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Abstract

We present a procedure for algorithmically embedding problems formulated in higher-
order modal logic into classical higher-order logic. The procedure was implemented as a
stand-alone tool and can be used as a preprocessor for turning TPTP THF-compliant the-
orem provers into provers for various modal logics. The choice of the concrete modal logic
is thereby specified within the problem as a meta-logical statement. This specification for-
mat as well as the underlying semantics parameters are discussed, and the implementation
and the operation of the tool are outlined.

By combining our tool with one or more THF-compliant theorem provers we accomplish
the most widely applicable modal logic theorem prover available to date, i.e. no other
available prover covers more variants of propositional and quantified modal logics. Despite
this generality, our approach remains competitive, at least for quantified modal logics, as
our experiments demonstrate.

1 Introduction

Computer-assisted reasoning in non-classical logics is of increasing interest in artificial intelli-
gence (AI), computer science, mathematics and philosophy. Several powerful automated and
interactive theorem proving systems have been developed over the past decades. However, with
a few exceptions, most of the available systems focus on classical logics only. In particular for
quantified non-classical logics there are only very few systems available to date.

Orthogonal to the development of specialized provers, a shallow semantical embedding ap-
proach allows for a quick adaptation of existing higher-order reasoning systems to a broad
variety of expressive, non-classical logics [8]. Previous experiments [3, 9] have shown that this
approach indeed offers a surprisingly effective automation of the embedded non-classical logics.
However, from the users perspective the utilization of the embeddings approach can become
rather involved and distracting. Hence, system users may eventually not want to be exposed
to the embeddings at all.

The work we present here, which has its roots in a project of the first author [20], bridges
between the semantical embedding approach and normal quantified modal logics. Our particular
contribution includes:

• A flexible tool that automatically converts higher-order modal logic (HOML) into HOL
using a semantical embeddings approach; this obviously includes the conversion of propo-
sitional and first-order normal modal logics.
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• Previous work [9] realizes such an approach only for first-order modal logics. Moreover,
this work has been heavily dependent on the QMLTP library and it required its entire
installation. We here extend this work to full HOML, which imposes several additional
challenges, and we provide a much leaner and more effective implementation.

• In order to achieve this we need to provide a proper semantics for HOML, which is by
no means trivial and which even touches upon some unsettled philosophical issues, for
example, regarding higher-order quantification in modal settings; cf. [37, 32]. We here
take a pragmatic approach and discuss the range and restrictions of our work accordingly.

• Our tool can be used as a stand-alone preprocessor for problems formulated in the emerg-
ing TPTP standard syntax for HOML1 (which augments the standard TPTP THF syntax
for HOL); for preliminary work towards standardized native syntax for HOML see [39, 14].

• When coupled with our tool, standard HOL provers can be used to reason about problems
encoded in the native TPTP HOML syntax. We illustrate how this turns HOL reasoners
such as Satallax [15] LEO-II [2] and Nitpick [13] into flexible reasoners for HOML.

• We evaluate our system and compare it with the currently best theorem prover for first-
order modal logics [6], MleanCoP [29]. For full HOML there are no competitor systems
yet available. Hence, we cannot extend our comparative evaluation beyond first-order.

• We contribute many new problems to the TPTP THF library in an extended THF format.

The remainder of this work is structured as follows: §2 briefly introduces the syntax and
semantics of higher-order modal logics and discusses its variants. Subsequently, in §3 we sketch
the embedding approach. §4 presents the embedding procedure and its implementation. An
evaluation of the implementation is given in §5. Finally, §6 concludes and gives an outlook on
further developments and improvements.

Further related work. Shallow semantical embeddings into HOL have been studied for
various other non-classical logics, including conditional logics [4], hybrid logic [38], intuitionistic
logics [7] and more recently, free logics [10] and many-valued logics [33]. All these approaches
yield means of automation for the respective non-classical logic. A closely related project aims
at an analogous automatic embedding tool for free logic [24], which, in future work, could be
merged with the work as presented here to introduce reasoning systems for free higher-order
modal logic, which would e.g. be interesting for applications in computational philosophy.

Related approaches at generic theorem proving for various propositional modal logics include
the tableau-based theorem systems LoTReC [16], MeTTeL2 [36] and tableau workbench [1].
However, it is unclear whether these approaches scale for quantified modal logics. Also, frame-
works for formalizing and reasoning about (modal) proof systems exist that use an encoding to
linear logic [27].

2 Higher-Order Modal Logic

We now briefly introduce the syntax and semantics of higher-order multi-modal logics (HOML).
HOML can, roughly speaking, be regarded an extension of classical higher-order logic (HOL)
[17], augmented with a set of modal operators 2i, i ∈ I, for some index set I, and equipped

1See http://tptp.org/TPTP/Proposals/LogicSpecification.html for the current specification draft.

15

http://tptp.org/TPTP/Proposals/LogicSpecification.html


Theorem Provers For Every Normal Modal Logic Gleißner, Steen, and Benzmüller

with an appropriate adaption of Henkin semantics for HOL (cf. [22] and [19]). The presentation
of the logic is borrowed from [39] which, in turn, adapts the simplified notation of [26].

2.1 Syntax and Semantics

HOML is a typed logic. The set of simple types T contains all types that are freely generated
using the binary function type constructor→ and a set of base types, usually chosen to be {o, ι}
for Booleans and individuals, respectively. Terms of HOL are given by the following grammar:

s, t ::= cτ | Xτ | (λXτ . sν)τ→ν | (sτ→ν tτ )ν | (2
i
o→o so)o

where i ∈ I, cτ ∈ Στ is a constant symbol from the signature Σ :=
⋃
τ Στ and Xτ is a variable

from a countable infinite set Vτ of variable symbols for each type τ ∈ T . The type of a term
is explicitly stated as subscript but may be dropped for legibility reasons if obvious from the
context. Terms so of type o are formulas.

Let I be some non-empty set that serves as an index set for the different modalities.
Σ is chosen such that it consists at least of the primitive logical connectives for disjunc-
tion, negation, and, for each type, universal quantification and equality. Hence, we have
{∨o→o→o,¬o→o,Πτ

(τ→o)→o,=
τ
τ→τ→o} ⊆ Σ for all τ ∈ T . Binder notation ∀Xτ . so is used as

shorthand for Πτ
(τ→o)→o (λXτ . so); and infix notation for the usual binary connectives is em-

ployed, e.g. s∨t instead of
(
(∨ s) t

)
. The remaining logical connectives can be defined as usual,

e.g by ∧o→o→o ≡ λso.λto.¬(¬s ∨ ¬t) and 3i
o→o ≡ λso.¬

(
�i(¬s)

)
. A �i-operator’s index may

be omitted if I is a singleton set.
For the semantics of HOML, the usual concept of a HOL model is augmented with an

appropriate notion of Kripke semantics (possible world semantics) [12]. We hereby generalize
the notion of models for (first-order) quantified modal logic [21] and adapt it to the full higher-
order quantification.

First, we define frame structures which collect objects that will be associated with constants,
variables and terms of HOML in the following: A frame D = (Dτ )τ∈T is a collection of non-
empty sets Dτ , where

(1) Do is the domain of Booleans with Do = {T, F}
where T and F represent truth and falsehood, respectively,

(2) Di is a non-empty domain of individuals with no further restrictions imposed, and

(3) Dτ→ν is a domain of total functions that map Dτ into Dν .

Next, a HOML model structure M is given by

M =
(
W, {Ri}i∈I , {Dw}w∈W , {Iw}w∈W

)
where W is a (non-empty) set of worlds and the Ri ⊆W ×W , i ∈ I, are accessibility relations
between these worlds. Additionally, each world w is assigned a frame Dw and an interpreta-
tion function Iw. For any world w, the function Iw maps a constant symbol cτ ∈ Στ to an
appropriate element of Dτ ∈ Dw (the denotation of c in w). We assume that the usual logical
connectives are given the standard denotation by Iw in each world w ∈ W , e.g. we have that
¬o→o denotes the logical negation in each world and analogous for the remaining connectives.
Also, we assume =τ

τ→τ→o to denote a rigid (world-independent) equality in the following.
A variable assignment gw for world w maps variables Xτ ∈ Vτ , τ ∈ T , to elements in Dτ ,

where Dτ ∈ Dw. A variable assignment g is then a collection g = (gw)w∈W . An X-variant of g
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at world w, written g[Xτ/sτ ]w, denotes the variable assignment g′ that is identical to g except
that in gw the variable X is mapped to s, i.e. g′w(Y ) = gw(Y ) if Y 6= X and g′w(X) = s.

Finally, the value ‖sτ‖M,g,w of a term sτ of type τ with respect to a model M =(
W, {Ri}i∈I , {Dw}w∈W , {Iw}w∈W

)
under variable assignment g at a world w ∈ W is a value

from Dτ ∈ Dw defined by (i ∈ I):

‖Xτ‖M,g,w = gw(X)

‖cτ‖M,g,w = Iw(X)

‖ (λXτ . sν)τ→ν ‖
M,g,w = f : Dτ → Dν ,with y

f7→ ‖sν‖M,g[Xτ/y]w,w

‖ (sτ→ν tτ )ν ‖
M,g,w = ‖sτ→ν‖M,g,w

(
‖tτ‖M,g,w

)
‖2io→o so‖M,g,w =

{
T if ‖so‖M,g,v = T for all v ∈W s.t. (w, v) ∈ Ri

F otherwise

The function ‖.‖ is well-defined when assuming standard semantics or Henkin semantics [22].
As a result of Gödel’s Incompleteness Theorem, complete mechanization of HOML with stan-
dard semantics cannot be achieved. Instead, Henkin semantics (also called general semantics)
is introduced and assumed for the remainder of this paper. For Henkin semantics, sound and
complete calculi exist.

A model structure M =
(
W, {Ri}i∈I , {Dw}w∈W , {Iw}w∈W

)
is called standard model if and

only if for all w ∈ W and for all types τ, ν ∈ T we have that Dτ→ν ∈ Dw is the complete
set of total functions from Dτ to Dν , i.e. Dτ→ν = DDτ

ν . Furthermore, the structure M is
called Henkin model if and only if for all w ∈W and for all types τ, ν ∈ T the function domain
Dτ→ν ∈ Dw is chosen as a subset Dτ→ν ⊆ DDτ

ν of all total functions such that ‖.‖M,g,w is total.
Every standard model is, of course, also a Henkin model. All references to HOML models in
the remainder implicitly refer to Henkin models.

A formula so is valid in model M, written M |=HOML so, if and only if ‖so‖M,g,w = T
for every variable assignment g and every world w ∈ W . A formula so is valid (a tautology),
denoted |=HOML so, if and only if M |=HOML so for every HOML model M.

2.2 Semantics Variations

The semantics of higher-order modal logic is quite ambiguous. This is due to the existence of
various subtle but meaningful variations in some of its facets. Each of those variations have their
particular application and are, unfortunately, often assumed implicitly. The most prominent
semantics variants are surveyed in the following.

Modality Axiomatizations. The most common variation for a concrete modal logic at
hand is the choice of the 2i-operator’s axiomatization. Popular axiom schemes (by no means
complete) are displayed in Table 1. It is a well-known fact that certain modal logic formulae
correspond to first-order accessibility relation conditions (most notable the so-called Sahlqvist
formulae [31]), also displayed in Table 1. Note that there also exist popular relation properties
that do not have a modal logic formula equivalent [12], e.g. irreflexivity (¬wRw).

Modal logic systems (denoted by bold-faced names) consist of one or more axiom schemes.
As an example, the axiom system K only consists of axiom scheme K. More complex systems
are then constructed by adding further axiom schemes, e.g. M consists of K and M, S4 consists
of K, M and 4, whereas S5 consists of K, B, M and 5.
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Name Axiom scheme Condition on ri Meta-logical specification of ri

K 2i(s ⊃ t) ⊃ (2is ⊃ 2it) — —
B s ⊃ 2i3is symmetric wRiv ⊃ vRiw
D 2is ⊃ 3is serial ∃v.wRiv

T/M 2is ⊃ s reflexive wRiw
4 2is ⊃ 2i2is transitive

(
wRiv ∧ vRiu

)
⊃ wRiu

5 3is ⊃ 2i3is euclidean
(
wRiv ∧ wRiu

)
⊃ vRiu

CD 3is ⊃ 2is functional
(
wRiv ∧ wRiu

)
⊃ v = u

2M 2i(2is ⊃ s) shift-reflexive wRiv ⊃ vRiv
C4 2i2is ⊃ 2is dense wRiv ⊃ ∃u.wRiu ∧ uRiv
C 3i2is ⊃ 2i3is convergent

(
wRiv ∧ wRix

)
⊃ ∃u.vRiu ∧ xRiu

Table 1: Popular modal axiom schemes and their corresponding frame condition

There are reasonable applications for every modal system. For example, the modal operator
is usually chosen to be S4 or S5 when used in an epistemic context. For a multi-modal logic,
this choice can be made for every 2i-operator independently. Additionally, further further
bridge rules may be added mediating between the different 2i-operators.

Quantification. The fairly unrestricted definition of HOML models above yields so-called
varying domains semantics. Here, we have the situation that denotations d ∈ Dτ ∈ Dw that
exist at a particular world w may not exist in another world v. This is often called the actualist
interpretation of quantification [21] and states that everything there is (actually) exists, i.e.
that there are no merely possible things.

This setting may however not be adequate for all applications of modal logic, in particular
in computer science, and is also criticized in the context of metaphysics from so-called possibilist
positions. The here proposed variant of constant domain quantification assumes that the frames
of all worlds coincide, i.e. Dw = Dv for all worlds w, v ∈W .

In the setting of cumulative domains we still have possibly different frames Dw for each
world w but with the restriction that no denotation object d ∈ Dτ ∈ Dw may disappear when
moving along the accessibility relations. More formally, in cumulative domains we have that
if d ∈ Dτ ∈ Dw then, for all worlds v ∈ W with (w, v) ∈ Ri, for any i ∈ I, it holds that
d ∈ Dτ ∈ Dv. The setting of decreasing domains is analogous only that we disallow models
that add new denotations to a set Dτ when moving along the accessibility relations.

All of the above variants co-exist and there is still an ongoing dispute about the desired
notion of quantification in modal logic [37, 32].

As a further generalization step, one could even extend the idea of domain restriction (con-
stant, varying, cumulative, decreasing) to only apply to certain types and combine them arbi-
trarily, e.g. that the domain of some type τ is cumulative and all other domains are constant.
The philosophical implications of such a setting are cutting-edge and, up to the authors’ knowl-
edge, not yet intensively studied.

Rigid and flexible constant. A further dimension of modal logic semantics deals with the
dependency of the denotation of constants to the current world: In the above setting of a
general HOML model, a constant cτ ∈ Στ may be mapped to different denotations by Iw,
depending on the world w at hand (except for the logical connectives such as ¬, ∨, etc. which
are always denoting as usual). We call those symbols flexible. However, constant symbols could
also be desired to be rigid, that is, having the same denotation on all worlds. This can be
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acquired by postulating that Iw(c) = Iv(c) for all worlds w ∈W and all constants cτ . Aspects
of rigidity play an important role for applications in paraconsistent reasoning and when dealing
with vagueness.

Finally, it is also possible to assume some constants to be flexible and the remaining to be
rigid (or vice versa).

Consequence. There is no single meaningful notion of consequence in modal logics. At least
two versions of consequence relations have been discussed in the literature [18]: A formula so
is a local consequence of a set of formulas Φ, denoted Φ |=HOML

local so, if and only if for all HOML
models M and for all worlds w ∈W , M, w |=HOML φ for all φ ∈ Φ implies M, w |=HOML so.

A formula so is a global consequence of a set of formulas Φ, denoted Φ |=HOML
global so, if and

only if for all HOML modelsM it holds that,M, w |=HOML φ for all worlds w ∈W and φ ∈ Φ
implies M, w |=HOML so for all worlds w ∈W .

3 Automation via Semantical Embedding

Automation of HOML is realized here using an indirection: The goal is to find equivalent
formulations of HOML sentences in classical higher-order logic (HOL). Note that an important
aspect of modal logic is that 2s can be derived if s is a valid formula (this is called necessitation).
Nevertheless, s ⊃ 2s is in general not a theorem of HOML. In order to capture this non-
trivial behavior of the modal operators, the relevant fragments of HOML’s Kripke semantics are
encoded into HOL. To that end, we first encode all meta-logical ingredients such as connectives
as well as validity (in HOML, i.e. |=HOML). Subsequently, we formulate the original modal
problem using the encoded meta-logical notions and a translation scheme for HOML terms.

As a result, we can use ordinary theorem proving systems for HOL for reasoning in HOML
by inputting the embedded variant of the original problem.

The semantical embedding of modal logics into HOL is intensively discussed in the relevant
literature (cf. [8, 11]). We here merely recapitulate the techniques which are later used in §4.

3.1 Classical Higher-Order Logic

Since the target language for the above sketched embedding is HOL we will briefly introduce
some notions that are relevant for the remainder of this section.

We assume that in our version of HOL the base types are given by {ooo, ιιι,µµµ} where, analogously
to HOML, ooo and ιιι denote the type of Booleans and individuals, respectively. The new type µµµ
is later used in the embedding to denote the type of possible worlds. The syntax of HOL is
essentially the same as for HOML only that the 2i operators are dropped.

We use boldface font for HOL terms and types in order to distinguish them from the ones
of HOML, e.g. λλλXXXτττ ...sssννν is a HOL formula of type τ → ντ → ντ → ν.

Models, valuations and validity are defined as usual. We write |=HOL sss to indicate that a
formula sososo is (Henkin-) valid in every HOL model. For a thorough introduction of HOL and its
semantics, we refer to the literature [5].

3.2 Semantical Embedding

HOML formulas are identified with certain HOL predicates of type µµµ→ ooo where µµµ is assumed
to denote the type of possible worlds. Intuitively, this allows the evaluation of a formula’s truth
in a particular world explicitly. The definitions of 2i and 3i are then defined as appropriate
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quantifications over the possible worlds (cf. further below). The HOL type µµµ→→→ ooo is abbreviated
as σσσ (”type-lifted Booleans”) in the remainder.

Modal axiomatizations. First, for each index i ∈ I of HOML, we introduce a constant
symbol riririµ→µ→oµ→µ→oµ→µ→o to the HOL signature that represents the accessibility relations associated
with 2i. Depending on the desired axiomatization of 2i, additional restrictions of ririri (cf.
Table 1) are postulated employing the correspondence between modal axioms and accessibility
relation properties [12].

Logical connectives. Since the type σσσ now serves as the type of (world-dependent) truth
values, we need to give definitions to logical connectives operating on them. The encoding d.e
of HOML connectives to their HOL equivalents is given by

d2io→oe = 222iiiσ→σσ→σσ→σ := λSσ.λWµ.∀Vµ. ¬(ri W V ) ∨ S VλSσ.λWµ.∀Vµ. ¬(ri W V ) ∨ S VλSσ.λWµ.∀Vµ. ¬(ri W V ) ∨ S V
d¬o→oe = ¬¬¬σ→σσ→σσ→σ := λSσ.λWµ. ¬(S W )λSσ.λWµ. ¬(S W )λSσ.λWµ. ¬(S W )

d∨o→o→oe = ∨∨∨σ→σ→σσ→σ→σσ→σ→σ := λSσ.λTσ.λWµ. (S W ) ∨ (T W )λSσ.λTσ.λWµ. (S W ) ∨ (T W )λSσ.λTσ.λWµ. (S W ) ∨ (T W )

The encoding of universal quantification Πτ depends on whether this quantification is intended
to be using constant domain or varying domain semantics. Let ΠΠΠτττ,c and ΠΠΠτττ,va denote the
encoding of a constant and varying domain quantification term, respectively, defined by

ΠΠΠτ
ττ,c
(τ→σ)→σ(τ→σ)→σ(τ→σ)→σ := λPτ→σ.λWµ.∀Xτ . P X WλPτ→σ.λWµ.∀Xτ . P X WλPτ→σ.λWµ.∀Xτ . P X W

ΠΠΠτ
ττ,va
(τ→σ)→σ(τ→σ)→σ(τ→σ)→σ := λPτ→σ.λWµ.∀Xτ . ¬(eiw X W ) ∨ (P X W )λPτ→σ.λWµ.∀Xτ . ¬(eiw X W ) ∨ (P X W )λPτ→σ.λWµ.∀Xτ . ¬(eiw X W ) ∨ (P X W )

The definition of constant domain quantification is straight-forward. The encoding of varying
domain quantification makes use of the fact that we can simulate varying domains by postulating
that the single frame D of HOL consists over the union of all Dw of HOML and the predicate
eiwτ→σeiwτ→σeiwτ→σ controls/specifies whether an object of type τ indeed “exists” in the given world. Such a
predicate is needed for all types. The remaining idea of the encoding of universal quantification
is that a given property of objects, in order to be a universal property, needs only to hold for
those objects that indeed “exist”, i.e. , eiweiweiw is used as a guard. In order to postulate cumulative
or decreasing domains, an according property on eiweiweiw is added as axiom.

Embedding the problem. For each type τ occurring in the HOML problem we define the
embedding (or type-lifting) dτe of a type τ by

dτ → νe = dτe →→→ dνe with doe = σσσ := µ→ oµ→ oµ→ o

The type-lifting of HOML type ι now depends on whether we assume rigid constants or flexible
constants. In the first case we set dιe = ιιι, in the latter case dιe = µ→ ιµ→ ιµ→ ι.2 We extend the
definition of d.e to HOML terms by

dcτe = cccdτe dXτe = XXXdτe dλXτ . sνe = λλλdXτe... dsνe dsτ→ν tτe = dsτ→νe dtτe

Hence, all the constant symbols and the variables are lifted to (bold) equivalents in HOL.
Finally, we encode the notion of HOML validity resp. consequence with aid of two further

meta-logical definitions b.c and A(.). Both are grounding terms of type σσσ (i.e. formulas of

2We fix the type-lifting of functional types to be rigid. There are applications in metaphysics where flexible
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Figure 1: Bird’s eye perspective of the automated embedding process

HOML) to type ooo (formulas of HOL) and assert that the respective formula is valid. The
difference between these two notions is that the first one encodes global consequence semantics
while the latter can be used to encode local consequence.

When assuming global consequence semantics, we simply ground all terms sσsσsσ by

bbbsσsσsσccc := ∀∀∀WµWµWµ. sss WWW

Here, the quantification over all worlds is associated with the term itself, corresponding to the
definition of |=HOML

global . For local consequence, the quantification over all worlds needs to be at
the outermost scope, collecting all axioms within its range. This can be done by grounding all
terms sσsσsσ using

AAA(sσsσsσ) := sss wwwactualactualactual

where wwwactualactualactual is a uninterpreted constant symbol of type µµµ denoting an (arbitrary but fixed)
actual world for simulating the universal quantification over worlds corresponding to |=HOML

local .
Finally, we have that

Φ |=HOML
global so if and only if

{
bbbdφoeccc |φo ∈ Φ

}
|=HOL bbbdsoeccc

Φ |=HOML
local so if and only if

{
AAA
(
dφoe

)
|φo ∈ Φ

}
|=HOL AAA

(
dsoe

)
A proof for global consequence and constant domain semantics was presented in [8]. Proofs for
the remaining semantical variants are currently pursued.

Using the above approach, it is also possible to explore are more general field of normal
modal logics by flexibly postulating Kripke frame restrictions that are not expressible as modal
logic formulae or even first-order condition. For example, it is possible to restrict an accessibility
relation ririri to be irreflexive while there exists to corresponding modal logic formula. Note that,
however, higer-order frame restrictions are still evaluated under Henkin models only.

4 Automated embedding

The goal of this work is to extend ordinary HOL ATPs to function as specialized reasoning tools
for higher-order quantified modal logic with as less technical overhead for the user as possible.
This implies that most of the involved embedding and type-lifting of formulas should be hidden
and also that only minor modifications are imposed on the ordinary ATP usage workflow.

For an automated embedding procedure, both the source logic’s semantics as well as the
original problem statement needs to be translated to adequate HOL terms. Since one and

functions are required for properly formulating certain non-trivial arguments. This can be allowed by defining
dτ → νe = µµµ→→→ dτe →→→ dνe. However, in this paper we restrict the embedding to use rigid function types only.
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the same problem statement may be studied in various semantical contexts and it cannot
automatically be inferred which semantics is intended, the information on the concrete desired
logic needs to be provided by the user. To that end, the standard input syntax from HOL ATP is
extended to allow the inclusion of an appropriate logic specification to the problem file. Hence,
it is transparent to the user in what semantical context the following problem is formulated
while leaving the concrete syntax of the problem’s formulas and definitions unchanged.

The ATP usage workflow is more or less unchanged since the problem encoding can be done
automatically in a preprocessing step. A complete schematic invocation of this preprocessing
step is displayed at Fig. 1. The input of this process is a problem statement formulated in
a well-defined syntax for HOML as described further below. After parsing, the meta-logical
contents of the problem statement (the semantical specification) are processed. This produces
HOL encodings of corresponding meta-logical notions of HOML. In a second step, the problem
itself is embedded as described in §3.2. Both parts are concatenated and written out as result.

Note that the result of the embedding procedure is a plain TPTP THF problem [35]. This
means that any TPTP-compliant HOL ATP can then be given the output of the embedding
procedure without any adjustment to the system. The only slight modification to the ATP
usage workflow is that the above preprocessing tool is prepended to the problem processing
pipeline.

Logic specification. A de-facto standard representation of HOL problems for automated the-
orem provers (ATPs) is given by the TPTP THF dialect [35]. This representation syntax is sup-
ported by most current HOL reasoners, including Satallax [15], LEO-II [2], Isabelle/HOL [28],
Nitpick [13] and many others.

As depicted further above, the syntax of HOML is a conservative extension of the standard
HOL syntax. Hence THF can easily be augmented by introducing the modal operators $box

and $dia as primitive connectives (for a mono-modal settings). For example, the HOML
formula ∀Xι.2(p X) then corresponds to ! [X:$i] : ( $box @ ( p @ X ) ). In a multi-
modal environment, the new primitives $box_int and $dia_int can be applied to an integer
which serves as the index of the modal operator. The HOML formula ∀Xι.2

1(p X) hence
corresponds to ! [X:$i] : ( $box_int @ 1 @ ( p @ X ) ).

The desired semantics of a problem’s underlying modal logic is specified within the problem
statement itself using a meta-logical declaration statement (using a formula annotated with the
role logic). Such an approach was fostered in earlier work [39] and subsequently improved
and enhanced to yield a TPTP standard proposal that is still under development. The logic

statement specifies the concrete modal logic using a $modal meta-variable which is assigned the
semantics for each semantic dimension (cf. §2.2) as follows

thf(simple_s5, logic, ($modal := [

$constants := $rigid,

$quantification := $constant,

$consequence := $global,

$modalities := $modal_system_S5 ])).

Here, as an example, an S5 modal logic is postulated with rigid constants, constant domain
semantics and global consequence.

The specification of semantical properties is extended to individual objects such that a ded-
icated semantics can be given for each type, constant, axiom or modal operator (depending
on the semantic dimension at hand) separately. For example, quantification over some type
human can be postulated to employ varying domains whereas all other quantifications remain
constant domain. Analogous choices can be made for rigidity (per constant symbol), conse-
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quence (per axiom or conjecture) and axiomatization (per modal operator). A more involved
logic specification reads

thf( mydomain_type , type , ( human : $tType ) ).

thf( myconstant_declaration , type , ( myconstant : $i ) ).

thf( complicated_s5 , logic , ( $modal := [

$constants := [ $rigid , myconstant := $flexible ] ,

$quantification := [ $constant , human := $varying ] ,

$consequence := [ $global , myaxiom := $local ] ,

$modalities := [ $modal_system_S5 , $box_int @ 1 := $modal_system_T ] ] ) ).

As shown, object-specific declarations are specified by assigning a list starting with the default
value of a property followed by assignments of objects to values. The same applies to different
modal operators in multi-modal settings. The current list of supported values includes

• $constants ∈ {$rigid, $flexible}

• $quantification ∈ {$varying, $cumulative, $decreasing, $constant}

• $consequence ∈ {$global, $local}

• $modalities Use $modal_system_X for X ∈ {K, D, T, S4, S5, ...}3

Embedding procedure. The algorithm for encoding the HOML problem into HOL imple-
ments the steps roughly sketched in §3.2. First, meta-logical definitions are encoded into THF:

thf(w, type, ( w_type:$tType ) ). %% The world type

thf(r, type, (r:w_type>w_type>$o) ). %% One accessibility relation

The type w_type of possible worlds corresponds to µµµ of §3.2. The optional constraints on r are
imposed by simply applying the according properties to it as an axiom.

thf(mrefl_type, type, ( mrefl : (w_type>w_type>$o)>$o ) ).

thf(mrefl_def, definition, ( mrefl = (^ [R:w_type>w_type>$o] : ![A:w_type]: (R@A@A)))).

thf(r_mrefl, axiom, ( mrefl @ r ) ).

Next, the grounding operators bbb.ccc and AAA are defined and appended to the output:

thf(mvalid_type, type, ( mvalid: (w_type>$o)>$o ) ).

thf(mvalid, definition, ( mvalid = (^ [S:w_type>$o] : ! [W:w_type] : (S@W)))).

thf(mcurworld_type, type , ( mcurworld: w_type ) ).

thf(mactual_type, type, ( mactual: ( ( w_type>$o ) >$o ) ) ).

thf(mactual, definition, ( mactual = ( ^ [Phi:(w_type>$o)] : ( Phi @ mcurworld ) ) ) ).

Subsequently, the embedded variants of the logical connectives are defined (type declarations
omitted). They will later be replace the native connectives of the HOML problem statement.

thf(mnot, definition, ( mnot = (^ [A:w_type>$o,W:w_type] : ~(A@W)))).

thf(mor, definition, ( mor = (^ [A:w_type>$o,B:w_type>$o,W:w_type]: ((A@W)|(B@W))))).

thf(mbox, definition, ( mbox = (^ [A:w_type>$o,W:w_type]:

! [V:w_type] : ( (rel_r@W@V) => (A@V) ) ))).

Since there are hardly any HOL ATP systems that robustly support the polymorphic HOL
syntax enhancement TH1, we need to explicitly define and include quantifiers for all types that
were quantified over in the original problem. Consider the following example:

3One can also define the axiomatization of a modal operator using the modal axioms schemes explicitly
instead of the system names, e.g. $box := [$modal_axiom_K, $modal_axiom_B, ...].
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thf(mforall_const_i_ty, type, ( mforall_const_i : (($i>w_type > $o)>w_type>$o) ) ).

thf(mforall_const_i, definition, ( mforall_const_i =

( ^ [A:($i)>w_type>$o,W:w_type] : ! [X:($i)] : (A @ X @ W)) )).

thf(eiw_type_i, type, ( eiw_i : ($i>w_type > $o) )).

thf(eiw_nonempty_i, axiom, (! [W:w_type]: ( ? [X:($i)] : (eiw_i @ X @ W)))).

thf(mforall_vary_i_ty, type, ( mforall_vary_i : (($i>w_type>$o)>w_type>$o) )).

thf(mforall_vary_i, definition, ( mforall_vary_i =

(^[A:($i)>w_type>$o,W:w_type]: ![X:($i)]: ((eiw_i @ X @ W) => (A @ X @ W))) )).

The first two declarations define constant domains quantification for type i. Recall that varying
domains quantification requires a predicate, denoted eiw for exists in world, as a guard to
nested quantification. Such an eiw predicate is, again, needed for each type so that we define
the predicate and its non-emptiness restriction first, and then output the definition of varying
domain quantification (of type i on lines 4 and 5 of the above example). Additional restrictions
to the eiw predicate are subsequently included, e.g. when using cumulative domain semantics:

thf(eiw_cumul_i, axiom, (! [W:w_type,V:w_type,C:$i]:

((r @ W @ V) => ((eiw_i @ C @ W) => (eiw_i @ C @ V))) )).

Note that also for each user-constant c of type t of the input problem, an assertion of the
existence of c in all worlds is needed. If a respective eiw predicate has not been introduced yet,
it is introduced now (omitted here).

thf(c_eiw, axiom, (! [W:w_type]: (eiw_t @ c @ W))).

However, this axiom is included at the end of the resulting THF statement in order to respect
symbol occurrence restrictions (a symbol needs to be introduced before its first usage in a
formula or term).

This concludes the introduction of new types, definitions and axioms. Next, the actual
input problem is transformed. The first step is to lift all occurring types according to the
embeddings rules. As an example, every occurrence of type $o in the HOML problem is trans-
formed to w_type>$o. Then, every connective is replaced by its embedded counterpart. As an
example, ( a & ~(b) ) is transformed to ( mand @ a @ ( mnot @ b ) ). The only excep-
tion is the replacement of quantifiers since the embedded equivalents are combinators rather
than binding mechanisms as used in the original problem statement. Hence a λ-abstraction
for the variable name to be quantified is inserted on top on the replacement. As an exam-
ple, ( ![X:$i]: (p @ X) ) is transformed to ( mforall_const_i @ (^[X:$i]: (p @ X)) )

when assuming constant domain semantics or to ( mforall_vary_i @ (^[X:$i]: (p @ X)) )

when assuming varying domain semantics.
The final step is to ground all formulas (i.e. terms of type w_type>$o after lifting) to type $o.

To that end, the actuality operator is applied to all statements labeled with local consequence
and the validity operator to those labeled with global consequence, yielding ( mactual @ a )

or ( mvalid @ a ), respectively, for some formula a.

The tool. The above procedure was implemented as an open-source stand-alone tool written
in Java 8 and is freely available online4. The tool reads an input problem file formulated in the
above described augmented modal THF representation and writes the embedded problem to a
new file. It is invoked by

./embed -f modal -i <input file> -o <result file>

4See https://github.com/TobiasGleissner/embed_modal.
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Table 2: Results of validity checking of (BF), (CBF), (BF) + (CBF) and (NE).

(BF) (CBF) (BF) + (CBF) (NE)
vary cumul decr const vary cumul decr const vary cumul decr const vary cumul decr const

Valid X X X X X X X X X X X X X X X X
LEO-II < 1s † < 1s < 1s < 1s < 1s † < 1s < 1s † † < 1s < 1s < 1s † < 1s
Satallax < 1s < 1s < 1s < 1s < 1s < 1s < 1s < 1s < 1s < 1s < 1s < 1s < 1s < 1s < 1s < 1s
Nitpick 10s 8s † † 10s † 10s † 10s 8s 11s † 7s † 7s †
MLeanCoP* < 1s < 1s ‡ < 1s < 1s < 1s ‡ < 1s < 1s < 1s ‡ < 1s =

*MleanCoP does not support scheme K, instead D was employed. A first-order encoding was used. †: Timeout/GaveUp ‡: Semantics not supported =: Equality not supported.

If the input problem does not contain a semantical specification the tool can externally provide
different semantical settings using a command-line option -semantics <semantics>. The tool
can recursively embed all files of a directory if the <input file> is not a file but a directory.

5 Evaluation

In this section, the embedding tool is evaluated using two distinct applications: Firstly, we
demonstrate how the embedding tool can be used to study relevant philosophical discussions
that require analysis with respect to multiple semantical settings.

Secondly, the correctness and performance of the embedding tool is evaluated using the
complete set of mono-modal problems from the QMLTP problem library [30].

For the measurement, Satallax 2.7 [15] and LEO-II 1.7.0. [2] (compiled under Debian Linux
3.16.0 using OCaml 4.02.3) were used. Additionally, Nitpick [13] from Isabelle’s 2016 distribu-
tion is used as counter model finder for cross verification. One sophisticated representative of
native modal logics provers, MleanCoP [29], is used for performance comparison. For compa-
rability reasons, rigid constants are assumed in this section.

Actualism vs. Possibilism. One of the most prominent controversial consequence of the
possibilists’s interpretation of modal logic semantics (i.e. modal quantification semantics) is
the validity of all instances of the Barcan Formula (BF), the Converse Barcan Formula (CBF)
and Necessary Existence (NE) [25]. For type ι, the instances are given by

(BF) ∀Xι.2pX ⊃ 2∀Xι.pX (CBF) 2∀Xι.pX ⊃ ∀Xι.2pX (NE) ∀Xι.2∃Yι.Y = X

where pι→o is some predicate. As an example, (BF) has vast implications on so-called Possibilia,
i.e. that the mere possibility of existing objects of some property implies the actual existence of
those object having possibly that property. Similar arguments exist for (CBF) and (NE) [25].

In order to study the validity of the above instances of (BF) and (CBF), the conjunction
of both, denoted (BF) + (CBF) in the following, and (NE) under different semantical settings,
we represent the formulas in modal THF syntax. Subsequently, the embedding procedure is
invoked for each of the four problems and each quantification semantics individually.

Table 2 summarizes the results (30s time limit). The first line indicates the actual validity
of the respective formula, where valid instances are marked with X and non-valid (counter
satisfiable) instances with X. The remaining lines indicate the results (time taken for solving)
from the corresponding reasoning systems. LEO-II, Satallax and MleanCoP are able to correctly
prove and disprove (almost) every instance of (BF), (CBF) and (BF) + (CBF) in less than one
second. For all counter-satisfiable instances, Nitpick can give a comprehensive, finite counter
model in small time. Similar results apply to (NE) using the embedding approach. MleanCoP
cannot be applied here since it does not support native equality.
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Table 3: Number of solved problems under local consequence (‡: Semantics not supported)

Semantics Reasoning system
LEO-II Nitpick Satallax All MleanCoP

Σ THM CSA CSA* Σ THM CSA CSA* Σ THM CSA CSA* U Σ THM CSA
K/vary 81 81 0 65 0 0 0 286 105 105 0 135 108 ‡
K/cumul 98 98 0 29 0 0 0 267 122 122 0 122 125 ‡
K/decr 94 94 0 29 0 0 0 264 118 118 0 124 122 ‡
K/const 216 146 70 - 237 0 237 - 284 167 117 - 427 ‡
D/vary 133 90 43 1 205 0 205 68 123 114 9 0 1 454 184 270
D/cumul 124 107 17 0 185 0 185 67 134 133 1 0 0 451 206 245
D/decr 104 104 0 16 0 0 0 251 130 130 0 1 133 ‡
D/const 211 160 51 - 223 0 223 - 192 181 11 - 58 441 223 218
T/vary 169 131 38 2 130 0 130 95 239 164 75 29 5 377 221 156
T/cumul 160 149 11 0 108 0 108 92 248 186 62 28 4 381 250 131
T/decr 141 141 0 11 0 0 0 222 177 177 0 91 180 ‡
T/const 247 204 43 - 142 0 142 - 317 234 83 - 54 382 270 112
S4/vary 155 155 0 0 110 0 110 101 270 200 70 28 2 411 286 125
S4/cumul 179 179 0 0 86 0 86 95 286 227 59 27 3 443 348 95
S4/decr 165 165 0 0 0 0 0 190 217 217 0 86 220 ‡
S4/const 237 237 0 - 116 0 116 - 358 283 75 - 47 445 364 81
S5/vary 187 187 0 0 81 0 81 86 290 237 53 28 1 450 358 92
S5/cumul 230 230 0 0 35 0 35 100 312 284 28 25 3 475 436 39
S5/decr 230 230 0 0 0 0 0 119 284 284 0 53 293 ‡
S5/const 275 275 0 - 70 0 70 - 375 321 54 - 38 475 436 39

QMLTP. A more extensive evaluation of the previously presented tool is presented in the
following. As a first step, the 580 mono-modal problems of the QMLTP library [30] (version
1.1) were translated into modal THF in order to the applicable to our approach. As it turns out,
some of the QMLTP problems are not stated in proper extended TPTP FOF syntax (mostly
missing parentheses); these problems have been adjusted by hand. Then, the problems were
embedded into plain THF for modal systems K, D, T, S4, S5 (these are supported by QMLTP),
all quantification semantics and both consequences (local and global). While our system is by
no means restricted to these modal systems, we do restrict the evaluation to those since there
are no other theorem provers available for comparison for further semantical variations. Each
previously mentioned reasoning system was tested using a time limit of 60s and ran on an eight
core system (2x AMD Opteron 2376 Quad Core) with 32 GB RAM.

Table 3 and Table 4 present the number of solved problems for each prover and each se-
mantical setting in local and global consequence, respectively. The columns Σ, THM and CSA
show the number of solved problems and the number of (thereof) proved and refuted problems,
respectively. The number of problems uniquely solved by the embedding approach (i.e. any
HOL ATP but not by MleanCoP) is denoted U.

The post-processing of the benchmark results involved an ATP-to-ATP crosscheck for ex-
cluding contradicting system results. Similarly, an ATP-QMLTP crosscheck was conducted
(where possible) for the local consequence setting for comparing the results of the embedding
to the status in the QMLTP header file. The main observations of this checks include

• No ATP-to-ATP discrepancies were found among the HOL ATP.

• Two ATP-to-ATP/ATP-QMLTP soundness mismatches (modulo semantics) were found
for problems SYM052+1 and SYM056+1 (Embedding: Theorem, MleanCoP and
QMLTP: CSA), resulting in nine mismatches counting different semantics. After fur-
ther investigation and communication with Jens Otten, it is apparent that this results
from a lapse in the original problem statement. The QMLTP defines its own equality due
to complications involving notions of modal equality and therefore the (in-)equality sign
”=” (”!=”) is assumed an uninterpreted symbol and should not occur in the QMLTP. Nev-
ertheless, SYM052+1 contains such an inequality sign. Consequently, MleanCoP refutes
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Table 4: Number of solved problems under global consequence

Semantics Reasoning system
LEO-II Nitpick Satallax all

Σ THM CSA(∗) Σ THM CSA(∗) Σ THM CSA(∗) Σ
K/vary 85 85 67 0 0 380 117 117 100 119
K/cumul 102 102 31 0 0 350 135 135 87 137
K/decr 97 97 30 0 0 356 130 130 89 132
K/const 231 152 79 256 0 256 266 184 82 453
D/vary 91 91 44 0 0 372 126 126 8 128
D/cumul 111 111 17 0 0 338 147 147 1 149
D/decr 104 104 17 0 0 344 143 143 1 145
D/const 214 164 50 240 0 240 208 198 10 451
T/vary 131 131 39 0 0 308 172 172 76 175
T/cumul 149 149 11 0 0 285 195 195 62 198
T/decr 140 140 10 0 0 296 186 186 63 189
T/const 248 209 39 161 0 161 304 249 55 423
S4/vary 157 157 0 0 0 282 199 199 70 203
S4/cumul 181 181 0 0 0 244 227 227 58 234
S4/decr 169 169 0 0 0 261 217 217 58 221
S4/const 240 240 0 122 0 122 334 287 47 423
S5/vary 188 188 0 0 0 233 238 238 53 243
S5/cumul 228 228 0 0 0 180 285 285 25 292
S5/decr 230 230 0 0 0 181 286 286 25 293
S5/const 273 273 0 72 0 72 351 325 26 415

Due to lack of comparison results, only the CSA values for constant domain semantics are counted into Σ.

the problem while the HOL ATPs do interpret the embedded equality sign.

• Apart from the two problems above, no soundness issues were found.

• Some problems where deemed CSA by the HOL ATP while being a theorem according
to QMLTP and MleanCoP. A study of finite counter models produced by Nitpick show
that the embedding allows a more general notion of modal model structures when consid-
ering non-constant quantification semantics that are not captured by native modal logic
provers. One example is that, in the embedding, we can construct models where there
is an object that does not exist in any world. Such a construction is highly interesting
from a metaphysical point of view. One possibility to restrict models to only range over
”ordinary” structures is to simply forbid this situation by additional axioms. It is never-
theless not clear whether this suffices. Those extra CSA results are displayed as CSA* in
the table.

• 183 results were contributed by the embedding approach (refutations counted only for
constant domain semantics) for the semantical settings supported by the QMLTP and
which were previously unsolved by any QMLTP prover (including MleanCoP).

The remaining measurement results indicate that our approach is indeed competitive com-
pared to native modal logic provers. Also, in contrast to the existing modal logic provers, the
semantical parameters can be adjusted more flexibly in the embedding approach, i.e. 5971
results were contributed for semantical settings not supported by QMLTP. The number of CSA
results is not as high as possible since we cannot safely distinguish between CSA results and
CSA* results at the moment and hence only count those confirmed by MleanCoP onto CSA.

6 Conclusion and Further work

In this work, we presented means for encoding various versions of higher-order modal logic into
classical HOL. A syntax for modal THF problems was presented and an automated procedure
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for embedding problems formulated in such a syntax was outlined and implemented as a stand-
alone tool in Java. It can be used as a preprocessor for turning common HOL reasoning systems
into reasoners for almost every normal modal logic.

The effectiveness of such an embedding approach was studied using relevant formulas from
philosophy and on the bases of the QMLTP library. To that end, all 580 mono-modal problems
of the QMLTP were translated into modal THF5. The evaluation results indicate that the pre-
sented approach is indeed competitive and supports more semantical variants than any modal
logic prover. As further results, some apparent incongruities in the QMLTP were discovered.
Also, the availability of a more general notion of model structures for modal logic was found
that can be utilized using our embedding approach. Those model structure should be inves-
tigated further since they may be suitable for certain philosophical applications. Additional
axiomatizations for achieving completeness for non-constant domains with respect to the usual
model structures were sketched but need to be studied further. After such an adjustment, the
embedding tool should yield even more competitive results.

The inclusion of the here presented tool into the Leo-III prover [34] remains future work
but is straight-forward. Also, a leaner HOL encoding of the HOML problems can be achieved
by offering translations to polymorphic HOL, i.e. into TH1 syntax [23].
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