LDL, which resulted 
in a lower pro-inflammatory activity. When mimetics are ingested, it is possible 
that enzymes in the gastrointestinal tract digest the proteins. Using D-amino acids 
(the use of the D-stereoisomer of amino acids for building mimetics instead of the 
L-stereoisomer, which is commonly found in nature) enables oral delivery due to 
resistance of the D-stereoisomers to human gastrointestinal proteolytic enzymes. 
In LDL-receptor knockout mice, which were fed a Western diet, D-4F reduced 
atherosclerotic lesion development with 79% and D-4F added to the drinking water 
reduced lesion development with 75%.14 Intraperitoneal injection of 20 µg/day D-4F 
for 16 weeks in apoE knockout mice, fed an atherogenic diet, reduced atherosclerotic 
lesion development by 75%.14,157 These studies show that oral D-4F, either provided 
via diet or water, is equally effective as compared to intraperitonel injections, which 
confirms the bioavailability and stability of the mimetic in the gastrointestinal 
tract and the circulation. When 50 patients with coronary artery disease received a 
single oral dose (30, 100, 300, 500 mg) of D-4F, the two highest doses increased the 
anti-inflammatory activity of the HDL fraction. However, no changes in lipids or 
lipoprotein concentrations were seen. D-4F was shown to be safe and well tolerated 
(Table 10).166 Unfortunately, the effects of D-4F on cholesterol efflux in humans have 
not yet been investigated. 

ApoA-I infusions
Besides apoA-I mimetics, apoA-I itself, either by using delipidated HDL or by 
using delipidated HDL combined with phospholipids, can be infused directly into 
the circulation. The theoretical advantage of using apoA-I or apoA-I-phospholipid 
complexes instead of using apoA-I mimetics is that the apoA-I protein is completely 
intact and still possesses all its biological functions and might therefore have a larger 

athero-protective effect. So far, three different forms of apoA-I have been tested i.e 
apoA-I Milano (MDCO-216), CSL-111 / CSL112 and CER-001 (Table 11).
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ApoA-I Milano

Infusion of 40 mg recombinant apoA-I Milano (a mutant of human apoA-I) for 10 
days in cholesterol-fed New Zealand White rabbits reduced intimal thickness, intima-
to-media ratio, and the portion of intimal lesion covered by macrophages.167 Infusion 
of 250, 500 or 1000 mg apoA-I Milano directly into the carotid artery of New Zealand 
White rabbits inhibited plaque progression and reduced the plaque area.168 Eighteen 

injections every other day of 40 mg/kg apoA-I Milano in ApoE knockout mice 
showed a 40% decrease in lipid content and a 46% reduction in macrophage content 
in the lesion area.169 In a randomized human controlled trial, 47 patients with acute 
coronary syndromes received for 5 weeks one infusion of placebo or recombinant 
apoA-I Milano/phospholipid complex (ETC-216) at 15 or 45 mg/kg per week.  At the 
end of the study a signifi cant reduction in atheroma volume was found in the high 
dose group.170 This reduction in atheroma volume was accompanied by a reduction 

in external elastic membrane volume of the artery, but not with a change in lumen 

volume.171 Recently, in a randomized controlled study, patients with stable coronary 
artery disease received 5 doses of 10, 20, 30, and 40 mg/kg MDCO-216 infusion. This 
resulted in a dose-dependent increase in apoA-I concentrations and a dose-dependent 
shift from small- to large-sized HDL particles.172 Moreover, a profound increase in 

ABCA1-mediated cholesterol effl  ux was observed.173 However, very recently the 

MILANO-PILOT study failed to slow down the regression of coronary atherosclerosis 
with 5 weekly infusions of 20 mg/kg MDCO-216 in 120 patients with acute coronary 
syndromes. In fact, signifi cant reductions in HDL-C and apoA-I concentrations were 
observed and no eff ects on percent atheroma volume and total atheroma volume 
(Table 11).174 

CSL-111/CSL112 

In C57Bl/6 mice, a single injection with the reconstituted HDL particle CSL-111, i.e. 
a native human apoA-I/phosphatidylcholine complex, induced a dose- and time-
dependent increase in human pre-β HDL particles and cholesterol effl  ux capacity.175 

Eff ects of CSL-111 have also been evaluated in several human studies. In one trial, 
40 and 80 mg/kg CSL-111 was infused once a week for one month in 183 patients 
elected for coronary angiography. Treatment of the high dose group (80 mg/kg) was 
discontinued early, because some of the patients exceeded the upper level of alanine 

aminotransferase by 100-fold. The low dose group (40 mg/kg) showed a signifi cant 
reduction in atheroma volume. However, this reduction was not signifi cantly diff erent 
from the decrease in the placebo group.176 After this, the further development program 

of CSL-111 was discontinued because of the unfavorable hepatic abnormalities. As a 
follow-up, one phase I study has been performed using CSL112, which is a similar 
compound, but postulated without eff ects on liver function. In this study, a single 
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dose (5, 15, 40, 70, 105 or 135 mg/kg) or multiple doses for 4 weeks (3.4 or 6.7 g 
once a week or 3.4 g twice a week) of CSL112 was administrated intravenously to 
healthy volunteers. Both the single and multiple doses, dose dependently increased 
serum apoA-I concentrations above baseline for 3 days or longer and increased 
serum HDL-C concentrations. Moreover, also pre-β HDL particle concentrations and 
cholesterol efflux capacity were increased. In the single dose study, dose-dependent 
effects were found on HDL-C.177,178 Recently, two studies showed that CSL112 was 
indeed safe for human consumption, with no effects on liver function parameters.179,180 

In the first study, patients with atherosclerosis were given infusions of 1.7, 3.4, 6.8 g 
CSL112 or placebo. The CSL112 infusions resulted in a dose-dependent increase in 
apoA-I and total cholesterol efflux.180 In the second study patients with myocardial 
infarction received infusions of 2 or 6 g CSL112 or placebo for 4 weeks. Here also a 
dose dependent increased in HDL-C, apoA-I and cholesterol efflux was shown (Table 

11).179

CER-001 

Mice infused with 10 mg/kg CER-001 showed an increased RCT and cholesterol 
efflux. In LDL-R knockout mice fed a high-cholesterol diet, infusion of 5 and 10 
doses of CER-001 given every 2 days reduced lesion size and lesion lipid content.181 

Besides animal studies, effects of CER-001 have already been evaluated in a number 
of human clinical trials. In one study, 417 patients with acute coronary syndromes 
were randomized for 6 weekly infusions of 3, 6, 12 mg/kg CER-001 or placebo. No 
changes in atheroma volumes were found. It was speculated that a higher dose or 
a different patient group would have shown more positive results.182 In a recent 
human study, 9 infusions of 8 mg/kg CER-001 were given twice weekly for 28 days 
to 7 patients with familial hypoalphalipoproteinemia, who were severely deficient in 
HDL. In this patient group, CER-001 significantly increased serum apoA-I and HDL-C 
concentrations and reduced atherosclerotic lesion size, measured using Magnetic 

Resonance Imaging. Moreover, an increase in cholesterol efflux from macrophages 
and a higher fecal neutral sterol excretion was seen, which may indicate improved 

RCT.183 Additionally, 12 biweekly infusions with 8 mg/kg CER-001 showed increased 
apoA-I concentrations, a decrease in vessel wall area and a trend towards a reduction 
in vessel wall thickness.184 Recently, a study evaluated the effects of 3 mg/kg CER-
001, in patients with atherosclerotic carotid artery disease, and showed increased 
apoA-I concentrations, with a simultaneously increased cholesterol efflux capacity 
(Table 11).185 Unfortunately, preliminary data of a recent clinical trial in patients with 

coronary atherosclerosis did not show beneficial effects of CER-001 on atheroma 
volume and LDL-C.186
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Others

RVX-208

The first class of compounds affecting apoA-I metabolism refers to the apoA-I 
transcriptional upregulator RVX-208. RVX-208 is an oral, small synthetic quinazoline 
molecule, which binds bromo and extra terminal (BET) proteins and upregulates 
apoA-I gene transcription via an epigenetic mechanism. 

In vitro, incubating HEPG2 cells with RVX-208 increased apoA-I mRNA 
expression, and intracellular and extracellular apoA-I protein mass. Treating three 
African Green Monkeys with 60 mg/kg RVX-208 orally daily for 63 days, increased 
serum apoA-I and HDL-C concentrations with 60% and 97% respectively. Moreover, 
also HDL profiles were changed; pre-β1-LpA-I and larger α1-LpA-I subpopulations 
were significantly increased, whereas α2-LpA-I was significantly decreased. In 
the treated animals also cholesterol efflux, measured in vitro using J774 cells, was 
significantly increased.187 Furthermore, in hyperlipidemic apoE knockout mice, 150 
mg/kg RVX-208 for 12 weeks significantly reduced aortic lesion formation, which 
was accompanied by an increase in serum HDL-C concentrations and a decrease in 
LDL-C concentrations, adhesion molecules and cytokines. However, no significant 
changes in apoA-I concentrations were observed.188

In the first human clinical trial, 18 healthy subjects received varying and multiple 
doses (1 to 20 mg/kg per day) of RVX-208 or placebo for 7 days. Plasma apoA-I 
concentrations were increased, and more importantly, an increase in pre-β1-HDL 
concentrations and a higher ABCA1-mediated cholesterol efflux was demonstrated.187 

The outcome of the recent phase 2 randomised placebo controlled clinical ASSERT 
trial, evaluating the effect of RVX-208 on serum apoA-I concentrations and CHD risk 
in human, was less positive. In that study, 299 patients with stable coronary artery 
disease received placebo or RVX-208 at three different dosages (50, 100, 150 mg) twice 
daily for 12 weeks. Only a non-significant increase in serum apoA-I concentrations 
was found. Unfortunately, HDL functionality and cholesterol efflux capacity were 
not studied.189 A second study using RVX-208 is the phase 2b clinical trial SUSTAIN. 
In this trial, 172 statin-treated patients (Rosuvastatin or Atorvastatin) with low serum 
HDL-C concentrations were treated with 200 mg/day RVX-208 for 24 weeks. Both 
serum apoA-I concentrations as well as HDL particle numbers increased significantly. 
Furthermore, RVX-208 was found to be safe for oral use.190 In another phase 2 clinical 
trial, the ASSURE study, 323 statin (Rosuvastatin or Atorstatin) treated patients with 
coronary artery disease and low serum HDL-C concentrations received 100 mg RVX-
208 twice daily for 26 weeks. However, no significant reductions in atheroma volume 
or increases in HDL-C and apoA-I concentrations were seen.31 Finally, a recent study 

in subjects with pre-diabetes showed that 100 mg RVX-208 for 29-33 days did not 



57

Dietary strategies and novel pharmaceutical approaches targeting serum apoA-I metabolism

2

increase HDL-C and apoA-I concentrations, while it increased the concentration of 
medium-sized HDL and decreased the concentration of small-sized HDL particles. 
Furthermore, RVX-208 delayed and reduced oral glucose absorption and endogenous 
glucose production (Table 12).191 

LCAT infusion

The fi rst human study investigating the eff ects of lecithin:cholesterol acyltransferase 
(LCAT) infusion investigated only one patient with familial LCAT defi ciency. 
Recombinant human LCAT was infused 3 times for 1 hour in a dose optimization 
phase (0.3, 3.0, and 9.0 mg/kg) and after this 1 to 2 weekly infusions were given of 3.0 
or 9.0 mg/kg for 7 months. LCAT infusion improved renal function, increased apoA-I, 
HDL-C and in a lesser extend LDL-C. Furthermore, after infusion, postprandial 
triacylglycerol concentrations decreased.192 These results are promising; however, 
before drawing conclusions about LCAT infusion clinical trials including more 
patients should be done. 

Conclusion

Alcohol consumption increases fasting apoA-I concentrations and may improve 
cholesterol effl  ux, possibly via increasing apoA-I PR and decreasing FCR. Further, 
replacement of carbohydrates for SFA, cis-MUFA, cis-PUFA and TFA increases fasting 

apoA-I concentrations. The eff ects of the various SFA are diff erent, since lauric, 
palmitic and myristic acids increase apoA-I concentrations, while stearic acid does 
not. The diff erent fatty acids aff ect apoA-I metabolism diff erently, but results are 
confl icting. Therefore more studies are needed to better understand the eff ects of the 
various macronutrients on apoA-I kinetics.

Coff ee, caff eine, tea, omega 3 fatty acid, fi sh, nuts, plant sterol and stanol, 
diff erent soy proteins and isofl avones isolated from soy do not change fasting apoA-I 
concentrations. Moreover, the eff ects of the various types of fi bers may be diff erent; 
the consumption of diets rich in wheat germ did not modify apoA-I concentrations, 
while the consumption of diets rich in psyllium, arabinoxylan and fl axseed may 
decrease fasting apoA-I concentrations. However, these types of fi bers have only 
been examined in a limited number of studies. Therefore, we conclude that fi ber 
consumption does not have a profound impact on fasting apoA-I concentrations. 

Finally, fi ve other food components showed a promising increase in fasting 
apoA-I concentrations; citrus, vitamin D, theobromine, orange juice, and a high dose of 
grape pomace and omija fruit. However, these fi ndings need to be confi rmed in future 
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studies. Additional research is also needed to examine the effects of these products or 
food components not only on apoA-I kinetics, but also on HDL functionality. 

Overall, all three categories of pharmacological approaches showed that targeting 

apoA-I concentrations and/or HDL functionality by a pharmacologic approach can 
increase apoA-I functionality and might improve CHD risk markers, including vessel 
wall characteristics and inflammation. The mimetic D-4F is promising, but clinical 
studies are required to investigate the effects on HDL functionality. The CSL112 and 
CER-001 are the most promising of the infusion therapies, but studies are needed 
to investigate the effects of CSL112 on CHD risk markers, including vessel wall 
characteristics and inflammation. Unfortunately, recent clinical studies showed no 
improvement in CHD risk markers after apoA-I Milano or RVX-208 therapy.

Although we cannot exclude that we have missed studies during the systematic 

searches and studies with positive results are overrepresented, we conclude that both 

dietary components and pharmacological approaches can be used to increase apoA-I 
concentrations. For the dietary components in particular, more knowledge about 
underlying mechanisms is necessary, as increasing apoA-I per se does not necessarily 
translate into a reduced CHD risk.
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Abstract

Postprandial responses predict cardiovascular disease risk. However, only a few 
studies have compared acute postprandial effects of a low-fat, high-carbohydrate 
(LF) meal with a high-fat, low-carbohydrate (HF) meal. Furthermore, theobromine 
has favorably affected fasting lipids, but postprandial effects are unknown. As 
both fat and theobromine have been reported to increase fasting apolipoprotein 

A-I (apoA-I) concentrations, the main hypothesis of this randomized, double blind 
crossover study was that acute consumption of a HF meal and a theobromine meal 

increased postprandial apoA-I concentrations, when compared with a LF meal. 
Theobromine was added to the LF meal. Nine healthy men completed the study. 
After meal intake, blood was sampled frequently for 4 hours. Postprandial apoA-I 
concentrations were comparable after intake of the three meals. Apolipoprotein 
B48 (apoB48) curves, however, were significantly lower and those of triacylglycerol 
(TAG) significantly higher after HF as compared with LF consumption. Postprandial 
free fatty acid concentrations decreased less, and glucose and insulin concentrations 

increased less after HF meal consumption. Except for an increase in the incremental 
area under the curve (iAUC) for insulin, theobromine did not modify responses of 
the LF meal. These data shows that acute HF and theobromine consumption does 
not change postprandial apoA-I concentrations. Furthermore, acute HF consumption 
had divergent effects on postprandial apoB48 and TAG responses, suggesting the 
formation of less, but larger chylomicrons after HF intake. Finally, except for an 
increase in the iAUC for insulin, acute theobromine consumption did not modify the 

postprandial responses of the LF meal.
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Introduction

Increasing evidence suggests that not only fasting lipid and glucose concentrations, 
but also a disturbed postprandial triacylglycerol (TAG) and glucose metabolism 
are important risk markers for cardiovascular disease (CVD).1 In fact, Bansal and 
colleagues. have shown that the number of CVD events was more strongly related to 
postprandial TAG concentrations (2-4 hours after meal consumption) than to fasting 
TAG concentrations.2 Not only postprandial TAG, but also overall glycemic control3 

and postprandial glycaemia4 are related to CVD risk. Moreover, a tight glycemic 
control of diabetic patients clearly lowered the risk for CVD events.5 

Although a substantial number of studies have examined the eff ects of 
changing the amount and types of fat in the diet on fasting lipid, lipoprotein and 

glucose concentrations,6,7 only a few studies have addressed their eff ects during 
the postprandial phase. It is known that fat intake dose-dependently increases 
postprandial plasma TAG concentrations,8,9 especially in the chylomicron fraction.8 
In addition, a smaller decrease in postprandial free fatty acid (FFA) concentrations 
was observed after consuming a high-fat meal as compared with a fat-free meal.10 

Besides changing the amount and type of fat in the diet, it is also possible to 
enrich the diet with functional ingredients to improve metabolic profi les related to 
CVD risk. Several studies have shown that consuming cocoa or cocoa-containing 
products improves fasting lipid profi les.11 Theobromine is one of the compounds in 

cocoa, which may contribute to these benefi cial eff ects. In fact, Neufi ngerl et al. have 
shown that a higher intake of theobromine improved dyslipidemia by increasing 

fasting serum high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A-I 
(apoA-I) concentrations and by lowering fasting serum apolipoprotein B (apoB) and 
low-density lipoprotein cholesterol (LDL-C) concentrations.12 

The eff ects of theobromine on postprandial lipid, apolipoprotein and glucose 
metabolism have not been explored yet. We now hypothesized that both the HF meal 
and theobromine consumption increased postprandial apoA-I concentrations when 
compared with a LF meal. Therefore, we have evaluated side-by-side the acute eff ects 
of a low-fat/high-carbohydrate (LF), a high-fat/low-carbohydrate (HF) meal as well 
as adding theobromine to a LF meal (LF-TB) on postprandial lipid, apolipoprotein 
and glucose metabolism in apparently healthy men. The theobromine was added to 
the LF meal to minimize the possibility that dietary fat content masked the potential 
theobromine eff ect on apoA-I. 
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Material and Methods
Study population
Ten apparently healthy men from Maastricht and surrounding areas were recruited 

via posters in the university and hospital buildings. They were invited for a screening 
visit if they met the following inclusion criteria: 18-60 years of age, BMI between 
20 and 30 kg/m2, stable body weight (weight gain or loss < 3 kg in the previous 3 
months), no use of lipid-lowering medication or a prescribed diet, no abuse of alcohol 
or drugs, no smoking, no diabetes, no history of coronary artery disease, no history of 

gastrointestinal disorders and no participation in another lifestyle or pharmaceutical 

intervention study for the past 30 days. During the screening visit, body weight, height 
and blood pressure were determined. Blood pressure was measured in fourfold using 
an Omron M7 (Omron Healthycare Europe B.V., Hoofddorp, the Netherlands). The 
first blood pressure measurement was discarded and the last three measurements 
were averaged. During screening, fasting blood was sampled for analysis of serum 
total cholesterol and plasma glucose concentrations. Subjects were excluded if 
fasting serum total cholesterol concentrations were > 8.0 mmol/L or plasma glucose 
concentrations were > 7.0 mmol/L. Once included, subjects were asked not to change 
their dietary habits, level of physical exercise and alcohol intake for the entire duration 

of the study. This study was conducted according to the guidelines laid down in the 
Declaration of Helsinki. The study protocol was approved by the Medical Ethical 
Committee of the Maastricht University Centre+. All participants gave their written 
informed consent before entering the study. Finally, the study was registered on 
clinicaltrials.gov under study number NCT02085109.

Study design
This randomized double-blind crossover trial consisted of three test days, each 

separated by a one week wash-out period. Two weeks before the start of the study, 
subjects were instructed to avoid products containing cocoa till the end of the 
study period. For this, they received a detailed list with food products from our 
research dietician. In addition, two weeks before the start of the study, also the 
consumption of caffeine containing drinks was restricted, i.e. to a maximum of 4 
cups a day, since theobromine is a metabolite of caffeine. Moreover, participants were 
instructed to keep their caffeine intake constant during the study. In theory, these 
4 caffeine-containing drinks could have resulted in the formation of maximally 80 
mg of theobromine,13 which is ± 9.4% of the additional experimental theobromine 
intake during the study. Finally, during the test days caffeine intake was completely 
prohibited. To minimize differences in dietary background between the three test 
days, we provided all subjects with a standard low-fat dinner the evening before 
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each test day, which consisted of a commercially available macaroni dish, 3 crackers, 
and a dairy drink. In addition, they were asked not to change their dietary habits or 
levels of physical activity. Furthermore, participants recorded in diaries any signs of 
illness, medication used, alcohol consumption, any deviations of the study protocol 

and other complaints. They also recorded their food intake to estimate their habitual 
energy and nutrient intakes during the week before every test day by completing 

a food frequency questionnaire (FFQ). These FFQs were checked and processed by 
our research dietician using the Dutch Nutrient databank14 to check whether dietary 

energy and nutrient intakes had remained stable during the study.

Test days
Subjects came to the University in the morning in fasting condition, which meant 
that after the intake of the standardized dinner on the preceding evening, they had 

not consumed any foods or drinks, except for water, till the morning of the test day. 
Participants arrived at our department by public transport or by car to reduce physical 

activity as much as possible. Upon arrival, after 15 min of rest, an intravenous cannula 
was inserted into the anticubital vein and a fasting blood sample was collected (T0). 
Next, subjects were asked to consume a shake within 10 minutes. Each of the three 
test days the participants had to consume a diff erent shake in randomized order; one 
high-fat/low-carbohydrates (HF) shake, one low-fat/high-carbohydrates (LF) shake 
and one low-fat/high-carbohydrates shake enriched with 850 mg theobromine (LF-
TB) (Table 1). The theobromine powder (850 mg; Fagron, Uitgeest, the Netherlands) 
was added as the last ingredient to the blender jar before it was thoroughly mixed 
with the LF shake. The volume of the LF shake was 613 ml and of the HF shake was 
453 ml. To standardize the total volume, a glass of 160 ml of water was given together 
with the HF shake. Protein levels of the three shakes were comparable, which means 
that the only diff erence between the HF and LF shakes were the levels of fat and 
carbohydrates (Table 1). As the shakes were prepared by the research dietician, both 
the researchers who performed the measurements and the participants were blinded 

for the interventions.
After consuming the shakes, the volunteers were not allowed to eat or drink 

anything except water for the next 5 hours. Postprandial blood samples were taken at 
T = 15 (T15), T = 30 (T30), T = 45 (T45), T = 60 (T60), T = 90 (T90), T = 120 (T120), T = 
180 (T180) and T = 240 (T240) minutes after shake consumption. 

Blood sampling
Blood was sampled in serum, EDTA- and NaF-containing vacutainer tubes (Becton 
Dickinson, Breda, The Netherlands). The EDTA and NaF tubes were placed on ice 
directly after sampling and were centrifuged at 1300 x g for 15 min at 4˚C within 60 
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min after sampling to obtain EDTA and NaF plasma. Serum tubes were allowed to 
clot for 1 hour at 20˚C, followed by centrifugation at 1300 x g for 15 min at 20˚C to 
obtain serum. Serum and plasma aliquots were stored at -80˚C until analyses. 

Table 1 Nutrient composition of the LF, HF and LF-TB shakes1

Nutrient HF LF LF-TB
Energy (kcal) 965 956 956
Protein (g) 17.9 19.4 19.4
                  (E%)1 7 8 8
Carbohydrates (g) 85.7 193.7 193.7
                  (E%) 35 81 81
Mono- and disaccharides (g) 45.6 144.9 144.9
Polysaccharides (g) 40.1 48.8 48.8
Total fat (g) 60.6 10.5 10.5
                  (E%) 56 10 10
Saturated fatty acids (g) 36.0 3.2 3.2
Monounsaturated fatty acids (g) 18.7 4.0 4.0
Polyunsaturated fatty acids (g) 4.1 1.1 1.1
Cholesterol (mg) 341 334 334
Theobromine (mg) 0 0 850
1 Abbreviations: LF: low-fat, HF: high-fat, LF-TB: low-fat with 850 mg theobromine, E%: energy percent.

Analyses
All samples from one subject were analyzed within the same analytical run at the end 
of the study. Plasma glucose (Roche Diagnostic Systems, Woerden, the Netherlands) 
and FFA (Wako Biochemicals, Richmond, USA) concentrations were measured in 
NaF plasma at all indicated time points during the postprandial tests. At the same 
time points, serum insulin concentrations were determined with a human insulin-

specific radioimmunoassay (RIA) kit (Linco Research, Missouri, USA). Serum TAG 
concentrations (GPO Trinder; Sigma-Aldrich, Missouri, USA) with correction for 
free glycerol were measured at T0, T30, T60, T90, T120, T180 and T240. At these time 
points, also serum apolipoprotein B48 (apoB48) concentrations were measured with 
an ELISA kit (Shibayagi, Gunma, Japan).  ApoA-1 and apolipoprotein B100 (apoB100) 
were analyzed using highly sensitive immunoturbidimetric assays (Horiba ABX, 
Montpellier Cedex 4 France) in serum at all time points during postprandial tests. 

Statistical analyses
Power calculations were based on an expected true difference in postprandial apoA-I 
concentrations between diets at a certain time point of 0.07 g/L. This value was 
based on the observations of Neufingerl et al. who found this difference in fasting 
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apoA-I concentrations after 4-weeks consuming 850 mg of theobromine/day.12 When 

a within-subject variability of 0.06 g/L was used, the statistical power to detect 
this diff erence between the diets was 80% (α=0.017), when 8 subjects successfully 
completed the study. As the expected drop-out rate was 20%, we recruited 10 men. 

All data is presented as means ± SE unless otherwise indicated. Diff erences in 
fasting concentrations and FFQ results were evaluated by repeated-measures analysis 
of variance (ANOVA) with diet as within subject factor and Bonferroni as post hoc test. 

To test diff erences in postprandial responses after meal intakes, two diff erent 
analyses were performed. First, the incremental areas under the curves (iAUC) were 
calculated using the trapezoidal rule,15 for the overall postprandial TAG, apoB48, 
glucose and insulin responses. Because the oral glucose tolerance test (OGTT) is 
normally performed till T120,16,17 the iAUCs for glucose and insulin were calculated 

for T0-T120 as well as for T0-T240. For FFA, the decremental area under the curve 
(dAUC) was calculated. iAUC and dAUC values were not normally distributed, as 
tested with the Shapiro-Wilk test, and are reported as medians with ranges. Diff erences 
between meal eff ects were tested for statistical signifi cance using a Friedman test. 
When the Friedman test was signifi cant, a Wilcoxon signed rank test was performed 
to compare the diets pairwise. Second, changes from baseline were analyzed by linear 
mixed models with diet and time as fi xed factors and a diet x time interaction. If this 
interaction was not signifi cant, it was omitted from the model. If diet was signifi cant, 
the diets were compared pairwise. If time was signifi cant, time points were compared 
to baseline values. If the interaction term was signifi cant, diff erences between the 
diets were tested at each individual time point. Bonferroni’s corrections for multiple 
comparisons were used. 

Results were considered to be statistically signifi cant if p ≤ 0.05. All statistical 
analyses were performed using SPSS 20.0 for Mac (SPSS Inc., Chicago, IL, USA).

Results 
Subject characteristics
All ten men that started the study completed the three postprandial test days. However, 
one subject was excluded from the statistical analysis due to protocol violation, since 
he was non-fasting at one of the test days, as indicated by clearly increased fasting 

TAG, glucose and apoB48 concentrations (Figure 1). Baseline characteristics of the 
remaining nine men are shown in Table 2.
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Figure 1 Flow chart of participant inclusion throughout the study

FFQ 

Based on the FFQ data, there were no differences in energy, fat, carbohydrate, protein, 
cholesterol or fiber intakes during the weeks preceding each of the three test days 
(Table 3).

Table 2 Baseline characteristics of the participants1 

Mean±SD
Age (years) 36 ± 15
BMI (kg/m2) 1 24.4 ± 1.9
Serum total cholesterol (mmol/L) 5.1 ± 0.9
Plasma glucose (mmol/L) 5.0 ± 0.3
Systolic blood pressure (mmHg) 129 ± 17
Diastolic blood pressure (mmHg) 76 ± 15
1 Data are reported as means ± SD, n=9. 
Abbreviations: BMI: Body mass index 
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Table 3 Composition of the habitual diets as consumed in the week before the LF, HF and LF-TB test days1

HF LF LF-TB
Energy (kcal/day) 2643 ± 534 2699 ± 742 2865 ± 542
Protein (E%) 15.4 ± 2.7 15.5 ± 3.5 15.2 ± 1.7
Carbohydrates (E%) 39.5 ± 5.8 39.3 ± 5.5 40.8 ± 6.3
Total fat (E%) 38.1 ± 6.0 39.8 ± 8.0 38.0 ± 7.2
Saturated fatty acids (E%) 11.5 ± 2.5 12.6 ± 3.5 11.9 ± 2.8
Monounsaturated fatty acids (E%) 14.8 ± 1.9 14.8 ± 4.4 14.4 ± 2.7
Polyunsaturated fatty acids (E%) 8.3 ± 2.2 8.8 ± 2.2 8.5 ± 1.9
Alcohol (E%) 5.0 ± 3.2 3.5 ± 2.8 3.8 ± 2.0
Cholesterol (mg/day) 254 ± 110 275 ± 149 272 ± 107
Fiber (g/day) 23.5 ± 7.8 26.9 ± 8.7 27.3 ± 4.7
1 Data are reported as means ± SD, n=9. 
ANOVA with diet as within subject factor and Bonferroni as post hoc test were conducted to determine signifi -
cance between the diets. 
Abbreviations: LF: low-fat, HF: high-fat, LF-TB: low-fat with 850 mg theobromine.

Postprandial lipids, apolipoproteins, glucose and insulin
Fasting serum lipid, apolipoprotein, glucose and insulin concentrations at the start of 

the three test days were comparable (Table 4). 
For both apoA-I and apoB100, no signifi cant diet eff ects were observed. 

However, changes in apoA-I and apoB100 showed a signifi cant time eff ect (Figure 

2). After meal consumption, serum apoA-I concentrations were lowered at T120 from 

Figure 2 A. Mean changes in serum apoA-I concentrations after LF, HF or LF-TB consumption. B. Mean 
changes in serum apoB100 concentrations after LF, HF or LF-TB consumption. 
Data are reported as mean changes ± SE, n=9. 
Linear mixed model procedures were conducted to determine signifi cance between the diets, signifi cantly diff er-
ent from the HF diet * (p<0.05). 
Abbreviations: apoA-I: apolipoprotein A-I, LF: low-fat, HF: high-fat, LF-TB: low-fat with 850 mg theobromine, 
apoB100: apolipoprotein B100.
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baseline (p = 0.028). Postprandial apoB100 concentrations were lowered between 
T30-T180 from baseline (p ≤ 0.044 at all time points). 

Table 4 Fasting TAG, FFA, apoB48, apoA-I, apoB100, glucose and insulin concentrations at the start of the LF, 
HF and LF-TB test days1

HF LF LF-TB
TAG (mmol/l) 1.03 ± 0.44 1.09 ± 0.29 1.06 ± 0.37
ApoB48 (ng/ml) 6090 ± 2790 6879 ± 2336 6524 ± 2346
FFA (μmol/l) 484 ± 197 457 ± 175 490 ± 133
ApoA-I (g/l) 1.39 ± 0.89 1.39 ± 0.21 1.39 ± 0.26
ApoB100 (g/l) 0.96 ± 0.18 1.01 ± 0.16 0.96 ± 0.17
Glucose (mmol/l) 5.62 ± 0.44 5.50 ± 0.32 5.72 ± 0.30
Insulin (μU/ml) 11.7 ± 4.0 11.1 ± 2.6 10.2 ± 2.7
1 Data are reported as means ± SD, n=9. 
ANOVA with diet as within subject factor and Bonferroni as post hoc test were conducted to determine signifi-
cance between the test days. 
Abbreviations: TAG: triacylglycerol, FFA: free fatty acids, apoB48: apolipoprotein B48, apoA-I: apolipoprotein 
A-I, apoB100: apolipoprotein B100 LF: low-fat, HF: high-fat, LF-TB: low-fat with 850 mg theobromine.

For changes in postprandial TAG concentrations, the diet x time interaction reached 
statistical significance (Figure 3). Increases in serum TAG concentrations were 
higher after the HF meal as compared with the LF and LF-TB meals at T120 (p = 
0.002 and p < 0.001, respectively), T180 (both p<0.001) and T240 (p = 0.004 and p = 
0.012, respectively). As shown in Table 5, the iAUC for serum TAG concentrations 
was higher after the HF as compared with the LF and LF-TB meals (p = 0.038 and p 
= 0.011 respectively).

As shown in Figure 3, the diet x time interaction was also significant for changes 
in serum apoB48 concentrations (p = 0.042). Changes in apoB48 concentrations were 
less pronounced after the HF meal as compared with the LF and LF-TB meals at T180 
(both p < 0.001) and T240 (p = 0.001 and p = 0.003, respectively). The iAUCs for serum 
apoB48 were not different between the three meals (Table 5). 

The diet x time interaction for changes in FFA also reached statistical significance 
(Figure 3). Overall, plasma FFA concentrations decreased during the postprandial 
period, but less pronounced after the HF meal as compared with the LF and LF-TB 
meals at T180 (p = 0.002 and p = 0.005, respectively) and T240 (p = 0.010 and p = 0.026, 
respectively). As shown in Table 5, the dAUC for plasma FFA tended to be smaller 

after the HF compared with LF meal (p = 0.097), whereas the dAUC after the HF meal 
was lower than after the LF-TB meal (p = 0.021).
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Figure 3 A. Mean changes in serum TAG concentrations after LF, HF or LF-TB consumption. B. Mean changes 
in serum apoB48 concentrations after LF, HF or LF-TB consumption. 
Data are reported as mean changes ± SE, n=9. 
Linear mixed model procedures were conducted to determine significance between the diets, significantly differ-
ent from the HF diet * (p<0.05), ** (p<0.01), *** (p<0.001). Abbreviations: TAG: triacylglycerol, LF: low-fat, 
HF: high-fat, LF-TB: low-fat with 850 mg theobromine, apoB48: apolipoprotein B48 

The diet x time interaction for changes in glucose reached statistical significance 
(Figure 4). Increases in concentrations were lower after the HF meal as compared 
with the LF and LF-TB meals at T15 (p = 0.007 and p = 0.004, respectively) and T30 (p 
= 0.006 and p = 0.003, respectively) and were higher at T180 (p = 0.006 and p = 0.003, 
respectively). The iAUCs till T120 was higher after the LF-TB meal compared with the 
HF meal (p = 0.015) and tended to be higher after the LF meal compared with the HF 
meal (p = 0.066). However, the iAUCs till T240 did not differ between the three diets 
(Table 5). Changes in insulin showed a significant diet and time effect. Postprandial 
changes in plasma insulin concentrations were lower after the HF meal when 

compared with the LF and LF-TB meals (p = 0.046 and p < 0.001, respectively). After 
meal consumption changes in insulin concentrations were significantly increased at 
T15-T120 from baseline (p < 0.05 at all time points) (Figure 4). The iAUCs till T240 and 
T120 were both higher after the LF and LF-TB meal compared with the HF meal (all 
p = 0.008). In addition, the iAUC till T240 was greater comparing the LF-TB with the 
LF meal (p = 0.021, Table 5).
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Figure 4 Mean changes in plasma FFA concentra-
tions after LF, HF or LF-TB consumption. 
Data are reported as mean changes ± SE, n=9. 
Linear mixed model procedures were conducted to de-
termine signifi cance between the diets, signifi cantly 
diff erent from the HF diet * (p<0.05), ** (p<0.01). 
Abbreviations: FFA: free fatty acid, LF: low-fat, HF: 
high-fat, LF-TB: low-fat with 850 mg theobromine.

Figure 5 A. Mean changes in plasma glucose concentrations after LF, HF or LF-TB consumption. B. Mean 
changes in serum insulin concentrations after LF, HF or LF-TB consumption. 
Data are reported as mean changes ± SE, n=9. 
Linear mixed model procedures were conducted to determine signifi cance between the diets, signifi cantly diff er-
ent from baseline * (p<0.05), Signifi cantly diff erent from the HF diet ** (p<0.01). 
Abbreviations: LF: low-fat, HF: high-fat, LF-TB: low-fat with 850 mg theobromine.
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Discussion

Our hypothesis that both a HF diet and dietary theobromine increased postprandial 

apoA-I concentrations, when compared with a LF diet was rejected. However, 
we found that consumption of a HF meal showed a more pronounced increase in 

postprandial serum TAG concentrations as compared with a LF meal. Increased 
appearance of dietary fats incorporated into chylomicrons in the circulation is a 

normal physiologic response after a meal. Unexpectedly, the postprandial increase 
in apoB48 concentrations was less after intake of the HF meal as compared with the 
LF meal. This suggests the formation of less, but larger TAG-rich chylomicrons after 
HF meal consumption.  Further, we expected congruent TAG and apoB48 responses 
during the postprandial phase, but the increase in serum apoB48 concentrations 
preceded the serum TAG response during the first 30 min of the postprandial phase 
after all meals. As expected, postprandial glucose and insulin responses were lower 
comparing HF with LF meal consumption, and postprandial FFA responses were less 
reduced comparing HF with LF meal consumption. When 850 mg of theobromine 
was added to a LF meal, there were no apparent changes in postprandial lipid and 
apolipoprotein responses. However, a significantly higher iAUC was observed for 
insulin concentrations after the addition of theobromine to the LF meal suggesting 
that more insulin was needed for maintaining glucose homeostasis. 

The higher postprandial serum TAG concentrations and lower postprandial plasma 
glucose and insulin concentrations after the HF meal reflect the higher amount of fat 
and lower amount of carbohydrates in this meal. These findings are in line with those 
of earlier studies.8,9,10,18 

Interestingly, after both the HF and LF meal apoB48 concentrations increased 
already within 30 min after meal consumption, while serum TAGs were not yet 
increased at this time point. For this, there are at least two explanations. First, the very 
first chylomicrons, which are already released before a meal enters the small intestine19 

and appear in the blood after food intake, contain pre-synthesized apoB48 proteins 
together with stored lipids from the previous meal.20,21 Although in our study subjects 
consumed a low fat meal the evening before the three test days, it may be possible that 

the pre-synthesized apoB48 particles still contained small amounts of TAG, already 
present within the enterocyte. Why enterocytes synthesize apoB48 proteins when there 
are no or relatively low amounts of TAGs in the enterocytes is unknown. A second 
potential explanation for the absent increase in serum TAG concentrations during 
the first 30 minutes after the meal, while apoB48 concentrations already increased 
can be due to a postprandial decrease in very low density lipoprotein (VLDL) TAG 
concentrations.21,22 The postprandial increase in insulin lowers VLDL production via 
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targeting apoB100 for degradation23 and limiting apoB100 synthesis.24 This decrease 

in VLDL TAG concentrations can counterbalance the increase in chylomicron TAG 
concentrations and explain the early peak in apoB48 concentrations without a rise 
in serum TAG concentrations. In this respect, our results are unfortunately diffi  cult 
to compare with those of other studies, as no measurements were performed 30 min 
after meal consumption. However, after 1 hour, increases in both TAG and apoB48 
have been reported,25,26 which agrees with our fi ndings.  

Surprisingly, signifi cantly higher postprandial apoB48 concentrations were observed 
after LF consumption than after HF consumption. Tremblay et al. observed a similar 
phenomenon after 3 days LF consumption compared with HF consumption.27 The 

higher increase in apoB48 protein concentrations after the LF meal may be triggered 
by the higher level of monosaccharides in the LF meal, as intraduodenal infusion 
of a lipid and glucose emulsion increased postprandial apoB48 concentrations more 
as compared with infusing a lipid emulsion only.28 Furthermore, consumption of fat 

with fructose or glucose signifi cantly increased postprandial apoB48 concentrations 
as compared with consuming fat only.29,30 Moreover, fast available carbohydrates 

increased postprandial apoB48 responses as compared with slow available 
carbohydrates.25 This would imply that fat together with carbohydrate intake rather 

than fat intake alone fuels apoB48 formation. As we consume in daily practice not 
solely fat, these observations deserves further attention, since it suggests that the 

ratio of dietary fat to carbohydrates and the type of carbohydrates regulate intestinal 

chylomicron production and as such determine the type of chylomicrons that are 

produced. 

Chylomicrons are heterogeneous particles that can vary in size according to the rate 

of fat absorption and the type and amount of fat absorbed, as shown in rabbits and 

dogs.31 Our data now suggests that after a HF meal the lower numbers of chylomicrons 

are larger and contain more TAG than after a LF meal. During postprandial lipid 
metabolism32,33 these larger chylomicrons are transformed into small, dense 

chylomicron remnants. Although it is well accepted that small dense LDL particles 
are more atherogenic than larger LDL particles,34 the atherogenic capacity of small 

dense chylomicron remnants versus less dense chylomicron remnants is not known. 
On the other hand, after the LF meal a larger increase in apoB48 is observed which 
means that more but smaller chylomicron particles are formed. This leads to a larger 
number of chylomicron remnants, which might increase the risk for atherosclerosis.35 

It is not known which type of chylomicron particle, fewer and larger or more and 
smaller, are worse. Furthermore, in this study we only examined the acute eff ects 
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after high- or low-fat meal consumption and it is not known how these findings 
translate to changes after chronic high- or low-fat consumption.

Reductions in postprandial FFA concentrations were significantly more 
pronounced after LF meal consumption as compared with HF meal consumption. 
This finding is in line with other studies36 and can be explained by the higher amount 

of monosaccharides in the LF shake, which causes higher glucose and consequently 
higher insulin concentrations. Insulin activates LPL on the endothelium of adipose 
tissue causing an increased TAG storage in the adipose tissue. Furthermore, insulin 
inhibits TAG lipolysis, leading to a lower appearance of FFA in the blood.37 This 

explains the more pronounced decrease in FFA seen after LF meal consumption.  
Finally, no difference in apoA-I or apoB100 concentrations was found after 

HF and LF meal consumption. This supports the findings of Khoury et al. who also 
showed no postprandial variations in apoA-I concentrations after high-fat meal 
consumption compared with protein or carbohydrate consumption.38 

It has been shown that 4 weeks of theobromine consumption increased fasting 
serum HDL-C and apoA-I concentrations and decreased those of LDL-C and 
apoB.12 However, this is the first human study that examined the acute postprandial 
effects of theobromine. As the intestine is a major source for apoA-I production, 
we were particularly interested to see if acute theobromine intake would increase 

postprandial apoA-I concentrations against a LF background. A LF background 
diet was chosen, as high-fat diets already increase fasting apoA-I concentrations.26 

However, postprandial apoA-I, apoB100, apoB48, TAG and FFA did not change 
after acute theobromine consumption. For these differences in acute postprandial 
and chronic fasting effects of theobromine are at least three possible explanations. 
First, it is possible that theobromine only has beneficial effects after longer-term 
consumption. Second, we measured the postprandial response for 4 hours, which 
may have been too short. Theobromine is effectively absorbed in the intestine39 and 

peak plasma concentrations are usually seen 3 hours after theobromine consumption. 
After absorption, theobromine is transported to the liver where it is metabolized. 
Peak concentrations of its main metabolites, 7-methylxanthine and 3-methylxanthine, 
are found 3 to 7.5 hours after theobromine consumption.40 In our study, blood was 
sampled up to 4 hours after meal consumption. If the metabolites of theobromine are 
responsible for the effects seen in the fasting state, it is possible that we may have 
missed such effects in our 4-hour postprandial study. Third, it is also possible that 
theobromine does not change postprandial lipid metabolism at all. 

Glucose and insulin both showed a small non-significant increase after 45 min of 
LF-TB consumption compared with LF meal consumption. Furthermore the iAUC of 
insulin till T240 was larger after the LF-TB meal compared with the LF meal. Whether 
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this indicates a decrease in insulin sensitivity after theobromine consumption needs 

further study.

Our study has several limitations. First, only healthy men were studied and more 
research is needed to conclude if our results can be extrapolated to women or less 

healthy population groups. Moreover, we performed an acute study and it cannot 
be excluded that more or diff erent pronounced postprandial eff ects of theobromine 
and dietary fat are evident after longer-term intakes. Finally, we did deliberately not 
include a HF-TB treatment, as we wanted to minimize the possibility that the dietary 
fat content of the meal masked the potential theobromine eff ect on apoA-I. However, 
it cannot be excluded that theobromine eff ects are changed by the amount of fat in 
the diet.

In healthy men, HF meal consumption induced lower postprandial apoB48 responses 
as compared to LF meal consumption. Together with a higher TAG response, this 
suggests the formation of less, but larger chylomicrons. Whether this translates into 
the formation of potentially atherogenic small dense chylomicron remnants needs 

further study. In addition, acute theobromine consumption did not aff ect postprandial 
lipid metabolism. Furthermore, acute HF or theobromine consumption did not aff ect 
postprandial apoA-I concentrations.
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Abstract

Background and aim Increasing apolipoprotein A-I (apoA-I) synthesis may improve 
high-density lipoprotein (HDL) functionality and lower cardio vascular disease 
(CVD) risk. As theobromine and fat have been reported to increase fasting serum 
apoA-I concentrations, and the intestine is involved in apoA-I production, the acute 
effects of theobromine and fat on gene transcription in the duodenum were studied 
to better understand underlying mechanisms.

Material and methods In this crossover study, 8 healthy men received in random 
order once a low fat (LF) meal as control, the LF meal plus theobromine (850 mg), 
or a high fat (HF) meal. Before and after meal intake, blood samples were taken for 
the analysis of inflammation markers, endothelial markers and intestinal fatty acid-
binding protein (IFABP). Five hours after meal intake duodenal biopsies were taken 
for microarray analysis.

Results Theobromine and HF meal consumption did not change duodenal apoA-I 
mRNA expression. Adding theobromine to a LF meal did not change the expression 
of genes related to lipid and cholesterol metabolism, whereas those related to 

glycogen and glucose breakdown were downregulated. HF consumption increased 
the expression of genes related to lipid and cholesterol uptake and transport, and 

to glucose storage, while it decreased those related to glucose uptake. Furthermore, 
genes related to inflammation were upregulated, but plasma inflammation markers 
and IFAPB were not changed. 

Conclusion In healthy men, acute theobromine and fat consumption did not change 
apoA-I expression in the duodenum. Both theobromine and HF consumption 
inhibited gene expression related to the glucose metabolism. Furthermore, HF intake 
activated in the duodenum the expression of genes related to lipid and cholesterol 

metabolism and inflammation.  
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Introduction

Over the past decade, interventions aiming to increase serum high-density lipoprotein 

(HDL) cholesterol (HDL-C) concentrations to reduce the risk of cardiovascular disease 
(CVD) have not been successful. Recent insights, however, suggest that improving 
HDL functionality will more likely lower CVD risk than simply elevating circulating 
serum HDL-C concentrations.1 In this respect, increasing serum apolipoprotein A-I 
(apoA-I) synthesis may be a promising approach, as serum apoA-I concentrations 
correlate with in vitro cholesterol effl  ux, a measure of HDL functionality.2-4 For this, 

various pharmaceutical approaches are currently explored.5 However, as a preventive 

strategy at a population level, dietary strategies are more useful. Unfortunately, the 
number of (novel) dietary components that increase apoA-I production is limited. 
Theobromine, a component from cocoa, has been reported to increase fasting serum 

apoA-I concentrations.6 Mechanisms explaining the eff ects of theobromine on fasting 
serum apoA-I concentrations are however not clear. Since apoA-I is produced in 
enterocytes and hepatocytes,7 and theobromine is absorbed in the small intestine,8,9 

we were interested in exploring the eff ects of acute theobromine consumption on gene 
expression in postprandial human duodenal biopsies, following theobromine intake. 
Duodenal biopsies were used because apoA-I secretion is higher in the duodenum as 
compared with other parts of the intestine.10

Except theobromine, also exchanging carbohydrates for fatty acids increases 

fasting serum apoA-I concentrations.11,12 Although the intestine is strongly involved 

in dietary lipid handling, the eff ects of fat intake on duodenal gene expression profi les 
have not been studied. Only a limited number of studies compared the eff ects of 
a low-fat/high-carbohydrate (LF) with a high-fat/low-carbohydrate (HF) meal on 
gene expression profi les, and so far only in human muscle biopsies13-15 and peripheral 

blood mononuclear cells (PBMCs).16 We therefore used a nutrigenomic approach to 

analyze diff erences in gene expression in human duodenal biopsies after adding 850 
mg of theobromine to a LF meal, and after comparing HF with LF meal consumption 
to better understand eff ects of dietary theobromine and fat on duodenal apoA-I 
transcription and related pathways. 

Material and methods
Study population and design
The design and results of the metabolic parameters of this double-blind crossover 

study have already been reported.17 Briefl y, ten apparently healthy men participated. 
During the screening visit, body weight, height and blood pressure were measured 
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and a fasting blood sample was taken. Subjects were excluded when fasting serum 
total cholesterol concentrations ≥8.0 mmol/L or plasma glucose concentrations ≥7.0 
mmol/L. After inclusion, all subjects participated in three test days, each separated 
by a one-week washout period. Two weeks before the start of the study, subjects 
were instructed to avoid products containing cocoa till the end of the study period. 
Also, the consumption of caffeine containing drinks was restricted to a maximum of 
4 cups a day, since theobromine is a metabolite of caffeine. The study was conducted 
according the guidelines laid down in the Declaration of Helsinki. The study protocol 
was approved by the Medical Ethical Committee of the University Hospital Maastricht. 
All participants gave their written informed consent before entering the study. The 
study was registered on clinicaltrials.gov under study number NCT02085109.

Test days
To minimize differences in dietary intake before the three test days, all subjects were 
provided with a standard low fat dinner the evening before each test day, which 

consisted of a commercially available macaroni, 3 crackers, and a dairy drink. The 
next morning, subjects came to the University in fasting condition, which means 
that after dinner the preceding evening, they had not consumed any foods or drinks, 

except for water. To reduce physical activity as much as possible, participants arrived 
by public transport or car on the morning of the test day. After a 15 min rest, the 
first fasting blood sample was collected (T0) via an intravenous cannula inserted 
into the antecubital vein. Subjects were then asked to consume a shake within 10 
min. Three different shakes were provided in random order. One shake was low-fat/
high-carbohydrate (LF), one shake was LF enriched with 850 mg of theobromine (LF-
TB), and one shake was high-fat/low-carbohydrate (HF) (Table 1). The theobromine 
powder (Fagron, Uitgeest, the Netherlands) was added as the final ingredient to the 
blender jar before it was thoroughly mixed with the LF shake. The volumes of the 
shakes were standardized with water. The difference between the HF and the LF 
shakes was an exchange between fat and carbohydrates, while the amount of proteins 

between the three shakes was comparable (Table 1). 
Shakes were prepared by the research dietician to blind both researchers and 

participants. After consumption of the shakes, the volunteers were not allowed to 
eat or drink anything except water for the next 5 hours. Other blood samples were 
taken at T = 30 (T30), T = 60 (T60), T = 90 (T90), T = 120 (T120), T = 180 (T180) and 
T = 240 (T240) min. Five hours after meal intake, duodenal biopsies were taken at 
the Department of Endoscopy. During duodenoscopy, no sedatives were given. Four 
duodenal mucosal tissue samples, just proximal of the ampulla of Vater, were taken 
using standard biopsy forceps. The diameter of the biopsies varied between 2.0 mm 
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and 2.2 mm. After sampling, biopsies were immediately frozen in liquid nitrogen, 
stored at -80˚C and analyzed at the end of the study for gene expression profi les.

Table 1 Nutrient composition of the low-fat/high-carbohydrate (LF), LF with 850 mg theobromine (LF-TB) and 
high-fat/low-carbohydrate (HF) shakes
Nutrient LF LF-TB HF
Energy (kcal) 956 956 965
Protein (g) 19.4 19.4 17.9
                  (E%)1 8 8 7
Carbohydrates (g) 193.7 193.7 85.7
                  (E%) 81 81 35
Mono- and disaccharides (g) 144.9 144.9 45.6
Polysaccharides (g) 48.8 48.8 40.1
Total fat (g) 10.5 10.5 60.6
                  (E%) 10 10 56
Saturated fatty acids (g) 3.2 3.2 36.0
Monounsaturated fatty acids (g) 4.0 4.0 18.7
Polyunsaturated fatty acids (g) 1.1 1.1 4.1
Cholesterol (mg) 334 334 341
Theobromine (mg) 0 850 0
1 E%: energy percent

Blood sampling and analysis
Blood was sampled in serum and EDTA-containing vacutainer tubes. Serum tubes 
were allowed to clot for 1 hour at 20˚C, followed by centrifugation at 1300 x g for 
15 min at 20˚C. The EDTA tubes were placed on ice directly after sampling and 
centrifuged at 1300 x g for 15 min at 4˚C within 60 min after sampling. Serum and 
plasma aliquots were stored at -80˚C until analyses. All samples from one subject 
were analyzed within the same analytical run at the end of the study. 

Because gene expression profi les clearly showed a more pro-infl ammatory 
pattern after HF compared with LF consumption, concentrations of the infl ammation 
and acute phase response markers: interleukin-6 (IL-6), interleukin-8 (IL-8), tumor 
necrosis factor-alpha (TNF-α), serum amyloid A (SAA), monocyte chemoattractant 
protein-1 (MCP-1), macrophage infl ammatory protein 1 alpha (MIP-1α), and high 
sensitive C-reactive protein (hsCRP), were measured in plasma samples of the HF 
and LF test days (T0, T90 and T240). In addition we analyzed plasma concentrations 
of soluble intercellular adhesion molecule-1 (sICAM-1) and soluble vascular cell 
adhesion molecule-1 (sVCAM-1) to evaluate a possible cross-talk between an 
“infl amed” intestine and the vascular wall. For these analyses, a commercially 
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available Multi Spot ELISA kit (Meso Scale Discovery, Rockville, MD, USA) was used. 
Finally, in the same plasma samples, intestinal fatty acid-binding protein (IFABP) 
concentrations, which is a marker for damaged enterocytes,18,19 were measured using 

a sandwich ELISA (R&D, Oxon, United Kingdom) to evaluate whether one acute HF 
meal can already damage the enterocytes. 

Microarray processing and data analysis
Total RNA was extracted from one frozen duodenal mucosal biopsy using TRIzol 
reagent (Invitrogen, Breda, the Netherlands) and purified on columns using Qiagen 
RNeasy Micro Kit (Qiagen, Venlo, the Netherlands). Total RNA (100 ng) was labeled 
by Whole Transcript Sense Target Assay and hybridized to human whole-genome 

Affymetrix Gene 1.1 ST arrays targeting 19697 unique genes (Affymetrix, Santa Clara, 
CA). Microarray analyses were performed using MADMAX pipeline for statistical 
analysis of microarray data.20 In short, microarrays were normalized with the robust 
multichip average method and probes were annotated as described.21,22 This gene set 

was filtered on an expression of >10 on at least 5 arrays and measured with ≥5 probes. 
This filtered data set consisted of 10506 genes. Comparisons were made between the 
LF-TB and the LF meal and between the HF and the LF meal. Individual genes were 
defined as changed when comparison of the normalized signal intensities showed a 
p ≤ 0.05 in a 2-tailed paired intensity-based moderated t-statistics (IBMT) and a fold 
change of >1.2 or <-1.2 between the diets.23 Further data analysis was performed on 

the filtered dataset with three different approaches i.e. Ingenuity Pathway Analysis 
(IPA), Upstream Regulator Analysis and Gene Set Enrichment Analysis (GSEA).24 

Pathways were selected on a –log p-values of ≤1.3, which indicates a significant 
change of p ≥ 0.05 in that specific pathway comparing the LF-TB with LF diet or 
the HF with the LF diet. In the Upstream Regulator Analysis, Ingenuity software 
uses a curated database of interactions on the basis of the literature to link significant 
gene sets with upstream regulators. Significant linked gene sets were selected using 
a p-value of <0.05 for gene expression and a p-value of overlap of <0.05. A z-score 
above 1.5 indicates activation, whereas a z-score below -1.5 indicates inhibition of 
this upstream regulator. GSEA was performed on the unfiltered data set; gene sets 
were selected on a False Discovery Rate (FDR) q-value of <0.2 and were ranked 
on the Normalized Enrichment Score (NES). During microarray analysis we were 
especially interested in expression changes in apoA-I transcription and related 
pathways including the lipid, cholesterol and glucose metabolism, inflammation and 
the immune system.
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Statistical analysis
All data are presented as mean ± SD unless otherwise indicated. Diff erences in changes 
of infl ammatory markers, endothelial function markers and IFABP between the HF 
and LF meal were evaluated with general mixed models with subject as random factor, 
diet and time as fi xed factors and a diet*time interaction. If this diet*time interaction 
was not signifi cant, it was omitted from the model. If the factor time was signifi cant, 
time points were compared to baseline concentrations, using Bonferroni’s corrections 
for multiple comparisons. Results were considered to be statistically signifi cant if p 

≤ 0.05. All statistical analyses were performed using SPSS 20.0 for Mac (SPSS Inc., 
Chicago, IL, USA). 

Results
Subject characteristics
All ten men completed the study. However, results of one man were excluded due 
to protocol violation, as he appeared not to be in fasting condition at start of one of 

the test days. Samples from a second subject were excluded due to technical issues 
during microarray analysis. Baseline characteristics of the fi nal eight subjects are 
shown in Table 2. 

Table 2 Baseline ch aracteristics of the participants who completed the study (n = 8).
Mean ± SD

Age (years) 38 ± 15
BMI (kg/m2) 24.3 ± 2.0
Serum total cholesterol (mmol/L) 5.2 ± 0.9
Plasma glucose (mmol/L) 5.1 ± 0.3
Systolic blood pressure (mmHg) 130 ± 18
Diastolic blood pressure (mmHg) 79 ± 14

Microarray analysis
From the 19697 genes present on the microarray, 10506 genes were expressed 
in the duodenum (expression value >20 and >5 probes per gene on the array). In 
comparison to the LF shake, 113 and 286 genes were diff erentially expressed after 
adding theobromine to the LF diet (LF-TB) and comparing it with the HF shake, 
respectively (Supplementary data Figure 1). Twenty-three of these diff erentially 
expressed genes overlapped, i.e. the expression was signifi cantly changed into the 
same direction after both the LF-TB and the HF interventions as compared with the 
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LF diet. These 23 genes were SCN3B, PCDH11Y, NELL2, LYPD6B, ZNF485, FBXL16, 
PLA1A, ZBTB16, UPK2, DKK4, TIAM2, CKLF, SPRR1A, C12orf74, MTNR1A, KCNS3, 
MBOAT2, VSIG8, TEN1-CDK3, PDE10A, LRP12, TAS2R3 and RAD51AP1. So far, 
none of these 23 genes was described in relation to apoA-I transcriptional regulation. 
Unfortunately, apoA-I gene expression did not change when comparing the LF-TB 
meal vs. the LF meal (FC = 1.02, P = 0.758) or the HF meal vs. the LF meal (FC = 1.07, 
P = 0.310). Still, these 23 genes are potentially interesting targets to consider in the 
context of apoA-I transcription. 

Next, gene expression profiles were further explored, to better understand 
the effects of adding theobromine to a LF diet or comparing a HF with a LF diet 
on duodenal gene expression. First, IPA was used to look at significantly changed 
pathways. Then, two more in depth analytical procedures were conducted, i.e. the 
Upstream Regulator Analysis and GSEA.

Adding TB to a LF meal 

Ingenuity Pathway Analysis

Thirty pathways were differentially regulated by theobromine consumption (Figure 

1). None of the pathways was related to cholesterol, lipid or glucose metabolism.

Upstream Regulator Analysis

Adding TB to the LF meal changed the activation of 29 transcriptional regulators 
(Supplementary data, Table 1). Three of these upstream regulators, which were 
related to glucose metabolism, were inhibited. Further, the other identified upstream 
regulators were not linked to the lipid and cholesterol metabolism (Table 3). 



105

Theobromine, fat and duodenal gene expression

4

0 1 2 3

LPS/IL-1 Mediated Inhibition of RXR Function

PDGF Signaling

Melatonin Signaling

Chemokine Signaling

Growth Hormone Signaling

VEGF Family Ligand-Receptor Interactions

RAR Activation

The Visual Cycle

Virus Entry via Endocytic Pathways

β-alanine Degradation I 

Spermine Biosynthesis

Glycine Degradation (Creatine Biosynthesis)

Pyrimidine Deoxyribonucleotides De Novo…

Phospholipases

Aldosterone Signaling in Epithelial Cells

Gap Junction Signaling

Thrombopoietin Signaling

4-aminobutyrate Degradation I

CCR5 Signaling in Macrophages

Intrinsic Prothrombin Activation Pathway

Sperm Motility

Atherosclerosis Signaling

14-3-3-mediated Signaling

Erythropoietin Signaling

Retinoate Biosynthesis I

Macropinocytosis Signaling

Coagulation System

ERK/MAPK Signaling

Prolactin Signaling

lutamate Degradation III (via 4-aminobutyrate)

-log(P-value) 

Figure 1 Signifi cantly diff erent pathways after adding 850 mg of theobromine (TB) to the low-fat/high-carbo-
hydrate (LF) diet. Dotted bars are pathways involved in the immune system, lined bars are pathways involved 
in cholesterol, lipid or glucose metabolism (n = 8)
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Table 3 Inhibited or activated upstream regulators after adding 850 mg of theobromine (TB) to a low-fat/high-
carbohydrate (LF) meal or after comparing high-fat/low-carbohydrate (HF) with LF consumption functioning 
in lipid, cholesterol or glucose metabolism or the immune system (n = 8)
Upstream 
regulator

Activation 
Z-score Function (gene card ref) Comparison

Ins1 -3.02 Decreases blood glucose LF-TB vs. LF
Insulin -2.08 Decreases blood glucose LF-TB vs. LF
INS -1.95 Decreases blood glucose LF-TB vs. LF
INSIG2 -1.95 Feedback control of cholesterol synthesis HF vs. LF
APOE -1.73 Main lipoprotein on chylomicrons HF vs. LF
ACOX1 -1.63 Fatty acid β-oxidation pathway HF vs. LF
SREBF2 1.93 Lipid homeostasis HF vs. LF
PPARα 1.97 Transcription factor in lipid and cholesterol metabolism HF vs. LF
FABP2 2.00 Uptake and transport of long chain fatty acids involved in 

TAG-rich lipoprotein synthesis
HF vs. LF

SREBF1 2.27 Transcription factor which regulates lipid homeostasis HF vs. LF
GCG -2.42 Proprotein for glucagon HF vs. LF
GCK -1.98 Enzyme functioning in glucose utilization HF vs. LF
Gsk3 1.98 Glycogen synthesis HF vs. LF
TNFSF12 1.65 Activation of NFκB, inducer of proinflammatory cytokines HF vs. LF
IL12 1.90 Proinflammatory cytokine HF vs. LF
IL2 1.92 Proinflammatory cytokine HF vs. LF
CD5 1.98 Receptor in the regulation of T-lymphocyte proliferation HF vs. LF
CCL5 1.98 Chemoattractant for monocytes, T-lymphocytes, eosinophils HF vs. LF
TNF 1.99 Survival, proliferation and differentiation of monocytes and 

macrophages

HF vs. LF

RELA 2.02 Subunit NFκB HF vs. LF
MYD88 2.24 Innate immune response HF vs. LF
IL1A 2.31 Proinflammatory cytokine HF vs. LF
TNFSF11 2.73 T-lymphocyte dependent immune response HF vs. LF
IL1B 2.82 Proinflammatory cytokine HF vs. LF

Gene Set Enrichment Analysis

In the GSEA, 6 gene sets were upregulated and 2 gene sets were downregulated 
(Supplementary data, Table 2). One of the downregulated set was glucose metabolism 
(Table  4).
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Ta ble 4 Signifi cantly inhibited or activated gene sets after adding 850 mg of theobromine (TB) to a low-fat/
high-carbohydrate (LF) meal or after comparing high-fat/low-carbohydrate (HF) with LF meal consumption 
functioning in lipid, cholesterol or glucose metabolism or the immune system (n = 8)
Name gene set NES FDR q-val Comparison
Glucose metabolism -1.96 0.137 LF-TB vs. LF
Regulation of beta cell development 1.96 0.119 LF-TB vs. LF
Fatty acid beta oxidation 2.09 0.025 HF vs. LF
Regulation of lipid metabolism by PPARα 1.93 0.057 HF vs. LF
PPARα activates gene expression 1.92 0.058 HF vs. LF
Mitochondrial long chain fatty acid β oxidation 1.88 0.075 HF vs. LF
TAG synthesis 1.82 0.106 HF vs. LF
Regulation of lipid metabolism by PPARα 1.81 0.104 HF vs. LF
PPARα signaling pathway 1.80 0.104 HF vs. LF
PPARα targets 1.80 0.101 HF vs. LF
Statin pathway 1.67 0.144 HF vs. LF
SREBP signaling 1.62 0.159 HF vs. LF
Lipid digestion, mobilization and transport 1.60 0.171 HF vs. LF
Fatty acid TAG and ketone body metabolism 1.60 0.167 HF vs. LF
Lipid digestion, mobilization and transport 1.56 0.184 HF vs. LF
Metabolism of steroid hormones and Vit D 1.58 0.175 HF vs. LF
Steroid hormones 1.57 0.178 HF vs. LF
Regulation of cholesterol synthesis by SREBP SREBF 1.56 0.181 HF vs. LF
Lipid digestion, mobilization and transport 1.55 0.183 HF vs. LF
Cholesterol biosynthesis 1.53 0.199 HF vs. LF
Glucose metabolism -2.29 0.001 HF vs. LF
Metabolism of carbohydrates -2.17 0.006 HF vs. LF
Gluconeogenesis -1.84 0.074 HF vs. LF
Hexose transport -1.83 0.073 HF vs. LF
Carbohydrates  digestion and absorption -1.83 0.070 HF vs. LF
Glycogen metabolism -1.78 0.064 HF vs. LF
Starch and sucrose metabolism  -1.77 0.058 HF vs. LF
Hexose transport -1.67 0.088 HF vs. LF
Pancreatic secretion -1.61 0.129 HF vs. LF
Insulin signalling pathway -1.59 0.136 HF vs. LF
Glycolysis and gluconeogenesis -1.47 0.193 HF vs. LF
Type II diabetes mellitus -1.47 0.196 HF vs. LF
Glycogen storage diseases -1.46 0.198 HF vs. LF
Glucose transport -1.45 0.196 HF vs. LF
Chemokine receptors bind chemokines 2.08 0.020 HF vs. LF
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Ta ble 4 Signifi cantly inhibited or activated gene sets after adding 850 mg of theobromine (TB) to a low-fat/
high-carbohydrate (LF) meal or after comparing high-fat/low-carbohydrate (HF) with LF meal consumption 
functioning in lipid, cholesterol or glucose metabolism or the immune system (n = 8) (continued)
Name gene set NES FDR q-val Comparison
Cell adhesion molecules CAMS 1.82 0.113 HF vs. LF
Cytokine cytokine receptor interaction 1.82 0.110 HF vs. LF
Cytokine and infl ammatory response 1.80 0.103 HF vs. LF
Intestinal immune network for IGA production 1.79 0.106 HF vs. LF
RIP mediated NFkB activation via ZBP1 1.78 0.106 HF vs. LF
ZBP1 DAI mediated induction of type I IFNS 1.78 0.101 HF vs. LF
IL1R pathway 1.78 0.089 HF vs. LF
Rheumatoid arthritis 1.77 0.101 HF vs. LF
NKT pathway 1.74 0.110 HF vs. LF
TNF signaling pathway 1.73 0.112 HF vs. LF
Staphylococcus aureus infection 1.71 0.126 HF vs. LF
NFkB signaling pathway 1.65 0.176 HF vs. LF
TOPB1 pathway 1.60 0.168 HF vs. LF
NTHI pathway 1.59 0.173 HF vs. LF
Infl ammatory response pathway 1.59 0.167 HF vs. LF
TNFR2 pathway 1.57 0.180 HF vs. LF
Human complement system 1.55 0.184 HF vs. LF

Overall gene expression pattern after adding TB to a LF meal

Overall, adding TB to a LF meal did not change the expression of genes related to 
lipid and cholesterol metabolism, whereas, expression of a number of genes related 

to glycogen and glucose breakdown were downregulated.

Comparing HF with LF meal consumption 

Ingenuity Pathway Analysis

Fifty pathways were diff erentially regulated after intake of the HF meal as compared 
with the LF meal. Seven of these pathways were linked to cholesterol, lipid or 
glucose metabolism, such as LXR/RXR activation and triacylglycerol degradation/
biosynthesis. Also 9 changed pathways were related to the immune response, 
including the production of IL12 and IL15 and the production of NO and ROS in 
macrophages (Figure 2).
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Figure 2 Signifi cantly diff erent pathways comparing a high-fat/low-carbohydrate (HF) with a low-fat/high-
carbohydrate (LF) diet. Dotted bars are pathways involved in the immune system, lined bars are pathways 
involved in cholesterol, lipid or glucose metabolism (n = 8)
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Upstream Regulator Analysis

The activation of 113 transcriptional regulators was changed (Supplementary data, 
Table 3). After HF consumption regulators involved in lipid uptake and transport 
such as SREBF2, PPARα and FABP2 were activated, while regulators involved in fatty 
acid breakdown such as ACOX1 were inhibited. Furthermore, regulators involved in 
glucose uptake, including GCG and GCK were inhibited and regulators involved in 
glucose storage, such as Gsk3 were activated. Finally, HF meal consumption activated 
11 proinflammatory regulators involved in the immune response: TNFSF12, IL12, 
IL2, CCL5, TNF, CD5, RELA, MYD88, TNFSF11, IL1A and IL1B (Table 3). 

Gene Set Enrichment Analysis

GSEA showed 83 upregulated gene sets and 176 downregulated gene sets after HF 
meal consumption (Supplementary data, Table 4). Seventeen gene sets involved in 
lipid and cholesterol metabolism were upregulated. These gene sets suggested an 
increased activity of PPARα, fatty acid oxidation, fatty acid, triacylglycerol (TAG) 
and lipoprotein metabolism, lipid digestion, mobilization and transport, cholesterol 

synthesis, steroid hormone metabolism and SREBP signaling. Furthermore, the 
13 gene sets gene sets that were downregulated were involved in glucose and 
carbohydrate metabolism, suggesting an inhibited glucose and carbohydrate 

metabolism, gluconeogenesis and insulin signaling. Finally, 19 upregulated gene sets 
were involved in the immune system, including chemokine and cytokine activities, 

NFκB pathway, complement system and TNF signaling pathway (Table 4 and Figure 

3).

Overall gene expression pattern comparing HF with LF consumption

HF consumption increased the expression of genes related to lipid and cholesterol 

uptake and transport and glucose storage, while it decreased the expression of genes 

related glucose uptake. Furthermore, all three approaches showed upregulated 
expression of genes related to the immune response and inflammation. 

Markers for inflammation, the acute phase response, endothelial 
function and intestinal damage
Since the three analytical approaches consistently showed differences in the 
expression profiles of genes involved in the cytokine and inflammatory responses 
after HF compared with LF meal consumption, a panel of plasma markers for 
inflammation and acute phase responses were analyzed to evaluate whether this 
acute change in inflammatory gene expression in the duodenum was also transferred 
into the circulation. 
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Figure 3  Heatmap of the of the TNF signaling pathway from the GSEA results after the consumption of an 
acute high-fat/low carbohydrate (HF) vs. low-fat/high-carbohydrate (LF) meal (n = 8)

During the postprandial phase, IL-6 concentrations signifi cantly increased over 
time (P < 0.001), while IL-8, MCP-1 and IFABP concentrations signifi cantly decreased 
over time (P = 0.006, P < 0.001 and P < 0.001, respectively). Concentrations of all 
other markers for infl ammation and the acute phase response, as well as endothelial 
function did not change over time (Figure 4). Moreover, no diff erences in postprandial 
changes in markers for infl ammation, acute phase response and endothelial function 
between the HF and LF meals were observed (Figure 4). Finally, circulating levels 
of IFABP were measured to evaluate the potential eff ects of the HF and LF meal on 
intestinal damage. However, also IFABP concentrations were not diff erent between 
HF and LF meal consumption (Figure 5).
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Figure 4 Change in A. interleukin 6 (IL-6) B. interleu-
kin 8 (IL-8) C. tumor necrosis factor alpha (TNF-α) D. 
serum amyloid A (SAA) E. monocyte chemoattractant 
protein-1 (MCP-1) F. macrophage inflammatory protein 
1 a (MIP-1a) G. high sensitive C-reactive protein (CRP) 
H. vascular cell adhesion protein (VCAM) and I. inter-
cellular adhesion molecule (ICAM) after acute low-fat/
high-carbohydrate (LF, black line, squares) and acute 
high-fat/low carbohydrate (HF, dotted line, triangles) 
meal consumption1

1 Values are mean ± SD. n = 8. 
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Figure 5 Change in int estinal fatty acid-binding pro-
tein (IFABP) after acute low-fat/high-carbohydrate 
(LF, black line, squares) and acute high-fat/low-carbo-
hydrate (HF, dotted line, triangles) meal consumption
1 Values are mean ± SD. n = 8. 

Discussion

Earlier it has been shown that the consumption of theobromine6 or fat12 increased 

fasting serum apoA-I concentrations. To better understand underlying mechanisms, 
the present randomized, double-blind, controlled study examined the acute 

eff ects of theobromine and HF consumption on apoA-I at the transcriptional level 
in the small intestine, an organ involved in apoA-I synthesis. Unfortunately, both 
theobromine and HF consumption did not change duodenal apoA-I gene expression. 
For these apparently discrepant fi ndings, there are at least four explanations. First, 
theobromine and fat only change duodenal apoA-I mRNA expression after longer-
term consumption. Second, postprandial eff ects on apoA-I transcription are not 
evident within a time period of 5 hours. Third, theobromine and fat regulate apoA-I 
metabolism not at a transcriptional level in the duodenum, but only in the liver. 
However, this explanation is less likely, as postprandial serum apoA-I concentrations 
did also not change after theobromine and HF intake.17 Fourth, theobromine and 

fat do not change apoA-I transcription but increases serum apoA-I concentrations 
via other mechanisms, e.g. apoA-I clearance. Indeed, replacement of 13 energy % of 
carbohydrates for MUFA decreased apoA-I fractional catabolic rate, while it did not 
change apoA-I production rate.25 It should also be noted, that unexpectedly we could 
recently not confi rm in a long-term study the eff ects of theobromine on apoA-I,26 as 

reported by Neufi ngerl et al..6 

Furthermore, acute theobromine consumption did not change the expression 

of genes related to lipid and cholesterol metabolism. This is in agreement with the 
earlier reported acute eff ects on postprandial serum concentrations of apoB100, 
apolipoprotein B48, TAG and free fatty acids,17 but not with the results of 4-weeks 
of theobromine consumption, which improved fasting lipid metabolism.6,26 Except 

for apoB48, which is only synthesized in the intestine, the same explanations can 
be used to explain the lack of eff ects as those for apoA-I. Moreover, theobromine 
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inhibited glucose metabolism in the duodenum, suggesting a lower glycogen and 

glucose breakdown. In the circulation, however, we have earlier reported increased 
postprandial insulin responses after acute consumption,17 and increased postprandial 

glucose and insulin responses after 4-week consumption.26 Altogether, this suggests 

that acute theobromine consumption affects glucose metabolism, but it is unclear 
how the decreased gene expression related to glucose metabolism in the duodenum 

relates to the increased insulin concentrations in the circulation. 
Surprisingly, the small intestine is the least studied organ involved in lipid 

homeostasis, although it plays a major role in TAG and cholesterol absorption and 
transport through the formation of chylomicron particles.27 As expected, the HF meal 

increased postprandial serum TAG concentrations,17 and upregulated genes related 

to lipid and cholesterol uptake and transport when compared with the LF meal. This 
can be explained by the higher amount of lipids that are present in the intestine after 

HF meal consumption, as these lipids need to be taken up and must be transported to 

other tissue. In agreement, in the intestines of mice, genes related to lipid metabolism 
were activated when long-term HF intake was compared with LF intake.28 Also in 

human muscle biopsies, expression of genes functioning in the lipid metabolism 

increased after a HF meal.13,15 In the present study, the expression of genes related 
to glucose uptake were decreased and those of glucose storage were increased 

comparing HF with LF consumption, which can be linked to the higher amount of 
fat in the HF meal and the increased amount of carbohydrates in the LF meal. In 
line with our results, in human muscle biopsies a shift in glucose metabolism from 

oxidation to storage was observed, when comparing HF with LF meal consumption.14 

Taken together, these results suggest that both the HF meal and theobromine 

consumption inhibited glucose metabolism, but through different pathways leading 
to different physiological effects. Furthermore, the effects of the HF meal on glucose 
metabolism were more pronounced than those observed after theobromiFinally, after 

consumption of a HF meal many genes associated with inflammation and immune 
function were upregulated. A number of studies looking in other tissues and species 
support our results. In human PBMCs, the consumption of a HF breakfast increased 
the expression of IL-8 as compared with a LF breakfast.29 Furthermore, inflammation 
was one of the most modulated biological processes after HF consumption in the 

intestines28 and adipose tissue30 of mice. In addition, in rat peripheral leukocytes a HF 
diet increased expression of genes related to leukocyte activation.31 Our results raise 

two questions. First, is the effect a primary response to the intake of dietary lipids or 
a secondary response caused by enterocyte damage? Serum IFABP concentrations, 
a marker for enterocyte damage,19 were not different after the LF and HF meals, 
suggesting that the enterocytes were not damaged after the HF meal. Second, is the 
acute shift in duodenal pro-inflammatory gene expression profiles translated into an 
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infl ammatory signature in postprandial serum samples? Unfortunately, none of the 
measured plasma markers showed diff erences after acute HF and LF consumption. 
This may indicate that the duodenal infl ammatory signal needs longer than a few 
hours to translate into a systemic infl ammatory response, or is not translated at 
all. Our results on plasma biomarkers are partly contradictory with other studies. 
Esser et al. found no changes in plasma CRP, ICAM-1, IL-6 and TNF-α, decreases 
in VCAM-1 and SAA, and an increase in IL-8 after an acute HF breakfast compared 
with an LF breakfast.16 Nappo et al. found increased plasma TNF-α, IL6, ICAM-1 
and VCAM-1 concentrations comparing HF with LF meal consumption.32 It should 
be noted, however, that Esser et al. used a higher amount of fat,16 while Nappo et al. 
studied diabetic patients.32 Also, reported changes in plasma infl ammation markers 
in response to HF and LF feeding have been very variable between studies.33

In conclusion, in healthy men, acute theobromine and fat consumption did not 
change apoA-I expression in the duodenum. Theobromine consumption inhibited 
intestinal gene expression related to glycogen and glucose breakdown, but did not 

change those related to lipid and cholesterol metabolism. Furthermore, HF intake 
activated expression of genes related to lipid and cholesterol uptake and transport 

and glucose storage, while it decreased those related to glucose uptake. Finally, 
microarray analyses suggested upregulation of infl ammation in the duodenum 
after HF meal consumption, which was not translated into a systemic infl ammatory 
response directly following a HF meal. 
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Supplementary data
Figure 1 P-value distribution after A. adding theobromine (TB) to a low-fat/high-carbohydrate (LF) meal B. 
comparing high-fat/low-carbohydrate (HF) with LF consumption (n = 8) 

A.                                                                          B.                                      
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Table 1 Results of the upstream regulators after adding 850 mg of theobromine (TB) to a low-fat/high-carbo-
hydrate (LF) meal (n = 8)
Upstream Regulator Activation z-score p-value of overlap
U0126 1.71 0.00
streptozocin 1.72 0.00
LY294002 1.99 0.02
PD98059 2.21 0.01
SP600125 2.21 0.05
GATA4 -1.50 0.02
calcitriol -1.50 0.00
lysophosphatidic acid -1.59 0.00
PDGF BB -1.60 0.03
decitabine -1.67 0.04
AGT -1.70 0.02
HNF4A -1.71 0.02
dexamethasone -1.89 0.00
FADD -1.94 0.01
Cg -1.94 0.02
MAP2K1/2 -1.95 0.00
ATP -1.95 0.01
INS -1.95 0.04
SOX11 -1.98 0.01
Insulin -2.08 0.04
aldosterone -2.17 0.01
EGF -2.19 0.02
butyric acid -2.19 0.01
Ca2+ -2.19 0.04
Pkc(s) -2.19 0.05
GnRH analog -2.45 0.04
CREB1 -2.88 0.01
Ins1 -3.02 0.00



Chapter 4

118

Table 2 Results of the GSEA comparing after adding 850 mg of theobromine (TB) to a low-fat/high-carbohy-
drate (LF) meal (n = 8)
Gene Set NES FDR-q value
KINESINS 2.05 0.154
WP1897.REGULATION.OF.BETA.CELL.DEVELOPMENT 1.96 0.164
WP2739.AMYLOIDS 1.89 0.063
WP1842.KINESINS 1.88 0.068
KEGG_SYSTEMIC.LUPUS.ERYTHEMATOSUS 1.86 0.089
WP1874.NUCLEOSOME.ASSEMBLY 1.86 0.058
GLUCOSE.METABOLISM -1.96 0.138
WP716.VITAMIN.A.AND.CAROTENOID.METABOLISM -1.92 0.142

Table 3 Top 50 of the results of the upstream regulators after comparing high-fat/low-carbohydrate (HF) with 
low-fat/high-carbohydrate (LF) consumption (n = 8)
Upstream Regulator Activation z-score p-value of overlap
Bleomycin 2.91 <0.01
IL1B 2.82 <0.01
E. coli B5 lipopolysaccharide 2.79 <0.01
TNFSF11 2.73 <0.01
L-glutamic acid 2.62 0.02
Pirinixic acid 2.57 <0.01
LG100268 2.41 <0.01
5-azacytidine 2.40 0.01
IL1A 2.35 0.01
Linoleic acid 2.31 <0.01
PI3K (complex) 2.31 <0.01
SREBF1 2.27 <0.01
MYD88 2.24 <0.01
Nicotinic acid 2.24 <0.01
CSF1 2.22 <0.01
Kainic acid 2.22 0.01
KLF15 2.20 0.01
IRS1 2.19 <0.01
SCAP 2.18 0.01
Cocaine 2.17 <0.01
AGN194204 2.16 <0.01
Palmitic acid 2.06 <0.01
Jnk 2.04 <0.01
RELA 2.02 0.02



119

Theobromine, fat and duodenal gene expression

4

Table 3 Top 50 of the results of the upstream regulators after comparing high-fat/low-carbohydrate (HF) with 
low-fat/high-carbohydrate (LF) consumption (n = 8) (continued)
Upstream Regulator Activation z-score p-value of overlap
FABP2 2.00 <0.01
Isoquercitrin 2.00 <0.01
FDFT1 2.00 <0.01
H2AFY 2.00 0.02
IL2RG 2.00 0.05
8-bromoguanosine 3’.5’-cyclic monophosphate 1.99 0.01
Tnf (family) 1.99 0.01
Advanced glycation end-products 1.98 0.02
BCR (complex) 1.98 0.04
CD5 1.98 0.05
PRKCE 1.98 0.04
Gsk3 1.98 0.03
CCL5 1.98 0.04
GCK -1.98 <0.01
HAND1 -1.98 <0.01
HDL -1.98 0.02
ARNT -1.99 <0.01
Dipyridamole -2.00 <0.01
Calphostin C -2.00 0.02
Methotrexate -2.04 <0.01
THRB -2.20 0.01
15-deoxy-delta-12.14 -PGJ 2 -2.20 0.04
ABCB4 -2.22 <0.01
SB203580 -2.28 <0.01
IL10RA -2.39 <0.01
GCG -2.42 <0.01
U0126 -2.48 <0.01
NFE2L2 -2.53 <0.01
Bexarotene -3.14 0.01



Chapter 4

120

Table 4 Top 50 of the results of the GSEA after comparing high-fat/low-carbohydrate (HF) with low-fat/high-
carbohydrate (LF) consumption (n = 8)

Gene Set NES FDR-q 
value

KEGG_MALARIA 2.17 0.017
WP143.FATTY.ACID.BETA.OXIDATION 2.09 0.025
CHEMOKINE.RECEPTORS.BIND.CHEMOKINES 2.08 0.020
COLLAGEN.DEGRADATION 2.05 0.022
WP2708.DEGRADATION.OF.COLLAGEN 2.03 0.024
WP2749.METABOLISM.OF.STEROID.HORMONES.AND.VITAMIN.D 1.94 0.057
REGULATION.OF.LIPID.METABOLISM.BY.PEROXISOME.PROLIFERATOR.
ACTIVATED.RECEPTOR.ALPHA.PPARALPHA. 1.93 0.057
PPARA.ACTIVATES.GENE.EXPRESSION 1.92 0.058
WP368.MITOCHONDRIAL.LC.FATTY.ACID.BETA.OXIDATION 1.88 0.075
GENERATION.OF.SECOND.MESSENGER.MOLECULES 1.88 0.071
WP2406.CARDIAC.PROGENITOR.DIFFERENTIATION 1.84 0.108
KEGG_CELL.ADHESION.MOLECULES.CAMS. 1.82 0.113
KEGG_CYTOKINE.CYTOKINE.RECEPTOR.INTERACTION 1.82 0.110
WP325.TRIACYLGLYCERIDE.SYNTHESIS 1.82 0.106
WP2797.REGULATION.OF.LIPID.METABOLISM.BY.PEROXISOME.
PROLIFERATOR.ACTIVATED.RECEPTOR.ALPHA.PPARALPHA. 1.81 0.104
WP530.CYTOKINES.AND.INFLAMMATORY.RESPONSE 1.80 0.103
KEGG_PPAR.SIGNALING.PATHWAY 1.80 0.104
PPARA_TARGETS 1.80 0.101
KEGG_INTESTINAL.IMMUNE.NETWORK.FOR.IGA.PRODUCTION 1.79 0.106
GLUCOSE.METABOLISM -2.29 0.001
WP1848.METABOLISM.OF.CARBOHYDRATES -2.17 0.006
KEGG_PROXIMAL.TUBULE.BICARBONATE.RECLAMATION -2.14 0.007
RIBOSOMAL.SCANNING.AND.START.CODON.RECOGNITION -2.05 0.020
KEGG_MINERAL.ABSORPTION -2.03 0.019
TRANSLATION.INITIATION.COMPLEX.FORMATION -2.02 0.018
ACTIVATION.OF.THE.MRNA.UPON.BINDING.OF.THE.CAP.BINDING.
COMPLEX.AND.EIFS.AND.SUBSEQUENT.BINDING.TO.43S -1.94 0.045
KEGG_RIBOSOME -1.94 0.043
WP1889.PROCESSING.OF.CAPPED.INTRON.CONTAINING.PRE.MRNA -1.92 0.045
X3.UTR.MEDIATED.TRANSLATIONAL.REGULATION -1.88 0.068
GTP.HYDROLYSIS.AND.JOINING.OF.THE.60S.RIBOSOMAL.SUBUNIT -1.88 0.067
FORMATION.OF.THE.TERNARY.COMPLEX.AND.SUBSEQUENTLY.THE.43S.
COMPLEX -1.86 0.068
L13A.MEDIATED.TRANSLATIONAL.SILENCING.OF.CERULOPLASMIN.
EXPRESSION -1.85 0.072
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Table 4 Top 50 of the results of the GSEA after comparing high-fat/low-carbohydrate (HF) with low-fat/high-
carbohydrate (LF) consumption (n = 8) (continued)

Gene Set NES FDR-q 
value

TRANSLATION -1.85 0.070
GLUCONEOGENESIS -1.84 0.074
KEGG_FANCONI.ANEMIA.PATHWAY -1.83 0.078
WP1828.HEXOSE.TRANSPORT -1.83 0.073
KEGG_CARBOHYDRATE.DIGESTION.AND.ABSORPTION -1.83 0.070
PROCESSING.OF.CAPPED.INTRON.CONTAINING.PRE.MRNA -1.82 0.069
FORMATION.OF.A.POOL.OF.FREE.40S.SUBUNITS -1.82 0.066
WP2683.INFLUENZA.LIFE.CYCLE -1.82 0.064
KEGG_AMINOACYL.TRNA.BIOSYNTHESIS -1.82 0.061
MITOCHONDRIAL.TRANSLATION.ELONGATION -1.82 0.059
EUKARYOTIC.TRANSLATION.ELONGATION -1.81 0.061
CAP.DEPENDENT.TRANSLATION.INITIATION -1.81 0.058
BIOC_MTORPATHWAY -1.81 0.060
EUKARYOTIC.TRANSLATION.INITIATION -1.81 0.058
MRNA.SPLICING.MAJOR.PATHWAY -1.79 0.066
WP2773.DEGRADATION.OF.BETA.CATENIN.BY.THE.DESTRUCTION.
COMPLEX -1.78 0.070
MITOCHONDRIAL.TRANSLATION -1.78 0.068
KEGG_TYROSINE.METABOLISM -1.78 0.067
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Abstract

Background & aims Chocolate consumption is associated with a decreased risk for 

CVD. Theobromine, a compound in cocoa, may explain these effects as it favorably 
affected fasting serum lipids. However, long-term effects of theobromine on 
postprandial metabolism as well as underlying mechanisms have never been studied. 
The objective was to evaluate the effects of 4-week theobromine consumption (500 
mg/day) on fasting and postprandial lipid, lipoprotein and glucose metabolism, and 
duodenal gene expression.

Methods In a randomized, double-blind crossover study, 44 healthy men and women, 
with low baseline HDL-C concentrations consumed 500 mg theobromine or placebo 
daily. After 4-weeks, fasting blood was sampled and subjects participated in a 4-hour 
postprandial test. Blood was sampled frequently for analysis of lipid and glucose 
metabolism. In a subgroup of 10 men, 5 hours after meal consumption duodenal 
biopsies were taken for microarray analysis.

Results 4-weeks theobromine consumption lowered fasting LDL-C (-0.21 mmol/L; P 
= 0.006), and apoB100 (-0.04 g/L; P = 0.022), tended to increase HDL-C (0.03 mmol/L; 
P = 0.088) and increased hsCRP (1.2 mg/L; P = 0.017) concentrations. Fasting apoA-I, 
TAG, FFA, glucose and insulin concentrations were unchanged. In the postprandial 
phase, theobromine consumption increased glucose (P = 0.026), insulin (P = 0.011) and 
FFA (P = 0.003) concentrations, while lipids and (apo)lipoproteins were unchanged. In 
duodenal biopsies, microarray analysis showed no consistent changes in expression 

of genes, pathways or gene sets related to lipid, cholesterol or glucose metabolism.

Conclusions It is not likely that the potential beneficial effects of cocoa on CVD can be 
ascribed to theobromine. Although theobromine lowers serum LDL-C concentrations, 
it did not change fasting HDL-C, apoA-I, or postprandial lipid concentrations and 
duodenal gene expression, and unfavorably affected postprandial glucose and 
insulin responses. This trial was registered on clinicaltrials.gov under study number 
NCT02209025.
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Introduction

Optimizing dietary intake is a cornerstone for the prevention of many non-

communicable diseases such as cardiovascular diseases (CVD), diabetes mellitus 
type 2, and the metabolic syndrome. In this context, chocolate might have benefi cial 
eff ects, as high chocolate intake was associated with a 37% reduction in CVD events, a 
31% reduction in type II diabetes risk and a 29% reduction in stroke risk.1 In addition, 
benefi cial eff ects of cocoa on serum lipid profi les have been demonstrated in many 
intervention studies. In fact, two diff erent meta-analyses concluded that 2-12 weeks 
of cocoa consumption signifi cantly decreased low-density lipoprotein cholesterol 
(LDL-C) and total cholesterol concentrations. However, no eff ects were found on high-
density lipoprotein cholesterol (HDL-C) and triacylglycerol (TAG) concentrations.2,3 

Given the macronutrient composition of chocolate, the potential positive eff ects of 
chocolate on serum LDL-C are probably due to one of the minor compounds in cocoa.4 
As dark chocolate contains more cocoa than other chocolate types, dark chocolate 

should therefore have more favorable metabolic eff ects than white or milk chocolate. 
Indeed, Grassi et al. observed that the intake of 100 g of dark chocolate for 15 days 
increased insulin sensitivity and decreased blood pressure, total cholesterol and 

LDL-C, while white chocolate did not.5 Furthermore, Taubert et al. found a decrease 
in blood pressure, but no changes in plasma lipids or glucose after 18-weeks of dark 
chocolate consumption compared with white chocolate consumption.6 

Whether cocoa or dark chocolate also infl uences postprandial lipid and glucose 
metabolism has only been explored to a limited extent. This is unfortunate, since 
evidence is accumulating that disturbances in postprandial lipid and glucose 

metabolism are important risk markers for CVD.7,8 In type 2 diabetic patients, Basu et 
al. (2015) showed increased postprandial HDL-C and insulin concentrations, but no 
diff erences in LDL-C, TAG, glucose and high-sensitivity C-reactive protein (hsCRP) 
concentrations after acute cocoa consumption.9 In contrast, based on an oral-glucose-
tolerance test, insulin sensitivity in healthy subjects improved after 100 g of dark 
chocolate consumption for 15 days.10 

An important question is which component in cacao may be responsible for 

the suggested benefi cial fasting and postprandial metabolic eff ects. Theobromine, 
a methylxanthine in cocoa, is a promising candidate 11 given its benefi cial eff ects 
on blood pressure 10 and fasting plasma lipids.12 So far, eff ects of theobromine on 
postprandial metabolism have not been examined. Therefore, the aim of the present 
study was to evaluate the eff ects of 4-weeks pure theobromine intake (500 mg/day) 
on fasting and postprandial lipid, lipoprotein and glucose metabolism. We were 
especially interested in changes in HDL metabolism, since theobromine has been 
reported to increase fasting apolipoprotein A-I (apoA-I) concentrations,12 which may 



Chapter 5

128

decrease CVD risk.13 Therefore, overweight and slightly obese subjects with low 
HDL-C concentrations were included, as these subjects may be more responsive to 
interventions targeting HDL metabolism. Potential underlying mechanisms were 
addressed by performing microarray analyses in duodenal biopsies.

Material and methods
Study population
Apparently healthy middle-aged and elderly overweight and slightly obese men 

and women (BMI 25-35 kg/m2) were recruited in University and hospital buildings 
by posters, in local newspapers via advertisements, and among participants who 

had participated in earlier studies from our Department. They were invited for two 
screening visits with an interval of ≥1 week. During the screening visits body weight 
without heavy clothing, height, and blood pressure were determined. Blood pressure 
was measured in fourfold using an Omron M7 (Omron Healthycare Europe B.V., 
Hoofddorp, The Netherlands). The first measurement was not used and the final 
three measurements were averaged. Furthermore, a fasting blood sample was taken 
for analysis of serum total cholesterol, HDL-C, and plasma glucose concentrations. 
In addition, subjects had to complete a general and medical questionnaire. Inclusion 
criteria were: men aged between 45-70 years, and women aged between 50-70 years 
to exclude pregnant women, since theobromine can cross the placenta,14 BMI between 
25 and 35 kg/m2, fasting serum HDL-C concentrations <1.2 mmol/L for men and 
<1.5 mmol/L for women so as to include participants with HDL-C concentrations 
below the 50th percentile of the Dutch population,15 fasting serum total cholesterol 

concentrations <8.0 mmol/L, fasting plasma glucose concentrations <7.0 mmol/L, 
stable body weight (weight gain or loss <3 kg in the previous 3 months), no use 
of lipid-lowering, anti-diabetic or anti-hypertensive medication or a medically 

prescribed diet, no history or current gastrointestinal diseases or complaints, no 

use of vitamin or fish oil supplements, no diabetes, no abuse of alcohol or drugs, no 
smoking, and no active or history of coronary artery disease. In addition, subjects had 
not participated in another biomedical study for the past 30 days. After information 
about the aim of the study was given and the potential risks of the experimental 

procedures were discussed, all participants gave their written informed consent 

before entering the study. Forty-eight participants were included. After inclusion, 
subjects were urged not to change their dietary habits, levels of physical exercise, and 
alcohol intake during the study. The study was performed according to the guidelines 
laid down in the Declaration of Helsinki. The protocol was approved by the Medical 
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Ethical Committee of the University Hospital Maastricht and the trial was registered 

on clinicaltrials.gov under study number NCT02209025.

Study design and product
The study had a randomized, double blind, placebo-controlled, crossover design 

and consisted of 2 intervention periods of 4-weeks separated by a 4-week washout 
period. From 2-weeks before the start of the study and during the study, participants 
were instructed by a research dietician to avoid products containing cocoa, for which 

they received a detailed list with products. Furthermore, the consumption of caff eine-
containing drinks was restricted to a maximum of 4 cups a day, since theobromine 
is a metabolite of caff eine. In theory, these 4 caff eine-containing drinks could result 
in the formation of maximally 80 mg of theobromine,16 which was ±16% of the daily 
experimental theobromine intake (500 mg) as provided by us. During the test days, 
caff eine intake was prohibited. Based on a computer-generated randomization 
scheme, subjects were allocated to a group starting with theobromine or placebo 
drinks. At breakfast, subjects consumed daily drinks (20 ml) enriched with 500 mg 
theobromine or placebo. The experimental and placebo drinks were matched for 
composition, appearance and taste (Supplementary data, Table 1). Theobromine 
was obtained from Fagron (Uitgeest, the Netherlands) and drinks were produced by 
Pharmavize (Mariakerke, Belgium). The drinks were provided in boxes of eight 20 ml 
fl asks and participants received 2 boxes at the start of the 4-week intervention period 
and 2 boxes halfway the intervention period. The drinks and boxes were color-coded 
to blind the participants and investigators. Subjects were required to return all empty 
bottles and unused drinks, which were counted to estimate compliance. At the end 
of the two intervention periods, subjects had to record their habitual food intake of 
the previous 4 weeks by completing a food frequency questionnaire (FFQ). From 
these FFQs, energy and nutrient intakes were calculated using the Dutch Nutrient 
databank (NEVO 2014). FFQs were immediately checked by the research dietician 
in the presence of the subjects. Participants recorded in diaries any signs of illness, 
medication used, alcohol consumption, and any deviations from the study protocol 

and other complaints.

Visits, postprandial test, test meal and biopsies
All subjects visited the University at the start of the study (day 1), and twice in the 
fourth week (days 25 and 28) of both the experimental and placebo periods to measure 
blood pressure, heart rate and body weight, and to take a fasting blood sample (no 
food or drinks, except water, 12 hours before the visit). All visits were in the morning 
and volunteers arrived at the metabolic research unit of our Department by public 

transport or car to standardize measurements as much as possible. Furthermore, 
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subjects were not allowed to use drinks containing alcohol and strenuous activities 
48 hours before the visits. 
At day 28 of both experimental periods, subjects participated in a postprandial 
test. To minimize differences in dietary intake before these test days, subjects were 
provided with a standard dinner the evening before the test day, which consisted of 

a commercially available lasagne (638 kcal, 28.4 g protein, 44.0 g carbohydrates and 
37.6 g fat). At the start of the postprandial test day, blood pressure and heart rate 
were measured, an intravenous cannula was inserted in a forearm vein and a fasting 

blood sample was collected (T0). Next, subjects were asked to consume a high-fat 
mixed meal and their test drink within 10 minutes. This meal provided 965 kcal, 17.9 
g proteins, 85.7 g carbohydrates and 60.6 g fat (Table 1). 

Table 1 Composition of the test meal

Nutrient Amount
Energy (kcal) 965
Protein (g) 17.9
                  Energy (%) 7
Carbohydrates (g) 85.7
                  Energy (%) 35
Mono- and disaccharides (g) 45.6
Polysaccharides (g) 40.1
Total fat (g) 60.6
                  Energy (%) 56
Saturated fatty acids (g) 36.0
Monounsaturated fatty acids (g) 18.7
Polyunsaturated fatty acids (g) 4.1
Cholesterol (mg) 341

After meal intake, the volunteers were not allowed to eat or drink anything, except 

water. Postprandial blood samples were taken at T = 15 (T15), T = 30 (T30), T = 45 
(T45), T = 60 (T60), T = 90 (T90), T = 120 (T120) and T = 240 (T240) minutes after 
meal consumption. A subgroup of 10 men was willing to participate in an additional 
duodenoscopy to sample duodenal biopsies. Additional inclusion criteria for this 
supplementary measurement were willingness to undergo duodenoscopy, for which 

also informed consent was obtained. Five hours after meal intake, duodenal biopsies 
were taken at the Department of Endoscopy. During duodenoscopy, no sedatives 
were given. Four duodenal mucosal tissue samples, just proximal of the ampulla of 
Vater, were taken using standard biopsy forceps. The diameter of the biopsies varied 
between 2.0 mm and 2.2 mm. After sampling, biopsies were immediately frozen 
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in liquid nitrogen, stored at -80˚C and at the end of the study analyzed for gene 
expression profi les.

Blood sampling
Fasting blood was sampled in serum, EDTA- and NaF-vacutainer tubes from a 

forearm vein by the same person in the same room, and generally at the same time of 

the day. During the postprandial test, serum and NaF-vacutainer tubes were sampled 
at each time point. Furthermore, at T0, T60, T120 and T240, blood was sampled in 
EDTA-vacutainer tubes. Directly after sampling, the EDTA- and NaF-tubes were put 
on ice and centrifuged at 1300 x g for 15 min at 4˚C within 60 min to obtain plasma. 
Serum tubes were allowed to clot for 1 hour at 20˚C, and then centrifuged at 1300 
x g for 15 min at 20˚C to obtain serum. Serum and plasma aliquots were stored at 
-80˚C until analyses. At the end of the study, samples from one subject were analyzed 
within the same analytical run. 

Analysis
In all fasting serum samples, concentrations of total cholesterol (CHOD-PAP method; 
Roche Diagnostics System, Mannheim, Germany), HDL-C (precipitation method; 
Roche Diagnostics System, Mannheim, Germany), TAG (Trigl; Roche, Mannheim, 
Germany), insulin (human insulin-specifi c radioimmunoassay (RIA) kit, Linco 
Research, Missouri, USA), apoA-I, apolipoprotein B100 (apoB100) (Horiba ABX, 
Montpellier Cedex, France) and hsCRP (Horiba ABX, Montpellier, France) were 
measured. In all fasting NaF plasma samples, glucose (Roche Diagnostic Systems, 
Woerden, the Netherlands) and free fatty acid (FFA) concentrations were measured 
(Wako Biochemicals, Richmond, USA). Theobromine, caff eine and paraxanthine 
concentrations were measured in fasting serum samples of day 28, as described.17 

Liver and kidney function parameters (creatinin, aspartate aminotransferase (ASAT), 
alanine aminotransferase (ALAT), total bilirubin, and gamma-glutamyltransferase 
(gamma-GT)) were measured in fasting serum samples from day 28 (Beckman Coulter 
Synchron LX20 PRO Clinical System, Beckman Coulter Inc., Fullerton, CA, USA). 

Fasting LDL-C was calculated using the Friedewald formula.18 As this formula 

is not accurate when fasting serum TAG concentrations exceeds 4.52 mmol/L, LDL-C 
could not be calculated for 3 subjects. The homeostasis model assessment for insulin 
resistance (HOMA-IR) and the quantitative insulin sensitivity check index (QUICKI) 
were calculated to estimate the degree of insulin resistance.19, 20

In all postprandial serum samples HDL-C, TAG, apoA-I and insulin 
concentrations and in all postprandial NaF-samples glucose and FFA concentrations 

were measured. Serum apolipoprotein B48 (apoB48) concentrations (Shibayagi 
Gunma, Japan) were measured at T0, T30, T60, T90, T120 and T240. 
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Microarray processing and data analysis
Total RNA was extracted from a frozen mucosal duodenal sample using TRIzol reagent 
(Invitrogen, Breda, the Netherlands) with purification on columns using Qiagen 
RNeasy Micro Kit (Qiagen, Venlo, the Netherlands). Total RNA (100 ng) was labeled 
by Whole Transcript Sense Target Assay and hybridized to human whole-genome 

Affymetrix Gene 1.1 ST arrays targeting 19697 unique genes (Affymetrix, Santa Clara, 
CA). Microarray analyses were performed as described.21  In short, microarrays were 
normalized with the robust multichip average method and probes were annotated as 

described.22,23 This gene set was filtered on an expression of >20 on at least 5 arrays and 
measured with ≥5 probes. The filtered data set consisted of 12294 genes. Individual 
genes were defined as changed when comparison of the normalized signal intensities 
showed a p ≤ 0.05 in a 2-tailed paired intensity-based moderated t-statistics and a 
fold change of >1.2 or <-1.2.24 Further functional data analysis was performed on 

the filtered dataset with ingenuity pathway analysis (IPA), upstream regulators and 
Gene Set Enrichment Analysis (GSEA).25 Pathways were selected on  –log p-values 
of <1.3, which indicates a significant change of p<0.05 in that specific pathway. In 
the upstream regulator analysis, significant linked gene sets were selected using a 
p-value of <0.05 for gene expression and a p-value of overlap of <0.05. A z-score 
above 1.5 indicates activation, whereas a z-score below -1.5 indicates inhibition of this 
upstream regulator. In the GSEA, gene sets were selected on a False Discovery Rate 
(FDR) q-value of <0.2 and were ranked on the Normalized Enrichment Score (NES). 

Statistical analysis
If available, fasting concentrations of days 25 and 28 were averaged. Parameters were 
checked for normality using the Shapiro-Wilk test. Fasting parameters were tested for 
carryover effect, which were absent.26 Effects of theobromine consumption on fasting 
parameters, that were normally distributed, were evaluated using the mixed models 

procedure with subject as random factor, and period and treatment as fixed factors, 
and reported as estimated marginal means ± SDs. Fasting TAG concentrations, which 
were not normally distributed, were log transformed and reported as geometric 

means with 95% CI. Differences in hsCRP concentrations and liver and kidney 
function parameters were not normally distributed, also not after log transformation, 

and were therefore evaluated by a Wilcoxon signed-rank test, and reported as 

medians with ranges. Since not all FFQ results were normally distributed, also not 
after log transformation, energy and nutrient intakes were evaluated by a Wilcoxon 

signed-rank test, and reported as medians with ranges. Relationships between 
changes in theobromine, caffeine and paraxanthine concentrations with those in 
lipid and lipoproteins were evaluated with the Pearson’s correlation coefficient. 
Spearman’s rank correlation coefficients were calculated for changes in hsCRP 
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and changes in theobromine, caff eine, paraxanthine, glucose, lipid and lipoprotein 
concentrations.
Postprandial responses were analyzed by linear mixed models with subject as 
between subject variable, treatment and time as fi xed factors and a treatment*time 
interaction. If this interaction term did not reach statistical signifi cance, it was 
omitted from the model. If the factor time was signifi cant, time points were compared 
to baseline concentrations, using Bonferroni’s corrections for multiple comparisons. 
For TAG, apoB48, FFA, glucose and insulin, the incremental area under the curves 
(iAUC) or the decremental area under the curves (dAUC) were calculated using the 
trapezoidal rule.27 Since only the iAUC for apoB48 was normally distributed, and log 
transformation did not result in normality for all parameters, the iAUCs, maximal 

increases and time to peak values are reported as medians with ranges, and eff ects of 
theobromine were tested using a Wilcoxon signed-rank test. The iAUCs were tested 
for carryover eff ect. None of the parameters showed signifi cance.26

Diff erences between subject characteristics of the total group (n = 21 men) and 
the subgroup (n = 10 men) in which duodenal biopsies were sampled, were tested 
with an independent t-test. Results were considered to be statistically signifi cant if 
p ≤ 0.05. All statistical analyses were performed using SPSS 20.0 for Mac (SPSS Inc., 
Chicago, IL, USA). 

Results
Subject characteristics and compliance
A fl ow diagram of the participants throughout the study is presented in Figure 1. 
After screening, 48 subjects were eligible for participation and started the study. 
During the fi rst intervention period, four participants discontinued participation. At 
that time, three subjects (2 men and 1 woman) received the theobromine drinks. One 
man withdrew, because of non-study related illness and the woman because she did 

not like the taste of the drinks. The other man was excluded in the second week of the 
study, because of non-compliance, i.e. he had consumed less than 80% of the drinks 
provided. Finally, one woman receiving the placebo drinks had to stop, because 
she was diagnosed with CVD by her cardiologist. This appointment was already 
planned before the start of the study without informing the project team. Baseline 
characteristics of the 44 participants who completed the study are shown in Table 2. 
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Figure 1 Flow chart of participant inclusion throughout the study

Based on the number of returned bottles, mean compliance was 99% (range: 
89 - 100%) during both intervention periods. To further substantiate compliance, 
serum theobromine concentrations were measured. Fasting serum theobromine 
concentrations significantly increased after the theobromine period as compared with 
placebo period (placebo 0.6 ± 0.6 µmol/L vs. theobromine 7.0 ± 6.6 µmol/L, P < 0.001) 
(Figure 2). Forty-three of the 44 participants had higher theobromine concentrations 
after the theobromine period than during the placebo period. Furthermore, also 
plasma caffeine and paraxanthine concentrations were significantly increased after 
theobromine consumption (caffeine: placebo, 5.4 ± 5.1 µmol/L vs. theobromine, 6.9 ± 
6.0 µmol/L, P = 0.013 and paraxanthine: placebo, 1.5 ± 1.2 µmol/L vs. theobromine, 
1.9 ± 1.4 µmol/L, P = 0.022). Changes in serum theobromine concentrations did 
not correlate with changes in serum caffeine and paraxanthine concentrations, but 
changes in serum caffeine concentrations correlated positively with changes in serum 
paraxanthine concentrations (r = 0.740, P < 0.001).
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Table 2 Baseline characteristics of the participants who completed the study

Mean ± SD
Age (years) 60.3 ± 5.5
BMI (kg/m2) 29.2 ± 3.0
Total cholesterol (mmol/L) 5.65 ± 0.92
HDL-C (mmol/L) 1.22 ± 0.18
Glucose (mmol/L) 5.56 ± 0.63
SBP (mmHg) 134 ± 15
DBP (mmHg) 86 ± 9
Heart rate (bpm) 70 ± 12
1 Values are mean ± SD. n = 44. bpm: beats per min, DBP: diastolic blood pressure, HDL-C: high density lipo-
protein cholesterol, SBP: systolic blood pressure. 

Figure 2 Individual theobromine concentrations after 4-weeks of placebo or theobromine consumption ( n = 44).

FFQ

Energy, protein, carbohydrate, fat, saturated fatty acids, monounsaturated fatty 

acids, polyunsaturated fatty acids, alcohol, cholesterol or fi ber intakes between the 2 
periods were comparable (Supplementary data, Table 2).

Fasting lipid, lipoprotein and glucose metabolism
Fasting serum LDL-C (-0.21 mmol/L; 95% CI: -0.35, -0.06; P = 0.006), apoB100 (-0.04 
g/L; 95% CI: -0.07, -0.01; P = 0.022) and total cholesterol (-0.10 mmol/L; 95% CI: 
-0.28, -0.02; P = 0.029) concentrations were signifi cantly reduced at the end of the 
theobromine period as compared with the placebo period. Fasting serum HDL-C 
tended to increase after theobromine consumption (0.03 mmol/L; 95% CI: 0.00, 0.06; 
P = 0.088), while apoA-I concentrations were comparable between the 2 periods (0.01 
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g/L; 95% CI: -0.02, 0.04; P = 0.576). As a consequence, the ratios of total cholesterol/
HDL-C (-0.23; 95% CI: -0.39, -0.07; P = 0.006) and LDL-C/HDL-C (-0.29; 95% CI: -0.44, 
-0.15; P < 0.001) were significantly lower after theobromine consumption. Finally, 
fasting serum TAG, FFA, glucose, and insulin concentrations, as well as HOMA-IR, 
QUICKI, BMI, systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart 
rate were not significantly changed after theobromine consumption (Table 3). 

Table 3 Fasting lipids, (apo)lipoproteins, glucose, insulin, and metabolic risk markers after 4-weeks of theobro-
mine consumption1 

Placebo Theobromine Difference
LDL-C (mmol/L)2 3.75 ± 0.91 3.54 ± 0.75 -0.21 ± 0.45*
ApoB100 (g/L) 1.24 ± 0.26 1.21 ± 0.24 -0.04 ± 0.13*
Total cholesterol (mmol/L) 5.71 ± 1.10 5.56 ± 1.01 -0.10 ± 4.44*
HDL-C (mmol/L) 1.09 ± 0.19 1.11 ± 0.21 0.03 ± 0.13
ApoA-I (g/L) 1.39 ± 0.16 1.40 ± 0.18 0.01 ± 0.13
Total cholesterol / HDL-C 5.41 ± 1.38 5.18 ± 1.36 -0.23 ± 0.53*
LDL-C / HDL-C 3.53 ± 1.01 3.24 ± 0.89 -0.29 ± 0.46*
TAG (mmol/L)3 0.31 (0.47 - 0.57) 0.44 (0.52 - 0.62) 0.06 (-0.01 - 0.13)
FFA (μmol/L) 408 ± 147 385 ± 118 23 ± 126*
Glucose (mmol/L) 6.01 ± 0.62 6.02 ± 0.61 0.01 ± 0.27
Insulin (µU/mL) 15.78 ± 5.42 15.50 ± 6.54 -0.28 ± 3.45
HOMA-IR 2.09 ± 0.72 2.07 ± 0.86 -0.02 ± 0.46
QUICKI 0.31 ± 0.02 0.32 ± 0.02 0.00 ± 0.01
BMI (kg/m2) 29.2 ± 3.0 29.2 ± 3.1 0.0 ± 0.40
SBP (mmHg) 134 ± 14 135 ± 14 0 ± 7
DBP (mmHg) 86 ± 9 86 ± 10 1 ± 7
Heart rate (bpm) 62 ± 9 63 ± 9 1 ± 7
1 Values are estimated marginal means ± SD. n = 44. * Significantly different from placebo (linear mixed mod-
els): * p<0.05. apoA-I: apolipoprotein A-I, apoB100: apolipoprotein B100, bpm: beats per min, DBP: diastolic 
blood pressure, FFA: free fatty acids, HDL-C: high density lipoprotein cholesterol, LDL-C: low density lipopro-
tein cholesterol, SBP: systolic blood pressure, TAG: triacylglycerol.
2 n = 41 because of missing values
3 Values are geometric mean with 95% CI in parentheses

Postprandial lipid, lipoprotein and glucose metabolism 
No significant treatment*time interactions were found during the postprandial 
period. However, time effects were significant for all parameters (P < 0.001; Figure 

3). Theobromine intake had no effects on postprandial changes in HDL-C, apoA-I, 
TAG and apoB48, but did affect those of FFA, glucose and insulin (Figure 3, Table 

5). After theobromine consumption, the decrease in postprandial FFA concentrations 
was less pronounced (P = 0.002), the iAUC was increased (P = 0.003) and the maximal 
FFA concentrations were increased (P < 0.001). Further, theobromine consumption 
increased the postprandial glucose response (P = 0.001) as well as the iAUC (P = 
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0.026). Postprandial insulin concentrations tended to increase after theobromine 
consumption (P = 0.052), while the iAUC was increased (P = 0.011). Furthermore, 
maximal postprandial insulin concentrations were increased (P = 0.005; Figure 3, 

Table 5).

 

Figure 3 Mean baseline-corrected changes for high den-
sity lipoprotein cholesterol (HDL-C), apolipoprotein 
A-I (apoA-I), triacylglycerol (TAG), apolipoprotein B48 
(apoB48), free fatty acids (FFA), glucose, and insulin 
concentrations after theobromine (dotted line, triangle) 
or placebo (line, square) consumption for 4-weeks
 Values are mean ± SD. n = 44. * Signifi cantly diff erent 
from T0 (linear mixed models): * p<0.05.
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Hs-CRP and markers refl ecting liver and kidney function
Theobromine had no eff ect on parameters related to liver and kidney function. In 
addition, values remained for all subjects within reference ranges during the entire 
study (Table 4). However, theobromine consumption increased plasma hsCRP 
concentration with 1.2 mg/L (P = 0.017, Table 4). As elevated hsCRP concentrations 
are associated with changes in fasting lipid, (apo)lipoprotein28 and glucose 

concentrations,29 correlations with changes in hsCRP were calculated. Only signifi cant 
correlations with changes in TAG (r = -0.332, P = 0.028) and apoA-I (r = -0.383, P = 
0.010) were found. Changes in hsCRP concentrations did not correlate with those in 
theobromine (r = 0.041, P = 0.790).

Table 4 Markers refl ecting liver and kidney function and hsCRP after 4-weeks theobromine consumption1

Placebo Theobromine Reference values2 m / f
Creatinine (μmol/L) 86 (60 – 112) 85 (58 – 104) 60-115 50-100
GammaGT (U/L) 27 (13-88) 25 (13 - 70) <55 <38
ASAT (U/L) 28 (17 – 42) 27 (18 – 63) <35 <31
ALAT (U/L) 24 (16 – 50) 24 (12 – 47) <45 <34
Bilirubin (μmol/L) 8.7 (4.3 – 33.8) 8.1 (3.7 – 31.7) <20 <20
hsCRP (mg/L) 1.7 (0.2 - 14.5)* 2.8 (0.1 - 5.0) *
1 Values are medians with ranges. n = 44. * Signifi cantly diff erent from placebo (Wilcoxon signed-rank test): 
* p<0.05. ALAT: alanine aminotransferase, ASAT: aspartate aminotransferase, gamma-GT: gamma-glutamyl-
transferase, hsCRP: high sensitivity c-reactive protein.
2 Reference values are specifi c for the clinical chemistry laboratory of the Academic Hospital Maastricht 

Gene expression and pathway analysis
Baseline characteristics and responses to theobromine consumption of the men (n = 
10), in which duodenal biopsies were taken, were comparable to those of the other 
men (n = 21). Only baseline glucose concentrations were signifi cantly higher (6.07 ± 
0.78 mmol/L vs. 5.34 ± 0.42 mmol/L) in the subgroup in which duodenal biopsies 
were taken (data not shown).
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Theobromine significantly changed the expression of only 100 genes (Figure 4). None 
of these genes were related to lipid, cholesterol or glucose metabolism. IPA showed that 
9 pathways were changed (Table 6), which were again not related to lipid, cholesterol 
or glucose metabolism. GSEA revealed that 3 gene sets were downregulated, whereas 
364 gene sets were upregulated after theobromine consumption (Supplementary 
data, Table 3). Many of these gene sets were related to the cell cycle or the immune 
system.  Also the 53 upstream regulators that were changed were not related to lipid, 
cholesterol or glucose metabolism (Supplementary data, Table 4).

Figure 4 P-value distribution of the microarray analysis of duodenal biopsies after 4-weeks of theobromine 
consumption ( n = 10) 

Table 6 IPA results of the microarray analysis of duodenal biopsies after 4-weeks of theobromine consumption
Pathway -log(p-value) Ratio
Mitotic Roles of Polo-Like Kinase 1.30 0.06
Eicosanoid Signaling 1.34 0.06
CDP-diacylglycerol Biosynthesis I 1.36 0.13
Sulfate Activation for Sulfonation 1.38 0.50
Glycine Biosynthesis I 1.38 0.50
Glutamate Biosynthesis II 1.38 0.50
Glutamate Degradation X 1.38 0.50
Cell Cycle: G2/M DNA Damage checkpoint Regulation 1.72 0.08
p38 MAPK Signaling 1.93 0.06
1 n = 10. 
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Discussion

This randomized, double-blind, placebo-controlled human intervention study 

showed that a daily intake of 500 mg theobromine for 4-weeks decreased fasting serum 
total cholesterol, LDL-C, and apoB100 concentrations, tended to increase fasting 
serum HDL-C concentrations, and signifi cantly increased those of hsCRP. During the 
postprandial phase, theobromine consumption increased both glucose and insulin 

responses, which suggests a lower insulin sensitivity. In addition, theobromine 
increased postprandial FFA concentrations, while TAG, HDL-C, apoA-I and apoB48 
responses did not change. These fi ndings suggest that it is highly unlikely that 
theobromine is the component in cocoa that explains the epidemiological fi ndings 
suggesting that high dark chocolate consumption reduces CVD risk. 

Theobromine has been reported to increase fasting serum HDL-C and apoA-I 
concentrations.12 However, in the present study, fasting serum HDL-C concentrations 
only tended to increase, while apoA-I concentrations were unchanged. With 44 
participants, the statistical power to detect a diff erence of 0.07 g/L in serum apoA-I 
concentrations, as reported by Neufi ngerl et al., was >95% (α = 0.05), when a within-
subject variability of 0.10 g/L was used. There are at least three explanations for 
these contradicting fi ndings. First, Neufi ngerl et al. used 850 mg theobromine, while 
the intake in our study was 500 mg. Second, Neufi ngerl and colleagues added the 
theobromine to a milk-based drink, while we dissolved the theobromine in water.12 It 
is possible that theobromine needs one or more components from milk to eff ectively 
increase serum apoA-I and HDL-C concentrations. Third, Neufi ngerl et al. studied 
healthy subjects, while we included overweight or obese participants with relatively 
low HDL-C concentrations. Further, in our study serum HDL-C concentrations tended 
to increase while apoA-I concentrations did not, which may suggest that HDL-C 
particle composition - and possibly HDL functionality - changed. In agreement with 
the study of Neufi ngerl et al. (2013), serum LDL-C and apoB100 concentrations also 
decreased.12

So far, no other study has examined the eff ects of theobromine on fasting or 
postprandial glucose metabolism. For cocoa, benefi cial eff ects on fasting insulin 
concentrations and insulin resistance has been reported.30 However, eff ects on 
postprandial glucose metabolism are inconsistent. One study found increased 
postprandial insulin responses, but no diff erences in those of glucose after acute cocoa 
consumption,9 while another study reported lower glucose and insulin responses after 

dark chocolate consumption for 15 days.10 In our study, theobromine unfavorably 
aff ected postprandial glucose and insulin responses. We can only speculate about the 
mechanism underlying these responses. It has been reported that theobromine inhibits 
cyclic adenosinemonophosphate (cAMP)-phosphodiesterase,31,32 which increases 
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cellular cAMP levels, leading to a net increase in hepatic glucose production.33 This 

may result in higher plasma glucose concentrations and consequent higher insulin 

responses. In addition, cAMP amplifies the exocytosis of insulin granules in the 
pancreas,34 which may also have contributed to the observed higher circulating 

postprandial insulin concentrations. Another mechanism could relate to the hepatic 
metabolism of theobromine, where cytochrome P450 2E1 (CYP2E1) and cytochrome 
P450 1A2 (CYP1A2) are involved.35 It is known that the activity of CYP2E1 can be 
upregulated by its own substrates.36 Therefore, higher theobromine intakes may 

increase CYP2E1 activity, which causes oxidative stress, leading to hepatic insulin 
resistance.37  In fact, CYP2E1 knock out mice are protected against insulin resistance, 
obesity and hyperlipidemia.38 Finally, hsCRP concentrations increased after 
theobromine consumption, which is also associated with insulin resistance.39 hsCRP 
is an acute phase protein, which can be produced in the liver in response to factors 

(e.g. interleukin 6 (IL-6)) released by adipocytes and macrophages.40 Whether this 

pathway was upregulated by theobromine intake warrants further study. 
Theobromine had no effects on postprandial lipid and lipoprotein metabolism. 

FFA concentrations normally decrease following meal consumption.41,42 However, we 

found here that in both intervention periods, FFA concentrations slightly increased 

during the first 45 min after meal consumption preceding the expected decrease. This 
increase was more pronounced and the decreases less pronounced after theobromine 

consumption, for which we have no explanation. 
Microarray analysis showed that only few genes in duodenal biopsies were 

differentially expressed and did not suggest regulation of pathways, gene sets 
or upstream regulators related to lipid or glucose metabolism after 4-weeks of 
theobromine consumption. We therefore conclude that theobromine does not change 
duodenal gene expression of genes related to lipid and glucose metabolism. The 
changes observed in this study are thus caused in other organs.

Compliance was excellent as evidenced by the increased serum theobromine 

concentrations. Furthermore, also the concentrations of serum caffeine and 
paraxanthine, a metabolite of caffeine, increased after theobromine consumption. The 
hepatic enzymes - CYP1A2 and CYP2E1 - that metabolize theobromine also function 
in caffeine metabolism.41 Therefore, it is possible that these enzymes are occupied by 

theobromine and have a limited capacity to metabolize caffeine, leading to higher 
circulating caffeine concentrations. In the liver, caffeine is mainly metabolized 
into paraxanthine by CYP1A2.42 Theoretically, higher caffeine concentrations may 
therefore also lead to higher paraxanthine concentrations. Consequently, it is also 
possible that the effects on lipid and glucose metabolism observed in this study are 
caused by the increases in caffeine and/or paraxanthine concentrations and not only 
by the elevation of theobromine. 
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This study has several limitations. First, we studied a relatively homogenous 
group in terms of ethnicity, age, BMI, and HDL-C concentrations and it remains to 
be determined to what extent these fi ndings can be extrapolated to other population 
groups. Furthermore, participants consumed the theobromine at breakfast and the 
fasting blood samples were taken 24 hours later. Peak plasma concentrations of 
theobromine are usually seen 3 hours after theobromine consumption and have 
returned to baseline 24 hours after intake.43 Therefore, it can be speculated that eff ects 
of theobromine on fasting metabolism have already disappeared 24 hours after intake. 
However, as also no eff ects on postprandial lipids were observed, this speculation is 
not very likely.

In conclusion, it is not likely that the potential benefi cial eff ects of cocoa on 
CVD can be ascribed to theobromine. Although theobromine improves serum LDL-C 
concentrations, it did not change fasting HDL-C, apoA-I, or postprandial lipid 
concentrations and duodenal gene expression, and unfavorably aff ected postprandial 
glucose and insulin responses.
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Supplementary data
Table 1 Composition of the test drinks (20mL)

Theobromine drink Placebo drink
Theobromine (mg) 500 -

Microcrystalline cellulose (mg) - 500
Methyl cellulose (mg) 150 150
Sucralose (mg) 10 10
Sodium benzoate (mg) 100 100
Anise 0.1% (mg) 20 20
Water Till 20 g Till 20 g

Table 2 Habitual dietary intake during the study1 

Placebo Theobromine

Energy (kcal/day) 2315 (1014 - 3673) 2312 (887 - 3571)
Protein (E%) 15.9 (10.2 - 23.9) 15.2 (11.2 - 21.6)
Carbohydrates (E%) 42.7 (33.6 - 56.9) 42.1 (34.0 - 54.6)
Total fat (E%) 37.4 (23.0 - 47.8) 37.3 (25.7 - 48.4)
Saturated fatty acids (E%) 12.1 (6.6 - 17.2) 12.2 (6.2 - 15.7)
Monounsaturated fatty acids (E%) 12.8 (8.4 - 23.1) 12.9 (9.1 - 20.5)
Polyunsaturated fatty acids (E%) 7.9 (4.4 - 11.7) 7.9 (3.7 - 12.9)
Alcohol (E%) 1.4 (0.0 - 13.3) 1.3 (0.0 - 10.0)
Cholesterol (mg/day) 240 (89 - 469) 228 (97 - 429)
Fiber (g/day) 27.5 (16.4 - 48.0) 26.2 (14.0 - 44.2)
1 Values are medians with ranges. n = 44.
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Table 3 Results of the GSEA, including all upregulated gene sets and the top 50 of the downregulated gene sets, 
of the duodenal biopsies after 4-week of theobromine consumption1 

Gene Set NES FDR-q value
KEGG_MINERAL.ABSORPTION 2.01 0.12
WP1871.NEUROTRANSMITTER.RELEASE.CYCLE 1.99 0.076
SYNTHESIS.OF.LEUKOTRIENES.LT.AND.EOXINS.EX. 1.93 0.105
CHROMOSOME.MAINTENANCE -2.93 <0.001
WP2652.MITOTIC.PROMETAPHASE -2.90 <0.001
MITOTIC.PROMETAPHASE -2.87 <0.001
MITOTIC.M.M.G1.PHASES -2.83 <0.001
RESOLUTION.OF.SISTER.CHROMATID.COHESION -2.80 <0.001
CELL.CYCLE.MITOTIC -2.77 <0.001
M.PHASE -2.75 <0.001
TELOMERE.MAINTENANCE -2.73 <0.001
MITOTIC.ANAPHASE -2.67 <0.001
WP2446.RB.IN.CANCER -2.67 <0.001
MITOTIC.METAPHASE.AND.ANAPHASE -2.65 <0.001
SEPARATION.OF.SISTER.CHROMATIDS -2.65 <0.001
NUCLEOSOME.ASSEMBLY -2.62 <0.001
WP2757.MITOTIC.METAPHASE.AND.ANAPHASE -2.59 <0.001
DEPOSITION.OF.NEW.CENPA.CONTAINING.NUCLEOSOMES.
AT.THE.CENTROMERE -2.59 <0.001
WP466.DNA.REPLICATION -2.57 <0.001
WP1874.NUCLEOSOME.ASSEMBLY -2.55 <0.001
WP1928.TELOMERE.MAINTENANCE -2.55 <0.001
KEGG_DNA.REPLICATION -2.50 <0.001
KEGG_SYSTEMIC.LUPUS.ERYTHEMATOSUS -2.44 <0.001
MITOTIC.PROPHASE -2.44 <0.001
MEIOSIS -2.38 <0.001
WP1925.SYNTHESIS.OF.DNA -2.38 <0.001
EXTENSION.OF.TELOMERES -2.38 <0.001
WP1775.CELL.CYCLE.CHECKPOINTS -2.37 <0.001
KEGG_CELL.CYCLE -2.37 <0.001
CONDENSATION.OF.PROPHASE.CHROMOSOMES -2.37 <0.001
MITOTIC.G1.G1.S.PHASES -2.35 <0.001
DNA.STRAND.ELONGATION -2.34 <0.001
DNA.REPLICATION -2.34 <0.001
DNA.REPLICATION.PRE.INITIATION -2.34 <0.001
WP2739.AMYLOIDS -2.34 <0.001
CELL.CYCLE.CHECKPOINTS -2.34 <0.001
ACTIVATION.OF.THE.PRE.REPLICATIVE.COMPLEX -2.33 <0.001
WP1858.MITOTIC.G1.G1.S.PHASES -2.32 <0.001
DNA.METHYLATION -2.32 <0.001
G1.S.TRANSITION -2.31 <0.001
WP179.CELL.CYCLE -2.31 <0.001
MEIOTIC.RECOMBINATION -2.30 <0.001
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Table 3 Results of the GSEA, including all upregulated gene sets and the top 50 of the downregulated gene sets, 
of the duodenal biopsies after 4-week of theobromine consumption1  (continued)
Gene Set NES FDR-q value
MEIOTIC.SYNAPSIS -2.29 <0.001
WP2785.M.G1.TRANSITION -2.28 <0.001
WP2772.S.PHASE -2.27 <0.001
M.G1.TRANSITION -2.26 <0.001
WP1782.APC.C.MEDIATED.DEGRADATION.OF.CELL.CYCLE. 
PROTEINS -2.26 <0.001
DNA.DAMAGE.TELOMERE.STRESS.INDUCED.SENESCENCE -2.26 <0.001
WP619.TYPE.II.INTERFERON.SIGNALING.IFNG. -2.26 <0.001
PACKAGING.OF.TELOMERE.ENDS -2.25 <0.001
G2.M.CHECKPOINTS -2.24 <0.001
PRC2.METHYLATES.HISTONES.AND.DNA -2.24 <0.001
APC.C.CDC20.MEDIATED.DEGRADATION.OF.MITOTIC. PROTEINS -2.24 <0.001
1 n = 10.

Table 4 Results of the upstream regulator analysis of duodenal biopsies after 4-week of theobromine consump-
tion1

Upstream Regulator Activation z-score p-value of overlap
CSF2 -4.21 <0.001
ESR1 -4.01 <0.001
PTGER2 -4.00 <0.001
HGF -3.47 <0.001
Vegf -3.46 <0.001
TAL1 -3.43 <0.001
RABL6 -3.32 <0.001
TBX2 -3.30 <0.001
FOXM1 -2.90 <0.001
CCND1 -2.54 <0.001
ERBB2 -2.43 <0.001
MYC -2.30 0.030
TSC2 -2.24 0.042
estrogen -2.20 0.024
E2F1 -2.19 <0.001
E2F3 -2.13 <0.001
beta-estradiol -2.05 0.004
S100A6 -2.00 0.002
SMOC2 -2.00 <0.001
EP400 -1.98 0.008
RARA -1.89 <0.001
E2f -1.56 <0.001
4-hydroxytamoxifen 1.50 0.024
valproic acid 1.67 0.016
COL18A1 1.67 0.008
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Table 4 Results of the upstream regulator analysis of duodenal biopsies after 4-week of theobromine consump-
tion1 (continued)
Upstream Regulator Activation z-score p-value of overlap
KDM5B 1.88 <0.001
SPARC 1.89 0.006
miR-145-5p 1.95 0.019
RBL1 1.96 <0.001
Rb 1.98 0.003
PPRC1 2.00 0.012
carbonyl cyanide m-chlorophenyl hydrazone 2.00 0.019
PAX6 2.00 0.023
BMS-690514 2.00 0.039
PGR 2.05 0.020
tretinoin 2.10 0.006
doxorubicin 2.11 0.008
bee venom 2.24 0.013
fl uocinolone acetonide 2.24 0.003
RBL2 2.24 <0.001
RB1 2.27 0.001
LY294002 2.28 0.005
triamcinolone acetonide 2.38 0.024
CDKN1A 2.41 <0.001
BNIP3L 2.45 <0.001
TCF3 2.53 <0.001
mir-21 3.05 0.013
Irgm1 3.15 <0.001
CDKN2A 3.55 0.001
TP53 3.80 <0.001
let-7 3.92 <0.001
calcitriol 3.94 <0.001
NUPR1 4.35 <0.001
1 n = 10.
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Abstract

Introduction Theobromine, a component of cocoa, may favorably affect conventional 
lipid-related cardiovascular risk markers, but effects on flow-mediated dilation 
(FMD) and other vascular function markers are not known. 

Objective To evaluate the effects of 4-weeks theobromine consumption (500 mg/day) 
on fasting and postprandial vascular function markers.

Design In a randomized, double-blind crossover study, 44 apparently healthy 
overweight men and women with low HDL-C concentrations, consumed daily 500 
mg theobromine or placebo for 4-weeks. After 4-weeks, FMD, peripheral arterial 
tonometry (PAT), augmentation index (AIx), pulse wave velocity (PWV), blood 
pressure (BP) and retinal microvasculature measurements were performed. These 
measurements were carried out under fasting conditions and 2.5-hours after a mixed 
meal challenge.

Results 4-weeks theobromine consumption did not change fasting vascular function 
markers, except for a decrease in central AIx (cAIx, -1.7 pp, P = 0.037) and a trend 
towards smaller venular calibers (-2 μm, P = 0.074). Meal consumption decreased 
FMD (0.89 pp, P = 0.002), reactive hyperemia index (RHI, -0.30, P < 0.001), peripheral 
systolic BP (SBP, -3 mmHg, P ≤ 0.001), peripheral diastolic BP (DBP, -2 mmHg, P 
≤ 0.001), central SBP (-6 mmHg, P ≤ 0.001) and central DBP (-2 mmHg, P ≤ 0.001), 
but increased heart rate (HR, 2 bmp, P < 0.001). Theobromine did not modify these 
postprandial effects, but increased postprandially the brachial artery diameter (0.03 
cm, P = 0.015), and decreased the cAIx corrected for a HR of 75 (cAIx75, -5.0 pp, P = 
0.004) and peripheral AIx (pAIx, -6.3 pp, P = 0.017).

Conclusion Theobromine consumption did not improve fasting and postprandial 

endothelial function, but increased postprandial peripheral arterial diameters and 

decreased the AIx. These findings do not suggest that theobromine alone contributes 
to the proposed cardioprotective effects of cocoa. This trial was registered on 
clinicaltrials.gov under study number NCT02209025.
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Introduction

Chocolate consumption is associated with a lower risk for cardiovascular diseases 

(CVD).1 These eff ects are specifi cally evident for dark chocolate, which has been 
shown to improve serum lipid profi les,2,3 to reduce blood pressure,2,4 to increase 

insulin sensitivity, and to improve vascular endothelial function as measured 

with fl ow-mediated dilation (FMD).2 The components from cocoa responsible 

for the potentially benefi cial eff ects on FMD are unknown, but it can be argued 
that theobromine contributes to these eff ects. In fact, the acute consumption of 
low amounts of theobromine (111 mg) and caff eine (11 mg) together with cocoa 
fl avanols increased the postprandial FMD.5 Furthermore, a 4-week study showed 
that theobromine consumption lowered fasting low-density lipoprotein cholesterol 

(LDL-C) and apolipoprotein B (apoB) concentrations,6,7 and increased those of serum 

high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A-I (apoA-I). 
Recently, however, we could not confi rm these latter fi ndings.7 Moreover, we 

observed no eff ects of theobromine consumption on postprandial lipid responses, 
while postprandial free fatty acid, glucose and insulin responses were increased.7 It is 
known that both postprandial hyperlipedemia8 and hyperglycemia9 impair vascular 

function. Therefore, it is relevant to examine eff ects of theobromine, not only on 
fasting vascular function, but also on vascular resilience after a meal challenge.  

FMD is a non-invasive vascular function marker to assess endothelial function 

and an accepted predictive biomarker for future CVD events.10 Another method to 

evaluate endothelial function is peripheral arterial tonometry (PAT), which measures 
the reactive hyperaemia index (RHI) of the small arteries and is negatively correlated 
with the presence of CVD risk factors.11 Furthermore, several non-invasive markers 

exist to assess arterial stiff ness such as carotid-femoral pulse wave velocity (PWVcf) 
and the augmentation index (AIx). PWVcf is associated with a higher frequency of 
stroke, CVD and total mortality,12 while the AIx is associated with higher CVD risk.13 

Finally, the microvasculature can be studied by evaluating the caliber of the blood 

vessels in the retina. Cross-sectional wider venules and narrower arterioles predict 
an increased risk of CVD events in women, but not in men.14

In agreement with eff ects on FMD,2 dark chocolate consumption also improved 

RHI.15 However, eff ects on measures of arterial stiff ness are confl icting. In one 
study, no eff ects were found on PWVcf,13 while in another study benefi cial eff ects 
were found on AIx.16,17 Furthermore, Terai et al. showed no diff erences in arteriolar 
and venular width after short-term dark chocolate consumption.12 So far, long-term 

eff ects of theobromine consumption on a wide panel of vascular function markers 
have never been studied. Therefore, we examined the eff ects of 4-weeks theobromine 
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consumption (500 mg/day) on FMD, RHI, pulse wave velocity (PWV), AIx, and 
retinal microvasculature in fasting conditions and after a meal challenge. 

Material and methods
Study population
Details of this study have been published before.7 Briefly, 48 healthy overweight 
or slightly obese (BMI 25-35 kg/m2) men (45-70 years) and women (50-70 years) 
participated. During two screening visits, with an interval of ≥1-week, blood pressure 
was measured in fourfold using an Omron M7 (Omron Healthycare Europe B.V., 
Hoofddorp, the Netherlands). The first measurement was discarded and the last 
three measurements were averaged.  Furthermore, a fasting blood sample was taken 
for analysis of serum total cholesterol, HDL-C, and plasma glucose concentrations. 
Inclusion criteria were: fasting serum HDL-C concentrations below the 50th percentile 

of the Dutch population (<1.2 mmol/L for men and <1.5 mmol/L for women),18 

fasting serum total cholesterol concentrations <8.0 mmol/L, fasting plasma glucose 
concentrations <7.0 mmol/L, and no use of lipid-lowering, anti-diabetic or anti-
hypertensive medication or a medically prescribed diet. All participants gave their 
written informed consent before entering the study. This study was conducted 
according to the guidelines laid down in the Declaration of Helsinki. The study 
protocol was approved by the Medical Ethical Committee of the University Hospital 

Maastricht. The trail was registered at clinicaltrials.gov under study number 
NCT02209025.

Study design and product
This study with a randomized, double-blind, cross-over design consisted of 2 
intervention periods of 4-weeks separated by a 4-week washout period. Starting 
2-weeks before the first intervention period and during the entire study, participants 
were instructed by a research dietician to avoid cocoa-containing products, for which 

they received a detailed list with products. Since theobromine is a metabolite of 
caffeine, the consumption of caffeine-containing drinks was restricted to a maximum 
of 4 cups a day and volunteers were instructed not to change their intake throughout 
the study. Subjects consumed in random order a drink (20ml) enriched with 
theobromine (500mg/day) or placebo every day during breakfast (Supplementary 
data, Table 1). Theobromine was obtained from Fagron (Uitgeest, the Netherlands) 
and drinks were produced and provided by Pharmavize (Mariakerke, Belgium). 
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Test day and test meal
At the end of the 4-week intervention and placebo periods, subjects visited the 
University in fasting condition (no food or drinks, except water, 12-hours before the 
visit). To minimize eff ects of the previous meal, we provided all subjects with the 
same commercially available lasagne (638 kcal, 28.4 g protein, 44.0 g carbohydrates 
and 37.6 g fat) the evening before each of the two test days. Furthermore, subjects 
were asked to avoid alcohol consumptions and strenuous activities 48-hours before 
a visit. 

In the morning, volunteers arrived at the Department by public transport or car, 
to standardize measurements as much as possible. Upon arrival and after a 10 min 
rest in supine position, vascular function measurements were performed in fasting 

conditions. Next, subjects were asked to consume a high-fat mixed meal (965 kcal, 
17.9 g protein, 86.7 g carbohydrates, 60.6 g fat and 341 mg cholesterol) together with 
their experimental drink, within 10 min. For the next 2.5-hours following the meal, 
participants were not allowed to eat or drink anything except water. After 2.5-hours 
(T150), the same panel of vascular function measurements was performed in the 
same order, using the same protocols. 

Vascular measurements
Investigators were blinded during the study and data analyses. All vascular 
measurements were performed in a quiet and temperature controlled (22°C) room. 
Peripheral systolic blood pressure (pSBP), peripheral diastolic blood pressure (pDBP), 
FMD, RHI, PWVcf, AIx and retinal vascular image measurements were determined 
as described before.19 Furthermore, carotid-radial PWV (PWVcr) was measured 
with the SphygmoCor, as described for the PWVcf.19 Central systolic blood pressure 

(cSBP) and central diastolic blood pressure (cDBP) values were obtained from the 
SphygmoCor measurements. 

Statistical analysis
Before the start of the study, it was calculated that the statistical power to detect a 
true diff erence of at least 1.20 percent points (pp) in FMD between the experimental 
and control period was over 80% (α=0.05), when 43 subjects successfully completed 
the study. For these calculations, a within-subject variability of 2.82 pp in FMD20 was 

used. As the expected drop-out rate was 10%, the aim was to recruit 48 men and 
women.  

All data is presented as mean ± SD unless indicated otherwise. All parameters 
were checked for normal distributions with the Shapiro-Wilk test. Fasting 
measurements after 4-weeks of placebo or theobromine intervention were compared 
with the general mixed model procedure with subject as random factor, and treatment 
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and period as fixed factors. Differences in postprandial changes after 4-weeks of 
placebo or theobromine interventions were also evaluated with general mixed 

models with subject as random factor and treatment and meal as fixed factors and 
a treatment*meal interaction. If this treatment*meal interaction was not significant, 
it was omitted from the model. Results were considered statistically significant if 
p≤0.05. All statistical analyses were performed using SPSS 20.0 for Mac (SPSS Inc., 
Chicago, IL, USA). 

Results
Study participants
After screening, 48 subjects were eligible for participation and started the study. 
During the first intervention period, 4 participants (1 male and 3 female) discontinued 
the study. Thus, 44 participants completed the study. The flow diagram and subject 
characteristic are presented as Supplementary data (Figure 1 and Table 2). RHI data 
was missing for three persons, due to technical problems. For 2 subjects (1 man, 1 
woman), T0 values were missing and for 1 male participant, a T150 value was absent. 
For 4 persons CRAE and CRVE calibers were missing (1 man and 3 women) and for 
2 persons (1 man and 1 woman) the T150 values were missing, because of a poor 
quality of the fundus photos. 

Fasting vascular function
In the fasting condition, theobromine consumption did not change FMD, brachial 
artery diameter, and RHI. Furthermore, PWVcf, PWVcr, pAIx and cAIx75 did not 
change, but the cAIx was significantly lower after theobromine intake (-1.7 pp, 95% 
CI: -6.1, -0.2, P = 0.037). The CRAE and AVR also remained stable during the study, 
but theobromine intake tended to decrease the CRVE (-2 μm, 95% CI: -4, 0, P = 0.074). 
Finally, fasting BP and HR were not affected (Table 1).

Postprandial vascular function
As expected, test meal intake significantly decreased FMD (-0.89 pp, 95% CI: -1.43, 
-0.35, P = 0.002) and RHI (-0.30, 95% CI: -0.43, -0.16, P < 0.001) responses, but these 
effects did not depend on theobromine consumption. However, the brachial artery 
diameter increased when theobromine was part of the test meal (0.03 cm, 95% CI: 
1.23, 4.45, P = 0.015 for treatment*meal effects).  
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Table 1 Brachial diameter, brachial artery FMD, RHI, PWVcf, PWVcr, cAIx, cAIx75, pAIx, CRAE, CRVE, 
AVR, pSBP, pDBP, cSBP, cDBP and HR in fasting (T0) and postprandial (T150) condition after 4-wee ks of 
placebo or theobromine consumption1

Placebo Theobromine

T0 T150 Change T0 T150 Change
Brachial diameter 
(cm)

0.49 ± 0.06 0.50 ± 0.08 0.00 ± 0.04 0.49 ± 0.07 0.52 ± 0.08 0.03 ± 0.04*

Brachial artery 
FMD (%)$

4.87 ± 2.54 3.87 ± 2.32 -1.00 ± 2.97 4.43 ± 2.01 3.65 ± 2.25 -0.78 ± 2.48

RHI2,$ 2.64 ± 0.68 2.38 ± 0.61 -0.24 ± 0.65 2.58 ± 0.61 2.23 ± 0.47 -0.35 ± 0.60
PWVcr (m/s) 7.1 ± 1.1 7.1 ± 1.1 -0.1 ± 1.2 7.4 ± 1.3 7.1 ± 1.5 -0.3 ± 1.6
PWVcf (m/s) 9.0 ± 1.4 9.0 ± 1.6 0.0 ± 1.3 8.8 ± 1.6 9.0 ± 1.5 0.2 ± 1.5
cAIx (%) 28.3 ± 9.9 21.9 ± 10.5 -6.4 ± 6.2 26.6 ± 10.4# 15.2 ± 11.2 -11.3 ± 8.4
pAIx (%) -14.8 ± 14.9 -24.1 ± 13.7 -9.3 ± 10.6 -16.8 ± 15.3 -32.4 ± 13.8 -15.6 ± 14.4*
cAIx75 (%) 21.6 ± 8.7 16.3 ± 9.6 -5.3 ± 6.5 21.4 ± 9.3 11.2 ± 10.7 -10.3 ± 8.2*
CRAE (μm)3 135 ± 19 135 ± 19 0 ± 9 134 ± 19 136 ± 19 2 ± 6
CRVE (μm) 3 230 ± 14 231 ± 13 0 ± 5 228 ± 14 231 ± 13 2 ± 7
AVR3 0.59 ± 0.09 0.59 ± 0.09 0.00 ± 0.05 0.58 ± 0.09 0.59 ± 0.09 0.01 ± 0.04
pSBP (mmHg)$ 134 ± 14 132  ± 12 -3 ± 9 134 ± 14 130  ± 13 -4 ± 10
pDBP (mmHg)$ 85  ± 10 83  ± 8 -2 ± 5 86 ± 10 83 ± 9 -3 ± 6
cSBP (mmHg)$ 126 ± 13 121  ± 11 -5 ± 8 125 ± 12 118  ± 13 -7 ± 10
cDBP (mmHg)$ 86  ± 9 84  ± 9 -2 ± 6 87 ± 9 84 ± 9 -3 ± 5
HR (bpm)$ 62  ± 9 64  ± 10 2 ± 4 62 ± 8 65  ± 10 3 ± 7
1 Values are mean ± SD. n = 44. 
Linear mixed models were conducted to fi nd signifi cant diff erences. # p<0.05 for fasting diff erences from placebo, 
* p<0.05 for treatment*meal eff ects, $ P<0.05 for meal eff ects.
2 n=42 at T0, n=41 at T150 due to missing values,
3 n=41 at T0, n=39 at T150 due to missing values.
Abbreviations: FMD: fl ow mediated dilation, RHI: reactive hyperemia index, PWV: pulse wave velocity, 
PWVcf: PWV of the carotis-femoralis, PWVcr: PWV of the carotis-radialis, cAIx: central augmentation index, 
cAIx75: cAIx corrected for a heart rate of 75, pAIx: peripheral augmentation index, CRAE: mean arteriolar 
width, CRVE: mean venular width, AVR: arteriolar to venular ratio, p: peripheral, c: central, SBP: systolic 
blood pressure, DBP: diastolic blood pressure, HR: heart rate. 
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Test meal consumption did not affect arterial stiffness as measured via PWVcf and 
PWVcr. These effects were not changed when theobromine was added to the test meal. 
However, theobromine as part of the test meal tended to decrease the postprandial 

cAIx (-4.9 pp, 95% CI: -5.8, -0.7, P = 0.080 for treatment*meal effects) and decreased the 
pAIx (-6.3 pp, 95% CI: -9.2, -2.4, P = 0.017 for treatment*meal effects) and cAIx75 (-5.0 
pp, 95% CI: -6.8, -2.4, P = 0.004 for treatment*meal effects). Test meal consumption 
did not change retinal vascular calibers. Effects were not changed by theobromine 
consumption. Finally, the test meal significantly decreased cSBP (-5 mmHg, 95% CI: 
-8, -4, p ≤ 0.001), cDBP (-2 mmHg, 95% CI: -3, -1, p ≤ 0.001), pSBP (-3 mmHg, 95% CI: 
-5, -1, p ≤ 0.001) and pDBP (-2 mmHg, 95% CI: -3, -1, p ≤ 0.001) and increased HR (2 
bpm, 95% CI: 1, 3, p ≤ 0.001). These effects were not modified by theobromine (Table 

1). 

Discussion 

This randomized, double-blind, placebo-controlled intervention study showed that 

a daily intake of 500 mg theobromine for 4-weeks did not affect FMD, RHI, PWV 
and the retinal microvasculature in fasting and postprandial conditions. However, 
theobromine consumption increased brachial arterial diameters and decreased the 

AIx during the postprandial phase. 
The amount of 500 mg theobromine provided corresponds to approximately 67-

100 g of dark chocolate.21 It has been shown that consumption of 100 g dark chocolate 
for 15 days increased fasting FMD by 1.5 pp,22 which has been explained by an increase 

in nitric oxide (NO) concentrations due to a higher endothelial-derived NO synthase 
activity.23 Our study was adequately powered to detect such a change. Moreover, the 
finding that fasting RHI - which is also NO-mediated but more related to the small 
arteries and the microvasculature - did not change after theobromine consumption 

was also opposite to the effects observed after consuming cocoa.15 Furthermore, 

theobromine did not modify the effects of a meal challenge on vascular resilience. 
It is well known that a meal high in fat or high in carbohydrates impairs endothelial 
function.24,25 During postprandial hyperlipemia and hyperglycemia, the production 

of reactive oxygen species increases, which decreases NO bioavailability and thereby 

endothelial function.24,25 Indeed, also our test meal stressed the endothelium, as 
evidenced by decreases in postprandial FMD and RHI values, which is in agreement 
with other studies.26-28 In contrast to our results, flavanol-rich cocoa consumption 
ameliorated the decrease in FMD after intake of a fatty meal,29 while flavonoid-rich 
dark chocolate consumption even increased FMD values one hour after intake.30 Our 

data, therefore, suggests that the improvement in endothelial function after cocoa 
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consumption is not solely due to the theobromine content of cocoa. Cocoa also contains 
other bioactive compounds that may aff ect FMD, such as epicatechin.2 Furthermore, 

it is possible that synergistic eff ects of the diff erent bioactive components in cocoa 
have caused the benefi cial eff ects on FMD and RHI. Indeed, Sansone et al. have 
recently shown that a combination of theobromine (111 mg) and caff eine (11 mg) did 
not change the FMD, while fl avanol consumption (820 mg) alone increased the FMD. 
When the fl avanols were consumed together with the mixture of theobromine and 
caff eine, circulating concentrations of fl avanol metabolites were increased, while the 
FMD improved even more.5 

Although theobromine did not change the FMD, we observed an unexpected 

increase in brachial artery diameters during the postprandial phase. Unfortunately, 
most studies investigating the eff ects of cocoa did not report eff ects on brachial artery 
diameters. However, one acute study showed an increase in the brachial artery diameter 
after fl avonoid-rich dark chocolate consumption, but with a simultaneous increase in 
FMD values.30 We can only speculate about the mechanism underlying the increase in 

brachial artery diameter. First, theobromine inhibits cyclic adenosinemonophosphate 
(cAMP)-phosphodiesterase,31,32 which increases cellular cAMP levels. As a response, 
intracellular calcium concentrations may decrease, followed by dilatation of the 

skeletal muscle vasculature.33 A second potential explanation relates to the increased 

postprandial insulin responses after theobromine consumption, as we have already 

earlier reported.7 Insulin is known to cause vasodilatation of the larger arteries,34 

leading to enlarged artery diameters. 
Theobromine did not change fasting and postprandial PWV, but decreased 

fasting and postprandial AIx. This suggests that eff ects on parameters refl ecting 
arterial stiff ness are divergent, as has also been reported in other studies.27,35 

Diff erences in PWV are frequently caused by changes in blood pressure.36 In 
agreement with the lack of eff ect on PWV, theobromine did not change fasting and 
postprandial blood pressure parameters. Neufi ngerl et al. also observed no eff ects 
of 4-weeks of theobromine consumption on fasting blood pressure.6 Furthermore, 

cocoa consumption did not aff ect postprandial blood pressure30,37 and PWVcf 
values.30 In contrast, the consumption of theobromine-enriched fl avonoid-rich cocoa 
drink for 3-weeks increased fasting blood pressure and postprandial PWVcf, while 
it decreased postprandial blood pressure in hypertensive patients.38 Possibly, the 

diff erence in theobromine dose and drink composition can explain the discrepancy 
with our fi ndings, since van den Bogaard et al. used a daily theobromine intake of 979 
mg, which was consumed in combination with fl avonoids provided by the cocoa.38 

Structural characteristics of the vascular wall also determine PWV.39 However, as both 

blood pressure and PWV did not change, it can be deduced that these characteristics 
were also not changed. 
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Unrelated to theobromine intake, we observed a postprandial decrease in 

blood pressure, but the anticipated decrease in postprandial PWV was not observed. 
However, effects of meal consumption on blood pressure as related to PWV are 
conflicting. One study has reported an increase in blood pressure and PWVcf after 
meal consumption;40 another study a decrease in blood pressure, but no change in 

PWVcf,41 while no change in blood pressure but an increase in PWVcr has also been 
reported.42 For now, it is not clear what causes the discrepancy between the different 
studies, but it may relate to differences in the amounts of fat in the test meals between 
the studies.40-42

In our study, theobromine decreased fasting cAIx, but did not change fasting 
pAIx and cAIx75. This is in contrast with the effects of cocoa, since acute and 4-week 
dark chocolate consumption decreased fasting cAIx75.16,17 Except for the effects 
on fasting AIx, the test meal with theobromine decreased cAIx75 and pAIx. This 
decrease may be related to the postprandial increase in peripheral artery diameters, 

as a blood vessel with a larger diameter causes a lower reflection wave, leading to a 
lower AIx.  It can therefore be argued that our findings suggest that the main effect 
of theobromine is dilation of the small and medium-sized peripheral arteries in the 

postprandial state. If true, then it is unclear why the PWVcr - a measure for peripheral 
vascular stiffness - did not decrease after theobromine with meal consumption.  
Finally, theobromine and meal consumption did not affect the arteriolar and venular 
diameters in the fundus vasculature. Also, acute dark chocolate consumption had no 
effect on postprandial arteriolar and venular calibers.12 

In conclusion, theobromine consumption did not improve fasting and 
postprandial endothelial function, but increased postprandial peripheral arterial 

diameters and decreased the AIx. These findings do not suggest that theobromine 
alone contributes to the proposed cardioprotective effects of cocoa.
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Supplementary data

Table 1 Composition of the test drinks (20ml)
Theobromine drink Placebo drink

Theobromine (mg) 500 -

Microcrystalline cellulose  (mg) - 500 
Methyl cellulose (mg) 150 150 
Sucralose (mg) 10 10 
Sodium benzoate (mg) 100 100 
Anise 0.1% (mg) 20 20 
Water Till 20 ml Till 20 ml

Figure 1 Flow of participants throughout the study
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Table 2 Baseline characteristics of the participants that finished the study1

Mean ± SD
Age (years) 60.3 ± 5.5
BMI (kg/m2)1 29.2 ± 3.0
Total cholesterol (mmol/L) 5.65 ± 0.92
HDL-C (mmol/L)1 1.22 ± 0.18
Glucose (mmol/L) 5.56 ± 0.63 
SBP (mmHg)1 134 ± 15
DBP (mmHg)1 86 ± 9
Heart rate (bpm) 70 ± 12
1 Values are mean ± SD. n = 44. BMI: Body mass index, SBP: systolic blood pressure, DBP: diastolic blood 
pressure.
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Chocolate and CVD risk
In recent years, the scientific interest for the effects of dark chocolate/cocoa has 
increased, because of its suggested beneficial effects on human health. High chocolate 
consumption is associated with lower coronary heart disease (CHD) risk, stroke, 
cardiovascular events, and cardiovascular mortality.1 In terms of biomarkers that 
may explain these potential beneficial effects on disease outcomes, 2-12 weeks cocoa 
or dark chocolate consumption decreased serum low-density lipoprotein cholesterol 

(LDL-C) and total cholesterol concentrations,2,3 increased insulin sensitivity, reduced 

blood pressure, improved endothelial function and increased serum high-density 

lipoprotein cholesterol (HDL-C) concentrations.4 

Increasing serum HDL-C or apolipoprotein A-I (apoA-I) concentrations 
can be used as a strategy to further lower cardiovascular disease (CVD) risk. 
The effects of cocoa/dark chocolate consumption on HDL-C concentrations are 
however contradictory, since two meta-analyses did not show any effects on 
HDL-C concentrations,2,3 while one meta-analysis reported an increase in HDL-C 
concentrations.4 A stratified analysis, however, found that this increase was only seen 
in studies with a length of more than 3-weeks,4 which may explain the different results. 
Moreover, only one study has investigated the effects of cocoa or dark chocolate 
consumption on apoA-I concentrations. In that study, it was observed that 4-weeks of 
cocoa consumption did not change apoA-I concentrations.5 For now, we can conclude 

that cocoa may reduce CVD risk, partly because of improved lipid profiles, although 
effects on HDL-C and apoA-I concentrations are not clear. Since there is currently a 
rapidly increasing interest in improving HDL functionality to reduce CVD risk over 
increasing circulating serum HDL-C concentrations, it is unfortunate that no study so 
far has investigated the effects of cocoa/dark chocolate on HDL functionality. 

Given its energy and macronutrient composition, the potential positive effects of 
chocolate on CVD risk parameters are probably due to one of the minor compounds 
in cocoa.6 Since dark chocolate contains more cocoa than other chocolate types, the 

consumption of dark chocolate should have more favorable health effects than the 
intake of white or milk chocolate. Indeed, Grassi et al. observed that the consumption 
of 100 g of dark chocolate for 15 days increased insulin sensitivity, decreased blood 
pressure, serum total cholesterol and LDL-C concentrations, as compared with 
white chocolate consumption.7 Furthermore, Taubert et al. found a decrease in blood 
pressure, but no change in plasma lipids or glucose concentrations after 18-weeks of 
dark chocolate compared with white chocolate consumption.8

The composition of chocolate
The key ingredients of chocolate are cocoa solids, cocoa butter, sugar, and the 

emulsifier lecithin. The main commercial chocolate categories are dark, milk and 
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white chocolate, which diff er in the content of the key ingredients. Chocolate contains 
a high amount of carbohydrates and fat (Table 1), but also various vitamins and 
minerals (Table 2). 

Table 1 Macronutrient composition of dark chocolate (100g)9

Nutrient Amount
Protein (g) 6.5
Total carbohydrates (g) 46.7
           Mono- and disaccharides (g) 41.7
           Polysaccharides (g) 5.0
Total fat (g) 33.7
           Saturated fatty acids (g) 20.4
           Monounsaturated fatty acids (g) 10.7
           Polyunsaturated fatty acids (g) 2.1
           Cholesterol (mg) 3.1
Fiber (g) 7.2

Table 2 Vitamins and minerals in dark chocolate (100g) 
Nutrient Amount9 % of the recommended dietary allowance10

Vitamine A1 (μg) 6 0.7
Vitamine B1 (μg) 70 6.4
Vitamine B2 (μg) 90 6.0
Vitamine B3 (mg) 0.8 4.7
Vitamine B6 (μg) 18 12
Vitamine B11 (μg) 15 5.0
Vitamine C (mg) 1 1.3
Sodium (mg) 10 0.6
Potassium (mg) 400 11
Calcium (mg) 50 5.0
Phosphorous (mg) 150 25
Magnesium (mg) 89 25
Iron (mg) 3 33
Copper (mg) 1 111
Selenium (μg) 4 0.07
Zinc (mg) 1 11
Iodine (μg) 3 0.02
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Interestingly, several other biologically active components are present in cocoa that 
may be relevant in the context of CVD risk reduction, including methylxanthines, 
tocopherols and polyphenols.11 The content of each macronutrient and micronutrient 

in chocolate depends on the percentage of cocoa in the chocolate.12

Effects of vitamins and minerals in chocolate on CVD risk
An important question is, which component or components in cacao may be 

responsible for the suggested beneficial cardiometabolic effects. Some of the vitamins 
and minerals found in dark chocolate may have favorable health effects. Several 
meta-analyses have investigated the effects of some of these vitamins and minerals 
in cocoa. It was concluded that a higher intake of sodium increased CVD mortality,13 

that a higher intake of potassium was associated with lower rates of stroke and might 

also reduce the risk of CHD and total CVD,14 and that dietary magnesium intake 

is inversely associated with CVD risk.15 Furthermore, a randomized trial showed 

that the B vitamins did not reduce total cardiovascular events.16 Moreover, studies 

showed an inverse association between calcium intake and all-cause mortality,17 and 

an association between high phosphorus intake with adverse cardiovascular health 

effects.18 Because most amounts of the vitamins and minerals in cocoa are small (Table 

2), it is not expected that the beneficial effects of cocoa can be ascribed to one of these 
nutrients. Therefore, the further focus of this discussion will be on other biologically 
active components of cocoa. 

Effects of methylxanthines, tocopherols and polyphenols in chocolate 
on CVD risk
Xanthines belong to the family of purines and are produced by plants and animals, 

but also by human cells. Cocoa contains two methylxanthines; theobromine and 
caffeine (Table 3).19 Polyphenols are a structural class of compounds characterized 

by the presence of phenol structures. The flavonoids represent the largest and most 
diverse group of phenolic compounds found in cocoa. The flavonoids are primarily 
represented by flavan-3-ols, including (−)-epicatechin and (+)-catechin. Other 
flavonoids found in cocoa are isoquercitrin, quercetin-3-arabinoside, quercetin 
and quercetin-3-glucuronide. Furthermore, polymeric condensation products of 
flavonoids, proanthocyanidins, can also be found in cocoa (Table 3).11 Tocopherols 

are natural antioxidants and exist in 4 different isomers; alpha (α), beta (β), gamma 
(γ) and delta (δ). Generally, the most abundant tocopherols in cocoa are γ-tocopherol, 
which shows the highest antioxidant activity, and α-tocopherol, the main contributor 
to vitamin E activity (Table 3).21
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Table 3 Methylxanthines, polyphenols and tocopherols in dark chocolate (100g)9,19,20

Compound Amount
Theobromine (mg) 500-700
Caff eine (mg) 62.5-87.5
Total polyphenols (mg) 1238
(-)-Epicatechin (mg) 115
(+)-Catechin (mg) 26
Isoquercitrin (mg) 6
Quercetin-3-arabinoside (μg) 1750
Quercetin (μg) 550
Quercetin-3-glucuronide (μg) 250
Total proanthocyanidins (mg) 1064
γ-tocopherol (mg) 7.0
α-tocopherol (mg) 0.6

Methylxanthines

Theobromine

So far, only one study has investigated the eff ects of pure theobromine on serum 
lipids. The main fi nding was that theobromine consumption (850 mg) for 4-weeks 
signifi cantly increased serum HDL-C and apoA-I concentrations (Chapter 2), 
while it decreased those of LDL-C and apolipoprotein B100 (apoB100).5 The two 

human intervention studies described in this dissertation investigated the eff ects of 
theobromine on fasting and postprandial metabolism and vascular function (Table 

4). Furthermore, eff ects of theobromine on duodenal gene expression were studied to 
address underlying mechanisms of in particular the increase in apoA-I concentrations 
after acute and 4-weeks of theobromine consumption (Table 4). 

Microarray analysis showed that duodenal gene expression can already be 

changed within 5 hours after meal consumption, but both acute (Chapter 4) and 
longer-term (Chapter 5) theobromine consumption did not change duodenal apoA-I 
gene expression. Actually, theobromine did not aff ect the expression of genes and 
pathways associated with lipid and cholesterol metabolism at all, at least not in the 

duodenum. Furthermore, acute theobromine consumption lowered duodenal gene 
expression in relation to glucose metabolism (Chapter 4), but this eff ect was not seen 
after 4-weeks of theobromine consumption (Chapter 5).
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Although theobromine did not influence duodenal apoA-I metabolism, there 
were some clear effects on cardiometabolic parameters. We confirmed the results 
of Neufingerl et al., that theobromine consumption decreased fasting LDL-C 
and apoB100 concentrations. However, contrary to their results, fasting HDL-C 
concentrations only tended to increase, while fasting apoA-I concentrations were not 
changed at all after theobromine consumption.5 Furthermore, fully unexpected, we 

observed a significant increase in fasting high sensitivity C-reactive protein (hsCRP) 
concentrations after 4-weeks theobromine consumption (Chapter 5). Besides these 
effects, acute and 4-weeks of theobromine consumption did not affect postprandial 
lipid metabolism (Chapter 3 and 5), but increased postprandial insulin (Chapter 3 and 
5), glucose and free fatty acid (FFA) responses (Chapter 5). Our results may therefore 
suggest that theobromine consumption lowers insulin sensitivity in the postprandial 

state (Chapter 3 and 5). Besides potential changes in metabolic parameters, we 
also evaluated effects of 4-weeks theobromine intake on parameters reflecting 
vascular function. In overweight men and women with low HDL-C concentrations, 
theobromine consumption did not improve fasting and postprandial endothelial 

function, but decreased the augmentation index (AIx) and increased postprandial 
arterial diameters. The main effect of theobromine on the vascular system appeared 
to be dilatation of the small and medium-sized peripheral arteries in the postprandial 

state (Chapter 6) (Table 4). Our results therefore indicate that theobromine can 
affect fasting LDL-C concentrations, hsCRP, postprandial glucose metabolism and 
peripheral artery diameters, while it did not change endothelial function and central 

arterial stiffness. 
Since theobromine did not change duodenal gene expression, the effects on 

lipids, glucose and hsCRP as we observed in our two intervention studies probably 
originate from another organ, such as the liver. Theobromine is metabolized in the liver 
by cytochrome P450 2E1 (CYP2E1) and cytochrome P450 1A2 (CYP1A2).22 Especially 

the enzyme CYP2E1 may be related to the effects of theobromine, as observed in 
our studies. Higher theobromine intake might increase CYP2E1 activity,23 which may 

cause oxidative stress, leading to lower insulin sensitivity (Figure 1).24 Furthermore, 

hsCRP concentrations increased after theobromine consumption. hsCRP is an acute 
phase protein, which is produced in the liver in response to increased interleukin 6 
(IL-6) concentrations.25 Normally, IL-6 is produced in response to a danger signal. 
Unfortunately, the studies were not designed to unravel the question why hsCRP 
increased after theobromine consumption and whether it was caused by increased 

IL6 reactivity. Elevated hsCRP and IL-6 concentrations can predict the development 
of type 2 Diabetes Mellitus26 and are associated with lower insulin sensitivity (Figure 

1).27 Next to these effects, theobromine can inhibit cyclisch adenosinemonophosphate 
(cAMP)-phosphodiesterase,28,29 which leads to an increase in cellular cAMP levels 
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in several organs. cAMP plays a role in a number of mechanisms; for example, 
hepatic glucose production30 and the exocytosis of insulin granules in the pancreas.31 

This might also have contributed to the observed higher postprandial glucose and 

insulin concentrations after theobromine consumption (Figure 1). The lower insulin 
sensitivity can on its turn increase the clearance of HDL-C particles,32 which translates 

into lower HDL-C and apoA-I concentrations (Figure 1). Furthermore, elevations of 
cAMP levels in the muscle cells lead to a decrease in intracellular calcium levels, 

followed by dilatation of the skeletal muscle vasculature.33 Additionally, increased 

insulin concentrations can also cause vasodilatation of the larger arteries.34 Both these 
mechanisms may at least partly explain the increase in brachial artery diameter seen 

after theobromine consumption. Finally, increased arterial diameters can lead to a 
higher augmentation index (AIx) after theobromine consumption (Figure 1).

Figure 1 The main effects of theobromine in the studies described in this dissertation, and the possible underly-
ing mechanisms. AIx: augmentation index, apoA-I: apolipoprotein A-I, [Ca]: calcium concentrations, cAMP: 
cyclisch adenosinemonophosphate, CYP2E1: cytochrome P450 2E1, HDL-C: high-density lipoprotein choles-
terol, hsCRP: high sensitivity C-reactive protein, IL6: interleukin 6.
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The relation between theobromine and HDL-C

Neufi ngerl et al. have shown a signifi cant increase in both HDL-C and apoA-I 
concentrations after 4-weeks of 850 mg/d theobromine consumption.5 To predict the 

expected increase in serum HDL-C concentrations after the consumption of 500 mg of 
theobromine a day, in our second long-term intervention study, a dose-response was 

calculated. Potentially relevant studies published before January 2015 were identifi ed 
by a systematic search of the database PubMed (www.ncbi.nlm.nih.gov). The following 
search terms were used to search in titles and abstracts: (Cacao/Chemistry OR Cacao 
OR Cacao/metabolism) AND (Blood pressure OR blood pressure/drug eff ects OR 
Cholesterol, HDL/blood OR Cholesterol, LDL/blood OR Cholesterol, LDL/drug 
eff ects OR Cholesterol, LDL/metabolism) AND (humans OR male OR female). The 
selection of articles was performed in two steps. In the fi rst step, titles and abstracts 
were screened. Studies were selected if they met the following inclusion criteria: 
randomized human intervention study with adults, intervention with theobromine/

cocoa from which theobromine concentrations could be estimated, and measurement 

of HDL-C concentrations. In the second step, full-texts of the selected articles were 
read to extract and estimate theobromine concentrations and to calculate changes 

in fasting HDL-C concentration. One study was excluded because the intervention 
and placebo groups were matched for theobromine concentrations.35 Finally, 12 
studies, including 16 data points were included for the dose-response calculations 
(Table 5). When theobromine intake was not explicitly reported in the article, it was 
estimated from the cocoa intake. For this the following conversion was used: 100 
g cocoa contains 600 mg theobromine.19 To calculate the dose-response curve, the 

linear regression procedure was used with the change in HDL-C concentrations as 
dependent variable and the amount of theobromine as independent variable. This 
resulted in a regression equation of y=0.0002x (Figure 2). 

Figure 2 Dose-response curve of the eff ect of theobromine on high-density lipoprotein cholesterol (HDL-C) 
concentrations (12 studies, including 16 data points)
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Based on this equation, a consumption of 500 mg of theobromine is expected to 
increase serum HDL-C concentrations with 0.10 mmol/L, but in our study, we found 
a smaller eff ect of only 0.04 mmol/L. Furthermore, the only study that investigated 
pure theobromine found a statistical increase in HDL-C concentrations.5 Therefore, 

we expected a signifi cant increase in HDL-C concentrations in our study. There 
are, however, several suggestions that may explain the discrepancy between the 

predicted eff ect on HDL-C concentrations from the dose-response curve, the results 
of Neufi ngerl et al., and the actual eff ect as observed in our study.5

The fi rst suggestion is the study population. The dose-response curve included 
numerous studies that investigated diff erent populations. Several studies focused on 
totally healthy subjects, while we included healthy participants that were overweight 
or slightly obese and had relatively low serum HDL-C concentrations. To look more 
into detail into the study population, a new linear regression line was made with 

only those studies that did not include healthy subjects.8,38,39,43-45 This resulted in a 

regression equation of y=0.0001x (Figure 3), which suggests a lower increase in serum 
HDL-C concentrations as compared to the total dataset. When we focus on studies 
which included subjects with a normal BMI5,8,37,40,41,44 this resulted in an equation of 

y=0.0002x. These equations suggest that people with a normal BMI are more sensitive 
to the eff ects of theobromine on HDL-C concentrations.

Figure 3 Dose-response curve of the eff ect of theobromine on high-density lipoprotein cholesterol (HDL-C) 
concentrations in a not healthy population (6 studies, including 6 data points)

With the reg ression line of the not healthy population, the consumption of 500 mg 
of theobromine was predicted to increase HDL-C concentrations by 0.05 mmol/L 
in, which is almost the same as the increase found in our study (0.04 mmol/L). 
Therefore, it is possible that the study population explains why we did not found a 

signifi cant increase in HDL-C concentrations, while Neufi ngerl et al, who included 
healthy subjects with a normal BMI, did.5 Maybe the higher body weight in our study 
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population can explain a part of the differences, since CYP2E1 activity is positively 
correlated with weight.46 CYP2E1 is one of the enzymes active in the breakdown of 
theobromine and caffeine in the liver. Our participants had a higher weight, suggesting 
that this enzyme is more active, leading to a higher break down of theobromine and 

lower serum theobromine concentrations. Indeed, when we compare our results 
with the results of Neufingerl et al., the circulating theobromine concentrations 
in our study were lower than in their study; i.e. we found serum concentrations 
around 7 μmol/L with a consumption of 500 mg theobromine, while Neufingerl et al 
reported concentrations of 30 μmol/L with a consumption of 850 mg theobromine.5 

However, because the theobromine concentrations were measured with different 
methods, a direct comparison of concentrations must be considered with caution. 
Comparing the theobromine concentrations at the end of the intervention period of 

our study between the obese participants (BMI >30 kg/m2, n=14) and the overweight 
subjects (BMI < 30 kg/m2, n=30), showed that the obese subjects had a theobromine 
concentration of 5.5 μmol/L, while the overweight had a theobromine concentration 
on 7.9 μmol/L. However, this difference did not reach statistical significance, as 
tested with an independent t-test. Therefore, the difference in effects between the 
healthy study population of for example Neufingerl et al, and our participants, is 
probably not only caused by differences in BMI. However it deserves a more detailed 
study to prove this hypothesis. 

The second suggestion explaining the discrepancy between our results on 

HDL-C concentrations and the results from the study of Neufingerl et al. can be 
the difference in time of intake. In the study of Neufingerl et al., the participants 
consumed the theobromine one hour before breakfast,5 while in our studies the 

theobromine was consumed together with a breakfast. The absorption of an oral dose 
of theobromine is good,47 but it is unclear if meal consumption affects the absorption, 
bioavailability and effects of theobromine, therefore this can possibly not explain the 
differences in effect on HDL-C concentrations.

The third suggestion is the food matrix in which the theobromine is supplied. 
Neufingerl and colleagues added the theobromine to a milk-based drink,5 while we 

dissolved it in water. However, since theobromine is soluble in water, differences in 
food matrix can probably not explain the differences in effect on HDL-C concentrations. 
Furthermore, we observed effects on other parameters than HDL-C, and serum 
theobromine concentrations were significantly increased, although lower than in 
the study of Neufingerl et al. This means that the absorption and bioavailability of 
theobromine dissolved in water is good and can induce metabolic effects. It is however 
possible that theobromine needs one or more components from milk to effectively 
increase serum apoA-I and HDL-C concentrations. Recently, Sansone et al. showed 
that a combination of theobromine (111 mg) and caffeine (11 mg) alone did not show 
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eff ects on vascular function, while together with fl avanols (820 mg) it enhanced the 
benefi cial eff ects of the fl avanols on vascular function, suggesting that the intake of 
the methylxanthines increased the bioavailability of the fl avanols.48 Although not 

signifi cantly diff erent, Neufi ngerl et al. also found higher HDL-C concentrations 
after theobromine plus cocoa consumption (Δ 0.38 mmol/L) than after theobromine 
consumption alone (Δ 0.29 mmol/L).5 

Caff eine
The eff ects of caff eine on human health have been more extensively investigated 
than the eff ects of theobromine. Caff eine is predominately found in coff ee, but also 
in lower amounts in cocoa. A meta-analysis showed that 200-300 mg of caff eine 
intake leads to an acute increase in blood pressure in participants with hypertension. 
However, no association was found between habitual caff eine consumption and CVD 
risk.49 Furthermore, the replacement of regular coff ee by decaff einated coff ee has no 
eff ect on serum total cholesterol, HDL-C and TAG concentrations.50 Additionally, 

the results of caff eine on fl ow-mediated dilation (FMD) are contradictory; one study 
found that acute caff eine ingestion signifi cantly increased the FMD,51 while two other 

studies showed that acute caff einated coff ee consumption decreased the FMD.52,53 

Furthermore, chapter 2 showed that caff eine consumption does not change fasting 
apoA-I concentrations. In our 4 week intervention, caff eine concentrations increased 
at the end of the intervention period. However, since caff eine does not show consistent 
eff ects on our study outcomes, it is not likely that the eff ects seen after theobromine 
consumption are caused by the increase in caff eine concentrations. 

Polyphenols
The fl avonoids represent the largest and most diverse group of phenolic compounds 
found in cocoa, with epicatechin and catechin as main forms. A meta-analysis showed 
that consumption of fl avonoid rich cocoa has several benefi cial cardiometabolic 
eff ects including a decrease in systolic blood pressure (SBP), HOMA-IR and LDL-C 
concentrations and an increase in FMD and HDL-C concentrations. However, 
fl avonoid-rich cocoa consumption did not change diastolic blood pressure (DBP) and 
glucose, hsCRP, total cholesterol and TAG concentrations.54 Additionally, one cohort 

study showed that a high intake of fl avan-3-ols was associated with a 17% lower 
risk of CVD mortality55 and another one found a 51% lower risk of CHD mortality.56 

However, three other cohort studies did not found eff ects of fl avanols on CVD or 
CHD outcomes.57-59 More studies are therefore needed to investigate which fl avanols 
are associated with lower CVD risk, at which dose and in what population.  

Interestingly, the composition of cocoa fl avanols appears to infl uence its eff ects, 
particularly on blood pressure. Dark chocolate consumption may be 8 times more 
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effective in the reduction of the SBP than a cocoa powder drink with a similar dose 
of flavanols.6 Comparable results were recently found. Sansone et al. showed that 
flavanol consumption alone increased FMD and decreased DBP, but when these 
flavanols were consumed together with a mixture of theobromine and caffeine, 
the absorption of the flavanols was enhanced, and the FMD increased and the DBP 
decreased even more.48 Therefore, it is important to find the optimal effective flavanol 
composition. 

Epicatechin

A meta-analysis showed that epicatechin significantly improved FMD.4 Epicathechin 

can upregulate both acute and chronic nitric oxide (NO) production.60 In contrast to 
effects on FMD, epicatechin did not change arterial stiffness as measured with pulse 
wave velocity and AIx.61 Moreover, a meta-analysis showed that doses of more than 

50 mg/d decreased the SBP and DBP, while glucose and TAG concentrations were 
lowered at moderate doses (50–100 mg/d).4 Furthermore, epicatechin could improve 

insulin resistance62 and may be anti-inflammatory as it lowers Nuclear Factor κ B 
activation.63 

Catechin

Catechins from cocoa have been far less studied than the various flavanols and 
epicatechin. A meta-analysis showed that catechin could significantly increase 
FMD,64 and a cohort study showed that catechin intake was inversely associated with 

ischemic heart disease mortality, but not with the incidence of myocardial infarction 

and stroke incidence or mortality.56 

Tocopherols
The most abundant tocopherols in cocoa are γ-tocopherol and α-tocopherol, 
which are both forms of vitamin E. α-Tocopherol, the major form of vitamin E, 
received most attention so far, and exhibited several anti-inflammatory, antioxidant 
and antiatherogenic effects.65 It may decrease lipid peroxidation,66 monocyte 

proatherogenicity, platelet aggregation66,67 and smooth muscle cell proliferation.67 

Furthermore, α-tocopherol can improve vascular homeostasis via the upregulation of 
endothelial nitric oxide synthase and NO formation.68 However, although α-tocopherol 
exhibits all these beneficial effects in vitro, α-tocopherol supplements have failed to 
reduce atherosclerosis-related events in human trials,65 which increased the interest in 

other members of the vitamin E family. Especially γ-tocopherol exerts all properties 
of α-tocopherol, but than in a more potent fashion.65 In a prospective cohort study 
plasma γ-tocopherol concentrations have been shown to be inversely associated with 
increased CVD mortality69 and incidence of death from stroke.70 However, clinical 
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trials about the benefi cial eff ects of γ-tocopherol on CVD risk markers are lacking and 
are needed before conclusions about the eff ects of γ-tocopherol can be drawn. 

Overall conclusion and future directions

Based on the results of the studies presented in this dissertation, it is not likely that the 
potential benefi cial eff ects of cocoa on metabolic health and CVD can be ascribed to 
theobromine alone. Acute theobromine consumption does not change postprandial 
lipid metabolism and duodenal gene expression. Longer-term consumption does not 
improve fasting HDL-C, apoA-I, or postprandial lipid concentrations, duodenal gene 
expression and endothelial function, but it unfavorably aff ected postprandial glucose 
and insulin responses. This means that other - or combinations of - components from 
cocoa are more likely candidates to explain the suggested benefi cial metabolic eff ects 
of cocoa. Besides theobromine, also caff eine and tocopherols in cocoa are probably 
not the components from cocoa that cause the positive eff ects on CVD risk, but the 
fl avonoids are likely candidates. 

Our studies do not indicate that theobromine alone plays a role in cardiovascular 

risk management. The question then arises if no further studies with theobromine are 
warranted at all. In this respect, it is important to realize that bioactive components 
may exert synergistic eff ects. As already discussed, a mixture of fl avanols with 
theobromine and caff eine increased the FMD even more than the consumption of 
fl avanols alone.48 The food matrix may also be of importance. This not only relates to 
synergistic eff ects with other components, but also to bioavailability. For fl avanols, 
it has been suggested that dark chocolate consumption more eff ectively lowers 
blood pressure than a cocoa powder drink.6 It is therefore possible that theobromine 
combined with other compounds or in a diff erent matrix, for example when added 
to a chocolate bar, has other eff ects than when in an aqueous solution. Moreover, the 
population studied may be important, since the eff ects of interventions can diff er 
between population groups. Although our calculations do not provide defi nite 
answer, our regression analysis did suggest that eff ects of theobromine may diff er 
between population groups (Figures 2 and 3). Another important aspect is the focus 
of the measurements. Except for the earlier reported favorable eff ects of theobromine 
on LDL-C and total cholesterol, we found potentially unfavorable eff ects on hsCRP 
after 4-weeks of consumption. In addition, we observed in our acute and long-term 
study unexpected eff ects on parameters related to postprandial glucose metabolism. 
This indicates that both acute and long-term studies are relevant, and postprandial 

measures should be included in future studies to better identify metabolic eff ects of 
interventions. Functional measures, including vascular function measurements and 
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measures for HDL functionality, are also important to study in future intervention 
studies related to CVD risk reduction. It is however also important to establish the 
predictive value of the vascular function measurements in the postprandial state on 

cardiometabolic health. To better understand and be able to explain effects in more 
detail, underlying mechanisms should be evaluated. We here focused on the intestine, 
which is an important organ to understand the absorption and physiologic effects of 
nutrients. Given its major role in metabolism, the liver is another organ of interest 
that warrants attention in future studies. However, in contrast to intestinal biopsies, 
the availability of liver biopsies in relatively healthy populations is limited. This can 
be partly overcome by using in vitro studies. Hepatocytes can be used as a screening 
tool to identify natural compounds that can increase apoA-I production. These 
assays may provide guidance to establish the safety, tolerability and health effects of 
promising natural compounds in well-controlled human intervention studies. 
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Cardiovascular diseases (CVD) are the leading cause of morbidity and mortality in 
the Western world. A healthy diet can be helpful to prevent or delay the development 
of CVD. Cocoa and dark chocolate consumption have been shown to beneficially 
affect not only plasma lipids and lipoproteins, but also other CVD risk markers. 
It is possible that these positive effects are explained by theobromine, which was 
described to elevate high-density lipoprotein cholesterol (HDL-C) and apolipoprotein 
A-I (apoA-I) concentrations. Increasing apoA-I concentrations may increase HDL 
functionality, which can reduce CVD risk. No other studies have investigated the 
effects of theobromine on other CVD risk markers including postprandial metabolism 
and vascular function. Additionally, it is interesting to evaluate potential underlying 
mechanisms for the increase in apoA-I concentrations. The research presented 
in this thesis therefore focused on (i) a systematic review to identify dietary and 
pharmacological interventions that increase apoA-I concentrations (ii) two well-
defined dietary intervention trials, which assessed the effects of theobromine on 
CVD markers, including fasting and postprandial metabolism and vascular function. 
Furthermore, in the intervention studies underlying mechanisms for the increase in 

apoA-I were investigated by studying gene expression in the duodenum.
 

In Chapter 2, effects of various nutrients, food components and novel pharmacological 
approaches targeting apoA-I metabolism were systematically reviewed. Both dietary 
components and pharmacological approaches can be used to increase apoA-I 
concentrations. For the dietary components in particular, more knowledge about the 
underlying mechanisms is necessary, as increasing apoA-I per se does not necessarily 
translate into a reduced coronary heart disease risk. Chapters 3 and 4 describe the 

results of an acute randomized, double blind crossover study. Our hypothesis was 
that acute consumption of high-fat and of theobromine increased postprandial 

apoA-I concentrations, when compared with a low-fat meal. We included 10 healthy 
men who consumed in randomized order a high-fat, low-fat or a low fat meal with 

added theobromine. After meal intake, blood was sampled frequently for 4-hours. 
Five hours after meal intake duodenal biopsies were taken for microarray analysis. In 
Chapter 3, we concluded that acute high-fat and theobromine consumption did not 

change postprandial apoA-I concentrations. Surprisingly, acute high-fat consumption 
increased triacylglycerol responses but increased postprandial apolipoprotein B48 
concentrations less pronounced as compared with low-fat consumption, suggesting 

the formation of less, but larger chylomicrons after high-fat intake. Interestingly, 
except for an undesirable increase in the incremental area under the curve for insulin, 

acute theobromine consumption did not modify the postprandial responses of the 

low-fat meal. In Chapter 4, we concluded that the acute consumption of high-fat and 

theobromine did not change duodenal apoA-I gene expression. Both theobromine 
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and high-fat consumption inhibited gene expression related to glucose metabolism. 
Furthermore, high-fat intake activated the expression of genes related to lipid and 

cholesterol metabolism and inflammation in the duodenum. Chapters 5 and 6 describe 

the results of the second randomized, double-blind, placebo controlled crossover 

study, in which we hypothesized that 4-weeks theobromine intake improves fasting 
and postprandial lipid metabolism and vascular function. Forty-four healthy men and 
women, with low baseline HDL-C concentrations, consumed 500 mg theobromine 
or placebo daily. After 4-weeks, fasting blood samples were taken and subjects 
participated in a 4-hour postprandial test, in which blood was sampled frequently 
for analysis of parameters related to lipid and glucose metabolism. In a subgroup of 
10 men, again duodenal biopsies were taken for microarray analysis 5- hours after 
meal consumption. Furthermore, vascular function was assessed with measures 
for endothelial function, arterial stiffness and the microcirculation under fasting 
conditions and 2.5-hours after a mixed meal challenge. Surprisingly, in Chapter 5 we 

showed that theobromine lowered fasting serum low-density lipoprotein cholesterol 

concentrations, but did not change fasting HDL-C, apoA-I, or postprandial lipid 
concentrations and duodenal gene expression, and unfavorably affected postprandial 
glucose and insulin responses. Chapter 6 showed that theobromine consumption did 

not improve fasting and postprandial endothelial function, but increased postprandial 

peripheral arterial diameters and decreased the augmentation index, a measure for 

arterial stiffness. However, more research is needed to determine the predictive value 
of these vascular function measurements in the postprandial state.

Taken together, the intervention studies described in this dissertation were designed 

to assess the effect of theobromine on CVD risk markers and explore underlying 
mechanisms. Unfortunately, we have to conclude that it is unlikely that theobromine 
alone is the beneficial compound from cocoa. It is however possible that theobromine 
in combination with other active compounds from cocoa - for example flavanols - in 
a different matrix - for example a chocolate bar - or in another population groups can 
have more favorable health effects. This will need further research.
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In de Westerse wereld zijn hart- en vaatziekten (HVZ) één van de belangrijkste 
oorzaken van ziekte en sterfte. Een gezond voedingspatroon is van belang voor 
de preventie van HVZ. Uit onderzoek is gebleken dat de consumptie van cacao en 
pure chocolade niet alleen het lipoproteïnenprofiel in het bloed (lipoproteïnen zijn 
deeltjes die het vet en cholesterol door de bloedbaan vervoeren) verbetert, maar ook 
andere risicomarkers voor HVZ verbetert. Het is mogelijk dat deze positieve effecten 
verklaard kunnen worden door theobromine. Dit is een stof, die in cacao voorkomt, 
waarvoor aanwijzingen zijn gevonden dat het de hoeveelheid apolipoproteine 
A-I (apoA-I) verhoogt. Het apoA-I is een eiwit, dat in de zogenaamde hoge-
dichtheidslipoproteïnen (HDL) voorkomt. Het verhogen van de apoA-I concentraties 
kan leiden tot een verbetering van de functionaliteit van een HDL deeltje, hetgeen 
vervolgens het risico op HVZ kan verlagen. Tot op heden zijn er echter geen studies 
uitgevoerd, die de effecten van theobromine hebben onderzocht op andere HVZ 
risicomarkers, zoals de stofwisseling na de maaltijd (het postprandiaal metabolisme) 
of vaatfunctie. Daarnaast is het belangrijk om onderliggende mechanismen voor het 
verhogen van de apoA-I concentraties te onderzoeken. Het onderzoek beschreven in 
dit proefschrift had daarom als doel om door (i) een systematische review voeding 
en farmacologische interventies te identificeren die apoA-I concentraties kunnen 
verhogen (ii) het uitvoeren van twee studies om effecten van theobromine op HVZ 
markers, zowel voor als na een maaltijd (nuchter en postprandiaal), te bestuderen. 
Daarnaast is onderzoek uitgevoerd naar onderliggende mechanismen om de 

verhoging van apoA-I concentraties te verklaren. Dit is gedaan door de genexpressie 
in de darm, een orgaan dat betrokken is bij de productie van apoA-I, te onderzoeken.

In Hoofdstuk 2 worden de effecten van verschillende voedingscomponenten 
en nieuwe farmacologische benaderingen beschreven, die het apoA-I metabolisme 
kunnen beïnvloeden. We concludeerden, dat voedingscomponenten en 
farmacologische benaderingen beide gebruikt kunnen worden om apoA-I 
concentraties te verhogen. Met name voor voedingscomponenten is de kennis omtrent 
onderliggende mechanismen beperkt. Hoofdstuk 3 en 4 beschrijven de resultaten 
van een gerandomiseerde, dubbelblinde cross-over studie. Onze hypothese was dat 
de éénmalige consumptie van een vetrijke maaltijd of theobromine de postprandiale 
apoA-I concentratie verhoogt, in vergelijking met een vetarme maaltijd. Aan deze 
studie hebben 10 gezonde mannen deelgenomen. Zij hebben in willekeurige volgorde 
een vetrijke, vetarme of een vetarme maaltijd met theobromine, gebruikt. Tot 4 uur na 
de maaltijd werd regelmatig bloed afgenomen. Vijf uur na de maaltijd zijn er biopten 
(kleine stukjes weefsel) uit de darm genomen, die gebruikt zijn om de genexpressie in 
kaart te brengen met behulp van microarray-analyse. In hoofdstuk 3 concludeerden 

we dat de vetrijke maaltijd en theobromine geen effecten had op postprandiale 
apoA-I concentraties in vergelijking met de vetarme maaltijd. Verrassend was dat de 
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vetrijke maaltijd de hoeveel vetten in het bloed verhoogde, terwijl de postprandiale 
apolipoproteine B48 concentraties, een eiwit dat in chylomicronen voorkomt, 
(chylomicronen zijn deeltjes die het vet uit een maaltijd door het lichaam transporteren) 
verlaagd waren in vergelijking met een vetarme maaltijd. Dit suggereert de vorming 
van minder, maar wel grotere chylomicronen na een hoge vetinname. Behalve een 
toename van het insulinegehalte, had het toevoegen van theobromine aan de vetarme 

maaltijd geen effect. In hoofdstuk 4 is geconcludeerd dat de éénmalige consumptie 
van een vetrijke maaltijd en theobromine de apoA-I genexpressie in de darm niet 
veranderde. Zowel theobromine als de vetrijke maaltijd remden de expressie van 
genen gerelateerd aan het glucosemetabolisme. Daarnaast activeerde de vetrijke 
maaltijd de expressie van genen betrokken bij het lipiden- en cholesterolmetabolisme, 
en ontsteking (inflammatie) in de darm. Hoofdstuk 5 en 6 beschrijven de resultaten 
van de tweede gerandomiseerde, dubbelblinde, placebo-gecontroleerde cross-over 

studie, met de hypothese dat de consumptie van theobromine voor 4-weken het 
nuchtere en postprandiale vet metabolisme en de vaatfunctie verbetert. Vierenveertig 
gezonde mannen en vrouwen, met in het begin een lage HDL-C concentratie, 
gebruikte dagelijks 500 mg theobromine of placebo. Na 4 weken werd er nuchter 
bloed afgenomen en volgde een deelname aan een 4 uur durende postprandiale test. 
Tijdens deze test werd regelmatig bloed afgenomen voor analyse van parameters 
betrokken bij het vet- en glucosemetabolisme. Vijf uur na de maaltijd werden, in 10 
mannen, weer biopten uit de darm genomen om de genexpressie in kaart te brengen. 
Daarnaast werd de vaatfunctie geëvalueerd door het meten van de endotheelfunctie, 

arteriële stijfheid en de microcirculatie in gevaste toestand (nuchter) en 2,5 uur 
na een maaltijd (postprandiaal). In hoofdstuk 5 toonden we aan dat theobromine 

de nuchtere concentratie cholesterol in de lage dichtheidslipoproteïnen (LDL) 
verlaagde, maar dat het de HDL-C, apo-AI en postprandiale lipidenconcentraties 
niet veranderden en geen invloed had op de genexpressie in de darm, terwijl het de 
postprandiale glucose- en insulineresponsen negatief beïnvloedde. Hoofdstuk 6 liet 

zien dat theobromineconsumptie de nuchtere en postprandiale endotheelfunctie niet 

verbeterde, maar wel de postprandiale perifere arteriële diameters vergrootte en de 

augmentatie index, een maat voor arteriële stijfheid, verlaagde.
Samengevat, de interventiestudies beschreven in dit proefschrift waren opgezet 

om de effecten van theobromine op cardiovasculaire risicomarkers te bestuderen en 
om onderliggende mechanismen te onderzoeken. Uit de studies is gebleken, dat het 
niet waarschijnlijk is dat het verhogen van alleen de theobromineconsumptie het risico 
op HVZ verlaagt. Het is echter mogelijk dat theobromine in combinatie met andere 
stoffen uit cacao - bijvoorbeeld flavanolen - in een andere matrix - bijvoorbeeld een 
reep chocolade - of in een andere bevolkingsgroep toch gunstige gezondheidseffecten 
kan hebben. Hiervoor zal verder onderzoek moeten worden verricht.
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Social relevance
Non-communicable diseases (NCDs) are chronic diseases, which are not 
transferred from person to person, but are caused by external factors such as an 

unhealthy lifestyle. These category of diseases are currently the leading cause of 
death worldwide, with cardiovascular diseases (CVD) accounting for the highest 
numbers.1 Therefore, effective interventions or strategies to prevent or delay CVD 
development are needed. Since unhealthy diets and insufficient physical activity 
are key contributors to non-communicable diseases, these two characteristics are 

key targets in prevention. There are a growing number of foods that target health 
improvement, the so-called functional foods. The working definition of a functional 
food is: “a food that is satisfactorily demonstrated to affect beneficially one or more 
target functions in the body, beyond adequate nutritional effects, in a way that is 
relevant to either an improved state of health and well-being and/or reduction of 

risk of disease. Functional foods must remain foods and they must demonstrate their 
effects in amounts that can normally be expected to be consumed in the diet: they are 
not pills or capsules, but part of a normal food pattern.”2 These functional foods can 

be consumed on a population level and can therefore easily be used in the prevention 

of CVD. The consumption of functional foods causes small effects on population 
level, but can have a big impact because many people can consume functional foods. 
With medicine however, the effects are bigger, but only in a small group of patients, 
which finally has a lower impact.
 

Over the years, the scientific interest for chocolate, a food that is extensively consumed 
in the Western World, has steadily increased. High chocolate consumption is inversely 
associated with cardiovascular diseases including, coronary heart disease (CHD) risk, 
stroke, cardiovascular events, and cardiovascular mortality.3 It is therefore of interest 
to identify the compound(s) in cocoa that is/are responsible for these beneficial 
effects. Next, this compound could be isolated from cocoa or potentially other 
sources and subsequently added to other foods as functional ingredient. Therefore, 
the studies described in the present dissertation focused on one of the potentially 

healthy components of cocoa: theobromine. The two intervention studies performed 
were specifically designed to provide evidence that theobromine can improve 
cardiovascular health by causing beneficial effects on fasting and postprandial 
lipids, vascular endothelial function and arterial stiffness and to find the underlying 
mechanisms for these beneficial effects. Unfortunately, theobromine was found not 
to be the beneficial component from cocoa. It even had some unexpected negative 
effects on glucose metabolism and inflammation, and it is therefore not advised to 
use theobromine as a functional food ingredient for the prevention for CVD risk. It 
might of course still be possible that in a specific subpopulation theobromine, alone 
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or in combination with other compounds, has beneficial effects. However, to be used 
as functional food ingredient it is important that the enriched product can be used 

without undesirable effects in a wide population.

Economic relevance
Identifying effective interventions to prevent or postpone CVD risk can have an 
enormous economic impact. CVD represents a major economic burden on health 
care systems, since it is one of the most costly diseases worldwide. Overall CVD 
is estimated to cost the Europe economy €210 billion a year.4 The use of functional 

foods to prevent CVD can easily be achieved at low cost, which could scale down the 
medical cost. 

Relevance of measurements
The various measurements described in this dissertation may also function as markers 

to detect the presence of CVD at an early stage. In the Western world, the majority 
of the population spends a significant part of the day in the postprandial state. 
Furthermore, increasing evidence suggests that not only fasting lipid, lipoprotein and 

glucose concentrations, but also a disturbed postprandial lipid or glucose metabolism 

are important risk markers for CVD.5 Postprandial measurements are therefore 

of clinical importance to consider when one studies CVD risk. Also, the vascular 
function measurements are of clinical importance in the prediction of CVD risk. 
Flow-mediated dilation is an accepted predictive biomarker for future CVD events.6 

Furthermore, the carotid-femoral pulse wave velocity has already been depicted as 

a promising future tool for CVD risk prediction in clinical practice.7 However, more 

research is needed to determine the predictive value of these vascular function 

measurements in the postprandial state. 

Translation into practice
The finding that theobromine alone is not the compound from cocoa that is beneficial 
for human health is important for both the industry and science. In science we are a 
step closer to finding the beneficial compound(s) from cocoa. It is important to realize 
that with negative findings we also make important progress. Furthermore, for the 
industry it is clear that theobromine should not be used in functional foods.

The results described in this thesis have been presented at several national and 

international conferences to colleagues inside and outside the field. We hope to 
increase the awareness of the medical, societal and economical consequences of CVD 
and to highlight the potential impact of nutrition in CVD risk reduction. Furthermore, 
experts of the industrial partners within this project have contributed to the described 
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research projects through discussions at meetings. Moreover, all research findings 
have been submitted to international peer-reviewed scientific journals and are 
therefore accessible to scientists worldwide. 
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we hebben heel wat spierpijn doorstaan! Samen met Marlies en Charlotte B hebben 
we ook veel leuke avonden gehad met ons koken met mongolen clubje. Ook bedankt 
aan alle andere collega’s van HB/BW voor alle leuke uitjes en gezelligheid.

Roos, Linda, Alie, Martine, Sanne, Merel, Violet, Ellis, Tim en Viola, ik vind het fijn 
dat ik zulke leuke vrienden heb! Ik heb genoten van de vakanties, miepenweekenden, 
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Lieve Niels (meestal gewoon schat), naast dit mooie boekje heb ik in Maastricht de 
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