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THEOREM PROVING USING EQUATIONAL MATINGS 
AND RIGID E-UNIFICATION 

Jean Gallierl, Paliat h Narendran2, Stan Raatz3, and Wayne Snyder4 

Abstract: In this paper, it is shown that the method of matings due to  An- 

drews and Bibel can be extended to (first-order) languages with equality. A 

decidable version of E-unification called rigid E -un i f ica t ion  is introduced, and it 

is shown that the method of equational matings remains complete when used in 

conjunction with rigid E-unification. Checking that a family of mated sets is an 

equational mating is equivalent to the following restricted kind of E-unification. 

Problem: Given 2 = {Ei I 1 5 i 5 n} a family of n finite sets of 

equations and S = {(u;, vi) I 1 _< i < n )  a set of n pairs of terms, is 

there a substitution 0 such that, treating each set O(Ei) as a set of ground 

equations (i.e. holding the variables in O(Ei) "rigid"), 0(ui) and 0(vi) are 

provably equal from O(Ei) for i = 1, . . . , n? 

Equivalently, is there a substitution 0 such that O(ui) and O(vi) can be 

shown congruent from O(Ei) by the congruence closure method for i = 

1,. . . ,n? 

A substitution B solving the above problem is called a rigid ,!?-unifier of 

S ,  and a pair (E, S) such that S has some rigid i?-unifier is called an equational  

p rema t ing .  It is shown that deciding whether a pair (I?, S )  is an equational 

premat ing is an NP-complete problem. 
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1 Introduction 

In this paper, we show that the method of matings due to Andrews [I] and Bibel [7, 

8, 9, 101 can be extended to (first-order) languages with equality, and prove that this 

extension is both sound and complete.' A decidable version of E-unification called rigid 

E-unification is introduced, and it is shown that the method of equational matings remains 

complete when used in conjunction with rigid E-unification. The results of this paper 

extend significantly those presented at LICS'87 [IS]. In [18], it is conjectured that rigid 

E-unification is decidable. Subsequently, we have shown that rigid E-unification is NP- 

complete (LICS'88 [20]), thus proving our conjecture. The main focus of this paper is the 

method of equational matings, and we present a simplified version of the decidability of 

rigid E-unification. Full details on the NP-completeness of rigid E-unification can be found 

in [22]. 

At first glance, a generalization of the method of matings to first-order languages 

with equality where equality is built-in in the sense of Plotkin [39] (thus, it is not the 

naive method where explicit equality axioms are added which is rejected for well known 

inefficiency reasons) requires general E-unification (Gallier and Snyder [21]). Hence, there 

are two factors contributing to the undecidability of the method of matings for first-order 

languages with equality: (1) the fact that one cannot predict how many disjuncts will occur 

in a Herbrand expansion (which also holds for first-order languages without equality); (2) 

the undecidability of the kind of unification required (E-unification). 

In this paper, we show that the completeness of the method of equational matings 

is preserved if unrestricted E-unification is replaced by rigid E-unification. We also prove 

that rigid E-unification is decidable, which shows that the second undecidability factor can 

be eliminated. The NP-completeness of rigid E-unification shows clearly how the presence 

of equality influences the complexity of theorem proving methods. For languages without 

equality, one can use standard unification whose time complexity is polynomial, and in fact 

One of the referees has pointed out that Bibel's connection method appeared in print earlier than 

Andrews's method of matings. 
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O ( n )  . For languages with equality, the unification required is NP-complete. When dealing 

with a fixed equational theory for which a practically tractable or decidable unification 

algorithm is known, we recognize that it is unclear whether our new method compares fa- 

vorably with the method of matings using this specialized unification algorithm. It seems 

unlikely that this question can be settled at the theoretical level, and since our method 

has not yet been implemented, we are unable to make any claims of practicality. Never- 

theless, it seems unquestionable that having a decidable unification procedure (preserving 

completeness) represents significant progress. 

The method of matings applies to formulae in negation normal form, and was intro- 

duced with two motivations in mind: to avoid breaking a formula into parts, which can 

result in loss of information about the global structure, and to avoid transforming it to 

clausal form, which can result in an exponential increase in the number of literals due to 

the repeated use of the distributive law (P V (Q A R)) r ((P V Q) A (P V R)). This method 

is an incremental proof (or refutation) procedure that interleaves two steps: quantifier- 

duplication steps, and search for matings. It is an analytic proof procedure in the sense of 

Smullyan [40], and, even though Andrews did not present it in terms of Gentzen or Tableaux 

systems [41,17,40], it can easily be presented in any of these formalisms. In fact, this is the 

approach followed in Bibel and Schreiber [lo], and thoroughly investigated in Eder [14, 151. 

Fitting's method of tableaux [16] is also close in spirit to matings. 

The method of matings has been implemented at CMU in the system TPS designed 

by Andrews and his collaborators [3]. A large number of nontrivial theorems have been 

proved by the system TPS, and this system is also used as an effective teaching tool. Since 

TPS uses a version of Huet's higher-order unification procedure [25, 263, it is capable of 

performing higher-order reasoning. For example, the TPS system [3] can prove Cantor's 

Theorem (that there is no surjection from a set to its powerset) without any assistance 

(the higher-order unification procedure finds a term which corresponds to the diagonal set 

{ a  E A ( a $! f ( a ) )  used in the standard proof). Equality reasoning can be dealt with 

indirectly by defining equality using second-order quantifiers (see subsection 5.4), but this 

is very inefficient, and there are no other facilities in TPS to deal directly with equality. 

The method of matings exploits the fundamental property given by the Skolem- 

Herbrand-Godel theorem, [1,2,17]. In short, the unsatisfiability of a (universally) quan- 

tified sentence can be reduced to the unsatisfiability of a quantifier-free formula, modulo 

guessing a ground substitution. The crucial observation due to Andrews and Bibel is that a 

quantifier-free formula (in nnf) is unsatisfiable iff certain sets of literals occurring in A (called 

vertical paths) are unsatisfiable. Matings come up as a convenient method for checking that 

vertical paths are unsatisfiable. Roughly speaking, a mating is a set of pairs of literals of 

opposite signs (mated pairs) such that all these (unsigned) pairs are globally unified by 
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some substitution. The importance of matings stems from the fact that a quantifier-free 

formula A has a mating iff there is a ground substitution 6' such that $(A) is unsatisfiable. 

The extension to equat iona l  m a t i n g s  is nontrivial, and requires proving a generaliza- 

tion of Andrews's version of the Skolem-Herbrand-Godel theorem [I, 21. It also requires 

extending the concept of a mating so that an equational mating is a set of sets of literals 

(mated sets), where a mated set consists of several positive equations and a single negated 

equation (rather than pairs of literals as in Andrews and Bibel's case), and a form of uni- 

fication modulo equational theories (E-unification) first studied by Plotkin [39]. A related 

extension is sketched (without proofs) in Bibel [9, Section V.3, pp. 234-2421. However, 

Bibel's method and ours differ significantly. This is because standard unification is used in 

Bibel's method, and so, it is usually necessary to include extra literals arising from instances 

of the equality axioms to the mated sets. On the other hand, our method uses a form of 

E-unification, and we n e v e r  include any extra literals (arising from equality axioms) in our 

mated sets. For a detailed comparison of our method with others, see subsection 5.4. 

Checking that a family of mated sets is unsatisfiable, i.e. an equational mating, leads 

to an interesting and nontrivial problem. This problem, which is central to this method, is 

a restricted version of E-unification. 

-, 
Problem 1. Given E = {Ei 1 1 5 i < n) a family of n finite sets of equations and 

S = {(ui, vi) I 1 < i < n )  a set of n pairs of terms, is there a substitution 6' such that, 

treating each set 6'(Ei) as a set of ground  equations (i-e. holding the variables in 6'(Ei) 

"rigid"), 6'(ui) and 6'(v;) are provably equal from 6'(E;) for i = 1 , .  . . , n? 

Equivalently, is there a substitution 6' such that 6'(ui) and 6'(vi) can be shown congruent 

from 6'(Ei) by the congruence closure method for i = 1,.  . . , n (Kozen [30,31], Nelson 

and Oppen [36], Downey, Sethi, and Tarjan [13])? 

A substitution 6' solving problem 1 is called a rigid 2 - u n i f i e r  o f  S ,  and a pair (2, S) 

such that S has some rigid Eunifier is called an equat iona l  p r e n a t i n g .  It will be shown 

in section 12 that deciding whether a pair (I?, S )  is an equational premating is an NP- 

complete problem. Since the problem of deciding whether a family of mated sets forms 

an equational mating is equivalent to the problem of finding whether a pair (2, S )  is an 

equational premating, the former problem is also NP-complete. Actually, this result is an 

easy extension of a simpler problem. 

Problem 2. Given a finite set E = {ul -- v l ,  . . . , u, v,) of equations and a pair 

(u,v) of terms, is there a substitution 6' such that, treating O(E) as a set of ground 
* 

equations, O(u) 6'(v), that is, B(u) and B(v) are congruent modulo O(E) (by 

congruence closure)? 
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The substitution 8 is called a rigid E-unifier of u and v 

Example 1.1 Let E = {fa = a,  ggx f a ) ,  and (u, v)  = (gggx, a). Then, the substitu- 

tion 8 = [ga/x] is a rigid E-unifier of u and v. Indeed, @(E) = {fa a, ggga = fa) ,  and 
B(gggx) and 8(x) are congruent modulo 8(E), since 

8 (999~)  = SSSSa ---+ gf a using ggga = f a  

--t ga = 8(x) using f a  = a. 

Note that 6 is not the only rigid E-unifier of u and v. For example, [g f a/x] or more generally 

[g fka /x]  is a rigid E-unifier of u and v. However, 8 is more general than all of these rigid 

E-unifiers (in a sense to be made precise later). It will be shown in section 10 that there is 

always a finite set of most general rigid E-unifiers called a complete set of rigid E-unifiers. 

Note that any substitution 8 satisfying the above problem is an E-unifier of u and v. 

However, the equations in E are used in a restricted fashion. Contrary to E-unification, in 

which there is no bound on the number of instances of the equations in E used to show that 

B(u) LE B(v), in our situation, only the m instances in O(E) can be used (any number of 

times, m 5 n). 

The solution to problem (2) is a significant extension of a result of Kozen, who has 

shown that the problem is NP-complete when all equations in E are ground, [31]. We also 

show that even when u,  v are ground, and all equations in E except one regular equation 

are ground, the problem is NP-complete. 

Rigid E-unification is exciting because it eliminates one of the two aspects of unde- 

cidability associated with the method of equational matings, namely, that of E-unification. 

This is particularly important here, since even if E-unification is decidable for the set of 

all equations occurring in a formula in nnf, it is necessary to consider subsets of this set of 

equations, and the E-unification problem for any subset can be undecidable. 

The paper is organized as follows. Section 2 reviews the main concepts used in this 

paper. In section 3, the method of equational matings is presented informally by means 

of examples. In section 4, the central concept of an equational mating is introduced, and 

some important results about them are established. Section 5 is devoted to a version of 

the Skolem-Herbrand-Godel theorem for first-order languages with equality (theorem 5.2). 

In order to state this theorem, we need the notion of a compound instance (see Andrews 

[I] and Bibel [7, 8, 91). The connection with equational matings is made via the notion 

of amplification, and the completeness of the method is shown (theorem 5.5). It is also 

shown that the method remains complete if outermost amplifications are performed, and 

the section ends with a comparison with other methods. Sections 6 - 12 are devoted to 
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rigid E-unification. Basic definitions about complete sets of rigid E-unifiers are given in 

section 6. Minimal rigid E-unifiers are studied in section 7. A method for reducing a set 

of ground rewrite rules is reviewed in section 8. The method for finding complete sets 

of rigid E-unifiers is given in section 9. The soundness, completeness and decidability of 

the method are shown in section 10. In section 11, it is shown that rigid E-unification is 

NP-complete. The application of rigid E-unification to equational matings is presented in 

section 12. A refutation procedure based on equational matings is presented in section 13. 

Section 14 contains the conclusion, and section 15 contains an appendix with a semantic 

proof of the Skolem-Herbrand-Gijdel theorem, in the line of Andrews's proof for the case 

without equality. 

Readers who want to find out quickly about the main results (provided some familiarity 

with the matings/connections method) are advised to skim section 3, then jump to section 

6, then to section 8, section 9, section 12, and finally section 13. Example 9.4 offers a simple 

illustration of the new method. 

2 Preliminaries 

This section contains a brief review of the main concepts used in this paper. As much as 

possible, we stick to the definitions used in the literature on the subject. More specifically, 

we will follow Huet and Oppen [28], and Gallier [17]. The purpose of this section is mainly 

to establish the terminology and the notation, and it can be omitted by readers familiar 

with the literature. First, we review the basics of many-sorted languages. 

Definition 2.1 A set S of sorts (or types) is any nonempty set. Typically, S consists of 

types in a programming language (such as integer, real, boolean, character, etc.). An S- 

ranked alphabet is a pair (C, p) consisting of a set C together with a function p : C -+ S* x S 

assigning a rank (u, s) to each symbol f in C. The string u in S* is the arity of f and s is 

the sort (or type) o f f .  If u = sl . . . s,, (n > I), a symbol f of rank (u, s) is to be interpreted 

as an operation taking arguments, the i-th argument being of type si and yielding a result 

of type s. A symbol of rank (e, s) (when u is the empty string) is called a constant of sort 

s. For simplicity, a ranked alphabet (C, p)  is often denoted by C. 

Next, we review the definition of tree domains and trees (or terms). Let N denote the 

set of natural numbers, and N+ the set of positive natural numbers. 

Definition 2.2 A tree domain D is a nonempty subset of strings in N; satisfying the 

conditions: 

(1) For all u,v E N;, if uv E D then u E D. 
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(2) For all u E N;, for every i E N+, if ui E D then, for every j ,  15 j 5 i ,  u j  ED. 

For every n E N,  let [n] = {1,2,. . . , n),  and [O]  = 0. 

Definition 2.3 Given an S-sorted ranked alphabet C, a C-tree ( o r  t e r m )  of sor t  s is 

any function t : D --+ C, where D is a tree domain denoted by dom(t), and t satisfies the 

following conditions: 

1) The root of t is labeled with a symbol t(e) in C of sort s. 

2) For every node u E dom(t), if {i I ui E dom(t)) = [n], then if n > 0, for each ui, 

i E [n], if t(ui) is a symbol of sort v,, then t(u) has rank (v, st) ,  with v = vl . . . v,, else 

if n = 0, then t(u) has rank (e, s'), for some s' E S.  

Given a tree t and some tree address u f dom(t), the subtree o f t  rooted at u is the 

tree t/u whose domain is the set {v I uv E dom(t)) and such that t/u(v) = t(uv) for all v 

in dom(t/u). 

Given two tree addresses a , p  E dom(t) in a tree t ,  a is an ancestor of P  iff a is a 

prefix of ,B,2 and a is a proper ancestor of ,B iff it is an ancestor of ,B and o # P. Addresses 

a and ,B are independent iff neither one is an ancestor of the other. The set of all finite 

trees of sort s is denoted by T$ , and the S-indexed family (T$)sES of all finite trees by TC. 

In this paper, it is assumed that for every S-sorted alphabet C, there is a distinguished 

sort boo! ES. Symbols of sort bool are called predicate symbols. Terms of sort bool will be 

interpreted as logical formulae. 

The operation of tree replacement (or tree substitution) will be needed. 

Definition 2.4 Given two trees tl and t2 and a tree address u in t l ,  the result of replacing 

tz at u in t l ,  denoted by tl[u t tz], is the function whose graph is the set of pairs 

{(v, tl(v)) I v E dom(tl), u is not a prefix of v} U {(uv, t2(v)) I v E dom(t2)), 

and it is only defined provided that the sort of the root of t2 is equal to the sort of tl(u). 

Let X = (Xs)sES be an S-indexed family of countable sets of variables. We can form 

the S-indexed family Tc(X) obtained by adjoining the S-indexed family (Xs)scS to the 

S-indexed family of sets of constants in C. To prevent free algebras from having empty 

carriers (so that the Herbrand-Skolem-Godel theorem holds), we assume that every sort is 

nonvo id .  We say that a sort s is nonvoid iff either there is some constant of sort s ,  or there 

That is, P = a y ,  for some y E N; 
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is some function symbol f of rank p(f) = (sl . . . s,, s) such that sl ,  . . . , s, are nonvoid. 

Then, for every sort s, the set T i  is nonempty, and it is well known that for every set X ,  

Tc(X) is the free C-algebra generated by X (see Gallier, [17]). This allows us to define 

substitutions. 

Definition 2.5 Given a term t ,  the set of variables occurring in t is the set {x E X 1 3u E 

dom(t), t(u) = x),  and it is denoted by Var(t). 

Definition 2.6 A substitution is any (S-sorted) function a : X -+ Tc(X), such that, 

a (x )  # x for only finitely many x E X. Since Tc(X) is the free C-algebra generated by 

X ,  every substitution a : X -+ Tc(X) has a unique homomorphic extension S : Tc(X) -+ 

Tc(X). In the sequel, we will identify a and its homomorphic extension 5. 

Definition 2.7 Given a substitution a, the support (or domain) of a is the set of variables 

D(a )  = {x I a(x) # x). The set of variables introduced by a is the set of variables I (a )  = 

u r E ~ ( o )  Var(a(x)). Given a substitution a, if its support is the set {xl , . . . , x,), and if 
t i  = a(xi),  1 < i < n, then a is also denoted by [ t l /xl ,  . . .  ,t,/x,]. Given a term (or 

formula) r, we also denote a ( r )  as r [ t l /xl , .  . . , t,/x,]. 

Given a substitution a and a set W of variables, the restriction of a to W, denoted 

by alw, is the substitution 0 defined such that, O(x) = a(x) for all x E W, and B(x) = x 

for all x cj! W. 

Definition 2.8 Given two substitutions a and 8, their composition is the substitution 
h 

denoted by a ; 0, such that, for every variable x, a ; O(x) = O(a(x)) (the composition of the 

functions o and a. 
A substitution a is idempotent if a ;  a = a .  It is easily seen that a is idempotent iff 

D(u)  n I ( a )  = 0. 

We also quickly review formulae in negation normal form. For details, see Gallier [17]. 

Definition 2.9 An atomic formula is a term of the form either P t l  . . . t,, where P is a 

predicate symbol of rank (sl . . . s,, bool) and each ti  is a term of sort s; ( s ;  # bool), or a 

term of the form (tl 2 t2),  where tl and t2 are terms of some identical sort s (s # bool). 

An atomic formula of the form ( t l  t 2 )  is called an equation of sort s. It is assumed that 

bool never occurs in the arity of any symbol. A literal is either an atomic formula or the 

negation of an atomic formula. 

Definition 2.10 Formulae in negation normal form (for short, formulae in nnf) are de- 

fined inductively as follows. A formula A is in nnf iff either 
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(1) A is a literal, or 

(2) A = (B V C), where B and C are in nnf, or 

(3) A = ( B  A C), where B and C are in nnf, or 

(4) A = VxB, where B is in nnf, or 

( 5 )  A = 3xB, where B is in nnf. 

A quantifier-free formula in nnf is obtained by applying only clauses (1)-(3), and a 

universal formula in nnf by applying only clauses (1)-(4). 

Definition 2.11 Given a formula A (resp. a term t), the set of variables occurring free 

in A (resp. t )  is denoted by Var(A) (resp. Var(t)). A ground term t is a term such 

that Var(t) = 8, and similarly a ground formula A is a quantifier-free formula such that 

Var(A) = 8. A ground substitution a is a substitution such that a(x)  is a ground term for 

every variable x in the support of a .  

Finally, we review some concepts related to term rewriting. 

Definition 2.12 Let -+ be a binary relation ---+ C A x A on a set A. The transitive 
+ 

closure of - is denoted by -+ and the reflexive and transitive closure of - by 5. The 

converse (or inverse) of the relation ---+ is the relation denoted as --+-I or -, defined 

such that u t- v iff v ---+ u.  The symmetric closure of +, denoted by t-+, is the relation 

---+ U +. 

Definition 2.13 A relation + on a set A is Noetherian or well founded iff there are no 

infinite sequences (ao , .  . . , a,, an+1,. . .) of elements in A such that a, + a , + ~  for all n 2 0.3 

Definition 2.14 A preorder 5 on a set A is a binary relation 5 5 A x A that is reflexive 

and transitive. A partial order 5 on a set A is a preorder that is also antisymmetric. The 

converse of a preorder (or partial order) 5 is denoted as k. A strict ordering (or strict 

order) 4 on a set A is a transitive and irreflexive relation. Given a preorder (or partial 

order) 5 on a set A, the strict ordering 4 associated with 1: is defined such that s 4 t iff 

s 5 t and t s. Conversely, given a strict ordering 4, the partial ordering 5 associated 

We warn the readers that this is not the usual way of defining a well founded relation in set theory, 
as for example in Levy [32]. In set theory, the condition is stated in the form a,+l 4 a n  for all 
n 2 0 ,  where < = > - I .  It is the dual of the condition we have used, but since < = > - I ,  the two 
definitions are equivalent. When using well founded relations in the context of rewriting systems, we 
are usually interested in the reduction relation and the fact that there are no infinite sequences 
( a o , .  . . , a n ,  a,+*, . . .) such that an a an+l for all n 2 0 .  Thus, following other authors, including 
Dershowitz, we adopt the dual of the standard set theoretic definition. 
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with 4 is defined such that s Ij: t iff s 4 t or s = t. The converse of a strict ordering 4 is 

denoted as >. Given a preorder (or partial order) 5, we say that 5 is well founded iff + is 

well f ~ u n d e d . ~  

Definition 2.15 Let ---+ be a binary relation ---+ C_ Tc(X) x Tc(X) on terms. The 

relation -+ is monotonic iff for every two terms s ,  t and every function symbol f ,  if s -+ t 

then f (. . . , s, . . .) ---, f (. . . , t ,  . . .). The relation ---+ is stable (under substitution) if s --+ t 

implies a(s) ---+ a( t )  for every substitution o. 

Definition 2.16 A strict ordering 4 has the subterm property iff s + f (. . . , s, . . .) for 

every term f (. . . , s, . . .) (since we are considering symbols having a fixed rank, the deletion 

property is superfluous, as noted in Dershowitz [Ill). A simplification ordering 4 is a 

strict ordering that is monotonic and has the subterm property. A reduction ordering 4 

is a strict ordering that is monotonic, stable, and such that > is well founded. With a 

slight abuse of language, we will also say that the converse + of a strict ordering 4 is a 

simplification ordering (or a reduction ordering). It is shown in Dershowitz [ll] that there 

are simplification orderings that are total on ground terms. 

Definition 2.17 Let E C_ Tc(X) x Tc(X) be a binary relation on terms. We define the 

relation t 3 ~  over TC(X) as the smallest symmetric, stable, and monotonic relation that 

contains E. This relation is defined explicitly as follows: Given any two terms t l ,  t2 E 

Tc(X), then tl t - + ~  t2 iff there is some variant5 (s, t )  of a pair in E U E-l, some tree 

address a in t l ,  and some substitution a ,  such that 

t l / a = o ( s ) ,  and t 2 = t l [ a  t o ( t ) ] .  

(In this case, we say that o is a matching substitution of s onto t l / a .  The term t l / a  is called 

a redex.) Note that the pair (s, t )  is used as a two-way rewrite rule (that is, non-oriented). 

In such a case, we denote the pair (s, t )  as s t and call it an equation. When t l  t-t~ t2,  

we say that we have an equality step. It is well known that the reflexive and transitive 

closure elf- tE of -E is the smallest stable congruence on Tc(X) containing E. When we 

want to  fully specify an equality step, we use the notation 

Again, we caution our readers that in standard set theory it is < that is well founded! However, our 
definition is equivalent to the standard set-theoretic definition of a well founded partial ordering. 

In what follows we shall assume that before a pair (i.e., an equation) is used it has been renamed 
apart from all variables in current use. This is essential to prevent clashes among the variables. Thus 
we shall always state that a variant of an equation is being used. 
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(where some of the arguments may be omitted). A sequence of equality steps 

is called a proof of u A E v .  

Definition 2.18 Given a finite set E of equations (ground or not) and any two terms u, 
* 

v  (ground or not), we use the notation u E E  v  to express the fact that, treating E as a set 
* 

of ground equations, u  t-*-t~ v. Equivalently, u E E  v iff u and v can be shown congruent 

from E by congruence closure (Kozen [30,31], Nelson and Oppen [36], Downey, Sethi, and 

Tarjan [13]) again, treating all variables as constants - they are considered rigid. 

Definition 2.19 When a pair (s, t )  E E is used as an oriented equation (from left to  

right), we call it a rule and denote it as s -t t. The reduction relation - - - t~  is the smallest 

stable and monotonic relation that contains E. We can define tl * E  t2  explicitly as in 

definition 2.17, the only difference being that (s, t)  is a variant of a pair in E (and not in 

E U E-l). When t l  -E t2, we say that t l  rewrites to t2,  or that we have a rewrite step. 

When we want to fully specify a rewrite step, we use the notation 

(where some of the arguments may be omitted). 

When Var(r)  Var(l), then a rule 1 t r is called a rewrite rule; a set of such rules 

is called a rewrite system. A degenerate equation is an equation of the form x t ,  where 

x is a variable and x 6 Var(t), and a nondegenerate equation is an equation that is not 

degenerate. 

Definition 2.20 Let ---t & Tc(X) x Tc(X) be a binary relation on Tc(X). We say that 

-+ is Church Rosser iff for all t l , t 2  E Tc(X), if t l  A t2 ,  then there is some t3 E Tc(X) 

such that t l A t 3  and t 2 A t 3 .  We say that + is confluent iff for all t , t l , t 2  E Tc(X), if 

t A t l  and t 2 t 2 ,  then there is some tg E T c ( X )  such that t l A t 3  and t 2 5 t 3 .  A term 

s is irreducible w.r.t. --+ iff there is no term t such that s --+ t. 

It is well known that a relation is confluent iff it is Church Rosser [27]. We say that a 

rewrite system R is Noetherian, Church Rosser, or confluent, iff the relation -+R associated 

with R given in definition 2.19 has the corresponding property. We say that R is canonical 

iff it is Noetherian and confluent. 
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3 Review of the Method 

In this section, we present the method of equational matings informally. Given a rectified6 

universal sentence A. in nnf, the method works in an incremental fashion as follows. The 

formula A. will evolve in steps called quant.ifie~ duplication steps, and we denote this evolv- 

ing formula by A. We will also need to refer to the quantifier-free formula Â  obtained from 

A by deleting the quantifiers, called an amplification of Ao. 

Initially, A := Ao. 

Step 1: Construct a set vp(A^) of sets of literals called vertical paths, associated with 

Â . The set vp(A^) is defined inductively as follows: 

If Â  is a literal, then vp( i )  = {{(A}; 

If Â  = (B  A C), then vp(A^) = {iil U 712 / rrl E vp(B),az E vp(C)}; 
A 

If Â  = ( B  V C), then vp(A) = vp(B) U vp(C). 

Step 2: Find whether there is a substitution a such that for every vertical path 

ri E vp(x), o(s )  is unsatisfiable. If step 2 succeeds, go to step 4. Otherwise, go to step 3. 

Step 3: Choose some universal subformula VxB of the current A, and replace it by 

(VxB A VxB). Then, rectify variables in this new formula, obtaining A'. Let A := A'. This 

step is called a quantifier duplication step. Go back to step 1. 

Step 4: Stop, A. is unsatisfiable (and so are Â  and A). 

If A. is unsatisfiable, this procedure will stop after a finite number of quantifier dupli- 

cation steps when it succeeds in finding some substitution closing all vertical paths in step 

2. Roughly speaking, a set consisting of certain subsets of vertical paths, such that these 

subsets are unsatisfiable under some substitution and span all vertical paths, is called an 

equational mating. The heart of the method of matings is to find such equational matings. 

The difficult step in the presence of equality is step 2. What is difficult is not to check 

that a substitution closes all vertical paths - this can be done using the congruence closure 

algorithm - but to determine whether such a substitution exists at all. This problem is 

indeed decidable, but NP-complete. For languages without equality, the checking is reduced 

to the existence of a standard unifier, which is easy. Unfortunately, whether or not equality 

is present, the number of vertical paths to be checked may be exponential. The following 

example illustrates the method. 

A formula A is rectified iff no variable occurs both free and bound in A, and distinct occurrences 
of quantifiers bind distinct variables. It is well known that every formula is equivalent to a rectified 
formula. It is also well known that for every formula A, one can construct a universal formula B, a 
Sko lem  f o r m  of A, such that A is unsatisfiable iff B is unsatisfiable (see Gallier [17]). 
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Example 3.1 Let 

There are 2 vertical paths 

{ ( x 2  A x j ,  p a 3 ,  1 P a )  

and 

{ ( x 2  = x ) ,  pb2 ,  l P b }  

depicted as follows: 

It is clear that there is no substitution that closes both paths. However, the substi- 

tution [a /%]  closes the first path, and the substitution [b / x ]  closes the second path. Hence, 

we perform an amplification step. We obtain 

There are 2 vertical paths 

{ ( x ;  x l ) ,  ( x i  ~ 2 ) ,  p a 3 ,  ? P a }  

and 

{ ( x ;  - X I ) ,  ( x i  - x2) ,  pb2? 1 P b )  

depicted as follows: 
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This time, it is easy to see that the substitution o = [a/xl, b/x2] closes both vertical paths, 

using the fact that Pa3 rewrites to Pa in two steps using the equation a2 = a ,  and that 

P b 2  rewrites to P b  in one step using the equation b2 = b. Hence, A is unsatisfiable. 

It should be noted that our method does not require the inclusion of extra literals 

corresponding to instances of equational axioms during the amplification process, contrary 

to Bibel's method [9]. In this sense, equality is "built in". In the following sections, we 

shall define the method precisely and prove its completeness rigorously. 

4 Equational Matings 

In order to generalize matings to equational languages, it is necessary to consider sets of 

literals rather than pairs, as in Andrews and Bibel's case. Let us first consider the case of 

quantifier-free formulae in negation normal form. The general case will be lifted from the 

quantifier-free case via the Skolem-Herbrand-Godel theorem, and using rigid E-unification. 

Let A be a quantifier-free formula, and let {x l , .  . . , x,) be the set of variables occurring 

in A. The universal  closure of A is the sentence Vxl . . . Vx,A. It is also denoted as VA. 

Testing the unsatisfiability of a quantifier-free formula A is much easier than testing the 

unsatisfiability of its universal closure VA. In the former case, the congruence closure 

method gives a decision procedure, whereas in the latter case, unsatisfiability is undecidable. 

The crucial observation due to Andrews and Bibel is that a quantifier-free formula in 

nnf is satisfiable iff some conjunction of literals occurring in A is satisfiable [I, 7, 8, 91. 

Definition 4.1 Given a quantifier-free formula A in nnf, the set vp(A) of vertical paths 

in A is the set of sets of literals defined inductively as follows: 

If A is a literal, then vp(A) = { { A ) ) ;  

If A = ( B  A C), then vp(A) = {nl U 7r2 I nl E vp(B),nz E vp(C)); 

If A = (B V C), then vp(A) = vp(B) U vp(C). 

Let us say that a vertical path n is satisfiable iff the conjunction of the literals in n is 

satisfiable. The following simple lemma shows the crucial role played by vertical paths. 

Lemma 4.2 Given a quantifier-free formula A in nnf, A is unsatisfiable iff every vertical 

path in A is unsatisfiable. 

Proof:  Straightforward induct ion on the structure of A. 
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A criterion for the unsatisfiability of a conjunction of literals based on the concept of 

congruence closure is known. In order to explain this criterion, it is convenient to represent 

every atomic formula as an equation. This can be done by adding to our language (which 

already contains the special sort bool) the constant T of sort bool, interpreted as true. Then, 

every atomic formula P t l  . . . t, of sort bool can be expressed as the equation (P t l  . . . t, = T). 

Hence, we can assume that all atomic formulae are equations. The notations P t l  . . . t, and 

(P t l  . . . t, = T) will be used interchangeably for atomic formulae of sort bool. 

Given a vertical path T, let us arrange the literals in T by grouping positive and 

negative literals together, to form a conjunction C, of the form 

* 
Let g.y be the congruence closure ([30,31,36]) on the graph G(C,) of the relation 

The following result is well known (see [30,36], or [17]). 

* 
Lemma 4.3 n is unsatisfiable iff for some j ,  1 5 j 5 n, s> rE tJ. 

The concept of an E-unifier will be needed later. 

Definition 4.4 Let E be a finite set of (universally quantified) equations. Given two 

terms u and v ,  we say that a substitution o is a unifier of u and v modulo E, for short, an 

E-unifier of u and v, iff a(u)  AE a(v).  

The definition of an equational mating is motivated by lemma 4.3, the Skolem- 

Herbrand-Godel theorem (theorem 5.2), and lemma 5.4. Indeed, combining theorem 5.2 

and lemma 5.4, we have that a universal sentence A in nnf is unsatisfiable iff there is some 

quantifier-free formula D (an amplification of A) and some substitution a such that a (D)  is 

unsatisfiable. The concept of an equational mating is designed so that we have a criterion 

expressed in terms of vertical paths for testing whether given a quantifier-free formula D, 

there is some substitution a such that a(D) is unsatisfiable (see lemma 4.6). 

Definition 4.5 Let A be a quantifier-free formula in nnf. An equational mating M for 

A is a pair (MS, a ) ,  where M S  is a set of sets of literals called mated sets and a is a 

substitution, such that, each mated set is a subset of some vertical path T E vp(A) and is 

of the form 

{(sl = t]), . . . ,(s, i t,), T(S = t)) G 7r) 
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where m 2 0,7 and, for every mated set {(sl = t l ) ,  . . . , (s, = t,), ~ ( s  = t)} E MS,  the 

set of literals {a(sl = t l) ,  . . . , a(s, -- t,), l a ( s  = t)) is unsatisfiable. The substitution 

associated with the mating M is also denoted as OM. We also commit a slight abuse of 

language (and notation) and say that a mated set belongs to M. 

An equational mating M is a refutation mating iff aM(A) is unsatisfiable. 

An equational mating M is path acceptablea (for short, p-acceptable), iff, for every 

path n E v p ( A ) ,  there is some mated set {(sl tl),  . . . ,(s, A t,), ~ ( s  t)} E M, such 

that 

{(sl -- t l) ,  . . . , (s, -- t,), 1(s --' t)) C 7r. 

A number of remarks are in order: 

(1) Given the substitution a ,  the mating condition can be tested using the congruence 

closure method. As mentioned in the introduction, it is decidable whether a mating 

substitution exists, but this is an NP-complete problem. 

(2) Given a family M S  of mated sets, let I? = (Es)SeMs be the family of sets of equations 

of the form Es = {(sl = t l) ,  . . . , (s, t,)) and S = {(s , t )  I S E M S )  the set of 

pairs where Es and (s, t )  are associated with the mated sets S = {(sl = tl),  . . . , ( s ,  = 

t,), ~ ( s  = t)) E MS. Observe that M = (MS,a )  is a mating iff a is a solution of 

problem 1 (discussed in the introduction) for (I?, S), iff (2, S) is an equational pre- 

mating. This key observation will be used in searching for the substitutions associated 

with matings. They are the rigid 2-unifiers of S. 

(3)  It is obviously desirable to choose p-acceptable matings as small as possible. One can 

define a preorder on matings as follows. Given two matings M I  and M2, MI 5 M2 

iff for every mated set S1 E M 1, there is some mated set S2 E M 2 ,  such that, S1 E S2. 

A mating M is minimal iff it is minimal with respect to the preorder 5, that is, for 

any mating MI, if M' C M, then M' = M. It is obvious that if a p-acceptable 

mating exists, then a minimal p-acceptable mating also exists, but it may be difficult 

to find it efficiently. In order to find matings as small as possible, one can look for 

overlapping vertical paths that are spanned by some common mated set. It should be 

pointed out that there may be many incomparable matings that are all minimal. We 

leave the problem of discovering strategies for finding minimal matings as a topic for 

further research. 

(4) If A does not contain equations, each mated set contains some atom which unifies with 

the negated atom. Let P t l  . . . t, be the negated atom in a mated set. Any mated 

The case m = 0 is indeed possible when u(s)  = a @ ) ,  i.e., when u  is a unifier of s and t .  

% path acceptable mating is also called a spanning mating by Miller [35]. 
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set for a formula without equational atoms is of the form {(Al = T ) ,  . . . ,( Am = 

T ) , i ( P t l . .  . t, = T)),  where Al, .  . . ,Am are nonequational atoms. Since the set 

{a(A1 1 T), . . . , a(Am T ) ,  i a ( P t l  . . . t, T)} is unsatisfiable, there is some atom 

Ai = Psl . . . s,, such that, a (P t l  . . . t,) = a ( P s l  . . . s,). Hence, a is a unifier of 

P t l  . . . t, and P s l  . . . s,. 

Hence, when A does not contain equality, a mating can be defined as a set of pairs 

(L, 1L') of literals of opposite signs, such that a(L) = a(L1), as in Andrews [I] and Bibel 

(7, 8, 91. The following theorem is a straightforward generalization of a result of Andrews 

[I] to languages with equality. 

Lemma 4.6 Given a quantifier-free formula A in nnf, the following properties hold: 

(1) Given a substitution 8, if 0(A) is unsatisfiable, then there is a p-acceptable mating M 

for A. 

(2) A p-acceptable mating M for A is a refutation mating for A, i.e. aM(A) is unsatisfi- 

able. 

Proof: (1) Assume that 6(A) is unsatisfiable. By lemma 4.2, every vertical path in vp(B(A)) 

is unsatisfiable. Note that every vertical path .rr' E vp(O(A)) is of the form 0(.rr), for some 

vertical path .rr E vp(A). Since every path .rrl E vp(0(A)) is unsatisfiable, by lemma 4.3, 

there is some subset {(si ti), . . . , (s; t',), ~ ( s '  1 t')} C T' of literals in .rr' which 

is unsatisfiable. For every vertical path .rr E vp(A), since T' = B(n) is a vertical path in 

vp(O(A)), we can choose a set of literals {(sl t l ) ,  . . . , (s, A t,), i ( s  = t)} C_ T ,  such that, 

is unsatisfiable. We form a mating M = (MS, 6) for A by choosing M S  as the set of sets 

of literals defined in (*). Clearly, M is a p-acceptable mating for A. 

(2) Assume that M = (MS, a) is a p-acceptable mating for A. We prove that every 

vertical path n' E vp(a(A)) is unsatisfiable. Indeed, every vertical path T' E vp(a(A)) is of 

the form a(.rr), for some vertical path .rr E vp(A). Since M is p-acceptable, for every vertical 

path .rr E vp(A), there is some mated set of literals {(sl t 1 ), . . . , (s, t,), ~ ( s  = t ) }  E 

M, such that 

{(sl - t l ) , .  . . , (s, - tm),  1 ( s  = t)) C T .  

Since M is a mating, the set ST# = {a(sl  = t l ) ,  . . . , a(s, = t,), l a ( s  t ) )  is unsatisfiable. 

Since S,I is a subset of the vertical path T' E vp(a(A)), T' is unsatisfiable. But then, by 

lemma 4.2, a(A) is unsatisfiable, which establishes the fact that M is a refutation mating. 

The previous lemma implies the following useful corollary. 
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Corollary 4.7 Given a quantifier-free formula A in nnf, there is a substitution 0 such 

that $(A) is unsatisfiable iff there is a p-acceptable mating M for A. 

Let us give an example illustrating the use of the previous lemma. 

Example 4.8 Consider the following Horn formula A, where x, y, z denote variables: 

(a = b) A 

((f3x A x) V i ( f x  f b ) )  A 

(Qa v l (  f 3a - a)) 

((f5y Y) V ~ Q Y )  A 

(Ra V  fa = a)  V 7 P f a )  A 

There are 24 vertical paths in A. Let 0 = [a/x, a/y, a/z]. The substitution 0 closes all the 

paths in @(A), which is easy to see for the 21 vertical paths containing the sets of literals 

{(f3a = a ) , i ( f 3 a  A a)) ,  {Qa, iQa) ,  and {(a = b) , i ( f a  = fb)).  A p-acceptable mating 

for A is given by 0 and the following set of 6 sets of literals: 

{{(f3x = x), 7( f3a  = a)) ,  

{Qa, ~ Q Y ) ,  

{(a b), 7(f x A f b ) ) ,  

Uf5Y A y) , ( f3x  A x) ,Ra ,1Rfz) ,  

Kf5Y Y ) ,  ( f3x  2))  fa = a)), 

Uf5Y A Y ) ,  ( f 3 x  = x),P,,1Pfa)). 

The above set is a mating because ( fa  a)  is equationally provable from (f3a = a )  and 

( f5a  A a). Indeed, ( f3a  A a)  implies ( f4a = fa ) ,  which implies (f5a A f2a),  which, 

by transitivity, implies ( f2a = a) .  In turn, ( f 2 a  = a) implies ( f3a 4 f a ) ,  and by one 

more application of transitivity, this implies ( f a  a). According to lemma 4.6, @(A) is 

unsatisfiable. Since + VxVyVzA > 0(A), the universal closure VA of A is also unsatisfiable. 

Unfortunately, in general, a universal sentence VA may be unsatisfiable, but there 

may not be any substitution 0 such that @(A) is unsatisfiable (see example 3.1). However, 

a version of the Skolem-Herbrand-Godel theorem for first-order languages with equality 

ensures that some substitution instance of an amplzfication of A (a formula obtained from 

A by duplicating some universal subformulae of A) is unsatisfiable. It is the notion of 

amplification (see Andrews [I] and Bibel [7, 8, 9]), that will allow us to apply the method 

of matings to arbitrary universal sentences in nnf. 
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5 A Skolem-Herbrand-Godel Theorem 

First, we need the definition of a compound instance (see Andrews [I] and Bibel [7, 8, 91). 

5.1 Compound Instances 

From now on, it is assumed that we are dealing with rectified universal formulae in nnf. 

The standard statement of the Skolem-Herbrand-GGdel theorem (as in Gallier [17]) says 

that given a universal prenex sentence A = Vxl . . . Vx,B (where B is quantifier-free), A is 

unsatisfiable iff there exist some ground substitutions a l ,  . . . , a k  such that al (B)A. . .Aak(B) 

is unsatisfiable. 

It would be nice if we could relax the condition that A is in prenex form, and have 

a statement referring to a single substitution. This can be achieved by introducing the 

ingenious concepts of a compound instance and of an amplification (see Andrews [I] and 

Bibel [7, 8, 91). 

Definition 5.1 Let A be a rectified universal sentence in nnf (Every variable occurring in 

A is universally quantified). The set of compound instances (for short, c-instances) of A is 

defined inductively as follows: 

(i) If A is either a ground atomic formula B or the negation 1 B  of a ground atomic 

formula, then A is its only c-instance; 

(ii) If A is of the form ( B  * C), where * E {v, A) ,  for any c-instance H of B and 

c-instance K of C, (H * K) is a c-instance of A; 

(iii) If A is of the form V x B ,  for any k 2 1 ground terms t l ,  . . . , t k ,  if Hi is a c-instance 

of B[ti/x] for i = 1, . . . , k,  then H1 A . . . A Hk is a c-instance of A. 

The importance of c-instances lies in the following version of the Skolem-Herbrand- 

Godel theorem, which is a generalization of a theorem of Andrews to first-order languages 

with equality [1],[2]. For stating this theorem, we assume (without loss of generality) that 

there is a least one constant symbol in the language. 

Theorem 5.2 (Skolem-Herbrand-Godel theorem) Given a universal sentence A in nnf 

(with or without equality), A is unsatisfiable iff some c-instance C of A is unsatisfiable. 

Proof: It is nontrivial. A proof is given in Gallier [17], theorem 7.6.1, page 364. Show- 

ing that if some compound instance C is unsatisfiable implies that A is unsatisfiable is 

straightforward, because it is easily shown that + A > C (Gallier [17], theorem 7.6.1). The 

proof of the converse is much harder. In Gallier [17], this is derived proof-theoretically as a 
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consequence of a sharpened Gentzen-like Hauptsatz ([I 71, theorem 7.4.1, page 334, theorem 

7.4.2, page 337, and lemma 7.6.2, page 360). For the sake of completeness, a semantic proof 

in the line of Andrews's proof can be found in the appendix. 

The connection between matings and compound instances is established through the 

notion of amplification (see Andrews [I] and Bibel [7, 8, 91). 

5.2 Amplifications and Compound Instances 

Let A, B,  C,  and D be universal sentences in nnf. 

Definition 5.3 We say that a sentence C is obtained from a sentence B by quanti f ier  

duplicat ion iff C results from B by replacing some subformula of B of the form VxM by 

(Vx M A VxM). If there is a sequence (C1, . . . , C,), n 2 1, of formulae, such that, B = C1, 

C = C,, and Ci+l is obtained from Ci by quantifier duplication, for every i, 1 5 i < n, we 

say that C is obtained from B by some sequence of quanti f ier  duplicat ions.  

If B is obtained from A by some sequence of quantifier duplications, C is a rectified 

sentence equivalent to B ,  and D is obtained from C by deleting the quantifiers in C, we 

say that D is an ampli f icat ion of A. The following result can be shown easily. 

Lemma 5.4 Given a universal sentence A in nnf, C is a c-instance of A iff there is some 

amplification D of A and some (ground) substitution 6' such that C = 6'(D). 

P r o o f :  The proof is by induction on the structure of A. The only case worth mentioning is 

the case in which A = Vx B. In this case, there are k ground terms t 1, . . . , tk and k formulae 

H I ,  . . . , Hk , such that, each Hi is a c-instance of B [ti / X I ,  and C = H1 A . . . A Hk . By the 

induction hypothesis, for each i ,  1 5 i 5 k ,  there is some amplification Di of B[ti/x] and a 

substitution Bi, such that, Hi = Bi(Di). It can also be assumed (using renaming) that the 

sets of variables occurring in these amplifications are disjoint. It is not difficult to show by 

induction on the length of a quantifier duplication sequence that for each B[ti/x] and Di ,  

there is some renamed copy Bi of B ,  some amplification D: of Bi, and a substitution ai, 

such that, Hi  = Bi(ai(D:)) (ai is a substitution that substitutes ti for renamed occurrences 

of x). It can also be assumed (using renaming) that the sets of variables occurring in these 

amplifications are disjoint. Then, note that D = Di A . . . A DL is an amplification of A 

that can be obtained by first applying k quantifier duplications, obtaining VxB A . . . A VxB 

(with k copies of VxB), and then by amplifying each copy of VxB to Dl. Furthermore, the 

substitution 6' = a1 ; O1 ; . . . ; a k  ; Ok is such that C = 6'(D). 

We can now state one of the main theorems of this paper 
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Theorem 5.5 Given a universal sentence A in nnf, A is unsatisfiable iff some amplification 

of A has a p-acceptable mating. 

Proof: First, assume that some amplification D of A has a pacceptable mating M . Let 

B be obtained by some sequence of quantifier duplications from A, C the rectified formula 

equivalent to B, and D the result of deleting quantifiers from C. Let Vx . . . , Vx, be the 

quantifiers of C, in the left-to-right order in which they occur in C. It is easy to show that 

+ A - B,  + B E C, + C ~ V X  l . . .Vx,D, and +Vxl . . .  Vx,D > aM(D). Since M is a 

p-acceptable mating, by lemma 4.6, it is a refutation mating, and so aM (D) is unsatisfiable. 

Hence, A is also unsatisfiable. 

Now, suppose that A is unsatisfiable. By the Skolem-Herbrand-Godel theorem (the- 

orem 5.2), there is some c-instance C of A which is unsatisfiable. By lemma 5.4, there is 

some amplification D of A and a substitution 8 such that C = 8(D). By lemma 4.6, since 

8(D) is unsatisfiable and D is quantifier free, there is some p-acceptable mating M for D.  

The following example illustrates theorem 5.5. 

Example 5.6 Let A be the following (equational) sentence: 

VxQyVz(*(x, *(!I, z ) )  A *(*(x, Y), z ) ) )  A 

Vu(*(u, 1) = u )  A 

Vv(*(l, v) 2 v) A 

Vw(*(w, W) = 1) A 

l (*(a ,  b) *(b ,  a)). 

The first three equations are the axioms for monoids (a  binary operation * which is asso- 

ciative and has an identity element I), the fourth equation asserts that the square of every 

element is the identity, and the fifth asserts the negation of the commutativity of * ( A  is 

the result of a Skolemization). The unsatisfiability of A asserts that any monoid such that 

the square of every element is the identity is commutative. 

Consider the following amplification D of A in the left column and the set MS con- 
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sisting of one set of literals in the right column: 

D = (* (u l ,  1 )  = u l )  Ms = { { ( * ( u I ,  I )  A U I ) ,  

A ( * ( ~ l , ~ l )  = 1 )  (*(w1, w1) = 11, 

A ( * ( X I ,  * ( Y I  7 21)) A * ( * ( X I ,  Y l ) ,  Z l ) ) )  ( * ( X I ,  * ( ~ 1 , 2 1 ) )  = * ( * ( X I  7 Y l ) ,  21 )I), 
,I ( * ( ~ 2 ,  * ( ~ 2 ,  ~ 2 ) )  = * ( * ( ~ 2 , ~ 2 ) ,  ~ 2 ) ) )  ( * ( ~ 2 ,  * ( ~ 2 , ~ 2 ) )  ZL * ( * ( ~ 2 >  ~ 2 ) ,  ~ 2 ) ) ) ,  

A (*(w2,w2) 1 )  (*(w2, w2) = I ) ,  

A ( * ( I ,  ~ 1 )  = v1) ( * ( I ,  v1) ~ l ) ,  

A (* (x3 ,  *(y3,23)) - *(*(53, ~ 3 ) )  23))) (*(x3,  * ( ~ 3 , ~ 3 ) )  *(*(x3,  ~ 3 1 ,  z3) ) ) ,  

A (*(x4 ,  * ( Y 4 ,  24)) = *(*(x4 ,  ~ 4 ) , 2 4 ) ) )  (*(x4,  *(!A, ~ 4 ) )  - * ( * ( ~ 4 , ~ 4 ) ,  z4) ) ) ,  

A (*(w3,w3) = 1)  (*(w3, w3) 11, 

A -(*(a, b )  *(b ,  a ) ) .  l ( * ( a ,  b )  A * ( b ,  a ) ) )  1.  

Let 9 be the substitution 

We claim that ( M S , 9 )  is a mating for D. For simplicity of notation let us adopt infix 

notation, and denote * ( s , t )  as s * t .  Then, we have: 

a * b =  { a * l ) * b  

= { a  * [ (a  * b)  * ( a  * b ) ] )  * b 

= { [ a  * ( a  * b)]  * ( a  * b ) )  * b 

= { [ ( a  * a )  * b] * ( a  * b ) )  * b 

= { [ I  * b] * ( a *  b ) )  * b 

= { b  * ( a  * b ) )  * b 

= b* { ( a *  b ) *  b )  

= b* { a * ( b *  b ) )  

= b* { a *  1 )  

= b * a ,  

which shows that (MS, 0) is a p-acceptable mating for D (there is a single vertical path in 

D). Note that equation (2) instantiated by the substitution [ a / u l ]  is used twice. 

Theorem 5.5 suggests a procedure for showing that a universal sentence in nnf is 

unsatisfiable: Compute incrementally amplifications of D, and at each stage, test whether 

such an amplification has a p-acceptable mating. Such a procedure is presented in a later 

section. 
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5.3 Outermost Quantifier Duplication 

Since the complexity of the search for an acceptable mating grows exponentially as the 

number of occurrences of literals in the amplification D increases, it is important to keep 

this number small. 

A systematic scheme for duplicating quantifiers that guarantees completeness, is to  

duplicate outermost quantifiers. 

Definition 5.7 Given a universal formula A in nnf, a subformula occurrence V x B  of A 

is a maximal quantified subformula of A iff there is no quantified subformula occurrence 

VyC of A, such that V x B  is a proper subformula of VyC.g If V x B  is a maximal quantified 

subformula occurrence of A, the quantifier V x  is called an outermost quantifier occurrence. 

Lemma 5.8 Let A be a universal sentence in nnf. Then, A is unsatisfiable iff there is 

a refutation mating for some amplification D of A, such that, in forming D from A, only 

outermost quantifier duplications are performed. 

Proof: It is enough to show that the Skolem-Herbrand-Godel theorem holds for c-instances 

obtained as substitution instances of formulae obtained from A by outermost quantifier 

duplications only. This can be shown in at least two ways. The first proof is already 

essentially contained in the proof of lemma 7.6.2 of Gallier ([17], page 360). Indeed, this 

lemma is obtained from theorem 7.4.1 (and theorem 7.4.2 [17], page 334, and page 337), a 

Gentzen-like Hauptsatz for a proof system in which quantifier rules apply only to  outermost 

quantifiers (the system G2nnf, [17], page 327). One simply has to verify that the induction 

in lemma 7.6.2 yields the right kind of c-instances, and this is straightforward. The other 

proof is obtained by observing that the proofs of lemma 5 and theorem 2 in Andrews ([I], 

page 208) go through unchanged, as they do not depend on the fact that the language does 

not contain equality. 

Hence, in searching for a mating, there is no loss of generality in duplicating outermost 

quantifiers only. However, this is not always the best strategy, and it would be useful to 

develop heuristics for duplicating quantifiers. 

5.4 Comparison With Other Methods 

An extension of the method of matings to first-order languages with equality is sketched 

(without proofs) in Bibel [9, Section V.3, pp. 234-2421 (under the name connection method 

with equality). Bibel's method uses mated sets similar to ours, except that they are dual to 

For an inductive definition of this concept, see Gallier [17] 
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ours, since Bibel's method shows the validity rather than the unsatisfiability of a (Skolem- 

ized) sentence. Hence, sets of literals are interpreted as disjunctions. A set of the form 

{ 1 ( ~ 1  2 t l ) ,  . . . , 1(sm = tm), (S + t)} 

is called an eq-literal, and a set of the form 

{ l ( s l  -- t l ) ,  . . . , l ( s m  -- t,), l L ,  L') 

where L and L' are nonequational atoms, is called an eq-connection. In our presentation, the 

use of a many-sorted language with the special sort boo1 allows us to treat a nonequational 

literal as the special equation L - T, and we only need the first kind of mated set, but this 

is an inessential detail. 

Bibel's method and ours differ significantly in the criterion used for testing the validity 

(equivalently, unsatisfiability) of a mated set. Bibel defines an eq-literal to be valid iff there 

is some substitution a such that a(s i )  = a(t;) for all i, 1 < i < m, and a(s)  = a(t). 

An eq-connection is said to be complementary iff there is some substitution a such that 

o(si) = a(ti)  for all i, 1 < i 5 m, and a(L) = o(L1). 

It should be noted that the notion of a substitution used by Bibel is highly non- 

standard. Bibel [9, Section 111.1.6, page 661 defines a substitution a as a set of pairs 

{sl / t l , .  . . , s,/t,}, where each ti  is a term to be substituted for si, but where si itself can 

be a nonvariable term! Of course, substitutions are applied in a homomorphic fashion, but 

with this definition, a substitution is not necessarily defined on all terms. 

To be completely accurate, with Bibel's definition of a substitution, the substitution 

a mentioned in the definition of a valid eq-literal is such that is consists of pairs of the form 

s i l t i  or t;/s;. Then, theorem V.3.6.C (page 237) states (in our language) that a formula 

F is valid iff for some amplification D of F, there is a spanning set W of eq-literals and 

eq-connections and some substitution a such that, for every eq-literal w E W, a(w) is valid, 

and for every eq-connection w E W, a(w) is complementary. 

This theorem does hold, provided that we allows eq-literals and eq-connections in the 

set W to contain extra literals arising from instances of the equality axioms. Hence, Bibel's 

method uses standard unification, but the mated sets may have to include extra literals 

corresponding to instances of the equality axioms. 

In our method, we require that there be some substitution a such that 

{a(sl = t l) ,  . . . , a(sm 1 t,), l a ( u  2 v) )  
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is unsatisfiable, or equivalently, treating the equations in a ( E )  as ground equations, that 

o(u )  Am(E) ~ ( v )  holds. Hence, o is a special kind of E-unifier (a rigid E-unifier), but 

there is n o  need to include extra literals corresponding to instances of the equality axioms 

to our mated sets. The following example should illustrate this point clearly. Consider the 

eq-literal 

i1(f3a = a), 1(f5a = a) ,  (fa = a)}. 

It is valid, but yet, there is no substitution in the sense of Bibel demonstrating that it is 

valid. The only way to show validity is to add additional equality axioms to show that 

f a  and a are congruent modulo the set of equations {(f3a - a) , ( f5a = a)}. Hence, in 

Bibel's method, this mated set would have to be expanded before it is shown to be valid. 

In our method, it would be found valid immediately (actually, its negation would be found 

unsatisfiable) . 

Hence, Bibel's method and ours differ in the type of unification and the methods used 

to check the validity (or unsatisfiability) of mated sets. 

In Chapter 4 of his Ph.D dissertation, Pfenning [38] presents a method for dealing 

with equality in a system of expansion proofs that involves matings. Pfenning's system 

applies to higher-order logic, and equality is treated as a defined symbol ( ( A  B) is an 

abbrevation for VQ(Q(A) 3 Q(B)), where Q is a predicate variable). As pointed out by 

Pfenning, it is theoretically possible to derive the mated sets arising in our method from 

the mated sets used in his method via the translation mentioned above. In some sense, our 

way of checking mated sets is an optimization of Pfenning's method restricted to the first- 

order case. However, it does not seem possible to obtain the completeness of our method in 

this fashion. Our method is also different in a more radical sense, which is that Pfenning's 

method uses higher-order unification, whereas we use a special form of E-unification that 

is decidable. This suggests that there may be a form of rigid higher-order unification, but 

we have not explored this possibility. 
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6 Complete Sets of Rigid E-Unifiers 

We have already noted in remark (2) after definition 4.5 that M = (MS, o) is an equational 
-, 

mating iff o is a rigid ,??-unifier of S, where E = (Es)scMs and S = {(s , t )  I S E MS}, 

the family of sets of equations and the set of pairs associated with the mated sets S = 

{(sl t l ) ,  . . . , (s,  -- t,), ~ ( s  t ) )  E MS. It is obviously crucial to show that there is 

an algorithm for testing whether a family of mated sets forms a mating. From the above 

observation, this is equivalent to deciding whether a pair (I?, S) is an equational premating. 

In the following sections, it will be shown that this problem is NP-complete. Actually, this 

result is an easy extension of a simpler problem, and we now focus on this problem. 

Problem. Given a finite set E = {ul --' vl, .  . . ,u, v,) of equations and a pair 

(u, v)  of terms, is there a substitution 8 such that, treating 6(E) as a set of ground 
* 

equations, 8(u) Z B ( E )  6(v), that is, 8(u) and 6(v) are congruent modulo 8(E) (by 

congruence closure)? 

The substitution 8 is called a rigid E-unifier of u and v. 

It is interesting to observe, as pointed out by Jean Yves Girard, that the notion of 

rigid E-unification arises by bounding the resources, in this case, the number of available 

instances of equations from E .  To be precise, only a single instance of each equation in E 

can be used, and in fact, these instances 6(ul vl), . . . , O(u, v,) must arise from the 

same substitution 6. Also, once these instances have been created, the remaining variables 

(if any) are considered rigid, that is, treated as constants, so that it is not possible to 

instantiate these instances. This is in the spirit of linear logic [23]. The special case of rigid 

E-unification where E is a set of ground equations has been investigated by Kozen who 

has shown that this problem is NP-complete (Kozen, [30,31]). Thus, rigid E-unification is 

NP-hard. We will show that it is also in NP, and hence it is NP-complete. 

Suppose we want to find a rigid E-unifier 8 of u and v. Roughly, the idea is to use 

a form of unfailing completion procedure (Knuth and Bendix [29], Huet [27], Bachmair 

141, Bachmair, Dershowitz, and Plaisted [5], Bachmair, Dershowitz, and Hsiang [6 ] ) .  In 

order to clarify the differences between our method and unfailing completion, especially for 

readers unfamiliar with this method, we briefly describe the use of unfailing completion as 

a refutation procedure. For more details, the reader is referred to Bachmair [4]. 

Let E be a set of equations, and + a reduction ordering total on ground terms. The 

central concept is that of E being ground Church-Rosser w.r.t. +. The crucial observation 

is that every ground instance o(1) o(r) of an equation 1 r E E is orientable w.r.t. +, 
since 5 is total on ground terms. Let EF be the set of all instances o(1) A o ( r )  of equations 

I A r E E U E-I with o(1) + a ( r )  (the set of orientable instances). We say that E is ground 
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Church-Rosser W.T.~. 5 iff for every two ground terms u, v ,  if u AE v, then there is some 

ground term w such that u 4 E+ w and w E> v. Such a proof is called a rewrite proof. 

An unfailing completion procedure attempts to produce a set ECo equivalent to E and 

such that Ew is ground Church-Rosser w.r.t. +. In other words, every ground equation 

provable from E has a rewrite proof in Em. The main mechanism involved is the compu- 

tation of critical pairs. Given two equations 11 = r l  and l2 r2 where 12 is unifiable with a 

subterm ll /,B of 11 which is not a variable, the pair (a(ll [,B t r2]), a ( r l ) )  where a is a mgu 

of E l / @  and l2 is a critical pair. 

If we wish to  use an unfailing completion procedure as a refutation procedure, we add 

two new constants T and F and a new binary function symbol eq to our language. In order 

to prove that E I- u = v for a ground equation u = v,  we apply the unfailing completion 

procedure to  the set E U {eq(u, v) = F, eq(z, z) -- T) ,  where z is a new variable. It can be 

shown that E t u = v iff the unfailing completion procedure generates the equation F = T. 

Basically, given any proof of F - T, the unfailing completion procedure extends E until a 

rewrite proof is obtained. It can be shown that unfailing completion is a complete refutation 

procedure, but of course, it is not a decision procedure. It should also be noted that when 

unfailing completion is used as a refutation procedure, Ew is actually never generated. It 

is generated "by need", until F = T turns up. 

We now come back to our situation. Without loss of generality, it can be assumed that 

we have a rigid E-unifier 8 of T and F such that 8(E)  is ground. In this case, equations 

in B(E) are orientable instances. The crucial new idea is that in trying to obtain a rewrite 

proof of F - T, we still con~pute critical pairs, but we never rename variables. If 12 

is equal to l l /P,  then we get a critical pair essentially by simplification. Otherwise, some 

variable in ll or in l2 gets bound to a term not containing this variable. Thus the total 

number of variables in E keeps decreasing. Therefore, after a polynomial number of steps 

(in fact, the number of variables in E )  we must stop or fail. So we get membership in NP. 

Oversimplifying a bit, we can say that our method is a form of lazy unfailing completion 

with no renaming of variables. 

However, there are some significant departures from traditional Knuth-Bendix com- 

pletion procedures, and this is for two reasons. The first reason is that we must ensure 

termination of the method. The second is that we want to show that the problem is in NP, 

and this forces us to be much more concerned about efficiency. 

The proof that rigid E-unification is in N P  requires quite a bit of machinery, and since 

this paper is already long, we will focus on the algorithmic aspect of the result, leaving out 

most proofs. Full details can be found in Gallier, Narendran, Plaisted, and Snyder [22]. 
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In order to show that our decision procedure is in NP, we will need the fact that if two 

terms u and v are unifiable, a mgu of u and v can be represented concisely in triangular 

form (the size of this system is linear in the number of symbols in u and v). This result can 

be obtained from the fast method using multiequations of Martelli and Montanari [33] or 

the fast method using the graph unification closure of Paterson and Wegman [37]. 

Definition 6.1 A term pair (or pair) is just a pair of two terms, denoted by (s, t ) ,  and a 

substitution 8 is called a unifier of a pair (s, t) if O(s) = 8(t). A term system (or system) 

is a set of such pairs, and a substitution 8 is a unifier of a system if it unifies each pair. 

A substitution a is an (idempotent) most general unifier, or mgu, of a system S iff (i) 

D(a)  C_ Var(S) and D(a) n I ( a )  = 0 (a is idempotent); (ii) a is a unifier of S; (iii) For 

every unifier 8 of S, a < 8 (where a < 8 iff 6 = a ; q for some q). 

Definition 6.2 Given an idempotent substitution a (i.e., D(a)  n I(a) = 0) with domain 

D(o) = {xl,  . . . , xk}, a triangular form for a is a finite set T of pairs (x, t)  where x E D(a)  

and t is a term, such that this set T can be sorted (possibly in more than one way) into a 

sequence ((xl , t ), . . . , (x k ,  t k ) )  satisfying the following properties: for every i ,  1 5 i 5 k, 

(1) {xl, . . . , xi} n Var(t;) = 0, and 

The set of variables {x l , .  . . , xk} is called the domain of T. Note that in particular 

xi @ Var(t;) for every i ,  1 _< i _< k ,  but variables in the set {x;+l,. . . , xk} may occur in 

t l ,  . . . , t i .  It is easily seen that a is an (idempotent) mgu of the term system T. 

Example 6.3 Consider the substitution a = [f (f ($3, x3), f (xj,  x3))/x1, f (x3, x3)/x2]. 

The system T = {(xl , f (x2, z2) ) ,  ( 2 2 ,  f (23, 23))) is a triangular form of a since it can 

be 0Klered as ( ( X I ?  f ( ~ 2 ,  a ) ) ,  ( ~ 2 ,  f ( X J ,  2 3 ) ) )  and 0 = [f ( ~ 2 ,  x2)/x1]; [f ( ~ 3 ,  x3)/x2]. 

The triangular form T = {(xl,  t l ) ,  . . . , (xk , tk ) )  of a substitution a also defines a 

substitution, namely 0~ = [ t l /x l , .  . . , tk/xk] .  This substitution is usually different from a 

and not idempotent as can be seen from example 6.3. However, this substitution plays a 

crucial role in our decision ~rocedure because of the following property. 

Lemma 6.4 Given a triangular form T = {(x 1, tl ), . . . , (xk, t k )  ) for a substitution a and 

the associated substitution OT = [ t l /xl , .  . . , tk /xk] ,  for every unifier 8 of T ,  8 = a T  ; 8. 

An other important observation about 0~ is that even though it is usually not idem- 

potent, at least one variable in {xl, . . . , xk} does not belong to I (aT)  (otherwise, condition 

(1) of the triangular form fails). We will assume that a procedure T U  is available, which, 
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given any unifiable term system S, returns a triangular form for an idempotent mgu of 

S, denoted by TU(S ) .  When S consists of a single pair (u,v), T U ( S )  is also denoted by 

TU(u, v). 

* 
Recall that we write u E E  v to express that u AE v, treating the equations in E as 

ground equations. 

Definition 6.5 Let E = {(sl = t l ) ,  . . . , (s, = t,)} be a finite set of equations, and 

let Var(E) = U(s;t)EE Var(s t) denote the set of variables occurring in E.1° Given a 

substitution 8, we let 8(E) = {8(si t i )  I si = ti E E, 8(si) # @(ti)}. Given any two 

terms u and v,ll a substitution 8 is a rigid unifier of u and v modulo E (for short, a rigid 

E-uni f ier  of u and v)  iff 

* 
8(u) 8(v), that is, 8(u) and 8(v) are congruent modulo the set 8(E) considered 

as a set of ground equations. 

Definition 6.6 Let E be a (finite) set of equations, and W a (finite) set of variables. For 
* 

any two substitutions a and 8, a =E 8[W] iff a (z)  ZE 8(x) for every x E W. The relation 

[ rE  is defined as follows. For any two substitutions a and 8, a L E  8[W] iff a =o(E) $[W]. 

The set W is omitted when W = X (where X is the set of variables), and similarly E is 

omitted when E = 0. 

Intuitively speaking, a lIE 8 iff a can be generated from 8 using the equations in B(E). 

Clearly, C E  is reflexive. However, it is not symmetric as shown by the following example. 

Example 6.7 Let E = {fx x),  a = [f alx]  and 8 = [alz]. Then 8(E) = {fa a )  and 

o(x) = f a  a = B(x), and so a LE 0. On the other hand a ( E )  = {f f a  fa},  but a 

and f a  are not congruent from { f f a t fa ) .  Thus 8 [ I E  a does n o t  hold. 

It is not difficult to show that LE is also transitive. We also need an extension of [ Z E  

defined as follows. 

Definition 6.8 Let E be a (finite) set of equations, and W a (finite) set of variables. 

The relation S E  is defined as follows: for any two substitutions a and 8, a S E  8[W] iff 

a ; 77 [ Z E  $[W] for some substitution 77 (that is, a ; =@(El 8[W] for some 7) .  

Intuitively speaking, a S E  8 iff a is more general than some substitution that can be 

generated from 8 using 8(E).  Clearly, S E  is reflexive. The transitivity of LE is also shown 

lo It is possible that equations have variables in common. 

l1 It is possible that u and v have variables in common with the equations in E. 
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easily. When a sE O[W], we say that o is (rigid) more general than 0 over W. It can be 

shown that if a is a rigid E-unifier of u and v and a S E  0, then 0 is a rigid E-unifier of u 

and v. The converse is false. 

Definition 6.9 Given a (finite) set E of equations, for any two terms u and v, letting 

V = Var(u) U Var(v) U Var(E), a set U of substitutions is a complete set of rigid E-unifiers 

for u and v iff: For every a E U, 

(i) D(a) C V and D(a)  n I(a) = 0 (idempotence), 

(ii) a is a rigid E-unifier of u and v ,  

(iii) For every rigid E-unifier 0 of u and v, there is some a E U, such that, a IE 8[V]. 

It is very useful to observe that if a procedure P for finding sets of rigid E-unifiers 

satisfies the property stated in definition 6.10 given next, then in order to show that this 

procedure yields complete sets, there is no loss of generality in showing completeness with 

respect to ground rigid E-unifiers whose domains contain V (that is, in clause (iii) of 

definition 6.9, O(x) is a ground term for every x E D(O), and V C D(8)). 

Definition 6.10 A procedure P for finding sets of rigid E-unifiers is pure iff the following 

condition holds: For every ranked alphabet C, every finite set E of equations over Tc(X) 

and every u, v E Tc (X), if U = P ( E ,  u ,  v) is the set of rigid E-unifiers for u and v given by 

procedure P, then for every a E U, for every x E D(a),  every constant or function symbol 

occurring in a (x )  occurs either in some equation in E or in u or in v. 

In other words, P(E, u, v) does not contain constant or function symbols that do not 

already occur in the input (E, u, v). To prove what we claimed, we proceed as follows. 

We add countably infinitely many new (distinct) constants c ,  to C, each constant c ,  being 

associated with the variable x. The resulting alphabet is denoted by C s K .  If 0 is not ground, 

we create the Skolemized version of 0, that is, the substitution B^ obtained by replacing the 

variables in the terms O(x) by new (distinct) constants.12 

Lemma 6.11 Given a rigid E-unification procedure P satisfying the property of definition 

6.10, assume that for every ranked alphabet C, every finite set E of equations over Tc(X) 

and every u, v E Tc (X) ,  the set U = P(E, u, v) of rigid E-unifiers of u and v given by 

P satisfies conditions (i) and (ii) of definition 6.9, and the new condition (iii'): for every 

rigid E-unifier 0 of u and v such that V C D(0) and O(x) E Tc for every x E D(O), there 

is some a E U such that a 5~ O[V] (where V = Var(E) U Var(u,v)). Then every set 

U = P(E, u, v) is a complete set of rigid E-unifiers for u and v. 

h 

l 2  that is, 6 is obtained from 6 by replacing every variable y in each term 6(x) by the corresponding 

Skolem constant cy, for each x E D ( 0 ) .  
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7 Minimal Rigid E-Unifiers 

One of the reasons for the decidability of rigid E-unification is that if a pair (u, v) has 

some rigid E-unifier, then it has a rigid E-unifier that is minimal in a sense made precise 

in the sequel. Given a finite or countably infinite ranked alphabet C, it is always possible 

to define a total simplification ordering 5 on Tc (the set of all ground terms) [ l l ] .  We 

use the total simplification ordering 4 on Tc to define a well-founded partial order + on 

ground substitutions. For this, it is assumed that the set of variables X is totally ordered 

as X = (xl ,  xz, . . . , s,, . . .). 

Definition 7.1 The partial order + is defined on ground substitutions as follows. Given 

any two ground substitutions a and 8 such that D(a)  = D(B), letting (yl . . . , y,) be the 

sequence obtained by ordering the variables in D(a)  according to their order in X ,  then 

a + 8 iff 

( ~ ( Y I ) ,  . - .  , o ( ~ n ) )  5 1 e z  ( ~ ( Y I ) ,  . * ,  0(yn)), 

where -ire, is the lexicographic ordering on tuples induced by 5. 

Since 5 is well-founded and + is induced by the lexicographic ordering dl,, which is 

well-founded, + is also well-founded. In fact, given any finite set V of variables, note that 

+ is a total well-founded ordering for the set of ground substitutions with domain V 

Given a set E of equations and a total simplification ordering 5 on ground terms, for 

any ground substitution 8, we let 0(E) denote the set (B(1) -- O(r) 1 8(1) k 8(r), 2 r E 

E U E-l) of oriented instances of E .  Thus, we can also view 8(E) as a set of rewrite rules. 

The reason for considering the well-founded ordering -+ on ground substitutions is 

that minimal rigid E-unifiers exist. This is one of the reasons for the decidability of rigid 

E-unification. The example below gives some motivation for the next definition and lemma. 

Example 7.2 Let E = {fa = a ,  x - f a ) ,  and (u, v)  = (gx, x) .  It is obvious that there is 

a simplification ordering total on ground terms such that a 4 f 4 g (for instance, a recursive 

path ordering, see Dershowitz Ill]). The main point of this example is the fact that some 

rigid E-unifiers of gz and x are redundant, in the sense that they are subsumed by rigid 

E-unifiers that are smaller w.r.t. S E .  For instance, 0 = [g f 1°a/x] is a rigid E-unifier of gx 

and x ,  but so is cr = [galz], and a CE 0. 

An illustration of the redundancy of 0 is the fact that 8(z) = f ''a is reducible by 

the rule f a  -t a .  The fact that some term 8(x) may be reducible by some oriented instance 

8(1) -t 0(r) of an equation 1 r E E U E-' turns out to be a problem for the completeness 

of the method. In order to avoid such redundancies, for every rigid E-unifier 0 of u and v, 
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we consider the set SE,,,,,g of all ground rigid E-unifiers p of u and v such that p C E  6. 

The crucial fact is that the set SE,,,,,s has a smallest element a under the ordering U, 

and that this least substitution is nicely reduced w.r.t. a (E) .  Intuitively speaking, we find 

the least ground rigid E-unifier a of u and v constructible from 6 and 6(E) (least w.r.t. 

+). Referring back to 6 = [g flOa/x],  the substitution a = [galx] is the smallest element of 

SE,,,,,g. It is not sufficient to simply consider all ground substitutions p such that p E E  6, 

because some of them may not be rigid E-unifiers of u and v. For instance, we have p CE 0 

for p = [alx], but p is not a rigid E-unifier of ga and a since p(E) = {fa a). Thus, we 

have to consider rigid E-unifiers of u and v such that p GE 6. 

The least element a of the set SE,u,v,e enjoys some nice reduction properties w.r.t. 

a (E) .  These properties stated in the forthcoming lemma will be used in the proof that the 

method is complete. 

Definition 7.3 Let E be a set of equations (over T c ( X ) )  and u ,  v E Tc(X) any two terms. 

For any ground rigid E-unifier 6 of u and v,  let 

Obviously, 6 E SE,,,,,e, so SE,,,,,e is not empty. Since + is total and well-founded on 

ground substitutions with domain D(6), the set SE,,,,,g contains some least element a 

(w.r.t. +). 

We shall now prove the following crucial result. For this, recall that a degenerate 

equation is of the form x t ,  where x is a variable and x 4 Var(t), and that a nondegenerate 

equation is an equation that is not degenerate. 

Lemma 7.4 Let E be a set of equations (over Tc(X)) and u, v E Tc(X) any two terms. 

For any ground rigid E-unifier 6 of u and v, if a is the least element of the set SE,,,,,e of 

definition 7.3, then the following properties hold: 

(1) every term of the form a(x)  is irreducible by every oriented instance a(1) -+ a ( r )  of a 

nondegenerate equation 1 A r E E U E-l, and 

(2) every proper subterm of a term of the form a(x)  is irreducible by every oriented 

instance a(1) -+ a ( r )  of a degenerate equation 1 = r E E U E-l. 
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8 The Reduction Procedure 

One of the major components of the decision procedure for rigid E-unification is a proce- 

dure for creating a reduced set of rewrite rules equivalent to a given (finite) set of ground 

equations. This procedure first presented in Gallier et al. [19] runs in polynomial time. 

However, due to the possibility that variables may occur in the equations, we have to make 

some changes to  this procedure. Roughly speaking, given a "guess" O (which we call an 

order a s s i g n m e n t )  of the ordering among all subterms of the terms in a set of equations El 

we can run the reduction procedure R on E and O to produce a reduced rewrite system 

R(E, 0)  equivalent to  E ,  and whose orientation is dictated by the ordering 0. 

Definition 8.1 Given a set R of rewrite rules, we say that R i s  rigid reduced iff 

(1) No lefthand side of any rewrite rule 1 -+ r E R is reducible by any rewrite rule in 

R - ( 1  --+ r )  treated as a ground rule; 

(2) No righthand side of any rewrite rule I -+ r E R is reducible by any rewrite rule in R 

treated as a ground rule. 

Definition 8.2 Given two sets E and E' of equations, we say that E and El are rigid 
* * 

equiva2ent iff for every two terms u and v, u E E  v iff u gEf v (treating E and El as sets of 

ground equations). 

For technical reasons, it will be convenient to view the problem of rigid E-unification 

as the problem of deciding whether two fixed constants are rigid E-unifiable. This can 

be achieved as follows (the idea is borrowed from Dershowitz). Let eq be a new binary 

function symbol not occurring in C, and T and F two new constants not occurring in C. 

The following simple but useful lemma holds. 

Lemma 8.3 Given a set E of equations and any two terms u and v ,  a substitution 6 over 

Tc(X) is a rigid E-unifier of u and v iff there is some substitution 8' over Tc(X) such that 

6' = ~ ' l D ( e ~ ) - ( z )  and T Go'(Eu,u) F, where E,,, = E U {eq(u,v) = F, eq(z, z) - T), and r 

is a new variable not in Var(E) U Var(u, v). 

The total simplification ordering 5 can be extended to the set 

For details, see [22]. We will need to show that in searching for rigid E-unifiers, it is always 

possible to deal with sets of equations that are rigid reduced. The proof of this fact uses 

the result shown elsewhere that every finite set E of ground equations is equivalent to a 
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reduced set R(E) of rewrite rules. We now review the procedure first presented in Gallier 

et al. [I91 which, given a total simplification ordering 4 on ground terms and a finite set E 

of ground equations returns a reduced rewrite system R(E) equivalent to E .  

Definition 8.4 (Basic reduction procedure) Let E be a finite set of ground equations, and 

4 a simplification ordering total on ground terms. The basic reduction procedure generates 

a finite sequence of triples (Ei, II;, Ri) where Ei is a finite set of ground equations, Ili is 

a partition (associated with Ei), and Ri is a set of ground rewrite rules. Given a triple 

(Ei, IIi, Ri), we let be the set of all subterms of terms occurring in equations in Ei or in 

rewrite rules in Ri. The procedure makes use of the congruence closure of a finite set of 

ground equations (Kozen [30,31], Nelson and Oppen [36], Downey, Sethi, and Tarjan [13]). 

Congruence closures are represented by their associated partition Il. Given an equivalence 

relation represented by its partition 11, the equivalence class of t is denoted by [tin, or [t]. 

Recall that s, t are in the same equivalence class of II iff s and t are subterms of the terms 

occurring in E and s AE t (for details, see Gallier [17]). The congruence closure algorithm 

will only be run once on E to obtain IIo, but the partition IIi may change due to further 

steps (simplification steps). 

begin algorithm 

Initially, we set Eo = E, Ro = 0, and run a congruence closure algorithm on the 

ground set E to obtain ITo. i := 0; 

while IIi has some nontrivial equivalence class13 do {Simplification steps) 

Let pi+l be the smallest element14 of the set 

of terms belonging to nontrivial classes in IIi.15 Let Ci+l be the nontrivial class that 

contains pi+l, and write Ci+1 = {pi+l, . . , X ~ ~ l ) ,  where ki+1 2 1, since Ci+1 is 
k i + l  nontrivial. Let Si+1 = {Xi+1 -+ p;+l,. . . , Xi+, + pi+l). 

{Next, we use the rewrite rules in Si+1 to simplify the rewrite rules in Ri U Si+1, the 

partition I I i ,  and the equations in Ei.) 

To get Ritl, first, we get a canonical system equivalent to For this, for every 

lefthand side X of a rule in replace every maximal redex of X of the form X j  by 

l3 that is, a class containing at least two elements, in which case Ei has a t  least one nontrivial equation. 

l4 in the ordering < 
l 5  where ICJ denotes the cardinality of the set C 
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p, where A j  -+ p E Si+1 - {A -+ p).16 Let S:+, be the set of simplified rules. Also, let 

R:+, be the set obtained by simplifying the lefthand sides of rules in Ri using Si+l 

(reducing maximal redexes only), and let 

Finally, use Si+t to simplify all terms in II; and li, using the simplification process 

described earlier, to obtain II;+l and Ei+1. 

i : = i + l  

endw hile 

{All classes of IIi are trivial, and the set R; is a canonical system equivalent to E.) 

end algorithm 

It is shown in [19] that the above procedure always terminates with a system R, 

equivalent to E that is reduced (and hence, canonical). 

However, in order to show later that our decision method is in NP, it turns out that 

we need a sharpening of the above result. We need to show that given a set E of ground 

equations, the term DAG associated with any equivalent reduced system R is of size no 

greater than the size of the term DAG associated with E itself, and that the number of 

rules in R is no greater than the number of equations in E. This is not at all obvious for our 

algorithm, but fortunately true. To be more specific, the term DA G associated with a finite 

set S of terms is the labeled directed graph whose set of nodes is the set of all subterms 

occurring in terms in S ,  where every constant symbol c or variable x is a terminal node 

labeled with c or x, and where every node f (tl , . . . , t k )  is labeled with f and has exactly 

the k nodes t l ,  . . . , t k  as immediate successors. In the case of a set of equations (or rewrite 

rules), the set of terms under consideration is the set of subterms occurring in lefthand or 

rightand sides of equations (or rules). If a term DAG has m edges and n nodes, we define 

its size as (m, n). 

The quickest way to prove this sharper result is to appeal to two facts: 

The first one is due to Metivier [34] and Dershowitz, Marcus, and Tarlecki (121 (in 

fact, a direct proof is quite short). 

Lemma 8.5 If R and R' are two equivalent reduced rewriting systems contained in some 

reduction ordering >., then R = R'. 

l6 By a maximal redex of A ,  we mean a redex of X that is not a proper subterm of any other redex of 
A .  The simplified term is irreducible w.r.t. SiS1, so these replacements are only done once, and they 

can be done in parallel because they apply to independent subterms of A .  
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The second fact is that given a set E of p ground equations with term DAG of size 

(m, n), a reduced equivalent system R of p' rules with term DAG of size (m', n') such that 

m' 5 m, n' 5 n, and p' 2 p, is produced by a reduction process which is essentially just a 

Knuth-Bendix procedure restricted to ground terms. 

Definition 8.6 Let > be a reduction ordering total on ground terms. Let R be a multiset 

of oriented pairs (s, t) which we may denote by s -+ t if s + t and s +- t if s 4 t. 

Finally, let +R denote the rewriting relation induced by the non-trivial pairs. The first 

transformation simply removes trivial pairs from R: 

The second orients rules: 

{S +- t )  U R =+ {t --+ s) U R. 

Next, if r --+R r', then 

and finally, if 1 -+R I' , then 

It should be noted that U denotes multiset union, which implies that when a trans- 

formation is applied, the occurrence of the rule to which it is applied on the lefthand side 

(for instance, s t t in (2)) no longer exists on the righthand side. 

We now show that our reduction method always produces reduced systems whose 

associated term DAG is no greater than the term DAG associated with the input. 

Theorem 8.7 Let k be a simplification ordering total on ground terms. If E is a set 

of p ground equations, R an equivalent reduced set of p1 ground rewrite rules contained 

in >, and (m,n)  and (ml,n') are the sizes of the term DAGs associated with E and R 

respectively, then m' 5 m, n' < n, and p' 5 p. 

Proof. We prove this by showing that every sequence of transformations issuing from E 

must eventually terminate with the set R, and that the size inequality stated above holds. 

Let 

E = R o  ==. R, ==. Rq * . . .  
be any sequence of transformations starting with E and using the given ordering >. It 

is tedious but not hard to show that the transformations produce equivalent sets of rules, 
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and we leave this to the reader. Similarly, it is not hard to show that any set which can 

not be transformed must be a reduced set of rules contained in F ,  since otherwise some 

transformation would apply. Now, by Lemma 8.5, if such a terminal set exists, it must be 

unique, and so it will be identical with R. Thus, we next show that the relation =+- is 

noetherian. 

For any R, let p(R) = (M, k) ,  where M is the multiset of all terms occurring in pairs 

in R and k is the number of pairs of the form s t t .  Let the ordering associated with this 

measure use the multiset extension of t for the first component and the standard ordering 

on the natural numbers for the second. Clearly this ordering is well-founded, since + is. 

But then, each transformation reduces the measure of the set of pairs, since (I), (3), and (4) 

reduce M, and (2) reduces Ic without changing M. Thus any sequence of transformations 

must eventually terminate in the set R. 

Finally, for any transformation Ri ==+ Ri+l, note that the size of the current term 

DAG cannot increase, since (1) deletes nodes and possibly edges, (2) does not change the 

size, and (3) and (4) possibly decrease the number of nodes and preserve the number of 

edges. As a matter of fact, these transformations can be implemented by moving pointers. 

It is also obvious that each transformation either preserves or decreases the total number of 

rules. Thus, the claim follows by induction on the length of the transformation sequence. 

Another useful fact needed later is that the time complexity of the reduction procedure 

is in fact bounded by O ( ( m  + n + p ) 3 ) ,  where (m, n) is the size of the term DAG associated 

with the input E, and p is the number of equations in E .  

Unfortunately, given a nonground set E of equations, the reduction procedure just 

presented may not be applicable since some of the equivalence classes may contain terms 

involving variables and the ordering 3 may no longer be total on such a partition. We need 

to guess how terms containing variables compare to other terms in the partition in order to 

reduce the equations. However, it is useful to observe that the reduction algorithm applies, 

as long as at every stage of the algorithm, it is possible to determine the least element of 

each nontrivial equivalence class and to sort these least elements. This observation shows 

that in extending a simplification ordering 4 total on ground terms to terms containing 

variables, it is sufficient to require this extension to have a least element in each nontrivial 

equivalence class and to be total on the set of least elements of these classes. Definition 

8.10 will make use of this fact. 

The key to extending ground orderings is that if some ground rigid E-unifier 8 exists, 

since the ordering 4 is total on ground terms, 8 induces a preorder on the terms occurring in 

the congruence closure I3 of E. For example, if E = {fa = a, f a  A x) ,  u = gx, v = x ,  and 
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6 = [ga/x], then 11 has a single nontrivial class {fa,  a, x}, and considering the recursive path 

ordering such that a 4 f 4 g (see Dershowitz [Ill), we have a 4 fa  4 ga = O(x). Hence, we 

can extend 4 so that f a  4 x. This way, the equations can be oriented as fa  t a,  x t f a .  

We shall define the concept of an order assignment in order to formalize the above 

intuition. First, we define some relations induced by a ground substitution on a finite set 

of terms. 

Definition 8.8 Given a finite set S of terms, let ST(S)  be the set of all subterms of terms 

in S (including the terms in S). Let 5 be a total simplification ordering on ground terms, 

and 0 a ground substitution such that Var(S) C D(0). The relations -0,s and sols on 

ST(S) are defined as follows: For every u,  v f ST(S), 

and 

u =O,S v iff 6(u) = 6(v). 

When we have a partition II induced by the congruence closure of a finite set E 

of equations treated as ground, S consists of the lefthand sides and righthand sides of 

equations in E ,  and we denote as 5 0 , ~  and 20,s as -0,n. As the next example shows, 

the equivalence relation r o , ~  may be nontrivial. 

Example 8.9 Let E = {fx = fgy, fgy gy, hgz = gz), u = k(fx,gb), v = k(ga, hgb), 

and 6 = [galx, a ly ,  blz]. The nontrivial equivalence classes of the congruence closure IJ of 

E are {fx,  fgy,gy), and {hgz,gz). Then, since O(x) = O(gy) = ga, we have x Fo,n gy 

and f x Eo,n f gy. Thus, = ~ , n  has two nontrivial equivalence classes {x, gy) and { f x, f gy). 

Assuming that we have a total simplification ordering on ground terms such that a 4 b 4 

f 4 g 4 h (for instance, a recursive path ordering, see Dershowitz [Il l) ,  we also have 

The other pairs in 5e,n are obtained by reflexivity and transitivity from re,n and the above 

pairs. 

This time, it is not obvious how to orient the equation f x  - fgy. This is because 

8(fx) = 6(fgy). One might think that this is a problem, but it can be overcome. Observe 

that since the ground equation 8(fx) A O( fgy) is trivial, it does not help in any way in 

proving that 6(u) and 8(v) are congruent modulo O(E). In 1221, the problem was solved by 

factoring out the preorder i B , n  by the equivalence relation =e,n. It was also shown that as 
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far as the completeness of the method is concerned, we can restrict our attention to partial 

orders rather than preorders. For the sake of simplicity, we present this solution, referring 

the reader to [22] for a more complete solution. 

The key point is that it is always possible to choose an orientation of the equa- 

tions which is compatible with <o,n. For example, we can define the partial order do 

on (2, y, z, f x ,  gy, gz, fgy, hgzl such that, 99 50 gz, gy 5s fgy, fgy 50 f x ,  and 

gz 5s hgz (other pairs in 50 are obtained by transitivity and reflexivity). It is clear that 

do C_ <@,=.  With this orientation, the set E of example 8.9 is equivalent the following rigid 

reduced set of rewrite rules: R = { f x 4 gy, fgy 4 gy, hgz -+ gz}. 

The above discussion leads to the following definition that makes use of the fact noted 

before definition 8.8. 

Definition 8.10 Let 5 be a total simplification ordering on ground terms. Given a finite 

set S of terms and a partition IT on ST(S),  a partial order 0 on ST(S)  (also denoted as 

4s) - is an order assignment for iff the following properties hold: 

(1) do has the subterm property and is monotonic on ST(S),  that is, for all ul , . . . , u,, 

vl, . . . , v, E ST(S),  if ui vi for i = 1,.  . . , n and f (ul , .  . . , u,) and f (v l ,  . . . , v,) E 

ST(S),  then f ( u l , - .  , u n )  50 f ( v ~ ,  . ,vn); 

(2) The restriction of 50 to ground terms agrees with 5 (on ST(S)), every nontrivial 

equivalence class C of II has a least element, and 50 is total on this set of least 

elements. 

Given a finite set E of equations, if II is the partition associated with the congruence 

closure of E ,  by an order asszgnment for E we mean an order assignment for n. 

The following lemma shows why order assignments can be chosen to be partial orders. 

Lemma 8.11 Given a finite set S of terms and a partition 11 on ST(S),  given any ground 

substitution 8 such that V a r ( I I )  C_ D(8), there exists an order assignment 5s for II such 

that 5s C and do is a total ordering. 

Proof. For every nontrivial equivalence class C modulo ro ,n ,  we extend the simplifi- 

cation ordering 4 as follows. Whenever such a class contains some variable, say C = 

{ x l , .  . . ,xk, t l , .  . . ,tm) where X I , .  . . ,xk are variables, we extend 4 to a relation 4' such 

that X I  4 x 2  4' . . .  - i lxk  andxi  4' t j ,for a l l i , j ,  15 i < k ,  15 j < m. It is clearthat 3' 
is a partial ordering contained in Now, we define 40 recursively as follows: u 40 v 

iff either 
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(2) 0(u) = 0(v), and either 

(2a) u is a variable and u 4' v, or 

(2b) u = f (ul , . . . , u,), v = f (vl , . . . , V n ) ,  and (ul , . . . , u,) +zz (vl , . . . , v,), where 

+gX is the lexicographic extension of 4 0 .  

We define 50 as the reflexive closure of 40, and we claim that do is a total ordering 

which is an order assignment contained in 50,s The only problem is in showing that 50 

is a total ordering, as the other conditions are then easily verified. To prove that 50 is 

a total ordering, due to clause (1) of the definition of 40, it is enough to show that for 

any two distinct elements u, v in some nontrivial class C modulo r e , n ,  either u 50 v or 

v 50 u, but not both. Note that the set of classes modulo -8,n is totally ordered: C << C' 

iff 0(C) 4 O(Ct), where 0(C) denotes the common value of all terms 0(t) where t E C. We 

proceed by induction on this well-ordering of the classes. Clearly, the least class contains 

some variable and at most one constant. But then, it is already totally ordered by 4'. 

Given any other nontrivial class C,  if u and v are both variables, we already know by (2a) 

that either u -4 v or v 4' u, but not both. If u is a variable and v is not, by (2a) we 

can only have u 4' v. If both u and v are not variables, then they must be of the form 

u = f ( u l , .  . . , u n )  and v = f (v l , .  . . ,v,),  since C is unified by 0. Since u # v ,  there is a 

least i such that u; # v;, and since 0 unifies u and v, 0 unifies ui and vie But then, because 

4 has the subterm property, u;, v; belong to some class Ci such that Ci << C. Therefore, 

either u; do v; or v; do u ; ,  but not both, and thus by (2b), either u 50 v or v do u, but 

not both. 

In view of lemma 8.11, the following definition is justified. 

Definition 8.12 Given a finite set of terms S, an order assignment for a partition IT 

on ST(S) is realized by a ground substitution 0 such that Var(II) C D(0) iff do C 5e,n. 

Given two order assignments O on a partition IT for ST(S) and 0' on a partition II' 

for ST(St),  we say that O and 0' are compatible iff they coincide on ST(S) n ST(S1). 

Example 8.13 Let E = { f x  = fgy, fgy = gy, hgz = gz), as in example 8.9. The non- 

trivial equivalence classes of the congruence closure TI of E are { f x, f g y,  y ) , and { hgz, gz} . 

Let O be the partial order on {x, y, z, f x ,  gy, g z ,  fgy, hgz) such that gy do gz, 

gy so fgy, fgy ja f x ,  and gz do hgz (other pairs in are obtained by transitivity 

and reflexivity). It is immediately verified that O is an order assignment realized by 0 = 

[gals,  a ly,  biz], since 0 S 5 0 , ~ .  

The next example arises from the problem of proving that every monoid such that 

x . x = 1 (for all x )  is commutative. 



40 THEOREM PROVING USING EQUATIONAL MATINGS A N D  RIGID E -  UNIFICA TION 

Example 8.14 Let E be the set of equations 

5 3  ' ( Y 3  ' 2 3 )  = ( 5 3  ' y 3 )  ' 2 3  

x 4  ' ( y 4  ' 2 4 )  -- ( 2 4  - 9 4 )  . Zq 

W 3  . w 3  - 1 

eq(a . b, b . a )  F 

e q ( z ,  z )  = T ) .  

The nontrivial equivalence classes of the congruence closure II of E are: 

We define the order assignment 0 on I3 by the order in which the elements in each class of 

TZ are listed, and for the least elements in these classes, the order in which the classes are 

listed. All other pairs in 5o are determined by reflexivity and transitivity. It is easily seen 

that there is a total simplification ordering on ground terms such that 1 4 a 4 b 4 ., and 

one can verify that so is an order assignment, and that is realized by the substitution 

We can now modify the procedure of definition 8.4 in order to accomodate variables. 
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Definition 8.15 (Reduction procedure R)  Let 4 be a total simplification ordering on 

ground terms. Let £ = Ex U {eq(u, v )  F, eq(z, z) f T)  be a finite set of equations, where 

Ic is a set of equations over Tc(X), and u, v E Tc(X). Given any order assignment 0 on 

I ,  the procedure R returns a rigid reduced rewrite system R(£, 0 ) .  To form the system 

R(£, 0 ) ,  since su is a simplification ordering such that every nontrivial equivalence class 

of I2 has a least element and do is total on this set of least elements, we apply to £ and II 

the procedure described in definition 8.4, except that at the end of every round, it may be 

necessary to extend O since new terms may arise due to simplification. If at every round 

an extension of O can be found so that the next step can be performed, R succeeds and 

returns a rigid reduced rewrite system denoted as R(£, 0 ) .  Otherwise, R returns failure. 

It is useful to remark that since the reduction procedure deals with sets of equations 

of the form £ = Ic U {eq(u,v) = F, eq(z, z )  = T) ,  in the congruence closure II of El  

the classes of T and F are always {eq(u, v) ,  F )  and {eq(z, z), T).  From the way we have 

extended 5 to  take care of T, F, and terms involving eq, it will be shown as a corollary 

of theorem 10.2 that there is no loss of generality in choosing order assignments such that 

T 5" F s So eq(u, v) for all s ,  u, v E T c ( X ) .  We can show the following crucial result. 

Lemma 8.16 Let E = Ec U {eq(u, v )  F, eq(z, z) T} be a finite set of equations, where 

Ex is a set of equations over Tc(X), u, v E Tc(X), and 4 a total simplification ordering on 

ground terms. Given an order assignment O on E,  if R does not fail, then R(£, 0) is rigid 

equivalent to £. 

We are now ready to define a procedure for finding rigid E-unifiers. 

9 A Method for Finding Complete Sets of Rigid E-Unifiers 

This method uses the reduction procedure of section 8 and a single transformation on certain 

systems defined next. First, the following definition is needed. 

Definition 9.1 Given a set E of equations and some equation I r ,  the set of equations 

obtained from E by deleting 1 r and r A 1 from E is denoted by (E - { l  r ) ) i .  Formally, 

welet ( E - { l = r } ) i  = { u v  1 U = V E  E ,  u = v # 1 - r ,  a n d u v # r = l ) .  

Definition 9.2 Let 4 be a total simplification ordering on ground terms. We shall be 

considering finite sets of equations of the form £ = Ex U {eq(u, v) = F, eq(z, z) T) ,  where 

Ic is a set of equations over Tc (X), and u ,  v E Tc(X). We define a transformation on 

systems of the form (S, 1 , O )  , where S is a term system, I a set of equations as above, and 
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O an order assignment: 

( S o ,  Eo, 00) * (S1, £1, Ql), 

where lI = rl , 12 = r2 E E~u£[', either l l /p  is not a variable or Z2 7-2 is degenerate, l1 /B  # 
12, TU(ll /P, E2) represents an mgu of ll /p and Z 2  in triangular form,17 a = [tl /x l ,  . . . , tp/xp] 

where TU(~lIPl12) = ( ( ~ 1 ,  t l ) ,  . - , (xp, tp)), 

O1 is an order assignment on compatible with Oo, S1 = So U TU(11/,f3,12), and £1 = 

R(£;lQl). 

Observe that u(ll[p +- r2] = r l )  looks like a critical pair of equations in lo U I,-', 

but it is not. This is because a critical pair is formed by applying the mgu of Z1/P and 

1, to l1 [p t r2] -- r l ,  but [ t l /xl , .  . . , tp/xp] is usually not a mgu of l1/P and 12. It is the 

composition [t l /xl]  ; . . . ; [tp/xp] that is a mgu of E1/P and 1,. The reason for not applying 

the mgu is that by repeated applications of this step, exponential size terms could be formed, 

and it would not be clear that the decision procedure is in NP. We have chosen an approach 

of "lazy" (or delayed) unification. Also note that we use the rigid reduced system R(£:, 0 1 )  

rather than £i, and so, a transformation step is defined only if R does not fail. The method 

then is the following. 

Definition 9.3 (Method) Let E,,, = E U {eq(u,v) = F, eq(z,z) T ) ,  0 0  an order 

assignment on E,,,, So = 0, lo = R(E,,,,Oo), rn the total number of variables in £0, and 

V = Var(E) U Var(u, v) .  For any sequence 

consisting of at most m transformation steps, if Sk is unifiable and k < m is the first integer 

in the sequence such that F = T E Ek, return the substitution ds, I V ,  where Os, is the mgu 

of Sk (over Tc(X)). 

Example 9.4 Let E be the set of equations E = {fa a, ggx = fa) ,  and (u, v)  = 

(gggx, x). We have 

E,,, = {fa 4 a, ggx = f a ,  eq(gggx, x) = F, eq(z, z) = T ) .  

l7 Note that we are requiring that l l / P  and l 2  have a nontrivial unifier. The triangular form of mgus 
is important for the NP-completeness of this method. 
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The congruence closure It of E,,, has three nontrivial classes { a ,  f a ,  g g x ) ,  { e q ( g g g x ,  x ) ,  F ) ,  

and { e q ( z ,  z ) ,  T ) .  Let O0 be the order assignment on E,,, such that 

the least elements of classes being ordered in the order of listing of the classes. We have 

So = 0, and the reduced system £0 = R(EU,, , 00) is 

£0 = { f a  = a ,  ggx --1 a ,  eq(ga, x )  F ,  eq(z ,  z )  = T ) .  

Note that there is an overlap between eq(ga, x )  = F  and eq(z ,  z )  T at address 6 in 

eq(ga, x ) ,  and we obtain the triangular system ( ( x ,  ga) , ( 2 ,  ga) ) and the new equation F = 

T .  Thus, we have 

( S O , & O , ~ O )  * (S1,£1,61), 

where S1 = ((2, ga) ,  (2, ga) 

£: = { f a  = a ,  ggga = a ,  eq(ga, ga)  F ,  F  = T ) ,  

and O1 is the restriction of Oo to the subterms in E i .  After reducing E i ,  we have 

El = { f a  = a ,  ggga = a ,  eq(ga, g a )  = T ,  F  = T ) .  

Since F - T E and S1 is unifiable, the restriction [ga /x ]  of the mgu [ g a / x , g a / z ]  of S1 

to V a r ( E )  U V a r ( u ,  v)  = ( x )  is a rigid E-unifier of gggx and x .  

10 Soundness, Completeness, and Decidability of the Rigid E- 
Unification Met hod 

The main properties of the method are given in this section. 

Theorem 10.1 (Soundness) Let E be a set of equations over T c ( X ) ,  u, v two terms in 

T z ( X ) ,  EZL,V = E U { e q ( z ,  z )  = T ,  eq (u ,  v )  F } ,  6 0  an order assignment on E,,,, So = 0 ,  

Eo = R(E,,, , Oo), m the total number of variables in EQ, and V = V a r ( E )  U V a r ( u ,  v ) .  If 

where Sk is unifiable, F = T E Ek and F  = T f Ei for all i ,  0 < i < k 5 m, then 8s, (v is a 

rigid E-unifier of u and v ,  where Os,  is the mgu of Sk (over T c ( X ) ) .  
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The proof of theorem 10.1 does not use the fact that the systems R(E;', Oi) are rigid 

reduced, but only the fact that O1(Ei) and O1(R(E;, Oi)) are rigid equivalent. However, 

the fact that the systems R(C,!, Oi)  are rigid reduced plays a crucial role in the proof of the 

completeness theorem. The Oi's are only needed for the completeness of the method, and to 

make sure that the reduction procedure terminates. We now turn to the completeness part. 

The main technique is roughly the removal of peaks by the use of critical pairs (Bachmair 

[4], Bachmair, Dershowitz, and Plaisted [5], Bachmair, Dershowitz, and Hsiang [6]). 

Theorem 10.2 (Completeness) Let E be a set of equations over Tc(X) and u, v two 

terms in Tc(X). If 6 is any rigid E-unifier of u and v ,  then there is an order assignment Oa 

on EU,, , and letting So = 8, lo = R(EU,,, Oo), rn the number of variables in R(E,,,, Oo), 

and V = Var(E) U Var(u, v), there is a sequence of transformations 

where k 5 m, Sk is unifiable, F  = T E Ek, F  T $ I; for all i, 0 5 i < k,  and 

Bsk I S E  O[V], where Osk is the mgu of Sk over Tc (X). Furthermore, Bs, I is a rigid 

E-unifier of u and v. 

Corollary 10.3 If 8' is the mgu produced by a sequence of steps as in the soundness 

theorem, there is a ground substitution O1 such that V 5 D(&) and a sequence of steps 

A 

such that O1 LE 8', Ol is a unifier of Sk, and O1 realizes all the Oils in the above sequence. 

In particular, the method is still complete if we restrict ourselves to order assignments O 

such that T <o F i e ,  s so eq(u,v) for all s ,u ,v E Tc(X). 

Theorem 10.2 also shows that rigid E-unification is decidable. 

Corollary 10.4 Rigid E-unification is decidable. 

Combining the results of theorem 10.1 and 10.2, we also obtain the fact that for any 

El u, v ,  there is always a finite complete set of rigid E-unifiers. 

Theorem 10.5 Let E be a set of equations over Tc(X), u ,  v two terms in Tc(X), m the 

number of variables in E U {u, v), and V = Var(E) U Var(u, v). There is a finite complete 

set of rigid E-unifiers for u and v given by the set 

for any order assignment Oo on E,,,, with So = 0, Eo = R(E,,,, 0 0 ) ,  and where Sk is 

unifiable, F  - T E Ek, F = T $ Ei for all i ,  0 5 i < k,  and Os, is the mgu of Sk over T c ( X ) .  
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11 NP-Completeness of Rigid E-Unification 

First, recall that rigid E-unification is NP-hard. This holds even for ground sets of equa- 

tions, as shown by Kozen [30, 311. Using an idea of Kozen [30], we show that rigid E-  

unification is NP-hard even when all equations in E are regular, all ground except one, and 

u and v are ground. 

Definition 11.1 An equation (1 1 r) is regular iff Var(1) = Var(r). 

Theorem 11.2 Rigid E-unification is NP-hard when all equations in E are regular, all 

ground except one, and u and v are ground. 

Proof: The satisfiability problem is reduced to rigid E-unification as follows. Let the set of 

function symbols consist of A, V, 1, and the constants T and I. Write down the set Ebool 

of 10 ground equations corresponding to the truth tables for A ,  V, 1. Given any clause A, 

if Var(A) = {x l , .  . . ,x,}, let 

Finally, let EA = Ebool U { A  BA),  u = T and v =I. Clearly, A BA is regular, and it is 

easy to see that a substitution a such that T and I are congruent modulo a(EA) exists iff 

A is satisfiable, since BA is false for every truth assignment. Hence, satisfiability is reduced 

to rigid E-unification. CI 

We now show that rigid E-unification is in NP. 

Theorem 11.3 Rigid E-unification is NP-complete. 

Proof. We already know that rigid E-unification is NP-hard. By corollary 10.4, the problem 

is decidable. It remains to show that it is in NP. From corollary 10.4, u and v have some 

rigid E-unifier iff there is some sequence of transformations 

of at most k 5 m steps where m is the number of variables in Eo, and such that Sk is 

unifiable (over T c ( X ) ) ,  F = T E Ek and F = T 6 li for all i, 0 5 i < k. We need to 

verify that it is possible to check these conditions in polynomial time. First, observe that a 

triangular form can be computed in polynomial time, applying the substitutions associated 

with triangular forms can also be done in polynomial time, and checking that a preorder 

is an order assignment can be done in polynomial time. Finally, we need to show that the 

total cost of producing reduced systems is polynomial. This is a crucial point that had been 



46 THEOREM PROVING USING EQUATIONAL MATINGS AND RIGID E - UNIFICATION 

overlooked in a previous version of this paper, and we thank Leo Bachmair for pointing out 

this subtlety to us. We use two facts that have to do with implementing the steps of the 

algorithms using term DAGs. 

(1) We have already noted (see theorem 8.7) that the size of the term DAG associated 

with a reduced system equivalent to an input set of equations is no greater than the size of 

the input term DAG, the number of rules no greater that the number of input equations, 

and that the reduction procedure runs in O ( ( m  + n + p)3), where (m, n) is the size of the 

input term DAG and p the number of equations in E. 

(2) The term DAG associated with the system E:+l obtained from Ei by a transforma- 

tion step can be obtained from the term DAG associated with I; by moving pointers, and if 

(m' , n') and (m, n) are the sizes of the term DAGs of the systems El+, and Ei respectively, 

and p' and p the numbers of equations in these systems, then m' 5 m, n' 5 n, and p' 5 p. 

The reason why (2) holds is that the terms occurring in the triangular form of the 

substitution a associated with the transformation step all belong to the term DAG associ- 

ated with Ei. For instance, this is easily seen if one uses Paterson and Wegman's method 

[37]. Now, forming l1 [P t r z ]  only involves pointer redirection, and so does the application 

of a. Thus, the size of the resulting term DAG cannot increase. By the definition of the 

transformations, it is also obvious that p' 5 p. 

Because the number of steps is at most the number of variables in Eo, the total cost 

of producing reduced systems is indeed polynomial in the size of the input. 

It is interesting to note the analogy of this part of our proof with Kozen's proof that 

his method is in N P  [31]. Both use the term DAG representation in a crucial way. In this 

way, we avoid the potential exponential explosion that can take place during reductions if 

identical subterms are not shared. 

If E is a set of ground equations, the Oi's are useless and the reduction procedure R 

needs only be applied once at the beginning to E. Thus, theorem 11.3 provides another 

proof of a result first established by Kozen [30, 311. 

12 Applications of Rigid E-Unificat ion to Equational Mat ings 

The method developed for one set of equations and one pair can be easily generalized to 

tackle problem (1). In fact, an algorithm to decide whether a family of mated sets is an 

equational (pre)mating is obtained. The method of definition 9.3 can be generalized to 

pairs (I?, S) (as defined in problem 1 in the introduction) by considering triples (S, E, O), 
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where S is a term system, and E is an n-tuple of sets of equations. The definition of a rigid 

3-unifier of a set of pairs is generalized as follows. 

Definition 12.1 Let I? = {Ei I 1 < i < n) be a family of n sets of equations (over Tz(X)) 

and S = { (u ; ,~ ; )  1 1 < i < n)  a set of n pairs of terms (over Tc(X)). A substitution 6 

(over T E ( X ) )  is a rigid 3 - u n i f i e r  of S iff 

for every i, 1 5 i < n. A pair (2, S) such that S has some rigid E-unifier is called an 

equational  premat ing .  

The suitable generalization of the preorder sE to a family I? = {Ei 1 1 5 i < n} of n 

sets of equations turns out to be the following. 

Definition 12.2 Given a family 3 = {Ei I 1 < i < n) of n sets of equations, for any 

(finite) set of variables V, for any two substitutions o and 6, a < E  6 iff there is some q such 

that a ; q  iIEi O[V] for every i, 1 < i 5 n. 

Note that this condition is stronger than the condition a LE; O[V] for every i, 1 5 i 5 
n, because with this second condition we only know that there are substitutions ql , . . . , q, 

such that a ; qi CEi  6[V] for every i, 1 5 i 5 n. In definition 12.2, it is required that 

q1 = . . . = qn. It is straightforward to verify that the generalization of theorem 10.2 holds 

with the stronger definition 12.2. 

Complete sets of rigid E-unifiers for S are defined as follows. 

Definition 12.3 Let = {Ei 1 1 5 i < n} and S = {(ui,vi) I 1 < i < n )  as in definition 

12.1, and let V = ~ a r ( 2 )  U Var(S). A set U of substitutions is a comple te  se t  of rigid 

E - u n i f i e r s  for S iff: For every a E U ,  

(i) D(a) V and D(a) n I(o) = Q) (idempotence), 

(ii) o is a rigid E-unifier of S, 

(iii) For every rigid E-unifier 6 of S, there is some o E U such that a SE O[V]. 

+ 

Minimal rigid E-unifiers also exist and are defined as follows. 

Definition 12.4 Let 2 be a family of sets of equations and S a term system as in definition 

12.1. For any ground rigid Eunifier 6 of S, let 



48 THEOREM PROVING USING EQUATIONAL MATINGS AND RIGID E-UNIFICATION 

Since f( is total and well-founded on ground substitutions with domain D(d) ,  the set SE,s,e 

contains some least element a (w.r.t. -#). 

It is easy to see that lemma 7.4 can be generalized as follows. 

Lemma 12.5 Let I? be a family of sets of equations and S a term system as in definition 

12.1. For any ground rigid Eunifier B of S ,  if o is the least element of the set SB,s,e of 

definition 12.4, then the following properties hold: for every i ,  1 5 i 5 n, 

(1) 0 G E ~  6, 

( 2 )  if x E V a r ( E i ) ,  every term of the form a(x) is irreducible by every oriented instance 

o(1) + o ( r )  of a nondegenerate equation 1 = r E Ei U E?, and 

( 3 )  if x E V a r ( E i ) ,  every proper subterm of a term of the form a ( x )  is irreducible by 

every oriented instance a(1) -t a ( r )  of a degenerate equation 1 = r E E;  U E;'. 

Lemma 8.3 is easily generalized as follows. We let eql , . . . , eq, be n new distinct binary 

function symbols not in C (and distinct from T and F). 

Lemma 12.6 Let I? be a family of sets of equations and S a term system as in definition 

12.1. A substitution B over T E ( X )  is a rigid &unifier of S iff there is some substitution 0' 
* 

over T c ( X )  such that 0 = B'(D(e,)-{z, ,...,z,) and T g e t ( E i )  F for every i ,  1 5 i < n,  where 

E' = Ei  U {eqi(ui ,  v i )  -- F, eqi(zi,  z i )  + T } ,  and { r l ,  . . . , z,) is a set of new variables not 

in v a r ( E )  u v a r ( S ) .  

The total simplification ordering 4 is extended to the set 

as follows: 

For any terms s , t , u , v  E T', 

(a) T 4 F 4 u 4 eqi(s , t);  

(b) eqi(s, t )  4 eqi(u, v )  iff { s ,  t )  +I,, { u ,  v } ,  where +I,, is the lexicographic extension of 

4 to pairs; 

(c) eq;(s, t )  4 eqj(u ,  v) iff 1 5 i < j < n. 

Clearly, this extension of 4 is a total simplification ordering. We define a transfor- 

mation on systems as follows. We shall be considering n- tuples E = ( E l  , . . . , En) of finite 

sets of equations of the form Ei = E$ U {eqi(u, v )  = F, eqi(zi,  z ; )  = T ) ,  where is a set 
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of equations over T c ( X )  and u,  v E Tc(X). We define a transformation on systems of the 

form (S, E, O), where S is a term system, & an n-tuple of sets of equations as above, and 

8 an order assignment: 

(SO, Eo, 00) * (s1, El, Ol), 

where ll A r l ,  12 7-2 E &A U (&A)-' for some i, 1 5 i 5 n, either ll/P is not a variable or 

12 2 r 2  is degenerate, ll/P # 12, TU(Zl/P, 12) represents a mgu of Il/p and 12 in triangular 

form, O =  [tl/xl,... ,tp/xp] where TU(11/p7~2) = { ( ~ 1 , t l ) , . . . 7 ( ~ ~ 7 t p ) ) ,  

t 1 i E = ( (  - 1 = 1 )  U {ll[p + r2] = r l))  and &I: = a(&;) for every j # i, 

Q1 is an order assignment on &; compatible with Oo7 S1 = So U TU(E1/P, 12), and El = 

(E:, . . . ,&;), where &{ = R(E'{, 01) for all j, 1 < j < n. 

The method for finding rigid ,!?-unifiers of S is the following. 

Definition 12.7 (Method) Let I? = {Ei I 1 5 i 5 n) and S = {(ui,vi) I 1 < i 5 n }  as 

in definition 12.1, let E~ = Ei U {eqi(ui, vi) f F, eqi(zi, ri) t T) for every i, 1 < i 5 n, 

Oo an order assignment on (El,. . . ,En ) ,  S, = 0, E; = R(E', 6 0 )  for every i, 1 5 i < n, 

Eo = (Ei , . . . , E,") , m the total number of variables in Eo, and V = v a r ( b )  u Var(S). For 

any sequence 

(SO &O , 0 0 )  *+ ( s k  7 E k  Ok) 

consisting of at most m transformation steps, if Sk is unifiable and Ic 5 m is the first integer 

in the sequence such that F T E &; for every i, 1 5 i < n, return the substitution Os,  I v, 
where Osk is the mgu of Sk (over T c ( X ) ) .  

The proofs of theorem 10.1 and theorem 10.2 can be easily adapted to prove that the 

finite set of all substitutions returned by the method of definition 12.7 forms a complete 

set of rigid Eunifiers for S. In particular, the method provides a decision procedure for 

deciding whether a family of mated sets is an equational premating that is in NP. 

Theorem 12.8 (Soundness) Let E = {Ei I 1 < i 2 n) and S = {(ui7 vi) I 1 < i 5 n} as 

in definition 12.1, let Ei = Ei U {eqi(ui,vi) F, eqi(zi, zi) A T} for every i, 1 < i < n, 

Qo an order assignment on (El, . . . , En), So = 0, Ei = R(Ei , Do) for every i, 1 5 i 5 n, 

Eo = (&:, . . . , &;)+ the total number of variables in Eo, and V = ~ a r ( 2 )  U Var(S). If 

whereSk isunifiable, F -1 T E &; a n d F  4 T 6 E! foralli and j, 0 5 i < k 5 rn, 15 j 5 n, 

then Osk l v  is a rigid Eunifier of S, where Os, is the mgu of Sk (over T C ( X ) ) .  
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Theorem 12.9 (Completeness) Let 3 = {Ei 1 1 < i < n )  and S = {(ui7 vi) I 1 < i < n )  as 

in definition 12.1, and let Ei = Ei U {eqi(ui, v;) -- F, eqi(zi, r ; )  T )  for every i, 1 5 i < n. 
+ 

- 
If 8 is any rigid E-unifier of S, then there is an order assignment 00 on (El ,  . . . , En), and 

letting So = 8,  &: = R(E2, 60) for every i, 1 < i < n, Eo = (&:, . . . , &;), m the total number 

of variables in Eo, and V = v a r ( 3 )  U Var(S), there is a sequence of transformations 

where k _< rn, Sk is unifiable, F T E &:, F T $ &! for all i and j, 0 < i < k,  1 < j < n, 

and Os, I v  Se 9[V], where Bs, is the mgu of Sk over Tc (X). Furthermore, Os, I v  is a rigid 

2-unifier of S. 

Actually, theorem 12.9 can be sharpened. Examination of the induction proof reveals 

that for any rigid &unifier 8 of S, a rigid &unifier more general than 9 can be found, even 

if the transformations are applied in a certain order. 

Definition 12.10 We say that a derivation 

is an IT-derivation iff for every subderivation 

in the step from i to i + 1 (0 <_ i < m), the equations ll = rl and l2 r2 are chosen in 

the set &! such that j 2 1 is the least index such that F = T  E &: for every 1 < j and 

F A T $ & ; .  

In some sense, such derivations compute rigid &unifiers incrementally from left to 

right. 

Theorem 12.11 (Incremental Completeness) Theorem 12.9 holds with lr-derivations in- 

stead of arbitrary derivations. 

This sharpening of theorem 12.9 is very useful in practice, because it yields an incre- 

mental way of finding rigid 2-unifiers. From theorem 12.9, it is obvious that theorem 10.5 

also holds for a family of sets of equations 3 and a term system S. 

Theorem 12.12 Let 2 = {E; I 1 < i < n) and S = {(ui, v;) I 1 < i < n )  as in definition 

12.1, E~ = Ei U {eq;(u;, vi) I F, eqi(zi, z ; )  -- T) for every i, 1 < i 5 n, m the number 
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of variables in I? U S, and V = ~ o r ( l ? )  U Var(S). There is a finite complete set of rigid 

E-unifiers for S given by the set 

for any order assignment O0 on (El, . . . , En}, with & = 0, £: = R ( E ~ ,  Oo) for every i, 

1 5 i 5 n, Eo = (E,', . . . , EF), and where Sk is unifiable, F - T E E;, F T $ £! for all i 

and j, 0 5 i < k ,  1 5 j 5 n, and Bs, is the mgu of S k  over T c ( X ) .  

Finally, it is obvious that theorem 12.9 yields a generalization of 11.3 to equational 

prematings. 

Theorem 12.13 Finding whether a pair (I?, S) (as in definition 12.1) is an equational 

premating is NP-complete. 

As a consequence, since the problem of deciding whether a family of mated sets forms 

an equational mating is equivalent to the problem of finding whether a pair (2, S) is an 

equational premating, the former problem is also NP-complete. 

In the next section, we present a procedure based on the method of equational matings. 

The basic idea of such a procedure is straightforward, as suggested by theorem 5.5: compute 

incrementally amplifications of a formula in nnf, and at each stage, test whether such an 

amplification has a p-acceptable mating. The efficiency related issues here are the same as 

in Andrews7s non-equational case, except that they are harder: in addition to efficient data 

structures which save information between stages, we must identify mated sets instead of 

mated pairs, and use rigid E-unification instead of standard unification. 

While implementation issues are of importance for a practical procedure, we don't feel 
4 

they are as new as the ideas of equational matings and rigid E-unification, and thus, we 

only give a high level description of the procedure. 
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13 A Refutation Procedure 

We now consider defining a refutation procedure based on equational matings and rigid 

E-unification. As mentioned in section 5, such a procedure is suggested by theorem 5.5: 

compute incrementally amplifications of a formula in nnf, and at each stage, test whether 

such an amplification has a pacceptable mating. This idea can be formalized in the follow- 

ing non-deterministic definition, which uses the incremental rigid 2-unification algorithm 

E-UNIF given by theorem 12.11. 

Definition 13.1 Let A be a rectified universal sentence in nnf and D an amplification of 

A. An EQ-derivation R is a sequence of tuples ((Do, ITo, MSo, BO), . . . , (D,, II,, MS,, d,)), 

such that for 0 5 i 5 p, Di  is an amplification of A, I I ;  is a set of vertical paths in Di, MS; 

is a set of mated sets, each such set of the form {(sl t l ) ,  . . . , (s, t,), ~ ( s  t)}, and di 

is a substitution, such that 

(1) Do is the quantifier-free form of A, llo = vp(Do), MSo = 0, and Bo = Id,  and 

(2) For every i, 0 5 i < p, if MS; = {Sl , .  . . , S,), then either 

(i) there is some vertical path slri+] in ll;, some subset Si+l of T ; + ~  such that Si+l = 

{(sl = t l ) ,  . . . , (s, = t,), ~ ( s  = t)}, and some rigid E-unifier ai+l for Si+1 given by 

the procedure E - U N I F  (where E = {(sl = t l ) ,  . . . ,(s, .I. t,)}). Then D;+l = Di,  

ni+l = ci+l(ni - { ~ i + l } ) ,  MSi+l = MSi U {Si+l)r and di+l = di ; 0 i + 1 ;  

(ii) if Di is obtained from the rectified form of a sentence Ci by deleting quantifiers, where 

Ci is a sentence in a sequence (C1, . . . , Ci) ( i  2 1) of formulae resulting from quantifier 

duplications, then Di+l is obtained from the rectified form of a sentence Ci+l, obtained 

by quantifier duplication from Ci, by deleting quantifiers. Then = V ~ ( D ; + ~ ) ,  

MSi+l = 0, and Bi+l = Id. 

If in addition, (MSp, 6,) is a p-acceptable mating, we say that R is an EQ-refutation. 

Since the method outlined in definition 13.1 non-deterministically enumerates all equa- 

tional matings for potentially all amplifications of A, it is immediate from theorem 5.5, that 

since A is unsatisfiable iff some amplification of A has a p-acceptable mating, A is unsatis- 

fiable iff there is an EQ-refutation for A. 

There are a number of implementation problems with definition 13.1 as the basis for 

a practical method for showing the unsatisfiability of a formula in nnf: 

(1) The p-acceptable mating found is maximal, since no attempt is made to identify 

overlapping vertical paths that are spanned by common mated sets. 
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(2) Every time a subformula of A is amplified, the entire computation up until that 

point is discarded. 

(3) No effort is made to use any failure in any step as a source of information for the 

next step. 

These points are closely related to the acceptability criteria given by Andrews in 

section 2.3 of [I] ,  where he defines a procedure for finding (non-equational) p-acceptable 

matings. We tried to adapt the notion of a connection graph used by Andrews in section 3 

of [I], but unfortunately with no success. The difficulty in the presence of equality is that a 

vertical path .rr is closed iff it contains some mated se t  {(sl tl ), . . . , (s, t,), ~ ( s  = t)) 

such that s and t have some rigid E-unifier (where E = {(sl tl), . . . , (s, A t,))), but 

there is no guarantee that n < 1. For languages without equality, a mated set is of the 

form {L, 1L')  where L and L' are unifiable. In order to determine which pairs of literals 

are unifiable it is necessary to examine O(n2) pairs, where n is the total number of literals 

in D. Hence, for languages without equality, it is advantageous to precompute a connection 

graph recording the pairs of literals {L, 1 L ' )  where L and L' are unifiable, since every 

closed path must contain such a pair. However, for languages with equality, if D contains 

n = q + r literals where q literals are positive and r literals are negative (r 2 I ) ,  to form a 

mated set there are r choices for the negative literal and for each such choice, any subset of 

the positive literals can be chosen. Thus, there are potentially r2q mated sets, that is, an 

exponential number of mated sets. In addition, rigid E-unification is NP-complete. 

Thus, the cost of determining which sets of literals are mated sets is exponential and 

there does not seem to be any advantage in computing such sets. Since our investigations 

on this subject are still very preliminary, we will not elaborate any further. However, this 

is a very interesting topic that clearly requires more work. 

We conclude this section with a naive procedure written in pseudo-code implementing 

the method of equational matings. We have made no efforts towards improving efficiency 

of the basic method. This aspect should be addressed in further work. 

Let us now turn our attention to identifying mated sets in the set vp(D) of vertical 

paths in D. Since mated sets are of the form {(sl = t l ) ,  . . . , (s, = t,), ~ ( s  -L t)), the 

search is organized around the negative literals. Observe that if some path .rr E vp(D) 

does not contain a negated literal, it cannot contain an unsatisfiable mated set and D 

is satisfiable. In this case, the procedure stops with failure. Suppose now that for some 

vertical path T ,  there is a mated set S of the form {(sl t l ) ,  . . . , ( s ,  t,), ~ ( s  t ) )  but 

it has no rigid E-unifier. Then we must perform an amplification step. We would like this 

step to supply information that was missing in the attempt to find an unsatisfiable mated 

set. Unfortunately, any arbitrary duplication may fail to do this, and may even introduce 
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new vertical paths. As Andrews says in discussing this problem in the context of looking 

for non-equational p-acceptable matings, "One would like to develop a set of heuristics for 

duplicating quantifiers." However, it is beyond the scope of this paper to consider this 

issue in detail (as it was beyond the scope of Andrews and Bibel's papers), and we will 

use a straightforward breadth-first outermost duplication strategy: in the lexical order of 

occurrences of subformulae in A, perform an outermost duplication of the first non-ground 

subformula, then the second, and so on until the last non-ground subformula in the lexical 

order has been duplicated, and then start again from the top. A breadth-first strategy 

clearly generates a complete search space of outermost duplications, however, it can clearly 

result in superfluous paths. l8 

Example 13.2 

Consider the following formula A, formed from the union of examples 4.8 and 5.6, 

where i, 6, i, u, v,  w, x, y, z denote variables: 

( a  1 b) V -(*(a, b) = *(b, a)) A 

V2((f3i i. 2) V l ( f ?  A fb)) A 

(&a v 7( f3a  = a)) A 

V6(( f 5ij 6) v 1QG) A 

(Ra V  fa = a)  V ~ P f a )  A 

V i i R f i  A 

P a  A 

' jxVy~z(*(x, *(Y, 2 ) )  = * ( * b y  Y ) ,  4)) A 

b'u(*(u, 1) = u) A 

vv(*(l, v) = v )  A 

VW(*(W) w) = 1) 

The problem is to find the right sequence of duplications for A. We know from example 5.6 

that 3 duplications of subformula (8) and 2 duplications of subformula (11) are necessary for 

the existence of a p-accept able mating. But an obvious breadth-first outermost sequence of 

duplications results in 21 duplications before these duplications axe generated. Subformulae 

(1),(3),(5), and (7) are ground and thus not subject to duplication. 

Let A be a rectified universal formula in nnf. A breadth-first outermost amplification 

sequence (Dl , .  . . , D;) (i > 1) for A is a sequence such that Dk is obtained from the 

la Andrews and Bibel have shown that outermost duplication itself can generate superfluous literals. 
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rectified form of a sentence Ck by deleting quantifiers, where Ck is a sentence in a sequence 

(C1,. . . , C;) ( i  > 1) of formulae resulting from quantifier duplications (1 5 k 5 i). The 

Ck's are defined such that C1 = A, and Ck+l is obtained by quantifier duplication of 

an outermost universal subformula of Ck using a breadth-first strategy (1 < k 5 i - 1). 

Given a counter k 2 1, a call ampli fy(k + 1, A, D)  to the procedure amplify returns the 

amplification D = Dk+1 obtained from Ck as explained above. For k = 0, it is assumed 

that ampli f y(1, A, D) returns the quantifier free formula Dl obtained by deleting quantifiers 

from A. We are assuming that the &unification algorithm E-UNIF (given by theorem 12.11) 

takes as input a mated set S = {(sl -- tl ), . . . , (s, = t,), ~ ( s  = t)} and returns a finite 

complete set of rigid E-unifiers of s and t where E = {(sl = t l) ,  . . . , (s, t,)}, in the form 

of a set of triangular forms, where each triangular form T represents a substitution aT. For 

presenting the refutation procedure, we also assume that a mating M is represented by a 

pair (MS, U), where MS is a collection of mated sets, and U is the triangular representation 

of a substitution. Also, given a set of paths It and a substitution a ,  let 

apply(a,II) = {n' 1 T = {PI , .  . . , Pk}  E IT and 7r' =  PI), . . . ,a(Pk)}). 

We assume that the application of a to II is done intelligently, i.e., since a is the identity 

substitution on almost all literals in n,  some table lookup mechanism is available to identify 

the literals which have variables in the domain of a. 

We collect the information discussed in this section into the following pseudo-code 

version of a refutation procedure for formulae in nnf which uses the following variables and 

procedures: A is a rectified universal sentence in nnf; i is a counter for vertical paths in 

an amplification; j is a counter for negative literals in a vertical path; k is an amplification 

counter; M is an equational mating; p-acceptable is a boolean value which is true iff M is 

p-acceptable; found is a boolean value which is true if an unsatisfiable mated set is identified 

in some path; select-path(i, vp(D)) returns the i th  path associated with amplification D; 

select-negative-literaI(j, T )  returns the jth negative literal in n; choose-positive-subset(7r) 

returns the set of positive literals for some path n. This procedure must be understood 

as a nondeterministic procedure. A deterministic version can be writ ten by implementing 

explicitly the backtracking needed to handle the choice of literal, path, etc. However, we 

feel that it would not be as clear as the present version. 
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A Refutation Procedure 

procedure equational-re f utation(A); 

begin 

k '-- 1; 

ampli f y ( k ,  A, D); ( D  is thus the quantifier-free form of A) 

M '-- (070); 
i-limit + #paths(vp(D)); i +- 1; 

p-acceptable c I; 
while i <_ i-limit A lp-acceptable d o  

T t select-path(i, vp(D)); 

j-limit +- #negative-literals(7r); found +- I; 

if j-limit # 0 then  

13' +- 1; 
while j < j-limit A 7 found d o  

N +- select-negative-literal(j, T ) ;  

S +- choose-positive-subset(.rr) U {N); 
if 3T E E - U N I F ( S )  then 

[found +- T; 
if i = i-limit t h e n  p-acceptable +- T else i t i + 1; 

let (MS, U )  = M; M +- ( M S  u S, U u T); 

~ P ( D )  +- ~ P P ~ Y ( ~ T  vp(D))] 
else j c j + 1 

endwhile ] 
else re turn;  {A is satisfiable) 

if 1 found then  

[k +- k +  1; 

amplify(k, A, D); 
i-limit +- #paths(vp(D)); i t 11 

endwhile; 

r e tu rn (M)  

end;  

14 Conclusion and Further Work 

We have generalized Andrews and Bibel's method of matings to first-order languages with 

equality. This new method is sound and complete, and uses a decidable form of 3- 
unification, rigid 2-unification. We have shown that both rigid &unification and finding 

-4 

whether a pair (E, S) is an equational premating are NP-complete problems. We also have 
-, 

shown that finite complete sets of rigid E-unifiers always exist. Theorem 12.13 has impor- 

tant implications regarding the computational complexity of theorem proving for first-order 

languages with equality using the method of matings. It shows that there is an algorithm for 

finding equational matings, but not only is the problem of deciding whether an equational 
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mating is p-acceptable co-NP-complete, the problem of deciding that a family of mated sets 

is an equational mating is NP-complete. For languages without equality, the first problem 

is still co-NP-complete, but the second can be solved in polynomial time using standard 

unification, and in fact in linear time. 

It is essential to find ways of trimming the search space of order assignments if we 

want the method to be practical. When a reduction ordering 4 is available and all subterms 

in &I are ordered by 4, 0; is completely determined. It would be interesting to investigate 

subcases where order assignments can be found quickly. An actual implementation of the 

refutation procedure would also be interesting, as well as a comparison with other methods, 

those based on Knuth-Bendix completions in particular. The above questions are left for 

further research. 

15 Appendix: Proof of the Skolem-Herbrand-Godel Theorem 

In this section, we give a semantic proof of the Skolem-Herbrand-Godel theorem, in the line 

of Andrews's proof [1,2]. The proof relies on two properties: 

(1) If every c-instance of a universal sentence A in nnf is satisfiable, then the set of all c- 

instances of A is satisfiable. This follows from an easy application of the compactness 

theorem, as in Andrews [1,2]. 

(2) If a universal sentence in nnf (with equality) is valid in some model M, then it is valid 

in some model 3-1 whose domain is the quotient of the Herbrand universe by some 

congruence. 

For languages without equality, property (2) is simpler. If a sentence is valid in 

some model, then it is valid in some Herbrand model, and there is no need for a quotient 

construction. We now proceed with the proofs. 

Lemma 15.1 Let A be a universal sentence in nnf. If every c-instance of A is satisfiable, 

then the set of all c-instances of A is satisfiable. 

Proof: First, we use the fact proved in Andrews ([I], Lemma 1, or Gallier 1173, Lemma 

7.6.1), that for any two c-instances K and L of A, there is some c-instance D of A such 

that + D > (I< A L). Then, assume that every c-instance of A is satisfiable. For every 

finite set {IT1, . . . , I<,) of c-instances of A, using the above property n - 1 times, we have 

some c-instance I< of A, such that, Ir' > (I<, A . . . A I<,). Since every c-instance of A is 

satisfiable, the set . . , I<,) is satisfiable. By the compactness theorem, the set of all 

c-instances of A is satisfiable. 
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Lemma 15.2 Consider a first-order language with equality having at least one constant. 

Given a sentence A in negation normal form and not containing existential quantifiers, if 

A is satisfied in some structure, then A is satisfied in some structure whose domain is the 

quotient of the Herbrand universe HT by some congruence 2. 

Proof ( ske tch) :  Assume that M /= A, for some structure M .  Let 'HT be the initial algebralg 

generated by the constant and function symbols in the language (whose domain is the 

Herbrand universe HT). Let h be the unique algebra homomorphism h : 'HI -+ M defined 

such that: 

For every constant c,  h(c) = CM; 

For every function symbol f of rank n > 0, for any n terms t l ,  . . . , t, E HT, 

It is immediate by the definition of h that for every term t E HT, tM = h(t). Let E 

be the kernel of the homomorphism h, that is, the relation on H T defined such that, for all 

s , t  E HT,  s r t iff h(s) = h(t). It is well known that 2 is a congruence on ' F t l .  Observe 

that s Z t iff M (s  t) ,  since SM = h(s) and tM = h(t). Let 'Ft be the quotient algebra 

'HI/ 2. Since E = kerne l  ( h ) ,  there is a unique homomorphism : 'H -t M, such that 
- 
h(1) = h(t), for every 7 E HT/ E. 

We make Tl into a structure as follows: For each predicate symbol P of rank n, for 
- 

any n equivalence classes of terms G, . . . , t, E HT/ 2, 

- 
PX(G,. . - , t n )  = true iff PM(h(tl), . . . , h(t,)) = true. 

Note that for every t E HT, we have 

since h(t) = h(t) and tM = h(t). 

Given a formula A with set of free variables {xl ,  . . . , x,), and a structure M, for any 

n-tuple (ml , . . . , m,) E M ,, M /= A[ml, . . . , m,] means that M + A[s] for any assignment 

s such that s(xi) = m;, for 1 5 i < n. (It is well known (Gallier [17]) that AM[s] only 

depends on the restriction of s to {xl , .  . . , x,)). The following properties can be proved by 

induction on terms and formulae: 

For details on algebras and homomorphisms, see Gallier [17]. 
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- - 
(1) For every term t with free variables {xl , . . . , x,), for every n-tuple, t l  , . . . , t n  E HT/  g, 

(2)  For every atomic formula B (including the case of an equation) with free variables 
- 

{x l , .  . . , xn), for every n-tuple, K,. . . , tn E HT/  E 

IFI + ~ [ q , .  . . ,t,] iff IFI + B [ t l / x ~ ,  . . . , tn/xn].  

Using induction on formulae, we shall establish the following claim. 

Cla im:  For every formula X in negation normal form and not containing any existen- 

tial quantifiers, for every assignment a : V + HT/  Z,  if M X[a o XI, t hen 'FI t= X [a]. 

The proof is similar to that in Gallier [17]. 

Proof of cla im:  We proceed by induction on formulae. 

(i) First, assume that X is an equation (s = t),  with set of free variables {xl ,  . . . , x,), 

and that for some n- tuple (tl , . . . , t,) E H Tn  , we have 

Since for every t E H T ,  tM = x('i), we have 

-- -- 
Hence, the hypothesis M + ( s  A t)[h(tl), . . . , h(tn)] is equivalent to 

By the definition of 2, this shows that 

- 
Since for every K, . . . , t, E HT/  Z, we have 

A 

s ~ ( G , .  . . , tn )  = s[ t l /xl , .  . . , tn/xn]  and 
A 

t3i(G,. . , in) = ~ [ ~ I / x I ,  . . . ,tn/xn], 
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by (*), we have shown that 

- - 
M + (s  = t )p(G) ,  . . . , h(tn)] iff X + (s  t ) F , .  . . ,a. 

(ii) If X = Psl . . . s,, with set of free variables {xl , .  . . , xn), we have 

and 

- 
Since for any n terms c, . . . , rn  E H T /  2, 

- 
PB(C,  . . . , rn)  = t r u e  iff PM(h(rl), . . . , h(rn)) = t rue ,  

then 

'FI x . . . , iff M /= x [E(G), . . . , Z(K)]. 

(iii) If X = i B ,  where B is an atomic formula, the result holds because we have shown 

equivalences in (i) and (ii). 

(iv) If X is of the form (B A C), then M X[a 0x1 implies that 

M + ~ [ a o h ]  and M + ~ [ a o ? E ] .  

By the induct ion hypothesis, 

'FI+B[a] and 3-t+C[a], 

that is, 'FI + X[a]. 

(v) If X is of the form (B V C),  then the proof is similar to case (iv). 
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(vi) X is of the form 3xB. This case is not possible since X does not contain existential 

quantifiers. 

(vii) X is of the form Vx B. If M X [a o h], then for every rn E M, 

M /= B[(a o'jl)[x := m]]. 

(Given an assignment a, the notation a[x := m] denotes the assignment a' such that at(x) = 

rn, and at(y ) = a(y ) for all y # x). Now, since h : 3-1 + M ,  for every 'i E H, h(7) E M, and 

so, for every 7 E H, 

M + B[(a o h)[x := h(t)]], that is, M + B[(a[z := t])  oh] 

- 
By the induction hypothesis, 3-1 + B[a[x := t]] for all ? E H, that is, 3-1 + X[a]. This 

concludes the proof of the claim. 

From the claim, since M is a model of A, we have shown that 'H is a model of A. CJ 

It is clear that lemma 15.2 also holds for sets of universal sentences in nnf. Finally, 

we prove the Skolem-Herbrand-Godel theorem. 

Theorem 5.2 Given a universal sentence A in nnf, A is unsatisfiable iff some c-instance C 

of A is unsatisfiable. 

Proof: First, assume that some compound instance C is unsatisfiable. It is straightforward 

to show that + A > C (see Gallier [17], theorem 7.6.1). Hence, A is unsatisfiable. 

To establish the converse, we prove its contrapositive: If every c-instance of A is 

satisfiable, then A is satisfiable. 

Since every c-instance of A is satisfiable, by lemma 15.1, the set of all c-instance of 

A is satisfiable. By lemma 15.2 (extended to sets of sentences), the set of all c-instances is 

valid in some structure 3-1 whose domain is the quotient of the Herbrand universe HT by 

some congruence E. We prove by induction on the structure of A that A is valid in 'FI. 

Case 1: A is a literal. Then, A is the only c-instance of A, and the result holds since 

'H is a model of all c-instances of A. 

Case 2: A = (B A C). Let K be a c-instance of B,  and L be a c-instance of C. 

Then, (I< A L) is a c-instance of A. Since 3-1 is a model of all c-instances of A, we have 

'H i= (I< A L), that is, since Ii' and L are ground formulae, 'H K and 3-1 i== L. By the 

induction hypothesis, 'H + B and 3-1 + C ,  which, since A is a sentence, implies that 3-1 /= A. 

Case 3: A = (B V C). We claim that either 7-1 is a model of all c-instances of B, 

or that 'H is a model of all c-instances of C. Indeed, if this was not the case, there would 
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be some c-instance Ii' of B and some c-instance L of C such that 3-1 B and 7-i &C. C. 

However, since (I{ V L) is a c-instance of A, we would have 3-1 (K V L), contradicting the 

fact that 'FI is a model of all c-instances of A. Thus, by the induction hypothesis, either 

3-1 B or 7-i t= C, which, since A is a sentence, implies that 7-i A. 

Case 4: A = VxB. Let t be any (ground) term in H T .  Every c-instance of B[t/x] 

is a c-instance of A, and since 3-1 is a model of every c-instance of A, by the induction 

hypothesis, we have 3-1 /= B[t/x]. However, in the proof of lemma 15.2, we have shown: 

Fact: For every atomic formula B (including the case of an equation) with free vari- 

ables {xl , .  . . , xn ) ,  for every n-tuple, G, . . . 
- 

3-1 B K , .  . . , t,] iff 3-1 /= B[ t l /x l , .  . . , t,/xn]. 

By a straightforward induction on formulae almost identical to the proof of the claim in 

lemma 15.2, we can generalize the above fact to any universal formula B in nnf. But then, 

3-1 + B[t/x] iff 3-1 BE], where @] denotes any assignment s[x := 71 such that s(x) = 7. 
Hence, for every 7 E HT, we have 3-1 /= BP], and by the semantics of quantifiers, this means 

that 3-1 + VxB. Therefore, 3-1 + A, as desired. 
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