
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

July 1992

Theorem Proving Using Equational Matings and Rigid E-Theorem Proving Using Equational Matings and Rigid E-

Unifications Unifications

Jean H. Gallier
University of Pennsylvania, jean@cis.upenn.edu

Paliath Narendran
State University of New York

Stan Raatz
Rutgers University

Wayne Snyder
Boston University

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation

Jean H. Gallier, Paliath Narendran, Stan Raatz, and Wayne Snyder, "Theorem Proving Using Equational

Matings and Rigid E-Unifications", . July 1992.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-88-15.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/625
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F625&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/625
mailto:repository@pobox.upenn.edu

Theorem Proving Using Equational Matings and Rigid E-Unifications Theorem Proving Using Equational Matings and Rigid E-Unifications

Abstract Abstract
In this paper, it is shown that the method of matings due to Andrews and Bibel can be extended to (first-
order) languages with equality. A decidable version of E-unification called rigid E-unification is introduced,
and it is shown that the method of equational matings remains complete when used in conjunction with
rigid E-unification. Checking that a family of mated sets is an equational mating is equivalent to the
following restricted kind of E-unification. Problem: Given →/E = {Ei | 1 ≤ i ≤ n} a family of n finite sets of

equations and S = {〈ui, vi〉 | 1 ≤ i ≤ n} a set of n pairs of terms, is there a substitution θ such that, treating

each set θ(Ei) as a set of ground equations (i.e. holding the variables in θ(Ei) "rigid"), θ(ui) and θ(vi) are

provably equal from θ(Ei) for i = 1, ... ,n?

Equivalently, is there a substitution θ such that θ(ui) and θ(vi) can be shown congruent from θ(Ei) by the

congruence closure method for i 1, ... , n?

A substitution θ solving the above problem is called a rigid →/E-unifier of S, and a pair (→/E, S) such that
S has some rigid →/E-unifier is called an equational premating. It is shown that deciding whether a pair
〈→/E, S〉 is an equational premating is an NP-complete problem.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-88-15.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/625

https://repository.upenn.edu/cis_reports/625

THEOREM PROVING USING EQUATIONAL MATINGS
AND RIGID E-UNIFICATION

Jean Gallierl, Paliath Narendran2, Stan Raatz3, and Wayne Snyder4

'Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19104

Department of Computer Science
State University of New York at Albany

Albany, NY 12222

3Department of Computer Science
Rutgers University

New Brunswick, N.J. 08901

4Computer Science Department, Room 280
Boston University

111 Cummington Street

Boston, MA 02215

July 21, 1992

This research was partially supported by the National Science Foundation under Grant

No. DCR-86-07156, and by ONR under Grant No. N00014-88-K-0593.

THEOREM PROVING USING EQUATIONAL MATINGS
AND RIGID E-UNIFICATION

Jean Gallierl, Paliat h Narendran2, Stan Raatz3, and Wayne Snyder4

Abstract: In this paper, it is shown that the method of matings due to An-

drews and Bibel can be extended to (first-order) languages with equality. A

decidable version of E-unification called rigid E -un i f ica t ion is introduced, and it

is shown that the method of equational matings remains complete when used in

conjunction with rigid E-unification. Checking that a family of mated sets is an

equational mating is equivalent to the following restricted kind of E-unification.

Problem: Given 2 = {Ei I 1 5 i 5 n} a family of n finite sets of

equations and S = {(u;, vi) I 1 _< i < n) a set of n pairs of terms, is

there a substitution 0 such that, treating each set O(Ei) as a set of ground

equations (i.e. holding the variables in O(Ei) "rigid"), 0(ui) and 0(vi) are

provably equal from O(Ei) for i = 1, . . . , n?

Equivalently, is there a substitution 0 such that O(ui) and O(vi) can be

shown congruent from O(Ei) by the congruence closure method for i =

1,. . . ,n?

A substitution B solving the above problem is called a rigid ,!?-unifier of

S , and a pair (E, S) such that S has some rigid i?-unifier is called an equational

p rema t ing . It is shown that deciding whether a pair (I?, S) is an equational

premat ing is an NP-complete problem.

THEOREM PROVING USING EQUATIONAL
MATINGS AND RIGID E-UNIFICATION

1 Introduction

In this paper, we show that the method of matings due to Andrews [I] and Bibel [7,

8, 9, 101 can be extended to (first-order) languages with equality, and prove that this

extension is both sound and complete.' A decidable version of E-unification called rigid

E-unification is introduced, and it is shown that the method of equational matings remains

complete when used in conjunction with rigid E-unification. The results of this paper

extend significantly those presented at LICS'87 [IS]. In [18], it is conjectured that rigid

E-unification is decidable. Subsequently, we have shown that rigid E-unification is NP-

complete (LICS'88 [20]), thus proving our conjecture. The main focus of this paper is the

method of equational matings, and we present a simplified version of the decidability of

rigid E-unification. Full details on the NP-completeness of rigid E-unification can be found

in [22].

At first glance, a generalization of the method of matings to first-order languages

with equality where equality is built-in in the sense of Plotkin [39] (thus, it is not the

naive method where explicit equality axioms are added which is rejected for well known

inefficiency reasons) requires general E-unification (Gallier and Snyder [21]). Hence, there

are two factors contributing to the undecidability of the method of matings for first-order

languages with equality: (1) the fact that one cannot predict how many disjuncts will occur

in a Herbrand expansion (which also holds for first-order languages without equality); (2)

the undecidability of the kind of unification required (E-unification).

In this paper, we show that the completeness of the method of equational matings

is preserved if unrestricted E-unification is replaced by rigid E-unification. We also prove

that rigid E-unification is decidable, which shows that the second undecidability factor can

be eliminated. The NP-completeness of rigid E-unification shows clearly how the presence

of equality influences the complexity of theorem proving methods. For languages without

equality, one can use standard unification whose time complexity is polynomial, and in fact

One of the referees has pointed out that Bibel's connection method appeared in print earlier than

Andrews's method of matings.

2 THEOREM PROVING USING EQUATIONAL MATINGS AND RIGID E - UNIFICATION

O (n) . For languages with equality, the unification required is NP-complete. When dealing

with a fixed equational theory for which a practically tractable or decidable unification

algorithm is known, we recognize that it is unclear whether our new method compares fa-

vorably with the method of matings using this specialized unification algorithm. It seems

unlikely that this question can be settled at the theoretical level, and since our method

has not yet been implemented, we are unable to make any claims of practicality. Never-

theless, it seems unquestionable that having a decidable unification procedure (preserving

completeness) represents significant progress.

The method of matings applies to formulae in negation normal form, and was intro-

duced with two motivations in mind: to avoid breaking a formula into parts, which can

result in loss of information about the global structure, and to avoid transforming it to

clausal form, which can result in an exponential increase in the number of literals due to

the repeated use of the distributive law (P V (Q A R)) r ((P V Q) A (P V R)). This method

is an incremental proof (or refutation) procedure that interleaves two steps: quantifier-

duplication steps, and search for matings. It is an analytic proof procedure in the sense of

Smullyan [40], and, even though Andrews did not present it in terms of Gentzen or Tableaux

systems [41,17,40], it can easily be presented in any of these formalisms. In fact, this is the

approach followed in Bibel and Schreiber [lo], and thoroughly investigated in Eder [14, 151.

Fitting's method of tableaux [16] is also close in spirit to matings.

The method of matings has been implemented at CMU in the system TPS designed

by Andrews and his collaborators [3]. A large number of nontrivial theorems have been

proved by the system TPS, and this system is also used as an effective teaching tool. Since

TPS uses a version of Huet's higher-order unification procedure [25, 263, it is capable of

performing higher-order reasoning. For example, the TPS system [3] can prove Cantor's

Theorem (that there is no surjection from a set to its powerset) without any assistance

(the higher-order unification procedure finds a term which corresponds to the diagonal set

{ a E A (a $! f (a)) used in the standard proof). Equality reasoning can be dealt with

indirectly by defining equality using second-order quantifiers (see subsection 5.4), but this

is very inefficient, and there are no other facilities in TPS to deal directly with equality.

The method of matings exploits the fundamental property given by the Skolem-

Herbrand-Godel theorem, [1,2,17]. In short, the unsatisfiability of a (universally) quan-

tified sentence can be reduced to the unsatisfiability of a quantifier-free formula, modulo

guessing a ground substitution. The crucial observation due to Andrews and Bibel is that a

quantifier-free formula (in nnf) is unsatisfiable iff certain sets of literals occurring in A (called

vertical paths) are unsatisfiable. Matings come up as a convenient method for checking that

vertical paths are unsatisfiable. Roughly speaking, a mating is a set of pairs of literals of

opposite signs (mated pairs) such that all these (unsigned) pairs are globally unified by

1 Introduction 3

some substitution. The importance of matings stems from the fact that a quantifier-free

formula A has a mating iff there is a ground substitution 6' such that $(A) is unsatisfiable.

The extension to equat iona l m a t i n g s is nontrivial, and requires proving a generaliza-

tion of Andrews's version of the Skolem-Herbrand-Godel theorem [I, 21. It also requires

extending the concept of a mating so that an equational mating is a set of sets of literals

(mated sets), where a mated set consists of several positive equations and a single negated

equation (rather than pairs of literals as in Andrews and Bibel's case), and a form of uni-

fication modulo equational theories (E-unification) first studied by Plotkin [39]. A related

extension is sketched (without proofs) in Bibel [9, Section V.3, pp. 234-2421. However,

Bibel's method and ours differ significantly. This is because standard unification is used in

Bibel's method, and so, it is usually necessary to include extra literals arising from instances

of the equality axioms to the mated sets. On the other hand, our method uses a form of

E-unification, and we n e v e r include any extra literals (arising from equality axioms) in our

mated sets. For a detailed comparison of our method with others, see subsection 5.4.

Checking that a family of mated sets is unsatisfiable, i.e. an equational mating, leads

to an interesting and nontrivial problem. This problem, which is central to this method, is

a restricted version of E-unification.

-,
Problem 1. Given E = {Ei 1 1 5 i < n) a family of n finite sets of equations and

S = {(ui, vi) I 1 < i < n) a set of n pairs of terms, is there a substitution 6' such that,

treating each set 6'(Ei) as a set of ground equations (i-e. holding the variables in 6'(Ei)

"rigid"), 6'(ui) and 6'(v;) are provably equal from 6'(E;) for i = 1 , . . . , n?

Equivalently, is there a substitution 6' such that 6'(ui) and 6'(vi) can be shown congruent

from 6'(Ei) by the congruence closure method for i = 1,. . . , n (Kozen [30,31], Nelson

and Oppen [36], Downey, Sethi, and Tarjan [13])?

A substitution 6' solving problem 1 is called a rigid 2 - u n i f i e r o f S , and a pair (2, S)

such that S has some rigid Eunifier is called an equat iona l p r e n a t i n g . It will be shown

in section 12 that deciding whether a pair (I?, S) is an equational premating is an NP-

complete problem. Since the problem of deciding whether a family of mated sets forms

an equational mating is equivalent to the problem of finding whether a pair (2, S) is an

equational premating, the former problem is also NP-complete. Actually, this result is an

easy extension of a simpler problem.

Problem 2. Given a finite set E = {ul -- v l , . . . , u, v,) of equations and a pair

(u,v) of terms, is there a substitution 6' such that, treating O(E) as a set of ground
*

equations, O(u) 6'(v), that is, B(u) and B(v) are congruent modulo O(E) (by

congruence closure)?

4 THEOREM PROVING USING EQUATIONAL M A TINGS A N D RIGID E - UNIFICATION

The substitution 8 is called a rigid E-unifier of u and v

Example 1.1 Let E = {fa = a, ggx f a) , and (u, v) = (gggx, a). Then, the substitu-

tion 8 = [ga/x] is a rigid E-unifier of u and v. Indeed, @(E) = {fa a, ggga = fa) , and
B(gggx) and 8(x) are congruent modulo 8(E), since

8 (999~) = SSSSa ---+ gf a using ggga = f a

--t ga = 8(x) using f a = a.

Note that 6 is not the only rigid E-unifier of u and v. For example, [g f a/x] or more generally

[g fka /x] is a rigid E-unifier of u and v. However, 8 is more general than all of these rigid

E-unifiers (in a sense to be made precise later). It will be shown in section 10 that there is

always a finite set of most general rigid E-unifiers called a complete set of rigid E-unifiers.

Note that any substitution 8 satisfying the above problem is an E-unifier of u and v.

However, the equations in E are used in a restricted fashion. Contrary to E-unification, in

which there is no bound on the number of instances of the equations in E used to show that

B(u) LE B(v), in our situation, only the m instances in O(E) can be used (any number of

times, m 5 n).

The solution to problem (2) is a significant extension of a result of Kozen, who has

shown that the problem is NP-complete when all equations in E are ground, [31]. We also

show that even when u, v are ground, and all equations in E except one regular equation

are ground, the problem is NP-complete.

Rigid E-unification is exciting because it eliminates one of the two aspects of unde-

cidability associated with the method of equational matings, namely, that of E-unification.

This is particularly important here, since even if E-unification is decidable for the set of

all equations occurring in a formula in nnf, it is necessary to consider subsets of this set of

equations, and the E-unification problem for any subset can be undecidable.

The paper is organized as follows. Section 2 reviews the main concepts used in this

paper. In section 3, the method of equational matings is presented informally by means

of examples. In section 4, the central concept of an equational mating is introduced, and

some important results about them are established. Section 5 is devoted to a version of

the Skolem-Herbrand-Godel theorem for first-order languages with equality (theorem 5.2).

In order to state this theorem, we need the notion of a compound instance (see Andrews

[I] and Bibel [7, 8, 91). The connection with equational matings is made via the notion

of amplification, and the completeness of the method is shown (theorem 5.5). It is also

shown that the method remains complete if outermost amplifications are performed, and

the section ends with a comparison with other methods. Sections 6 - 12 are devoted to

2 Preliminaries 5

rigid E-unification. Basic definitions about complete sets of rigid E-unifiers are given in

section 6. Minimal rigid E-unifiers are studied in section 7. A method for reducing a set

of ground rewrite rules is reviewed in section 8. The method for finding complete sets

of rigid E-unifiers is given in section 9. The soundness, completeness and decidability of

the method are shown in section 10. In section 11, it is shown that rigid E-unification is

NP-complete. The application of rigid E-unification to equational matings is presented in

section 12. A refutation procedure based on equational matings is presented in section 13.

Section 14 contains the conclusion, and section 15 contains an appendix with a semantic

proof of the Skolem-Herbrand-Gijdel theorem, in the line of Andrews's proof for the case

without equality.

Readers who want to find out quickly about the main results (provided some familiarity

with the matings/connections method) are advised to skim section 3, then jump to section

6, then to section 8, section 9, section 12, and finally section 13. Example 9.4 offers a simple

illustration of the new method.

2 Preliminaries

This section contains a brief review of the main concepts used in this paper. As much as

possible, we stick to the definitions used in the literature on the subject. More specifically,

we will follow Huet and Oppen [28], and Gallier [17]. The purpose of this section is mainly

to establish the terminology and the notation, and it can be omitted by readers familiar

with the literature. First, we review the basics of many-sorted languages.

Definition 2.1 A set S of sorts (or types) is any nonempty set. Typically, S consists of

types in a programming language (such as integer, real, boolean, character, etc.). An S-

ranked alphabet is a pair (C, p) consisting of a set C together with a function p : C -+ S* x S

assigning a rank (u, s) to each symbol f in C. The string u in S* is the arity of f and s is

the sort (or type) o f f . If u = sl . . . s,, (n > I), a symbol f of rank (u, s) is to be interpreted

as an operation taking arguments, the i-th argument being of type si and yielding a result

of type s. A symbol of rank (e, s) (when u is the empty string) is called a constant of sort

s. For simplicity, a ranked alphabet (C, p) is often denoted by C.

Next, we review the definition of tree domains and trees (or terms). Let N denote the

set of natural numbers, and N+ the set of positive natural numbers.

Definition 2.2 A tree domain D is a nonempty subset of strings in N; satisfying the

conditions:

(1) For all u,v E N;, if uv E D then u E D.

6 THEOREM PROVING USING EQUATIONAL MATINGS AND RIGID E- UNIFICATION

(2) For all u E N;, for every i E N+, if ui E D then, for every j , 15 j 5 i , u j ED.

For every n E N, let [n] = {1,2,. . . , n), and [O] = 0.

Definition 2.3 Given an S-sorted ranked alphabet C, a C-tree (o r t e r m) of sor t s is

any function t : D --+ C, where D is a tree domain denoted by dom(t), and t satisfies the

following conditions:

1) The root of t is labeled with a symbol t(e) in C of sort s.

2) For every node u E dom(t), if {i I ui E dom(t)) = [n], then if n > 0, for each ui,

i E [n], if t(ui) is a symbol of sort v,, then t(u) has rank (v, st) , with v = vl . . . v,, else

if n = 0, then t(u) has rank (e, s'), for some s' E S.

Given a tree t and some tree address u f dom(t), the subtree o f t rooted at u is the

tree t/u whose domain is the set {v I uv E dom(t)) and such that t/u(v) = t(uv) for all v

in dom(t/u).

Given two tree addresses a , p E dom(t) in a tree t , a is an ancestor of P iff a is a

prefix of ,B,2 and a is a proper ancestor of ,B iff it is an ancestor of ,B and o # P. Addresses

a and ,B are independent iff neither one is an ancestor of the other. The set of all finite

trees of sort s is denoted by T$, and the S-indexed family (T$)sES of all finite trees by TC.

In this paper, it is assumed that for every S-sorted alphabet C, there is a distinguished

sort boo! ES. Symbols of sort bool are called predicate symbols. Terms of sort bool will be

interpreted as logical formulae.

The operation of tree replacement (or tree substitution) will be needed.

Definition 2.4 Given two trees tl and t2 and a tree address u in t l , the result of replacing

tz at u in t l , denoted by tl[u t tz], is the function whose graph is the set of pairs

{(v, tl(v)) I v E dom(tl), u is not a prefix of v} U {(uv, t2(v)) I v E dom(t2)),

and it is only defined provided that the sort of the root of t2 is equal to the sort of tl(u).

Let X = (Xs)sES be an S-indexed family of countable sets of variables. We can form

the S-indexed family Tc(X) obtained by adjoining the S-indexed family (Xs)scS to the

S-indexed family of sets of constants in C. To prevent free algebras from having empty

carriers (so that the Herbrand-Skolem-Godel theorem holds), we assume that every sort is

nonvo id . We say that a sort s is nonvoid iff either there is some constant of sort s , or there

That is, P = a y , for some y E N;

2 Preliminaries 7

is some function symbol f of rank p(f) = (sl . . . s,, s) such that sl , . . . , s, are nonvoid.

Then, for every sort s, the set T i is nonempty, and it is well known that for every set X ,

Tc(X) is the free C-algebra generated by X (see Gallier, [17]). This allows us to define

substitutions.

Definition 2.5 Given a term t , the set of variables occurring in t is the set {x E X 1 3u E

dom(t), t(u) = x), and it is denoted by Var(t).

Definition 2.6 A substitution is any (S-sorted) function a : X -+ Tc(X), such that,

a (x) # x for only finitely many x E X. Since Tc(X) is the free C-algebra generated by

X , every substitution a : X -+ Tc(X) has a unique homomorphic extension S : Tc(X) -+

Tc(X). In the sequel, we will identify a and its homomorphic extension 5.

Definition 2.7 Given a substitution a, the support (or domain) of a is the set of variables

D(a) = {x I a(x) # x). The set of variables introduced by a is the set of variables I (a) =

u r E ~ (o) Var(a(x)). Given a substitution a, if its support is the set {xl , . . . , x,), and if
t i = a(xi), 1 < i < n, then a is also denoted by [t l /xl , . . . ,t,/x,]. Given a term (or

formula) r, we also denote a (r) as r [t l /xl , . . . , t,/x,].

Given a substitution a and a set W of variables, the restriction of a to W, denoted

by alw, is the substitution 0 defined such that, O(x) = a(x) for all x E W, and B(x) = x

for all x cj! W.

Definition 2.8 Given two substitutions a and 8, their composition is the substitution
h

denoted by a ; 0, such that, for every variable x, a ; O(x) = O(a(x)) (the composition of the

functions o and a.
A substitution a is idempotent if a ; a = a . It is easily seen that a is idempotent iff

D(u) n I (a) = 0.

We also quickly review formulae in negation normal form. For details, see Gallier [17].

Definition 2.9 An atomic formula is a term of the form either P t l . . . t,, where P is a

predicate symbol of rank (sl . . . s,, bool) and each ti is a term of sort s; (s ; # bool), or a

term of the form (tl 2 t2), where tl and t2 are terms of some identical sort s (s # bool).

An atomic formula of the form (t l t 2) is called an equation of sort s. It is assumed that

bool never occurs in the arity of any symbol. A literal is either an atomic formula or the

negation of an atomic formula.

Definition 2.10 Formulae in negation normal form (for short, formulae in nnf) are de-

fined inductively as follows. A formula A is in nnf iff either

8 THEOREM PROVING USING EQUATIONAL MATINGS A N D RIGID E - UNIFICA TION

(1) A is a literal, or

(2) A = (B V C), where B and C are in nnf, or

(3) A = (B A C), where B and C are in nnf, or

(4) A = VxB, where B is in nnf, or

(5) A = 3xB, where B is in nnf.

A quantifier-free formula in nnf is obtained by applying only clauses (1)-(3), and a

universal formula in nnf by applying only clauses (1)-(4).

Definition 2.11 Given a formula A (resp. a term t), the set of variables occurring free

in A (resp. t) is denoted by Var(A) (resp. Var(t)). A ground term t is a term such

that Var(t) = 8, and similarly a ground formula A is a quantifier-free formula such that

Var(A) = 8. A ground substitution a is a substitution such that a(x) is a ground term for

every variable x in the support of a .

Finally, we review some concepts related to term rewriting.

Definition 2.12 Let -+ be a binary relation ---+ C A x A on a set A. The transitive
+

closure of - is denoted by -+ and the reflexive and transitive closure of - by 5. The

converse (or inverse) of the relation ---+ is the relation denoted as --+-I or -, defined

such that u t- v iff v ---+ u. The symmetric closure of +, denoted by t-+, is the relation

---+ U +.

Definition 2.13 A relation + on a set A is Noetherian or well founded iff there are no

infinite sequences (ao , . . . , a,, an+1,. . .) of elements in A such that a, + a , + ~ for all n 2 0.3

Definition 2.14 A preorder 5 on a set A is a binary relation 5 5 A x A that is reflexive

and transitive. A partial order 5 on a set A is a preorder that is also antisymmetric. The

converse of a preorder (or partial order) 5 is denoted as k. A strict ordering (or strict

order) 4 on a set A is a transitive and irreflexive relation. Given a preorder (or partial

order) 5 on a set A, the strict ordering 4 associated with 1: is defined such that s 4 t iff

s 5 t and t s. Conversely, given a strict ordering 4, the partial ordering 5 associated

We warn the readers that this is not the usual way of defining a well founded relation in set theory,
as for example in Levy [32]. In set theory, the condition is stated in the form a,+l 4 a n for all
n 2 0 , where < = > - I . It is the dual of the condition we have used, but since < = > - I , the two
definitions are equivalent. When using well founded relations in the context of rewriting systems, we
are usually interested in the reduction relation and the fact that there are no infinite sequences
(a o , . . . , a n , a,+*, . . .) such that an a an+l for all n 2 0 . Thus, following other authors, including
Dershowitz, we adopt the dual of the standard set theoretic definition.

2 Preliminaries 9

with 4 is defined such that s Ij: t iff s 4 t or s = t. The converse of a strict ordering 4 is

denoted as >. Given a preorder (or partial order) 5, we say that 5 is well founded iff + is

well f ~ u n d e d . ~

Definition 2.15 Let ---+ be a binary relation ---+ C_ Tc(X) x Tc(X) on terms. The

relation -+ is monotonic iff for every two terms s , t and every function symbol f , if s -+ t

then f (. . . , s, . . .) ---, f (. . . , t , . . .). The relation ---+ is stable (under substitution) if s --+ t

implies a(s) ---+ a(t) for every substitution o.

Definition 2.16 A strict ordering 4 has the subterm property iff s + f (. . . , s, . . .) for

every term f (. . . , s, . . .) (since we are considering symbols having a fixed rank, the deletion

property is superfluous, as noted in Dershowitz [Ill). A simplification ordering 4 is a

strict ordering that is monotonic and has the subterm property. A reduction ordering 4

is a strict ordering that is monotonic, stable, and such that > is well founded. With a

slight abuse of language, we will also say that the converse + of a strict ordering 4 is a

simplification ordering (or a reduction ordering). It is shown in Dershowitz [ll] that there

are simplification orderings that are total on ground terms.

Definition 2.17 Let E C_ Tc(X) x Tc(X) be a binary relation on terms. We define the

relation t 3 ~ over TC(X) as the smallest symmetric, stable, and monotonic relation that

contains E. This relation is defined explicitly as follows: Given any two terms t l , t2 E

Tc(X), then tl t - + ~ t2 iff there is some variant5 (s, t) of a pair in E U E-l, some tree

address a in t l , and some substitution a , such that

t l / a = o (s) , and t 2 = t l [a t o (t)] .

(In this case, we say that o is a matching substitution of s onto t l / a . The term t l / a is called

a redex.) Note that the pair (s, t) is used as a two-way rewrite rule (that is, non-oriented).

In such a case, we denote the pair (s, t) as s t and call it an equation. When t l t-t~ t2,

we say that we have an equality step. It is well known that the reflexive and transitive

closure elf- tE of -E is the smallest stable congruence on Tc(X) containing E. When we

want to fully specify an equality step, we use the notation

Again, we caution our readers that in standard set theory it is < that is well founded! However, our
definition is equivalent to the standard set-theoretic definition of a well founded partial ordering.

In what follows we shall assume that before a pair (i.e., an equation) is used it has been renamed
apart from all variables in current use. This is essential to prevent clashes among the variables. Thus
we shall always state that a variant of an equation is being used.

10 THEOREM PROVING USING EQUATIONAL M A TINGS A N D RIGID E - UNIFICATION

(where some of the arguments may be omitted). A sequence of equality steps

is called a proof of u A E v .

Definition 2.18 Given a finite set E of equations (ground or not) and any two terms u,
*

v (ground or not), we use the notation u E E v to express the fact that, treating E as a set
*

of ground equations, u t-*-t~ v. Equivalently, u E E v iff u and v can be shown congruent

from E by congruence closure (Kozen [30,31], Nelson and Oppen [36], Downey, Sethi, and

Tarjan [13]) again, treating all variables as constants - they are considered rigid.

Definition 2.19 When a pair (s, t) E E is used as an oriented equation (from left to

right), we call it a rule and denote it as s -t t. The reduction relation - - - t~ is the smallest

stable and monotonic relation that contains E. We can define tl * E t2 explicitly as in

definition 2.17, the only difference being that (s, t) is a variant of a pair in E (and not in

E U E-l). When t l -E t2, we say that t l rewrites to t2, or that we have a rewrite step.

When we want to fully specify a rewrite step, we use the notation

(where some of the arguments may be omitted).

When Var(r) Var(l), then a rule 1 t r is called a rewrite rule; a set of such rules

is called a rewrite system. A degenerate equation is an equation of the form x t , where

x is a variable and x 6 Var(t), and a nondegenerate equation is an equation that is not

degenerate.

Definition 2.20 Let ---t & Tc(X) x Tc(X) be a binary relation on Tc(X). We say that

-+ is Church Rosser iff for all t l , t 2 E Tc(X), if t l A t2 , then there is some t3 E Tc(X)

such that t l A t 3 and t 2 A t 3 . We say that + is confluent iff for all t , t l , t 2 E Tc(X), if

t A t l and t 2 t 2 , then there is some tg E T c (X) such that t l A t 3 and t 2 5 t 3 . A term

s is irreducible w.r.t. --+ iff there is no term t such that s --+ t.

It is well known that a relation is confluent iff it is Church Rosser [27]. We say that a

rewrite system R is Noetherian, Church Rosser, or confluent, iff the relation -+R associated

with R given in definition 2.19 has the corresponding property. We say that R is canonical

iff it is Noetherian and confluent.

3 Review of the Method 11

3 Review of the Method

In this section, we present the method of equational matings informally. Given a rectified6

universal sentence A. in nnf, the method works in an incremental fashion as follows. The

formula A. will evolve in steps called quant.ifie~ duplication steps, and we denote this evolv-

ing formula by A. We will also need to refer to the quantifier-free formula Â obtained from

A by deleting the quantifiers, called an amplification of Ao.

Initially, A := Ao.

Step 1: Construct a set vp(A^) of sets of literals called vertical paths, associated with

Â . The set vp(A^) is defined inductively as follows:

If Â is a literal, then vp(i) = {{(A};

If Â = (B A C), then vp(A^) = {iil U 712 / rrl E vp(B),az E vp(C)};
A

If Â = (B V C), then vp(A) = vp(B) U vp(C).

Step 2: Find whether there is a substitution a such that for every vertical path

ri E vp(x), o(s) is unsatisfiable. If step 2 succeeds, go to step 4. Otherwise, go to step 3.

Step 3: Choose some universal subformula VxB of the current A, and replace it by

(VxB A VxB). Then, rectify variables in this new formula, obtaining A'. Let A := A'. This

step is called a quantifier duplication step. Go back to step 1.

Step 4: Stop, A. is unsatisfiable (and so are Â and A).

If A. is unsatisfiable, this procedure will stop after a finite number of quantifier dupli-

cation steps when it succeeds in finding some substitution closing all vertical paths in step

2. Roughly speaking, a set consisting of certain subsets of vertical paths, such that these

subsets are unsatisfiable under some substitution and span all vertical paths, is called an

equational mating. The heart of the method of matings is to find such equational matings.

The difficult step in the presence of equality is step 2. What is difficult is not to check

that a substitution closes all vertical paths - this can be done using the congruence closure

algorithm - but to determine whether such a substitution exists at all. This problem is

indeed decidable, but NP-complete. For languages without equality, the checking is reduced

to the existence of a standard unifier, which is easy. Unfortunately, whether or not equality

is present, the number of vertical paths to be checked may be exponential. The following

example illustrates the method.

A formula A is rectified iff no variable occurs both free and bound in A, and distinct occurrences
of quantifiers bind distinct variables. It is well known that every formula is equivalent to a rectified
formula. It is also well known that for every formula A, one can construct a universal formula B, a
Sko lem f o r m of A, such that A is unsatisfiable iff B is unsatisfiable (see Gallier [17]).

12 THEOREM PROVING USING EQUATIONAL MATINGS AND RIGID E-UNIFICATION

Example 3.1 Let

There are 2 vertical paths

{ (x 2 A x j , p a 3 , 1 P a)

and

{ (x 2 = x) , pb2 , l P b }

depicted as follows:

It is clear that there is no substitution that closes both paths. However, the substi-

tution [a /%] closes the first path, and the substitution [b / x] closes the second path. Hence,

we perform an amplification step. We obtain

There are 2 vertical paths

{ (x ; x l) , (x i ~ 2) , p a 3 , ? P a }

and

{ (x ; - X I) , (x i - x2) , pb2? 1 P b)

depicted as follows:

4 Equational Matings 13

This time, it is easy to see that the substitution o = [a/xl, b/x2] closes both vertical paths,

using the fact that Pa3 rewrites to Pa in two steps using the equation a2 = a , and that

P b 2 rewrites to P b in one step using the equation b2 = b. Hence, A is unsatisfiable.

It should be noted that our method does not require the inclusion of extra literals

corresponding to instances of equational axioms during the amplification process, contrary

to Bibel's method [9]. In this sense, equality is "built in". In the following sections, we

shall define the method precisely and prove its completeness rigorously.

4 Equational Matings

In order to generalize matings to equational languages, it is necessary to consider sets of

literals rather than pairs, as in Andrews and Bibel's case. Let us first consider the case of

quantifier-free formulae in negation normal form. The general case will be lifted from the

quantifier-free case via the Skolem-Herbrand-Godel theorem, and using rigid E-unification.

Let A be a quantifier-free formula, and let {x l , . . . , x,) be the set of variables occurring

in A. The universal closure of A is the sentence Vxl . . . Vx,A. It is also denoted as VA.

Testing the unsatisfiability of a quantifier-free formula A is much easier than testing the

unsatisfiability of its universal closure VA. In the former case, the congruence closure

method gives a decision procedure, whereas in the latter case, unsatisfiability is undecidable.

The crucial observation due to Andrews and Bibel is that a quantifier-free formula in

nnf is satisfiable iff some conjunction of literals occurring in A is satisfiable [I, 7, 8, 91.

Definition 4.1 Given a quantifier-free formula A in nnf, the set vp(A) of vertical paths

in A is the set of sets of literals defined inductively as follows:

If A is a literal, then vp(A) = { { A)) ;

If A = (B A C), then vp(A) = {nl U 7r2 I nl E vp(B),nz E vp(C));

If A = (B V C), then vp(A) = vp(B) U vp(C).

Let us say that a vertical path n is satisfiable iff the conjunction of the literals in n is

satisfiable. The following simple lemma shows the crucial role played by vertical paths.

Lemma 4.2 Given a quantifier-free formula A in nnf, A is unsatisfiable iff every vertical

path in A is unsatisfiable.

Proof: Straightforward induct ion on the structure of A.

14 THEOREM PROVING USING EQUATIONAL MATINGS AND RIGID E - UNIFICATION

A criterion for the unsatisfiability of a conjunction of literals based on the concept of

congruence closure is known. In order to explain this criterion, it is convenient to represent

every atomic formula as an equation. This can be done by adding to our language (which

already contains the special sort bool) the constant T of sort bool, interpreted as true. Then,

every atomic formula P t l . . . t, of sort bool can be expressed as the equation (P t l . . . t, = T).

Hence, we can assume that all atomic formulae are equations. The notations P t l . . . t, and

(P t l . . . t, = T) will be used interchangeably for atomic formulae of sort bool.

Given a vertical path T, let us arrange the literals in T by grouping positive and

negative literals together, to form a conjunction C, of the form

*
Let g.y be the congruence closure ([30,31,36]) on the graph G(C,) of the relation

The following result is well known (see [30,36], or [17]).

*
Lemma 4.3 n is unsatisfiable iff for some j , 1 5 j 5 n, s> rE tJ.

The concept of an E-unifier will be needed later.

Definition 4.4 Let E be a finite set of (universally quantified) equations. Given two

terms u and v , we say that a substitution o is a unifier of u and v modulo E, for short, an

E-unifier of u and v, iff a(u) AE a(v).

The definition of an equational mating is motivated by lemma 4.3, the Skolem-

Herbrand-Godel theorem (theorem 5.2), and lemma 5.4. Indeed, combining theorem 5.2

and lemma 5.4, we have that a universal sentence A in nnf is unsatisfiable iff there is some

quantifier-free formula D (an amplification of A) and some substitution a such that a (D) is

unsatisfiable. The concept of an equational mating is designed so that we have a criterion

expressed in terms of vertical paths for testing whether given a quantifier-free formula D,

there is some substitution a such that a(D) is unsatisfiable (see lemma 4.6).

Definition 4.5 Let A be a quantifier-free formula in nnf. An equational mating M for

A is a pair (MS, a) , where M S is a set of sets of literals called mated sets and a is a

substitution, such that, each mated set is a subset of some vertical path T E vp(A) and is

of the form

{(sl = t]), . . . ,(s, i t,), T(S = t)) G 7r)

4 Equational Matings 15

where m 2 0,7 and, for every mated set {(sl = t l) , . . . , (s, = t,), ~ (s = t)} E MS, the

set of literals {a(sl = t l) , . . . , a(s, -- t,), l a (s = t)) is unsatisfiable. The substitution

associated with the mating M is also denoted as OM. We also commit a slight abuse of

language (and notation) and say that a mated set belongs to M.

An equational mating M is a refutation mating iff aM(A) is unsatisfiable.

An equational mating M is path acceptablea (for short, p-acceptable), iff, for every

path n E v p (A) , there is some mated set {(sl tl), . . . ,(s, A t,), ~ (s t)} E M, such

that

{(sl -- t l) , . . . , (s, -- t,), 1(s --' t)) C 7r.

A number of remarks are in order:

(1) Given the substitution a , the mating condition can be tested using the congruence

closure method. As mentioned in the introduction, it is decidable whether a mating

substitution exists, but this is an NP-complete problem.

(2) Given a family M S of mated sets, let I? = (Es)SeMs be the family of sets of equations

of the form Es = {(sl = t l) , . . . , (s, t,)) and S = {(s , t) I S E M S) the set of

pairs where Es and (s, t) are associated with the mated sets S = {(sl = tl), . . . , (s , =

t,), ~ (s = t)) E MS. Observe that M = (MS,a) is a mating iff a is a solution of

problem 1 (discussed in the introduction) for (I?, S), iff (2, S) is an equational pre-

mating. This key observation will be used in searching for the substitutions associated

with matings. They are the rigid 2-unifiers of S.

(3) It is obviously desirable to choose p-acceptable matings as small as possible. One can

define a preorder on matings as follows. Given two matings M I and M2, MI 5 M2

iff for every mated set S1 E M 1, there is some mated set S2 E M 2 , such that, S1 E S2.

A mating M is minimal iff it is minimal with respect to the preorder 5, that is, for

any mating MI, if M' C M, then M' = M. It is obvious that if a p-acceptable

mating exists, then a minimal p-acceptable mating also exists, but it may be difficult

to find it efficiently. In order to find matings as small as possible, one can look for

overlapping vertical paths that are spanned by some common mated set. It should be

pointed out that there may be many incomparable matings that are all minimal. We

leave the problem of discovering strategies for finding minimal matings as a topic for

further research.

(4) If A does not contain equations, each mated set contains some atom which unifies with

the negated atom. Let P t l . . . t, be the negated atom in a mated set. Any mated

The case m = 0 is indeed possible when u(s) = a @) , i.e., when u is a unifier of s and t .

% path acceptable mating is also called a spanning mating by Miller [35].

16 THEOREM PROVING USING EQUATIONAL MA TINGS AND RIGID E- UNIFICATION

set for a formula without equational atoms is of the form {(Al = T) , . . . ,(Am =

T) , i (P t l . . . t, = T)), where Al, . . . ,Am are nonequational atoms. Since the set

{a(A1 1 T), . . . , a(Am T) , i a (P t l . . . t, T)} is unsatisfiable, there is some atom

Ai = Psl . . . s,, such that, a (P t l . . . t,) = a (P s l . . . s,). Hence, a is a unifier of

P t l . . . t, and P s l . . . s,.

Hence, when A does not contain equality, a mating can be defined as a set of pairs

(L, 1L') of literals of opposite signs, such that a(L) = a(L1), as in Andrews [I] and Bibel

(7, 8, 91. The following theorem is a straightforward generalization of a result of Andrews

[I] to languages with equality.

Lemma 4.6 Given a quantifier-free formula A in nnf, the following properties hold:

(1) Given a substitution 8, if 0(A) is unsatisfiable, then there is a p-acceptable mating M

for A.

(2) A p-acceptable mating M for A is a refutation mating for A, i.e. aM(A) is unsatisfi-

able.

Proof: (1) Assume that 6(A) is unsatisfiable. By lemma 4.2, every vertical path in vp(B(A))

is unsatisfiable. Note that every vertical path .rr' E vp(O(A)) is of the form 0(.rr), for some

vertical path .rr E vp(A). Since every path .rrl E vp(0(A)) is unsatisfiable, by lemma 4.3,

there is some subset {(si ti), . . . , (s; t',), ~ (s ' 1 t')} C T' of literals in .rr' which

is unsatisfiable. For every vertical path .rr E vp(A), since T' = B(n) is a vertical path in

vp(O(A)), we can choose a set of literals {(sl t l) , . . . , (s, A t,), i (s = t)} C_ T , such that,

is unsatisfiable. We form a mating M = (MS, 6) for A by choosing M S as the set of sets

of literals defined in (*). Clearly, M is a p-acceptable mating for A.

(2) Assume that M = (MS, a) is a p-acceptable mating for A. We prove that every

vertical path n' E vp(a(A)) is unsatisfiable. Indeed, every vertical path T' E vp(a(A)) is of

the form a(.rr), for some vertical path .rr E vp(A). Since M is p-acceptable, for every vertical

path .rr E vp(A), there is some mated set of literals {(sl t 1), . . . , (s, t,), ~ (s = t) } E

M, such that

{(sl - t l) , . . . , (s, - tm), 1 (s = t)) C T .

Since M is a mating, the set ST# = {a(sl = t l) , . . . , a(s, = t,), l a (s t)) is unsatisfiable.

Since S,I is a subset of the vertical path T' E vp(a(A)), T' is unsatisfiable. But then, by

lemma 4.2, a(A) is unsatisfiable, which establishes the fact that M is a refutation mating.

The previous lemma implies the following useful corollary.

4 Equational Matings 17

Corollary 4.7 Given a quantifier-free formula A in nnf, there is a substitution 0 such

that $(A) is unsatisfiable iff there is a p-acceptable mating M for A.

Let us give an example illustrating the use of the previous lemma.

Example 4.8 Consider the following Horn formula A, where x, y, z denote variables:

(a = b) A

((f3x A x) V i (f x f b)) A

(Qa v l (f 3a - a))

((f5y Y) V ~ Q Y) A

(Ra V fa = a) V 7 P f a) A

There are 24 vertical paths in A. Let 0 = [a/x, a/y, a/z]. The substitution 0 closes all the

paths in @(A), which is easy to see for the 21 vertical paths containing the sets of literals

{(f3a = a) , i (f 3 a A a)) , {Qa, iQa) , and {(a = b) , i (f a = fb)). A p-acceptable mating

for A is given by 0 and the following set of 6 sets of literals:

{{(f3x = x), 7(f3a = a)) ,

{Qa, ~ Q Y) ,

{(a b), 7(f x A f b)) ,

Uf5Y A y) , (f3x A x) ,Ra ,1Rfz) ,

Kf5Y Y) , (f3x 2)) fa = a)),

Uf5Y A Y) , (f 3 x = x),P,,1Pfa)).

The above set is a mating because (fa a) is equationally provable from (f3a = a) and

(f5a A a). Indeed, (f3a A a) implies (f4a = fa) , which implies (f5a A f2a), which,

by transitivity, implies (f2a = a) . In turn, (f 2 a = a) implies (f3a 4 f a) , and by one

more application of transitivity, this implies (f a a). According to lemma 4.6, @(A) is

unsatisfiable. Since + VxVyVzA > 0(A), the universal closure VA of A is also unsatisfiable.

Unfortunately, in general, a universal sentence VA may be unsatisfiable, but there

may not be any substitution 0 such that @(A) is unsatisfiable (see example 3.1). However,

a version of the Skolem-Herbrand-Godel theorem for first-order languages with equality

ensures that some substitution instance of an amplzfication of A (a formula obtained from

A by duplicating some universal subformulae of A) is unsatisfiable. It is the notion of

amplification (see Andrews [I] and Bibel [7, 8, 9]), that will allow us to apply the method

of matings to arbitrary universal sentences in nnf.

18 THEOREM PROVING USING EQUATIONAL MATINGS AND RIGID E - UNIFICATION

5 A Skolem-Herbrand-Godel Theorem

First, we need the definition of a compound instance (see Andrews [I] and Bibel [7, 8, 91).

5.1 Compound Instances

From now on, it is assumed that we are dealing with rectified universal formulae in nnf.

The standard statement of the Skolem-Herbrand-GGdel theorem (as in Gallier [17]) says

that given a universal prenex sentence A = Vxl . . . Vx,B (where B is quantifier-free), A is

unsatisfiable iff there exist some ground substitutions a l , . . . , a k such that al (B)A. . .Aak(B)

is unsatisfiable.

It would be nice if we could relax the condition that A is in prenex form, and have

a statement referring to a single substitution. This can be achieved by introducing the

ingenious concepts of a compound instance and of an amplification (see Andrews [I] and

Bibel [7, 8, 91).

Definition 5.1 Let A be a rectified universal sentence in nnf (Every variable occurring in

A is universally quantified). The set of compound instances (for short, c-instances) of A is

defined inductively as follows:

(i) If A is either a ground atomic formula B or the negation 1 B of a ground atomic

formula, then A is its only c-instance;

(ii) If A is of the form (B * C), where * E {v, A) , for any c-instance H of B and

c-instance K of C, (H * K) is a c-instance of A;

(iii) If A is of the form V x B , for any k 2 1 ground terms t l , . . . , t k , if Hi is a c-instance

of B[ti/x] for i = 1, . . . , k, then H1 A . . . A Hk is a c-instance of A.

The importance of c-instances lies in the following version of the Skolem-Herbrand-

Godel theorem, which is a generalization of a theorem of Andrews to first-order languages

with equality [1],[2]. For stating this theorem, we assume (without loss of generality) that

there is a least one constant symbol in the language.

Theorem 5.2 (Skolem-Herbrand-Godel theorem) Given a universal sentence A in nnf

(with or without equality), A is unsatisfiable iff some c-instance C of A is unsatisfiable.

Proof: It is nontrivial. A proof is given in Gallier [17], theorem 7.6.1, page 364. Show-

ing that if some compound instance C is unsatisfiable implies that A is unsatisfiable is

straightforward, because it is easily shown that + A > C (Gallier [17], theorem 7.6.1). The

proof of the converse is much harder. In Gallier [17], this is derived proof-theoretically as a

5 A Skolem-Herbrand-Godel Theorem 19

consequence of a sharpened Gentzen-like Hauptsatz ([I 71, theorem 7.4.1, page 334, theorem

7.4.2, page 337, and lemma 7.6.2, page 360). For the sake of completeness, a semantic proof

in the line of Andrews's proof can be found in the appendix.

The connection between matings and compound instances is established through the

notion of amplification (see Andrews [I] and Bibel [7, 8, 91).

5.2 Amplifications and Compound Instances

Let A, B, C, and D be universal sentences in nnf.

Definition 5.3 We say that a sentence C is obtained from a sentence B by quanti f ier

duplicat ion iff C results from B by replacing some subformula of B of the form VxM by

(Vx M A VxM). If there is a sequence (C1, . . . , C,), n 2 1, of formulae, such that, B = C1,

C = C,, and Ci+l is obtained from Ci by quantifier duplication, for every i, 1 5 i < n, we

say that C is obtained from B by some sequence of quanti f ier duplicat ions.

If B is obtained from A by some sequence of quantifier duplications, C is a rectified

sentence equivalent to B , and D is obtained from C by deleting the quantifiers in C, we

say that D is an ampli f icat ion of A. The following result can be shown easily.

Lemma 5.4 Given a universal sentence A in nnf, C is a c-instance of A iff there is some

amplification D of A and some (ground) substitution 6' such that C = 6'(D).

P r o o f : The proof is by induction on the structure of A. The only case worth mentioning is

the case in which A = Vx B. In this case, there are k ground terms t 1, . . . , tk and k formulae

H I , . . . , Hk , such that, each Hi is a c-instance of B [ti / X I , and C = H1 A . . . A Hk . By the

induction hypothesis, for each i , 1 5 i 5 k , there is some amplification Di of B[ti/x] and a

substitution Bi, such that, Hi = Bi(Di). It can also be assumed (using renaming) that the

sets of variables occurring in these amplifications are disjoint. It is not difficult to show by

induction on the length of a quantifier duplication sequence that for each B[ti/x] and Di ,

there is some renamed copy Bi of B , some amplification D: of Bi, and a substitution ai,

such that, Hi = Bi(ai(D:)) (ai is a substitution that substitutes ti for renamed occurrences

of x). It can also be assumed (using renaming) that the sets of variables occurring in these

amplifications are disjoint. Then, note that D = Di A . . . A DL is an amplification of A

that can be obtained by first applying k quantifier duplications, obtaining VxB A . . . A VxB

(with k copies of VxB), and then by amplifying each copy of VxB to Dl. Furthermore, the

substitution 6' = a1 ; O1 ; . . . ; a k ; Ok is such that C = 6'(D).

We can now state one of the main theorems of this paper

20 THEOREM PROVING USING EQUATIONAL MA TINGS AND RIGID E- UNIFICATION

Theorem 5.5 Given a universal sentence A in nnf, A is unsatisfiable iff some amplification

of A has a p-acceptable mating.

Proof: First, assume that some amplification D of A has a pacceptable mating M . Let

B be obtained by some sequence of quantifier duplications from A, C the rectified formula

equivalent to B, and D the result of deleting quantifiers from C. Let Vx . . . , Vx, be the

quantifiers of C, in the left-to-right order in which they occur in C. It is easy to show that

+ A - B, + B E C, + C ~ V X l . . .Vx,D, and +Vxl . . . Vx,D > aM(D). Since M is a

p-acceptable mating, by lemma 4.6, it is a refutation mating, and so aM (D) is unsatisfiable.

Hence, A is also unsatisfiable.

Now, suppose that A is unsatisfiable. By the Skolem-Herbrand-Godel theorem (the-

orem 5.2), there is some c-instance C of A which is unsatisfiable. By lemma 5.4, there is

some amplification D of A and a substitution 8 such that C = 8(D). By lemma 4.6, since

8(D) is unsatisfiable and D is quantifier free, there is some p-acceptable mating M for D.

The following example illustrates theorem 5.5.

Example 5.6 Let A be the following (equational) sentence:

VxQyVz(*(x, *(!I, z)) A *(*(x, Y), z))) A

Vu(*(u, 1) = u) A

Vv(*(l, v) 2 v) A

Vw(*(w, W) = 1) A

l (*(a , b) *(b , a)).

The first three equations are the axioms for monoids (a binary operation * which is asso-

ciative and has an identity element I), the fourth equation asserts that the square of every

element is the identity, and the fifth asserts the negation of the commutativity of * (A is

the result of a Skolemization). The unsatisfiability of A asserts that any monoid such that

the square of every element is the identity is commutative.

Consider the following amplification D of A in the left column and the set MS con-

5 A Skolem-Herbrand-GiideI Theorem 21

sisting of one set of literals in the right column:

D = (* (u l , 1) = u l) Ms = { { (* (u I , I) A U I) ,

A (* (~ l , ~ l) = 1) (*(w1, w1) = 11,

A (* (X I , * (Y I 7 21)) A * (* (X I , Y l) , Z l))) (* (X I , * (~ 1 , 2 1)) = * (* (X I 7 Y l) , 21)I),
,I (* (~ 2 , * (~ 2 , ~ 2)) = * (* (~ 2 , ~ 2) , ~ 2))) (* (~ 2 , * (~ 2 , ~ 2)) ZL * (* (~ 2 > ~ 2) , ~ 2))) ,

A (*(w2,w2) 1) (*(w2, w2) = I) ,

A (* (I , ~ 1) = v1) (* (I , v1) ~ l) ,

A (* (x3 , *(y3,23)) - *(*(53, ~ 3)) 23))) (*(x3, * (~ 3 , ~ 3)) *(*(x3, ~ 3 1 , z3))) ,

A (*(x4 , * (Y 4 , 24)) = *(*(x4 , ~ 4) , 2 4))) (*(x4, *(!A, ~ 4)) - * (* (~ 4 , ~ 4) , z4))) ,

A (*(w3,w3) = 1) (*(w3, w3) 11,

A -(*(a, b) *(b , a)) . l (* (a , b) A * (b , a))) 1.

Let 9 be the substitution

We claim that (M S , 9) is a mating for D. For simplicity of notation let us adopt infix

notation, and denote * (s , t) as s * t . Then, we have:

a * b = { a * l) * b

= { a * [(a * b) * (a * b)]) * b

= { [a * (a * b)] * (a * b)) * b

= { [(a * a) * b] * (a * b)) * b

= { [I * b] * (a * b)) * b

= { b * (a * b)) * b

= b* { (a * b) * b)

= b* { a * (b * b))

= b* { a * 1)

= b * a ,

which shows that (MS, 0) is a p-acceptable mating for D (there is a single vertical path in

D). Note that equation (2) instantiated by the substitution [a / u l] is used twice.

Theorem 5.5 suggests a procedure for showing that a universal sentence in nnf is

unsatisfiable: Compute incrementally amplifications of D, and at each stage, test whether

such an amplification has a p-acceptable mating. Such a procedure is presented in a later

section.

22 THEOREM PROVING USING EQUATIONAL MATINGS AND RIGID E - UNIFICATION

5.3 Outermost Quantifier Duplication

Since the complexity of the search for an acceptable mating grows exponentially as the

number of occurrences of literals in the amplification D increases, it is important to keep

this number small.

A systematic scheme for duplicating quantifiers that guarantees completeness, is to

duplicate outermost quantifiers.

Definition 5.7 Given a universal formula A in nnf, a subformula occurrence V x B of A

is a maximal quantified subformula of A iff there is no quantified subformula occurrence

VyC of A, such that V x B is a proper subformula of VyC.g If V x B is a maximal quantified

subformula occurrence of A, the quantifier V x is called an outermost quantifier occurrence.

Lemma 5.8 Let A be a universal sentence in nnf. Then, A is unsatisfiable iff there is

a refutation mating for some amplification D of A, such that, in forming D from A, only

outermost quantifier duplications are performed.

Proof: It is enough to show that the Skolem-Herbrand-Godel theorem holds for c-instances

obtained as substitution instances of formulae obtained from A by outermost quantifier

duplications only. This can be shown in at least two ways. The first proof is already

essentially contained in the proof of lemma 7.6.2 of Gallier ([17], page 360). Indeed, this

lemma is obtained from theorem 7.4.1 (and theorem 7.4.2 [17], page 334, and page 337), a

Gentzen-like Hauptsatz for a proof system in which quantifier rules apply only to outermost

quantifiers (the system G2nnf, [17], page 327). One simply has to verify that the induction

in lemma 7.6.2 yields the right kind of c-instances, and this is straightforward. The other

proof is obtained by observing that the proofs of lemma 5 and theorem 2 in Andrews ([I],

page 208) go through unchanged, as they do not depend on the fact that the language does

not contain equality.

Hence, in searching for a mating, there is no loss of generality in duplicating outermost

quantifiers only. However, this is not always the best strategy, and it would be useful to

develop heuristics for duplicating quantifiers.

5.4 Comparison With Other Methods

An extension of the method of matings to first-order languages with equality is sketched

(without proofs) in Bibel [9, Section V.3, pp. 234-2421 (under the name connection method

with equality). Bibel's method uses mated sets similar to ours, except that they are dual to

For an inductive definition of this concept, see Gallier [17]

5 A Skolem-Herbrand-Godel Theorem 23

ours, since Bibel's method shows the validity rather than the unsatisfiability of a (Skolem-

ized) sentence. Hence, sets of literals are interpreted as disjunctions. A set of the form

{ 1 (~ 1 2 t l) , . . . , 1(sm = tm), (S + t)}

is called an eq-literal, and a set of the form

{ l (s l -- t l) , . . . , l (s m -- t,), l L , L')

where L and L' are nonequational atoms, is called an eq-connection. In our presentation, the

use of a many-sorted language with the special sort boo1 allows us to treat a nonequational

literal as the special equation L - T, and we only need the first kind of mated set, but this

is an inessential detail.

Bibel's method and ours differ significantly in the criterion used for testing the validity

(equivalently, unsatisfiability) of a mated set. Bibel defines an eq-literal to be valid iff there

is some substitution a such that a(s i) = a(t;) for all i, 1 < i < m, and a(s) = a(t).

An eq-connection is said to be complementary iff there is some substitution a such that

o(si) = a(ti) for all i, 1 < i 5 m, and a(L) = o(L1).

It should be noted that the notion of a substitution used by Bibel is highly non-

standard. Bibel [9, Section 111.1.6, page 661 defines a substitution a as a set of pairs

{sl / t l , . . . , s,/t,}, where each ti is a term to be substituted for si, but where si itself can

be a nonvariable term! Of course, substitutions are applied in a homomorphic fashion, but

with this definition, a substitution is not necessarily defined on all terms.

To be completely accurate, with Bibel's definition of a substitution, the substitution

a mentioned in the definition of a valid eq-literal is such that is consists of pairs of the form

s i l t i or t;/s;. Then, theorem V.3.6.C (page 237) states (in our language) that a formula

F is valid iff for some amplification D of F, there is a spanning set W of eq-literals and

eq-connections and some substitution a such that, for every eq-literal w E W, a(w) is valid,

and for every eq-connection w E W, a(w) is complementary.

This theorem does hold, provided that we allows eq-literals and eq-connections in the

set W to contain extra literals arising from instances of the equality axioms. Hence, Bibel's

method uses standard unification, but the mated sets may have to include extra literals

corresponding to instances of the equality axioms.

In our method, we require that there be some substitution a such that

{a(sl = t l) , . . . , a(sm 1 t,), l a (u 2 v))

24 THEOREM PROVING USING EQUATIONAL MA TINGS A N D RIGID E- UNIFICATION

is unsatisfiable, or equivalently, treating the equations in a (E) as ground equations, that

o(u) Am(E) ~ (v) holds. Hence, o is a special kind of E-unifier (a rigid E-unifier), but

there is n o need to include extra literals corresponding to instances of the equality axioms

to our mated sets. The following example should illustrate this point clearly. Consider the

eq-literal

i1(f3a = a), 1(f5a = a) , (fa = a)}.

It is valid, but yet, there is no substitution in the sense of Bibel demonstrating that it is

valid. The only way to show validity is to add additional equality axioms to show that

f a and a are congruent modulo the set of equations {(f3a - a) , (f5a = a)}. Hence, in

Bibel's method, this mated set would have to be expanded before it is shown to be valid.

In our method, it would be found valid immediately (actually, its negation would be found

unsatisfiable) .

Hence, Bibel's method and ours differ in the type of unification and the methods used

to check the validity (or unsatisfiability) of mated sets.

In Chapter 4 of his Ph.D dissertation, Pfenning [38] presents a method for dealing

with equality in a system of expansion proofs that involves matings. Pfenning's system

applies to higher-order logic, and equality is treated as a defined symbol ((A B) is an

abbrevation for VQ(Q(A) 3 Q(B)), where Q is a predicate variable). As pointed out by

Pfenning, it is theoretically possible to derive the mated sets arising in our method from

the mated sets used in his method via the translation mentioned above. In some sense, our

way of checking mated sets is an optimization of Pfenning's method restricted to the first-

order case. However, it does not seem possible to obtain the completeness of our method in

this fashion. Our method is also different in a more radical sense, which is that Pfenning's

method uses higher-order unification, whereas we use a special form of E-unification that

is decidable. This suggests that there may be a form of rigid higher-order unification, but

we have not explored this possibility.

6 Complete Se t s of Rigid E - Unifiers 25

6 Complete Sets of Rigid E-Unifiers

We have already noted in remark (2) after definition 4.5 that M = (MS, o) is an equational
-,

mating iff o is a rigid ,??-unifier of S, where E = (Es)scMs and S = {(s , t) I S E MS},

the family of sets of equations and the set of pairs associated with the mated sets S =

{(sl t l) , . . . , (s, -- t,), ~ (s t)) E MS. It is obviously crucial to show that there is

an algorithm for testing whether a family of mated sets forms a mating. From the above

observation, this is equivalent to deciding whether a pair (I?, S) is an equational premating.

In the following sections, it will be shown that this problem is NP-complete. Actually, this

result is an easy extension of a simpler problem, and we now focus on this problem.

Problem. Given a finite set E = {ul --' vl, . . . ,u, v,) of equations and a pair

(u, v) of terms, is there a substitution 8 such that, treating 6(E) as a set of ground
*

equations, 8(u) Z B (E) 6(v), that is, 8(u) and 6(v) are congruent modulo 8(E) (by

congruence closure)?

The substitution 8 is called a rigid E-unifier of u and v.

It is interesting to observe, as pointed out by Jean Yves Girard, that the notion of

rigid E-unification arises by bounding the resources, in this case, the number of available

instances of equations from E . To be precise, only a single instance of each equation in E

can be used, and in fact, these instances 6(ul vl), . . . , O(u, v,) must arise from the

same substitution 6. Also, once these instances have been created, the remaining variables

(if any) are considered rigid, that is, treated as constants, so that it is not possible to

instantiate these instances. This is in the spirit of linear logic [23]. The special case of rigid

E-unification where E is a set of ground equations has been investigated by Kozen who

has shown that this problem is NP-complete (Kozen, [30,31]). Thus, rigid E-unification is

NP-hard. We will show that it is also in NP, and hence it is NP-complete.

Suppose we want to find a rigid E-unifier 8 of u and v. Roughly, the idea is to use

a form of unfailing completion procedure (Knuth and Bendix [29], Huet [27], Bachmair

141, Bachmair, Dershowitz, and Plaisted [5], Bachmair, Dershowitz, and Hsiang [6]) . In

order to clarify the differences between our method and unfailing completion, especially for

readers unfamiliar with this method, we briefly describe the use of unfailing completion as

a refutation procedure. For more details, the reader is referred to Bachmair [4].

Let E be a set of equations, and + a reduction ordering total on ground terms. The

central concept is that of E being ground Church-Rosser w.r.t. +. The crucial observation

is that every ground instance o(1) o(r) of an equation 1 r E E is orientable w.r.t. +,
since 5 is total on ground terms. Let EF be the set of all instances o(1) A o (r) of equations

I A r E E U E-I with o(1) + a (r) (the set of orientable instances). We say that E is ground

26 THEOREM PROVING USING EQUATIONAL MATINGS A N D RIGID E-UNIFICATION

Church-Rosser W.T.~. 5 iff for every two ground terms u, v , if u AE v, then there is some

ground term w such that u 4 E+ w and w E> v. Such a proof is called a rewrite proof.

An unfailing completion procedure attempts to produce a set ECo equivalent to E and

such that Ew is ground Church-Rosser w.r.t. +. In other words, every ground equation

provable from E has a rewrite proof in Em. The main mechanism involved is the compu-

tation of critical pairs. Given two equations 11 = r l and l2 r2 where 12 is unifiable with a

subterm ll /,B of 11 which is not a variable, the pair (a(ll [,B t r2]), a (r l)) where a is a mgu

of E l / @ and l2 is a critical pair.

If we wish to use an unfailing completion procedure as a refutation procedure, we add

two new constants T and F and a new binary function symbol eq to our language. In order

to prove that E I- u = v for a ground equation u = v, we apply the unfailing completion

procedure to the set E U {eq(u, v) = F, eq(z, z) -- T) , where z is a new variable. It can be

shown that E t u = v iff the unfailing completion procedure generates the equation F = T.

Basically, given any proof of F - T, the unfailing completion procedure extends E until a

rewrite proof is obtained. It can be shown that unfailing completion is a complete refutation

procedure, but of course, it is not a decision procedure. It should also be noted that when

unfailing completion is used as a refutation procedure, Ew is actually never generated. It

is generated "by need", until F = T turns up.

We now come back to our situation. Without loss of generality, it can be assumed that

we have a rigid E-unifier 8 of T and F such that 8(E) is ground. In this case, equations

in B(E) are orientable instances. The crucial new idea is that in trying to obtain a rewrite

proof of F - T, we still con~pute critical pairs, but we never rename variables. If 12

is equal to l l /P, then we get a critical pair essentially by simplification. Otherwise, some

variable in ll or in l2 gets bound to a term not containing this variable. Thus the total

number of variables in E keeps decreasing. Therefore, after a polynomial number of steps

(in fact, the number of variables in E) we must stop or fail. So we get membership in NP.

Oversimplifying a bit, we can say that our method is a form of lazy unfailing completion

with no renaming of variables.

However, there are some significant departures from traditional Knuth-Bendix com-

pletion procedures, and this is for two reasons. The first reason is that we must ensure

termination of the method. The second is that we want to show that the problem is in NP,

and this forces us to be much more concerned about efficiency.

The proof that rigid E-unification is in N P requires quite a bit of machinery, and since

this paper is already long, we will focus on the algorithmic aspect of the result, leaving out

most proofs. Full details can be found in Gallier, Narendran, Plaisted, and Snyder [22].

6 Complete Sets of Rigid E-Unifiers 27

In order to show that our decision procedure is in NP, we will need the fact that if two

terms u and v are unifiable, a mgu of u and v can be represented concisely in triangular

form (the size of this system is linear in the number of symbols in u and v). This result can

be obtained from the fast method using multiequations of Martelli and Montanari [33] or

the fast method using the graph unification closure of Paterson and Wegman [37].

Definition 6.1 A term pair (or pair) is just a pair of two terms, denoted by (s, t) , and a

substitution 8 is called a unifier of a pair (s, t) if O(s) = 8(t). A term system (or system)

is a set of such pairs, and a substitution 8 is a unifier of a system if it unifies each pair.

A substitution a is an (idempotent) most general unifier, or mgu, of a system S iff (i)

D(a) C_ Var(S) and D(a) n I (a) = 0 (a is idempotent); (ii) a is a unifier of S; (iii) For

every unifier 8 of S, a < 8 (where a < 8 iff 6 = a ; q for some q).

Definition 6.2 Given an idempotent substitution a (i.e., D(a) n I(a) = 0) with domain

D(o) = {xl, . . . , xk}, a triangular form for a is a finite set T of pairs (x, t) where x E D(a)

and t is a term, such that this set T can be sorted (possibly in more than one way) into a

sequence ((xl , t), . . . , (x k , t k)) satisfying the following properties: for every i , 1 5 i 5 k,

(1) {xl, . . . , xi} n Var(t;) = 0, and

The set of variables {x l , . . . , xk} is called the domain of T. Note that in particular

xi @ Var(t;) for every i , 1 _< i _< k , but variables in the set {x;+l,. . . , xk} may occur in

t l , . . . , t i . It is easily seen that a is an (idempotent) mgu of the term system T.

Example 6.3 Consider the substitution a = [f (f ($3, x3), f (xj, x3))/x1, f (x3, x3)/x2].

The system T = {(xl , f (x2, z2)) , (2 2 , f (23, 23))) is a triangular form of a since it can

be 0Klered as ((X I ? f (~ 2 , a)) , (~ 2 , f (X J , 2 3))) and 0 = [f (~ 2 , x2)/x1]; [f (~ 3 , x3)/x2].

The triangular form T = {(xl, t l) , . . . , (xk , tk)) of a substitution a also defines a

substitution, namely 0~ = [t l /x l , . . . , tk/xk] . This substitution is usually different from a

and not idempotent as can be seen from example 6.3. However, this substitution plays a

crucial role in our decision ~rocedure because of the following property.

Lemma 6.4 Given a triangular form T = {(x 1, tl), . . . , (xk, t k)) for a substitution a and

the associated substitution OT = [t l /xl , . . . , tk /xk] , for every unifier 8 of T , 8 = a T ; 8.

An other important observation about 0~ is that even though it is usually not idem-

potent, at least one variable in {xl, . . . , xk} does not belong to I (aT) (otherwise, condition

(1) of the triangular form fails). We will assume that a procedure T U is available, which,

28 THEOREM PROVING USING EQUATIONAL MATINGS AND RIGID E- UNIFICATION

given any unifiable term system S, returns a triangular form for an idempotent mgu of

S, denoted by TU(S) . When S consists of a single pair (u,v), T U (S) is also denoted by

TU(u, v).

*
Recall that we write u E E v to express that u AE v, treating the equations in E as

ground equations.

Definition 6.5 Let E = {(sl = t l) , . . . , (s, = t,)} be a finite set of equations, and

let Var(E) = U(s;t)EE Var(s t) denote the set of variables occurring in E.1° Given a

substitution 8, we let 8(E) = {8(si t i) I si = ti E E, 8(si) # @(ti)}. Given any two

terms u and v,ll a substitution 8 is a rigid unifier of u and v modulo E (for short, a rigid

E-uni f ier of u and v) iff

*
8(u) 8(v), that is, 8(u) and 8(v) are congruent modulo the set 8(E) considered

as a set of ground equations.

Definition 6.6 Let E be a (finite) set of equations, and W a (finite) set of variables. For
*

any two substitutions a and 8, a =E 8[W] iff a (z) ZE 8(x) for every x E W. The relation

[rE is defined as follows. For any two substitutions a and 8, a L E 8[W] iff a =o(E) $[W].

The set W is omitted when W = X (where X is the set of variables), and similarly E is

omitted when E = 0.

Intuitively speaking, a lIE 8 iff a can be generated from 8 using the equations in B(E).

Clearly, C E is reflexive. However, it is not symmetric as shown by the following example.

Example 6.7 Let E = {fx x), a = [f alx] and 8 = [alz]. Then 8(E) = {fa a) and

o(x) = f a a = B(x), and so a LE 0. On the other hand a (E) = {f f a fa}, but a

and f a are not congruent from { f f a t fa) . Thus 8 [I E a does n o t hold.

It is not difficult to show that LE is also transitive. We also need an extension of [Z E

defined as follows.

Definition 6.8 Let E be a (finite) set of equations, and W a (finite) set of variables.

The relation S E is defined as follows: for any two substitutions a and 8, a S E 8[W] iff

a ; 77 [Z E $[W] for some substitution 77 (that is, a ; =@(El 8[W] for some 7) .

Intuitively speaking, a S E 8 iff a is more general than some substitution that can be

generated from 8 using 8(E). Clearly, S E is reflexive. The transitivity of LE is also shown

lo It is possible that equations have variables in common.

l1 It is possible that u and v have variables in common with the equations in E.

6 Complete Sets of Rigid E-Unifiers 29

easily. When a sE O[W], we say that o is (rigid) more general than 0 over W. It can be

shown that if a is a rigid E-unifier of u and v and a S E 0, then 0 is a rigid E-unifier of u

and v. The converse is false.

Definition 6.9 Given a (finite) set E of equations, for any two terms u and v, letting

V = Var(u) U Var(v) U Var(E), a set U of substitutions is a complete set of rigid E-unifiers

for u and v iff: For every a E U,

(i) D(a) C V and D(a) n I(a) = 0 (idempotence),

(ii) a is a rigid E-unifier of u and v ,

(iii) For every rigid E-unifier 0 of u and v, there is some a E U, such that, a IE 8[V].

It is very useful to observe that if a procedure P for finding sets of rigid E-unifiers

satisfies the property stated in definition 6.10 given next, then in order to show that this

procedure yields complete sets, there is no loss of generality in showing completeness with

respect to ground rigid E-unifiers whose domains contain V (that is, in clause (iii) of

definition 6.9, O(x) is a ground term for every x E D(O), and V C D(8)).

Definition 6.10 A procedure P for finding sets of rigid E-unifiers is pure iff the following

condition holds: For every ranked alphabet C, every finite set E of equations over Tc(X)

and every u, v E Tc (X), if U = P (E , u , v) is the set of rigid E-unifiers for u and v given by

procedure P, then for every a E U, for every x E D(a), every constant or function symbol

occurring in a (x) occurs either in some equation in E or in u or in v.

In other words, P(E, u, v) does not contain constant or function symbols that do not

already occur in the input (E, u, v). To prove what we claimed, we proceed as follows.

We add countably infinitely many new (distinct) constants c , to C, each constant c , being

associated with the variable x. The resulting alphabet is denoted by C s K . If 0 is not ground,

we create the Skolemized version of 0, that is, the substitution B^ obtained by replacing the

variables in the terms O(x) by new (distinct) constants.12

Lemma 6.11 Given a rigid E-unification procedure P satisfying the property of definition

6.10, assume that for every ranked alphabet C, every finite set E of equations over Tc(X)

and every u, v E Tc (X) , the set U = P(E, u, v) of rigid E-unifiers of u and v given by

P satisfies conditions (i) and (ii) of definition 6.9, and the new condition (iii'): for every

rigid E-unifier 0 of u and v such that V C D(0) and O(x) E Tc for every x E D(O), there

is some a E U such that a 5~ O[V] (where V = Var(E) U Var(u,v)). Then every set

U = P(E, u, v) is a complete set of rigid E-unifiers for u and v.

h

l 2 that is, 6 is obtained from 6 by replacing every variable y in each term 6(x) by the corresponding

Skolem constant cy, for each x E D (0) .

30 THEOREM PROVING USING EQUATIONAL MATINGS A N D RIGID E -UNIFICATION

7 Minimal Rigid E-Unifiers

One of the reasons for the decidability of rigid E-unification is that if a pair (u, v) has

some rigid E-unifier, then it has a rigid E-unifier that is minimal in a sense made precise

in the sequel. Given a finite or countably infinite ranked alphabet C, it is always possible

to define a total simplification ordering 5 on Tc (the set of all ground terms) [l l] . We

use the total simplification ordering 4 on Tc to define a well-founded partial order + on

ground substitutions. For this, it is assumed that the set of variables X is totally ordered

as X = (xl , xz, . . . , s,, . . .).

Definition 7.1 The partial order + is defined on ground substitutions as follows. Given

any two ground substitutions a and 8 such that D(a) = D(B), letting (yl . . . , y,) be the

sequence obtained by ordering the variables in D(a) according to their order in X , then

a + 8 iff

(~ (Y I) , . - . , o (~ n)) 5 1 e z (~ (Y I) , . * , 0(yn)),

where -ire, is the lexicographic ordering on tuples induced by 5.

Since 5 is well-founded and + is induced by the lexicographic ordering dl,, which is

well-founded, + is also well-founded. In fact, given any finite set V of variables, note that

+ is a total well-founded ordering for the set of ground substitutions with domain V

Given a set E of equations and a total simplification ordering 5 on ground terms, for

any ground substitution 8, we let 0(E) denote the set (B(1) -- O(r) 1 8(1) k 8(r), 2 r E

E U E-l) of oriented instances of E . Thus, we can also view 8(E) as a set of rewrite rules.

The reason for considering the well-founded ordering -+ on ground substitutions is

that minimal rigid E-unifiers exist. This is one of the reasons for the decidability of rigid

E-unification. The example below gives some motivation for the next definition and lemma.

Example 7.2 Let E = {fa = a , x - f a) , and (u, v) = (gx, x) . It is obvious that there is

a simplification ordering total on ground terms such that a 4 f 4 g (for instance, a recursive

path ordering, see Dershowitz Ill]). The main point of this example is the fact that some

rigid E-unifiers of gz and x are redundant, in the sense that they are subsumed by rigid

E-unifiers that are smaller w.r.t. S E . For instance, 0 = [g f 1°a/x] is a rigid E-unifier of gx

and x , but so is cr = [galz], and a CE 0.

An illustration of the redundancy of 0 is the fact that 8(z) = f ''a is reducible by

the rule f a -t a . The fact that some term 8(x) may be reducible by some oriented instance

8(1) -t 0(r) of an equation 1 r E E U E-' turns out to be a problem for the completeness

of the method. In order to avoid such redundancies, for every rigid E-unifier 0 of u and v,

7 Minimal Rigid E- Unifiers 31

we consider the set SE,,,,,g of all ground rigid E-unifiers p of u and v such that p C E 6.

The crucial fact is that the set SE,,,,,s has a smallest element a under the ordering U,

and that this least substitution is nicely reduced w.r.t. a (E) . Intuitively speaking, we find

the least ground rigid E-unifier a of u and v constructible from 6 and 6(E) (least w.r.t.

+). Referring back to 6 = [g flOa/x], the substitution a = [galx] is the smallest element of

SE,,,,,g. It is not sufficient to simply consider all ground substitutions p such that p E E 6,

because some of them may not be rigid E-unifiers of u and v. For instance, we have p CE 0

for p = [alx], but p is not a rigid E-unifier of ga and a since p(E) = {fa a). Thus, we

have to consider rigid E-unifiers of u and v such that p GE 6.

The least element a of the set SE,u,v,e enjoys some nice reduction properties w.r.t.

a (E) . These properties stated in the forthcoming lemma will be used in the proof that the

method is complete.

Definition 7.3 Let E be a set of equations (over T c (X)) and u , v E Tc(X) any two terms.

For any ground rigid E-unifier 6 of u and v, let

Obviously, 6 E SE,,,,,e, so SE,,,,,e is not empty. Since + is total and well-founded on

ground substitutions with domain D(6), the set SE,,,,,g contains some least element a

(w.r.t. +).

We shall now prove the following crucial result. For this, recall that a degenerate

equation is of the form x t , where x is a variable and x 4 Var(t), and that a nondegenerate

equation is an equation that is not degenerate.

Lemma 7.4 Let E be a set of equations (over Tc(X)) and u, v E Tc(X) any two terms.

For any ground rigid E-unifier 6 of u and v, if a is the least element of the set SE,,,,,e of

definition 7.3, then the following properties hold:

(1) every term of the form a(x) is irreducible by every oriented instance a(1) -+ a (r) of a

nondegenerate equation 1 A r E E U E-l, and

(2) every proper subterm of a term of the form a(x) is irreducible by every oriented

instance a(1) -+ a (r) of a degenerate equation 1 = r E E U E-l.

32 THEOREM PROVING USING EQUATIONAL MATZNGS AND RIGID E-UNIFICATION

8 The Reduction Procedure

One of the major components of the decision procedure for rigid E-unification is a proce-

dure for creating a reduced set of rewrite rules equivalent to a given (finite) set of ground

equations. This procedure first presented in Gallier et al. [19] runs in polynomial time.

However, due to the possibility that variables may occur in the equations, we have to make

some changes to this procedure. Roughly speaking, given a "guess" O (which we call an

order a s s i g n m e n t) of the ordering among all subterms of the terms in a set of equations El

we can run the reduction procedure R on E and O to produce a reduced rewrite system

R(E, 0) equivalent to E , and whose orientation is dictated by the ordering 0.

Definition 8.1 Given a set R of rewrite rules, we say that R i s rigid reduced iff

(1) No lefthand side of any rewrite rule 1 -+ r E R is reducible by any rewrite rule in

R - (1 --+ r) treated as a ground rule;

(2) No righthand side of any rewrite rule I -+ r E R is reducible by any rewrite rule in R

treated as a ground rule.

Definition 8.2 Given two sets E and E' of equations, we say that E and El are rigid
* *

equiva2ent iff for every two terms u and v, u E E v iff u gEf v (treating E and El as sets of

ground equations).

For technical reasons, it will be convenient to view the problem of rigid E-unification

as the problem of deciding whether two fixed constants are rigid E-unifiable. This can

be achieved as follows (the idea is borrowed from Dershowitz). Let eq be a new binary

function symbol not occurring in C, and T and F two new constants not occurring in C.

The following simple but useful lemma holds.

Lemma 8.3 Given a set E of equations and any two terms u and v , a substitution 6 over

Tc(X) is a rigid E-unifier of u and v iff there is some substitution 8' over Tc(X) such that

6' = ~ ' l D (e ~) - (z) and T Go'(Eu,u) F, where E,,, = E U {eq(u,v) = F, eq(z, z) - T), and r

is a new variable not in Var(E) U Var(u, v).

The total simplification ordering 5 can be extended to the set

For details, see [22]. We will need to show that in searching for rigid E-unifiers, it is always

possible to deal with sets of equations that are rigid reduced. The proof of this fact uses

the result shown elsewhere that every finite set E of ground equations is equivalent to a

8 The Reduction Procedure 33

reduced set R(E) of rewrite rules. We now review the procedure first presented in Gallier

et al. [I91 which, given a total simplification ordering 4 on ground terms and a finite set E

of ground equations returns a reduced rewrite system R(E) equivalent to E .

Definition 8.4 (Basic reduction procedure) Let E be a finite set of ground equations, and

4 a simplification ordering total on ground terms. The basic reduction procedure generates

a finite sequence of triples (Ei, II;, Ri) where Ei is a finite set of ground equations, Ili is

a partition (associated with Ei), and Ri is a set of ground rewrite rules. Given a triple

(Ei, IIi, Ri), we let be the set of all subterms of terms occurring in equations in Ei or in

rewrite rules in Ri. The procedure makes use of the congruence closure of a finite set of

ground equations (Kozen [30,31], Nelson and Oppen [36], Downey, Sethi, and Tarjan [13]).

Congruence closures are represented by their associated partition Il. Given an equivalence

relation represented by its partition 11, the equivalence class of t is denoted by [tin, or [t].

Recall that s, t are in the same equivalence class of II iff s and t are subterms of the terms

occurring in E and s AE t (for details, see Gallier [17]). The congruence closure algorithm

will only be run once on E to obtain IIo, but the partition IIi may change due to further

steps (simplification steps).

begin algorithm

Initially, we set Eo = E, Ro = 0, and run a congruence closure algorithm on the

ground set E to obtain ITo. i := 0;

while IIi has some nontrivial equivalence class13 do {Simplification steps)

Let pi+l be the smallest element14 of the set

of terms belonging to nontrivial classes in IIi.15 Let Ci+l be the nontrivial class that

contains pi+l, and write Ci+1 = {pi+l, . . , X ~ ~ l) , where ki+1 2 1, since Ci+1 is
k i + l nontrivial. Let Si+1 = {Xi+1 -+ p;+l,. . . , Xi+, + pi+l).

{Next, we use the rewrite rules in Si+1 to simplify the rewrite rules in Ri U Si+1, the

partition I I i , and the equations in Ei.)

To get Ritl, first, we get a canonical system equivalent to For this, for every

lefthand side X of a rule in replace every maximal redex of X of the form X j by

l3 that is, a class containing at least two elements, in which case Ei has a t least one nontrivial equation.

l4 in the ordering <
l 5 where ICJ denotes the cardinality of the set C

34 THEOREM PROVING USING EQUATIONAL MATINGS A N D RIGID E-UNIFICATION

p, where A j -+ p E Si+1 - {A -+ p).16 Let S:+, be the set of simplified rules. Also, let

R:+, be the set obtained by simplifying the lefthand sides of rules in Ri using Si+l

(reducing maximal redexes only), and let

Finally, use Si+t to simplify all terms in II; and li, using the simplification process

described earlier, to obtain II;+l and Ei+1.

i : = i + l

endw hile

{All classes of IIi are trivial, and the set R; is a canonical system equivalent to E.)

end algorithm

It is shown in [19] that the above procedure always terminates with a system R,

equivalent to E that is reduced (and hence, canonical).

However, in order to show later that our decision method is in NP, it turns out that

we need a sharpening of the above result. We need to show that given a set E of ground

equations, the term DAG associated with any equivalent reduced system R is of size no

greater than the size of the term DAG associated with E itself, and that the number of

rules in R is no greater than the number of equations in E. This is not at all obvious for our

algorithm, but fortunately true. To be more specific, the term DA G associated with a finite

set S of terms is the labeled directed graph whose set of nodes is the set of all subterms

occurring in terms in S , where every constant symbol c or variable x is a terminal node

labeled with c or x, and where every node f (tl , . . . , t k) is labeled with f and has exactly

the k nodes t l , . . . , t k as immediate successors. In the case of a set of equations (or rewrite

rules), the set of terms under consideration is the set of subterms occurring in lefthand or

rightand sides of equations (or rules). If a term DAG has m edges and n nodes, we define

its size as (m, n).

The quickest way to prove this sharper result is to appeal to two facts:

The first one is due to Metivier [34] and Dershowitz, Marcus, and Tarlecki (121 (in

fact, a direct proof is quite short).

Lemma 8.5 If R and R' are two equivalent reduced rewriting systems contained in some

reduction ordering >., then R = R'.

l6 By a maximal redex of A , we mean a redex of X that is not a proper subterm of any other redex of
A . The simplified term is irreducible w.r.t. SiS1, so these replacements are only done once, and they

can be done in parallel because they apply to independent subterms of A .

8 The Reduction Procedure 35

The second fact is that given a set E of p ground equations with term DAG of size

(m, n), a reduced equivalent system R of p' rules with term DAG of size (m', n') such that

m' 5 m, n' 5 n, and p' 2 p, is produced by a reduction process which is essentially just a

Knuth-Bendix procedure restricted to ground terms.

Definition 8.6 Let > be a reduction ordering total on ground terms. Let R be a multiset

of oriented pairs (s, t) which we may denote by s -+ t if s + t and s +- t if s 4 t.

Finally, let +R denote the rewriting relation induced by the non-trivial pairs. The first

transformation simply removes trivial pairs from R:

The second orients rules:

{S +- t) U R =+ {t --+ s) U R.

Next, if r --+R r', then

and finally, if 1 -+R I' , then

It should be noted that U denotes multiset union, which implies that when a trans-

formation is applied, the occurrence of the rule to which it is applied on the lefthand side

(for instance, s t t in (2)) no longer exists on the righthand side.

We now show that our reduction method always produces reduced systems whose

associated term DAG is no greater than the term DAG associated with the input.

Theorem 8.7 Let k be a simplification ordering total on ground terms. If E is a set

of p ground equations, R an equivalent reduced set of p1 ground rewrite rules contained

in >, and (m,n) and (ml,n') are the sizes of the term DAGs associated with E and R

respectively, then m' 5 m, n' < n, and p' 5 p.

Proof. We prove this by showing that every sequence of transformations issuing from E

must eventually terminate with the set R, and that the size inequality stated above holds.

Let

E = R o ==. R, ==. Rq * . . .
be any sequence of transformations starting with E and using the given ordering >. It

is tedious but not hard to show that the transformations produce equivalent sets of rules,

36 THEOREM PROVING USING EQUATIONAL MATINGS AND RIGID E- UNIFICATION

and we leave this to the reader. Similarly, it is not hard to show that any set which can

not be transformed must be a reduced set of rules contained in F , since otherwise some

transformation would apply. Now, by Lemma 8.5, if such a terminal set exists, it must be

unique, and so it will be identical with R. Thus, we next show that the relation =+- is

noetherian.

For any R, let p(R) = (M, k) , where M is the multiset of all terms occurring in pairs

in R and k is the number of pairs of the form s t t . Let the ordering associated with this

measure use the multiset extension of t for the first component and the standard ordering

on the natural numbers for the second. Clearly this ordering is well-founded, since + is.

But then, each transformation reduces the measure of the set of pairs, since (I), (3), and (4)

reduce M, and (2) reduces Ic without changing M. Thus any sequence of transformations

must eventually terminate in the set R.

Finally, for any transformation Ri ==+ Ri+l, note that the size of the current term

DAG cannot increase, since (1) deletes nodes and possibly edges, (2) does not change the

size, and (3) and (4) possibly decrease the number of nodes and preserve the number of

edges. As a matter of fact, these transformations can be implemented by moving pointers.

It is also obvious that each transformation either preserves or decreases the total number of

rules. Thus, the claim follows by induction on the length of the transformation sequence.

Another useful fact needed later is that the time complexity of the reduction procedure

is in fact bounded by O ((m + n + p) 3) , where (m, n) is the size of the term DAG associated

with the input E, and p is the number of equations in E .

Unfortunately, given a nonground set E of equations, the reduction procedure just

presented may not be applicable since some of the equivalence classes may contain terms

involving variables and the ordering 3 may no longer be total on such a partition. We need

to guess how terms containing variables compare to other terms in the partition in order to

reduce the equations. However, it is useful to observe that the reduction algorithm applies,

as long as at every stage of the algorithm, it is possible to determine the least element of

each nontrivial equivalence class and to sort these least elements. This observation shows

that in extending a simplification ordering 4 total on ground terms to terms containing

variables, it is sufficient to require this extension to have a least element in each nontrivial

equivalence class and to be total on the set of least elements of these classes. Definition

8.10 will make use of this fact.

The key to extending ground orderings is that if some ground rigid E-unifier 8 exists,

since the ordering 4 is total on ground terms, 8 induces a preorder on the terms occurring in

the congruence closure I3 of E. For example, if E = {fa = a, f a A x) , u = gx, v = x , and

8 The Reduction Procedure 37

6 = [ga/x], then 11 has a single nontrivial class {fa, a, x}, and considering the recursive path

ordering such that a 4 f 4 g (see Dershowitz [Ill), we have a 4 fa 4 ga = O(x). Hence, we

can extend 4 so that f a 4 x. This way, the equations can be oriented as fa t a, x t f a .

We shall define the concept of an order assignment in order to formalize the above

intuition. First, we define some relations induced by a ground substitution on a finite set

of terms.

Definition 8.8 Given a finite set S of terms, let ST(S) be the set of all subterms of terms

in S (including the terms in S). Let 5 be a total simplification ordering on ground terms,

and 0 a ground substitution such that Var(S) C D(0). The relations -0,s and sols on

ST(S) are defined as follows: For every u, v f ST(S),

and

u =O,S v iff 6(u) = 6(v).

When we have a partition II induced by the congruence closure of a finite set E

of equations treated as ground, S consists of the lefthand sides and righthand sides of

equations in E , and we denote as 5 0 , ~ and 20,s as -0,n. As the next example shows,

the equivalence relation r o , ~ may be nontrivial.

Example 8.9 Let E = {fx = fgy, fgy gy, hgz = gz), u = k(fx,gb), v = k(ga, hgb),

and 6 = [galx, a ly , blz]. The nontrivial equivalence classes of the congruence closure IJ of

E are {fx, fgy,gy), and {hgz,gz). Then, since O(x) = O(gy) = ga, we have x Fo,n gy

and f x Eo,n f gy. Thus, = ~ , n has two nontrivial equivalence classes {x, gy) and { f x, f gy).

Assuming that we have a total simplification ordering on ground terms such that a 4 b 4

f 4 g 4 h (for instance, a recursive path ordering, see Dershowitz [Il l) , we also have

The other pairs in 5e,n are obtained by reflexivity and transitivity from re,n and the above

pairs.

This time, it is not obvious how to orient the equation f x - fgy. This is because

8(fx) = 6(fgy). One might think that this is a problem, but it can be overcome. Observe

that since the ground equation 8(fx) A O(fgy) is trivial, it does not help in any way in

proving that 6(u) and 8(v) are congruent modulo O(E). In 1221, the problem was solved by

factoring out the preorder i B , n by the equivalence relation =e,n. It was also shown that as

38 THEOREM PROVING USING EQUATIONAL MATINGS AND RIGID E-UNIFICATION

far as the completeness of the method is concerned, we can restrict our attention to partial

orders rather than preorders. For the sake of simplicity, we present this solution, referring

the reader to [22] for a more complete solution.

The key point is that it is always possible to choose an orientation of the equa-

tions which is compatible with <o,n. For example, we can define the partial order do

on (2, y, z, f x , gy, gz, fgy, hgzl such that, 99 50 gz, gy 5s fgy, fgy 50 f x , and

gz 5s hgz (other pairs in 50 are obtained by transitivity and reflexivity). It is clear that

do C_ <@,=. With this orientation, the set E of example 8.9 is equivalent the following rigid

reduced set of rewrite rules: R = { f x 4 gy, fgy 4 gy, hgz -+ gz}.

The above discussion leads to the following definition that makes use of the fact noted

before definition 8.8.

Definition 8.10 Let 5 be a total simplification ordering on ground terms. Given a finite

set S of terms and a partition IT on ST(S), a partial order 0 on ST(S) (also denoted as

4s) - is an order assignment for iff the following properties hold:

(1) do has the subterm property and is monotonic on ST(S), that is, for all ul , . . . , u,,

vl, . . . , v, E ST(S), if ui vi for i = 1,. . . , n and f (ul , . . . , u,) and f (v l , . . . , v,) E

ST(S), then f (u l , - . , u n) 50 f (v ~ , . ,vn);

(2) The restriction of 50 to ground terms agrees with 5 (on ST(S)), every nontrivial

equivalence class C of II has a least element, and 50 is total on this set of least

elements.

Given a finite set E of equations, if II is the partition associated with the congruence

closure of E , by an order asszgnment for E we mean an order assignment for n.

The following lemma shows why order assignments can be chosen to be partial orders.

Lemma 8.11 Given a finite set S of terms and a partition 11 on ST(S), given any ground

substitution 8 such that V a r (I I) C_ D(8), there exists an order assignment 5s for II such

that 5s C and do is a total ordering.

Proof. For every nontrivial equivalence class C modulo ro ,n , we extend the simplifi-

cation ordering 4 as follows. Whenever such a class contains some variable, say C =

{ x l , . . . ,xk, t l , . . . ,tm) where X I , . . . ,xk are variables, we extend 4 to a relation 4' such

that X I 4 x 2 4' . . . - i lxk andxi 4' t j ,for a l l i , j , 15 i < k , 15 j < m. It is clearthat 3'
is a partial ordering contained in Now, we define 40 recursively as follows: u 40 v

iff either

8 The Reduction Procedure

(2) 0(u) = 0(v), and either

(2a) u is a variable and u 4' v, or

(2b) u = f (ul , . . . , u,), v = f (vl , . . . , V n) , and (ul , . . . , u,) +zz (vl , . . . , v,), where

+gX is the lexicographic extension of 4 0 .

We define 50 as the reflexive closure of 40, and we claim that do is a total ordering

which is an order assignment contained in 50,s The only problem is in showing that 50

is a total ordering, as the other conditions are then easily verified. To prove that 50 is

a total ordering, due to clause (1) of the definition of 40, it is enough to show that for

any two distinct elements u, v in some nontrivial class C modulo r e , n , either u 50 v or

v 50 u, but not both. Note that the set of classes modulo -8,n is totally ordered: C << C'

iff 0(C) 4 O(Ct), where 0(C) denotes the common value of all terms 0(t) where t E C. We

proceed by induction on this well-ordering of the classes. Clearly, the least class contains

some variable and at most one constant. But then, it is already totally ordered by 4'.

Given any other nontrivial class C, if u and v are both variables, we already know by (2a)

that either u -4 v or v 4' u, but not both. If u is a variable and v is not, by (2a) we

can only have u 4' v. If both u and v are not variables, then they must be of the form

u = f (u l , . . . , u n) and v = f (v l , . . . ,v,), since C is unified by 0. Since u # v , there is a

least i such that u; # v;, and since 0 unifies u and v, 0 unifies ui and vie But then, because

4 has the subterm property, u;, v; belong to some class Ci such that Ci << C. Therefore,

either u; do v; or v; do u ; , but not both, and thus by (2b), either u 50 v or v do u, but

not both.

In view of lemma 8.11, the following definition is justified.

Definition 8.12 Given a finite set of terms S, an order assignment for a partition IT

on ST(S) is realized by a ground substitution 0 such that Var(II) C D(0) iff do C 5e,n.

Given two order assignments O on a partition IT for ST(S) and 0' on a partition II'

for ST(St), we say that O and 0' are compatible iff they coincide on ST(S) n ST(S1).

Example 8.13 Let E = { f x = fgy, fgy = gy, hgz = gz), as in example 8.9. The non-

trivial equivalence classes of the congruence closure TI of E are { f x, f g y, y) , and { hgz, gz} .

Let O be the partial order on {x, y, z, f x , gy, g z , fgy, hgz) such that gy do gz,

gy so fgy, fgy ja f x , and gz do hgz (other pairs in are obtained by transitivity

and reflexivity). It is immediately verified that O is an order assignment realized by 0 =

[gals, a ly, biz], since 0 S 5 0 , ~ .

The next example arises from the problem of proving that every monoid such that

x . x = 1 (for all x) is commutative.

40 THEOREM PROVING USING EQUATIONAL MATINGS A N D RIGID E - UNIFICA TION

Example 8.14 Let E be the set of equations

5 3 ' (Y 3 ' 2 3) = (5 3 ' y 3) ' 2 3

x 4 ' (y 4 ' 2 4) -- (2 4 - 9 4) . Zq

W 3 . w 3 - 1

eq(a . b, b . a) F

e q (z , z) = T) .

The nontrivial equivalence classes of the congruence closure II of E are:

We define the order assignment 0 on I3 by the order in which the elements in each class of

TZ are listed, and for the least elements in these classes, the order in which the classes are

listed. All other pairs in 5o are determined by reflexivity and transitivity. It is easily seen

that there is a total simplification ordering on ground terms such that 1 4 a 4 b 4 ., and

one can verify that so is an order assignment, and that is realized by the substitution

We can now modify the procedure of definition 8.4 in order to accomodate variables.

9 A Method for Finding Complete Sets of Rigid E- Unifiers 41

Definition 8.15 (Reduction procedure R) Let 4 be a total simplification ordering on

ground terms. Let £ = Ex U {eq(u, v) F, eq(z, z) f T) be a finite set of equations, where

Ic is a set of equations over Tc(X), and u, v E Tc(X). Given any order assignment 0 on

I , the procedure R returns a rigid reduced rewrite system R(£, 0) . To form the system

R(£, 0) , since su is a simplification ordering such that every nontrivial equivalence class

of I2 has a least element and do is total on this set of least elements, we apply to £ and II

the procedure described in definition 8.4, except that at the end of every round, it may be

necessary to extend O since new terms may arise due to simplification. If at every round

an extension of O can be found so that the next step can be performed, R succeeds and

returns a rigid reduced rewrite system denoted as R(£, 0) . Otherwise, R returns failure.

It is useful to remark that since the reduction procedure deals with sets of equations

of the form £ = Ic U {eq(u,v) = F, eq(z, z) = T) , in the congruence closure II of El

the classes of T and F are always {eq(u, v) , F) and {eq(z, z), T). From the way we have

extended 5 to take care of T, F, and terms involving eq, it will be shown as a corollary

of theorem 10.2 that there is no loss of generality in choosing order assignments such that

T 5" F s So eq(u, v) for all s , u, v E T c (X) . We can show the following crucial result.

Lemma 8.16 Let E = Ec U {eq(u, v) F, eq(z, z) T} be a finite set of equations, where

Ex is a set of equations over Tc(X), u, v E Tc(X), and 4 a total simplification ordering on

ground terms. Given an order assignment O on E, if R does not fail, then R(£, 0) is rigid

equivalent to £.

We are now ready to define a procedure for finding rigid E-unifiers.

9 A Method for Finding Complete Sets of Rigid E-Unifiers

This method uses the reduction procedure of section 8 and a single transformation on certain

systems defined next. First, the following definition is needed.

Definition 9.1 Given a set E of equations and some equation I r , the set of equations

obtained from E by deleting 1 r and r A 1 from E is denoted by (E - { l r)) i . Formally,

welet (E - { l = r }) i = { u v 1 U = V E E , u = v # 1 - r , a n d u v # r = l) .

Definition 9.2 Let 4 be a total simplification ordering on ground terms. We shall be

considering finite sets of equations of the form £ = Ex U {eq(u, v) = F, eq(z, z) T) , where

Ic is a set of equations over Tc (X), and u , v E Tc(X). We define a transformation on

systems of the form (S, 1 , O) , where S is a term system, I a set of equations as above, and

42 THEOREM PROVING USING EQUATIONAL MATINGS AND RIGID E- UNIFICATION

O an order assignment:

(S o , Eo, 00) * (S1, £1, Ql),

where lI = rl , 12 = r2 E E~u£[', either l l /p is not a variable or Z2 7-2 is degenerate, l1 /B #
12, TU(ll /P, E2) represents an mgu of ll /p and Z 2 in triangular form,17 a = [tl /x l , . . . , tp/xp]

where TU(~lIPl12) = ((~ 1 , t l) , . - , (xp, tp)),

O1 is an order assignment on compatible with Oo, S1 = So U TU(11/,f3,12), and £1 =

R(£;lQl).

Observe that u(ll[p +- r2] = r l) looks like a critical pair of equations in lo U I,-',

but it is not. This is because a critical pair is formed by applying the mgu of Z1/P and

1, to l1 [p t r2] -- r l , but [t l /xl , . . . , tp/xp] is usually not a mgu of l1/P and 12. It is the

composition [t l /xl] ; . . . ; [tp/xp] that is a mgu of E1/P and 1,. The reason for not applying

the mgu is that by repeated applications of this step, exponential size terms could be formed,

and it would not be clear that the decision procedure is in NP. We have chosen an approach

of "lazy" (or delayed) unification. Also note that we use the rigid reduced system R(£:, 0 1)

rather than £i, and so, a transformation step is defined only if R does not fail. The method

then is the following.

Definition 9.3 (Method) Let E,,, = E U {eq(u,v) = F, eq(z,z) T) , 0 0 an order

assignment on E,,,, So = 0, lo = R(E,,,,Oo), rn the total number of variables in £0, and

V = Var(E) U Var(u, v) . For any sequence

consisting of at most m transformation steps, if Sk is unifiable and k < m is the first integer

in the sequence such that F = T E Ek, return the substitution ds, I V , where Os, is the mgu

of Sk (over Tc(X)).

Example 9.4 Let E be the set of equations E = {fa a, ggx = fa) , and (u, v) =

(gggx, x). We have

E,,, = {fa 4 a, ggx = f a , eq(gggx, x) = F, eq(z, z) = T) .

l7 Note that we are requiring that l l / P and l 2 have a nontrivial unifier. The triangular form of mgus
is important for the NP-completeness of this method.

10 Soundness, Completeness, and Decidability of the Rigid E- Unification Method 43

The congruence closure It of E,,, has three nontrivial classes { a , f a , g g x) , { e q (g g g x , x) , F) ,

and { e q (z , z) , T) . Let O0 be the order assignment on E,,, such that

the least elements of classes being ordered in the order of listing of the classes. We have

So = 0, and the reduced system £0 = R(EU,, , 00) is

£0 = { f a = a , ggx --1 a , eq(ga, x) F , eq(z , z) = T) .

Note that there is an overlap between eq(ga, x) = F and eq(z , z) T at address 6 in

eq(ga, x) , and we obtain the triangular system ((x , ga) , (2 , ga)) and the new equation F =

T . Thus, we have

(S O , & O , ~ O) * (S1,£1,61),

where S1 = ((2, ga) , (2, ga)

£: = { f a = a , ggga = a , eq(ga, ga) F , F = T) ,

and O1 is the restriction of Oo to the subterms in E i . After reducing E i , we have

El = { f a = a , ggga = a , eq(ga, g a) = T , F = T) .

Since F - T E and S1 is unifiable, the restriction [ga /x] of the mgu [g a / x , g a / z] of S1

to V a r (E) U V a r (u , v) = (x) is a rigid E-unifier of gggx and x .

10 Soundness, Completeness, and Decidability of the Rigid E-
Unification Met hod

The main properties of the method are given in this section.

Theorem 10.1 (Soundness) Let E be a set of equations over T c (X) , u, v two terms in

T z (X) , EZL,V = E U { e q (z , z) = T , eq (u , v) F } , 6 0 an order assignment on E,,,, So = 0 ,

Eo = R(E,,, , Oo), m the total number of variables in EQ, and V = V a r (E) U V a r (u , v) . If

where Sk is unifiable, F = T E Ek and F = T f Ei for all i , 0 < i < k 5 m, then 8s, (v is a

rigid E-unifier of u and v , where Os, is the mgu of Sk (over T c (X)) .

44 THEOREM PROVING USING EQUATIONAL MATINGS A N D RIGID E-UNIFICATION

The proof of theorem 10.1 does not use the fact that the systems R(E;', Oi) are rigid

reduced, but only the fact that O1(Ei) and O1(R(E;, Oi)) are rigid equivalent. However,

the fact that the systems R(C,!, Oi) are rigid reduced plays a crucial role in the proof of the

completeness theorem. The Oi's are only needed for the completeness of the method, and to

make sure that the reduction procedure terminates. We now turn to the completeness part.

The main technique is roughly the removal of peaks by the use of critical pairs (Bachmair

[4], Bachmair, Dershowitz, and Plaisted [5], Bachmair, Dershowitz, and Hsiang [6]).

Theorem 10.2 (Completeness) Let E be a set of equations over Tc(X) and u, v two

terms in Tc(X). If 6 is any rigid E-unifier of u and v , then there is an order assignment Oa

on EU,, , and letting So = 8, lo = R(EU,,, Oo), rn the number of variables in R(E,,,, Oo),

and V = Var(E) U Var(u, v), there is a sequence of transformations

where k 5 m, Sk is unifiable, F = T E Ek, F T $ I; for all i, 0 5 i < k, and

Bsk I S E O[V], where Osk is the mgu of Sk over Tc (X). Furthermore, Bs, I is a rigid

E-unifier of u and v.

Corollary 10.3 If 8' is the mgu produced by a sequence of steps as in the soundness

theorem, there is a ground substitution O1 such that V 5 D(&) and a sequence of steps

A

such that O1 LE 8', Ol is a unifier of Sk, and O1 realizes all the Oils in the above sequence.

In particular, the method is still complete if we restrict ourselves to order assignments O

such that T <o F i e , s so eq(u,v) for all s ,u ,v E Tc(X).

Theorem 10.2 also shows that rigid E-unification is decidable.

Corollary 10.4 Rigid E-unification is decidable.

Combining the results of theorem 10.1 and 10.2, we also obtain the fact that for any

El u, v , there is always a finite complete set of rigid E-unifiers.

Theorem 10.5 Let E be a set of equations over Tc(X), u , v two terms in Tc(X), m the

number of variables in E U {u, v), and V = Var(E) U Var(u, v). There is a finite complete

set of rigid E-unifiers for u and v given by the set

for any order assignment Oo on E,,,, with So = 0, Eo = R(E,,,, 0 0) , and where Sk is

unifiable, F - T E Ek, F = T $ Ei for all i , 0 5 i < k, and Os, is the mgu of Sk over T c (X) .

11 NP- Completeness of Rigid E- Unification

11 NP-Completeness of Rigid E-Unification

First, recall that rigid E-unification is NP-hard. This holds even for ground sets of equa-

tions, as shown by Kozen [30, 311. Using an idea of Kozen [30], we show that rigid E-

unification is NP-hard even when all equations in E are regular, all ground except one, and

u and v are ground.

Definition 11.1 An equation (1 1 r) is regular iff Var(1) = Var(r).

Theorem 11.2 Rigid E-unification is NP-hard when all equations in E are regular, all

ground except one, and u and v are ground.

Proof: The satisfiability problem is reduced to rigid E-unification as follows. Let the set of

function symbols consist of A, V, 1, and the constants T and I. Write down the set Ebool

of 10 ground equations corresponding to the truth tables for A , V, 1. Given any clause A,

if Var(A) = {x l , . . . ,x,}, let

Finally, let EA = Ebool U { A BA), u = T and v =I. Clearly, A BA is regular, and it is

easy to see that a substitution a such that T and I are congruent modulo a(EA) exists iff

A is satisfiable, since BA is false for every truth assignment. Hence, satisfiability is reduced

to rigid E-unification. CI

We now show that rigid E-unification is in NP.

Theorem 11.3 Rigid E-unification is NP-complete.

Proof. We already know that rigid E-unification is NP-hard. By corollary 10.4, the problem

is decidable. It remains to show that it is in NP. From corollary 10.4, u and v have some

rigid E-unifier iff there is some sequence of transformations

of at most k 5 m steps where m is the number of variables in Eo, and such that Sk is

unifiable (over T c (X)) , F = T E Ek and F = T 6 li for all i, 0 5 i < k. We need to

verify that it is possible to check these conditions in polynomial time. First, observe that a

triangular form can be computed in polynomial time, applying the substitutions associated

with triangular forms can also be done in polynomial time, and checking that a preorder

is an order assignment can be done in polynomial time. Finally, we need to show that the

total cost of producing reduced systems is polynomial. This is a crucial point that had been

46 THEOREM PROVING USING EQUATIONAL MATINGS AND RIGID E - UNIFICATION

overlooked in a previous version of this paper, and we thank Leo Bachmair for pointing out

this subtlety to us. We use two facts that have to do with implementing the steps of the

algorithms using term DAGs.

(1) We have already noted (see theorem 8.7) that the size of the term DAG associated

with a reduced system equivalent to an input set of equations is no greater than the size of

the input term DAG, the number of rules no greater that the number of input equations,

and that the reduction procedure runs in O ((m + n + p)3), where (m, n) is the size of the

input term DAG and p the number of equations in E.

(2) The term DAG associated with the system E:+l obtained from Ei by a transforma-

tion step can be obtained from the term DAG associated with I; by moving pointers, and if

(m' , n') and (m, n) are the sizes of the term DAGs of the systems El+, and Ei respectively,

and p' and p the numbers of equations in these systems, then m' 5 m, n' 5 n, and p' 5 p.

The reason why (2) holds is that the terms occurring in the triangular form of the

substitution a associated with the transformation step all belong to the term DAG associ-

ated with Ei. For instance, this is easily seen if one uses Paterson and Wegman's method

[37]. Now, forming l1 [P t r z] only involves pointer redirection, and so does the application

of a. Thus, the size of the resulting term DAG cannot increase. By the definition of the

transformations, it is also obvious that p' 5 p.

Because the number of steps is at most the number of variables in Eo, the total cost

of producing reduced systems is indeed polynomial in the size of the input.

It is interesting to note the analogy of this part of our proof with Kozen's proof that

his method is in N P [31]. Both use the term DAG representation in a crucial way. In this

way, we avoid the potential exponential explosion that can take place during reductions if

identical subterms are not shared.

If E is a set of ground equations, the Oi's are useless and the reduction procedure R

needs only be applied once at the beginning to E. Thus, theorem 11.3 provides another

proof of a result first established by Kozen [30, 311.

12 Applications of Rigid E-Unificat ion to Equational Mat ings

The method developed for one set of equations and one pair can be easily generalized to

tackle problem (1). In fact, an algorithm to decide whether a family of mated sets is an

equational (pre)mating is obtained. The method of definition 9.3 can be generalized to

pairs (I?, S) (as defined in problem 1 in the introduction) by considering triples (S, E, O),

12 Applications of Rigid E- Unification to Equational Matings 47

where S is a term system, and E is an n-tuple of sets of equations. The definition of a rigid

3-unifier of a set of pairs is generalized as follows.

Definition 12.1 Let I? = {Ei I 1 < i < n) be a family of n sets of equations (over Tz(X))

and S = { (u ; ,~ ;) 1 1 < i < n) a set of n pairs of terms (over Tc(X)). A substitution 6

(over T E (X)) is a rigid 3 - u n i f i e r of S iff

for every i, 1 5 i < n. A pair (2, S) such that S has some rigid E-unifier is called an

equational premat ing .

The suitable generalization of the preorder sE to a family I? = {Ei 1 1 5 i < n} of n

sets of equations turns out to be the following.

Definition 12.2 Given a family 3 = {Ei I 1 < i < n) of n sets of equations, for any

(finite) set of variables V, for any two substitutions o and 6, a < E 6 iff there is some q such

that a ; q iIEi O[V] for every i, 1 < i 5 n.

Note that this condition is stronger than the condition a LE; O[V] for every i, 1 5 i 5
n, because with this second condition we only know that there are substitutions ql , . . . , q,

such that a ; qi CEi 6[V] for every i, 1 5 i 5 n. In definition 12.2, it is required that

q1 = . . . = qn. It is straightforward to verify that the generalization of theorem 10.2 holds

with the stronger definition 12.2.

Complete sets of rigid E-unifiers for S are defined as follows.

Definition 12.3 Let = {Ei 1 1 5 i < n} and S = {(ui,vi) I 1 < i < n) as in definition

12.1, and let V = ~ a r (2) U Var(S). A set U of substitutions is a comple te se t of rigid

E - u n i f i e r s for S iff: For every a E U ,

(i) D(a) V and D(a) n I(o) = Q) (idempotence),

(ii) o is a rigid E-unifier of S,

(iii) For every rigid E-unifier 6 of S, there is some o E U such that a SE O[V].

+

Minimal rigid E-unifiers also exist and are defined as follows.

Definition 12.4 Let 2 be a family of sets of equations and S a term system as in definition

12.1. For any ground rigid Eunifier 6 of S, let

48 THEOREM PROVING USING EQUATIONAL MATINGS AND RIGID E-UNIFICATION

Since f(is total and well-founded on ground substitutions with domain D(d) , the set SE,s,e

contains some least element a (w.r.t. -#).

It is easy to see that lemma 7.4 can be generalized as follows.

Lemma 12.5 Let I? be a family of sets of equations and S a term system as in definition

12.1. For any ground rigid Eunifier B of S , if o is the least element of the set SB,s,e of

definition 12.4, then the following properties hold: for every i , 1 5 i 5 n,

(1) 0 G E ~ 6,

(2) if x E V a r (E i) , every term of the form a(x) is irreducible by every oriented instance

o(1) + o (r) of a nondegenerate equation 1 = r E Ei U E?, and

(3) if x E V a r (E i) , every proper subterm of a term of the form a (x) is irreducible by

every oriented instance a(1) -t a (r) of a degenerate equation 1 = r E E; U E;'.

Lemma 8.3 is easily generalized as follows. We let eql , . . . , eq, be n new distinct binary

function symbols not in C (and distinct from T and F).

Lemma 12.6 Let I? be a family of sets of equations and S a term system as in definition

12.1. A substitution B over T E (X) is a rigid &unifier of S iff there is some substitution 0'
*

over T c (X) such that 0 = B'(D(e,)-{z, ,...,z,) and T g e t (E i) F for every i , 1 5 i < n, where

E' = Ei U {eqi(ui , v i) -- F, eqi(zi, z i) + T } , and { r l , . . . , z,) is a set of new variables not

in v a r (E) u v a r (S) .

The total simplification ordering 4 is extended to the set

as follows:

For any terms s , t , u , v E T',

(a) T 4 F 4 u 4 eqi(s , t);

(b) eqi(s, t) 4 eqi(u, v) iff { s , t) +I,, { u , v } , where +I,, is the lexicographic extension of

4 to pairs;

(c) eq;(s, t) 4 eqj(u , v) iff 1 5 i < j < n.

Clearly, this extension of 4 is a total simplification ordering. We define a transfor-

mation on systems as follows. We shall be considering n- tuples E = (E l , . . . , En) of finite

sets of equations of the form Ei = E$ U {eqi(u, v) = F, eqi(zi, z ;) = T) , where is a set

12 Applications of Rigid E - Unification to Equational Matings 49

of equations over T c (X) and u, v E Tc(X). We define a transformation on systems of the

form (S, E, O), where S is a term system, & an n-tuple of sets of equations as above, and

8 an order assignment:

(SO, Eo, 00) * (s1, El, Ol),

where ll A r l , 12 7-2 E &A U (&A)-' for some i, 1 5 i 5 n, either ll/P is not a variable or

12 2 r 2 is degenerate, ll/P # 12, TU(Zl/P, 12) represents a mgu of Il/p and 12 in triangular

form, O = [tl/xl,... ,tp/xp] where TU(11/p7~2) = { (~ 1 , t l) , . . . 7 (~ ~ 7 t p)) ,

t 1 i E = ((- 1 = 1) U {ll[p + r2] = r l)) and &I: = a(&;) for every j # i,

Q1 is an order assignment on &; compatible with Oo7 S1 = So U TU(E1/P, 12), and El =

(E:, . . . ,&;), where &{ = R(E'{, 01) for all j, 1 < j < n.

The method for finding rigid ,!?-unifiers of S is the following.

Definition 12.7 (Method) Let I? = {Ei I 1 5 i 5 n) and S = {(ui,vi) I 1 < i 5 n } as

in definition 12.1, let E~ = Ei U {eqi(ui, vi) f F, eqi(zi, ri) t T) for every i, 1 < i 5 n,

Oo an order assignment on (El,. . . ,En) , S, = 0, E; = R(E', 6 0) for every i, 1 5 i < n,

Eo = (Ei , . . . , E,") , m the total number of variables in Eo, and V = v a r (b) u Var(S). For

any sequence

(SO &O , 0 0) *+ (s k 7 E k Ok)

consisting of at most m transformation steps, if Sk is unifiable and Ic 5 m is the first integer

in the sequence such that F T E &; for every i, 1 5 i < n, return the substitution Os, I v,
where Osk is the mgu of Sk (over T c (X)) .

The proofs of theorem 10.1 and theorem 10.2 can be easily adapted to prove that the

finite set of all substitutions returned by the method of definition 12.7 forms a complete

set of rigid Eunifiers for S. In particular, the method provides a decision procedure for

deciding whether a family of mated sets is an equational premating that is in NP.

Theorem 12.8 (Soundness) Let E = {Ei I 1 < i 2 n) and S = {(ui7 vi) I 1 < i 5 n} as

in definition 12.1, let Ei = Ei U {eqi(ui,vi) F, eqi(zi, zi) A T} for every i, 1 < i < n,

Qo an order assignment on (El, . . . , En), So = 0, Ei = R(Ei , Do) for every i, 1 5 i 5 n,

Eo = (&:, . . . , &;)+ the total number of variables in Eo, and V = ~ a r (2) U Var(S). If

whereSk isunifiable, F -1 T E &; a n d F 4 T 6 E! foralli and j, 0 5 i < k 5 rn, 15 j 5 n,

then Osk l v is a rigid Eunifier of S, where Os, is the mgu of Sk (over T C (X)) .

50 THEOREM PROVING USING EQUATIONAL MATINGS AND RIGID E - UNIFICATION

Theorem 12.9 (Completeness) Let 3 = {Ei 1 1 < i < n) and S = {(ui7 vi) I 1 < i < n) as

in definition 12.1, and let Ei = Ei U {eqi(ui, v;) -- F, eqi(zi, r ;) T) for every i, 1 5 i < n.
+

-
If 8 is any rigid E-unifier of S, then there is an order assignment 00 on (El , . . . , En), and

letting So = 8, &: = R(E2, 60) for every i, 1 < i < n, Eo = (&:, . . . , &;), m the total number

of variables in Eo, and V = v a r (3) U Var(S), there is a sequence of transformations

where k _< rn, Sk is unifiable, F T E &:, F T $ &! for all i and j, 0 < i < k, 1 < j < n,

and Os, I v Se 9[V], where Bs, is the mgu of Sk over Tc (X). Furthermore, Os, I v is a rigid

2-unifier of S.

Actually, theorem 12.9 can be sharpened. Examination of the induction proof reveals

that for any rigid &unifier 8 of S, a rigid &unifier more general than 9 can be found, even

if the transformations are applied in a certain order.

Definition 12.10 We say that a derivation

is an IT-derivation iff for every subderivation

in the step from i to i + 1 (0 <_ i < m), the equations ll = rl and l2 r2 are chosen in

the set &! such that j 2 1 is the least index such that F = T E &: for every 1 < j and

F A T $ & ; .

In some sense, such derivations compute rigid &unifiers incrementally from left to

right.

Theorem 12.11 (Incremental Completeness) Theorem 12.9 holds with lr-derivations in-

stead of arbitrary derivations.

This sharpening of theorem 12.9 is very useful in practice, because it yields an incre-

mental way of finding rigid 2-unifiers. From theorem 12.9, it is obvious that theorem 10.5

also holds for a family of sets of equations 3 and a term system S.

Theorem 12.12 Let 2 = {E; I 1 < i < n) and S = {(ui, v;) I 1 < i < n) as in definition

12.1, E~ = Ei U {eq;(u;, vi) I F, eqi(zi, z ;) -- T) for every i, 1 < i 5 n, m the number

12 Applications of Rigid E- Unification to Equational Matings 51

of variables in I? U S, and V = ~ o r (l ?) U Var(S). There is a finite complete set of rigid

E-unifiers for S given by the set

for any order assignment O0 on (El, . . . , En}, with & = 0, £: = R (E ~ , Oo) for every i,

1 5 i 5 n, Eo = (E,', . . . , EF), and where Sk is unifiable, F - T E E;, F T $ £! for all i

and j, 0 5 i < k , 1 5 j 5 n, and Bs, is the mgu of S k over T c (X) .

Finally, it is obvious that theorem 12.9 yields a generalization of 11.3 to equational

prematings.

Theorem 12.13 Finding whether a pair (I?, S) (as in definition 12.1) is an equational

premating is NP-complete.

As a consequence, since the problem of deciding whether a family of mated sets forms

an equational mating is equivalent to the problem of finding whether a pair (2, S) is an

equational premating, the former problem is also NP-complete.

In the next section, we present a procedure based on the method of equational matings.

The basic idea of such a procedure is straightforward, as suggested by theorem 5.5: compute

incrementally amplifications of a formula in nnf, and at each stage, test whether such an

amplification has a p-acceptable mating. The efficiency related issues here are the same as

in Andrews7s non-equational case, except that they are harder: in addition to efficient data

structures which save information between stages, we must identify mated sets instead of

mated pairs, and use rigid E-unification instead of standard unification.

While implementation issues are of importance for a practical procedure, we don't feel
4

they are as new as the ideas of equational matings and rigid E-unification, and thus, we

only give a high level description of the procedure.

52 THEOREM PROVING USING EQUATIONAL MATINGS AND RIGID E- UNIFICATION

13 A Refutation Procedure

We now consider defining a refutation procedure based on equational matings and rigid

E-unification. As mentioned in section 5, such a procedure is suggested by theorem 5.5:

compute incrementally amplifications of a formula in nnf, and at each stage, test whether

such an amplification has a pacceptable mating. This idea can be formalized in the follow-

ing non-deterministic definition, which uses the incremental rigid 2-unification algorithm

E-UNIF given by theorem 12.11.

Definition 13.1 Let A be a rectified universal sentence in nnf and D an amplification of

A. An EQ-derivation R is a sequence of tuples ((Do, ITo, MSo, BO), . . . , (D,, II,, MS,, d,)),

such that for 0 5 i 5 p, Di is an amplification of A, I I ; is a set of vertical paths in Di, MS;

is a set of mated sets, each such set of the form {(sl t l) , . . . , (s, t,), ~ (s t)}, and di

is a substitution, such that

(1) Do is the quantifier-free form of A, llo = vp(Do), MSo = 0, and Bo = Id, and

(2) For every i, 0 5 i < p, if MS; = {Sl , . . . , S,), then either

(i) there is some vertical path slri+] in ll;, some subset Si+l of T ; + ~ such that Si+l =

{(sl = t l) , . . . , (s, = t,), ~ (s = t)}, and some rigid E-unifier ai+l for Si+1 given by

the procedure E - U N I F (where E = {(sl = t l) , . . . ,(s, .I. t,)}). Then D;+l = Di,

ni+l = ci+l(ni - { ~ i + l }) , MSi+l = MSi U {Si+l)r and di+l = di ; 0 i + 1 ;

(ii) if Di is obtained from the rectified form of a sentence Ci by deleting quantifiers, where

Ci is a sentence in a sequence (C1, . . . , Ci) (i 2 1) of formulae resulting from quantifier

duplications, then Di+l is obtained from the rectified form of a sentence Ci+l, obtained

by quantifier duplication from Ci, by deleting quantifiers. Then = V ~ (D ; + ~) ,

MSi+l = 0, and Bi+l = Id.

If in addition, (MSp, 6,) is a p-acceptable mating, we say that R is an EQ-refutation.

Since the method outlined in definition 13.1 non-deterministically enumerates all equa-

tional matings for potentially all amplifications of A, it is immediate from theorem 5.5, that

since A is unsatisfiable iff some amplification of A has a p-acceptable mating, A is unsatis-

fiable iff there is an EQ-refutation for A.

There are a number of implementation problems with definition 13.1 as the basis for

a practical method for showing the unsatisfiability of a formula in nnf:

(1) The p-acceptable mating found is maximal, since no attempt is made to identify

overlapping vertical paths that are spanned by common mated sets.

13 A Refutation Procedure 53

(2) Every time a subformula of A is amplified, the entire computation up until that

point is discarded.

(3) No effort is made to use any failure in any step as a source of information for the

next step.

These points are closely related to the acceptability criteria given by Andrews in

section 2.3 of [I] , where he defines a procedure for finding (non-equational) p-acceptable

matings. We tried to adapt the notion of a connection graph used by Andrews in section 3

of [I], but unfortunately with no success. The difficulty in the presence of equality is that a

vertical path .rr is closed iff it contains some mated se t {(sl tl), . . . , (s, t,), ~ (s = t))

such that s and t have some rigid E-unifier (where E = {(sl tl), . . . , (s, A t,))), but

there is no guarantee that n < 1. For languages without equality, a mated set is of the

form {L, 1L') where L and L' are unifiable. In order to determine which pairs of literals

are unifiable it is necessary to examine O(n2) pairs, where n is the total number of literals

in D. Hence, for languages without equality, it is advantageous to precompute a connection

graph recording the pairs of literals {L, 1 L ') where L and L' are unifiable, since every

closed path must contain such a pair. However, for languages with equality, if D contains

n = q + r literals where q literals are positive and r literals are negative (r 2 I) , to form a

mated set there are r choices for the negative literal and for each such choice, any subset of

the positive literals can be chosen. Thus, there are potentially r2q mated sets, that is, an

exponential number of mated sets. In addition, rigid E-unification is NP-complete.

Thus, the cost of determining which sets of literals are mated sets is exponential and

there does not seem to be any advantage in computing such sets. Since our investigations

on this subject are still very preliminary, we will not elaborate any further. However, this

is a very interesting topic that clearly requires more work.

We conclude this section with a naive procedure written in pseudo-code implementing

the method of equational matings. We have made no efforts towards improving efficiency

of the basic method. This aspect should be addressed in further work.

Let us now turn our attention to identifying mated sets in the set vp(D) of vertical

paths in D. Since mated sets are of the form {(sl = t l) , . . . , (s, = t,), ~ (s -L t)), the

search is organized around the negative literals. Observe that if some path .rr E vp(D)

does not contain a negated literal, it cannot contain an unsatisfiable mated set and D

is satisfiable. In this case, the procedure stops with failure. Suppose now that for some

vertical path T , there is a mated set S of the form {(sl t l) , . . . , (s , t,), ~ (s t)) but

it has no rigid E-unifier. Then we must perform an amplification step. We would like this

step to supply information that was missing in the attempt to find an unsatisfiable mated

set. Unfortunately, any arbitrary duplication may fail to do this, and may even introduce

54 THEOREM PROVING USING EQUATIONAL MATINGS A N D RIGID E-UNIFICATION

new vertical paths. As Andrews says in discussing this problem in the context of looking

for non-equational p-acceptable matings, "One would like to develop a set of heuristics for

duplicating quantifiers." However, it is beyond the scope of this paper to consider this

issue in detail (as it was beyond the scope of Andrews and Bibel's papers), and we will

use a straightforward breadth-first outermost duplication strategy: in the lexical order of

occurrences of subformulae in A, perform an outermost duplication of the first non-ground

subformula, then the second, and so on until the last non-ground subformula in the lexical

order has been duplicated, and then start again from the top. A breadth-first strategy

clearly generates a complete search space of outermost duplications, however, it can clearly

result in superfluous paths. l8

Example 13.2

Consider the following formula A, formed from the union of examples 4.8 and 5.6,

where i, 6, i, u, v, w, x, y, z denote variables:

(a 1 b) V -(*(a, b) = *(b, a)) A

V2((f3i i. 2) V l (f ? A fb)) A

(&a v 7(f3a = a)) A

V6((f 5ij 6) v 1QG) A

(Ra V fa = a) V ~ P f a) A

V i i R f i A

P a A

' jxVy~z(*(x, *(Y, 2)) = * (* b y Y) , 4)) A

b'u(*(u, 1) = u) A

vv(*(l, v) = v) A

VW(*(W) w) = 1)

The problem is to find the right sequence of duplications for A. We know from example 5.6

that 3 duplications of subformula (8) and 2 duplications of subformula (11) are necessary for

the existence of a p-accept able mating. But an obvious breadth-first outermost sequence of

duplications results in 21 duplications before these duplications axe generated. Subformulae

(1),(3),(5), and (7) are ground and thus not subject to duplication.

Let A be a rectified universal formula in nnf. A breadth-first outermost amplification

sequence (Dl , . . . , D;) (i > 1) for A is a sequence such that Dk is obtained from the

la Andrews and Bibel have shown that outermost duplication itself can generate superfluous literals.

13 A Refutation Procedure 55

rectified form of a sentence Ck by deleting quantifiers, where Ck is a sentence in a sequence

(C1,. . . , C;) (i > 1) of formulae resulting from quantifier duplications (1 5 k 5 i). The

Ck's are defined such that C1 = A, and Ck+l is obtained by quantifier duplication of

an outermost universal subformula of Ck using a breadth-first strategy (1 < k 5 i - 1).

Given a counter k 2 1, a call ampli fy(k + 1, A, D) to the procedure amplify returns the

amplification D = Dk+1 obtained from Ck as explained above. For k = 0, it is assumed

that ampli f y(1, A, D) returns the quantifier free formula Dl obtained by deleting quantifiers

from A. We are assuming that the &unification algorithm E-UNIF (given by theorem 12.11)

takes as input a mated set S = {(sl -- tl), . . . , (s, = t,), ~ (s = t)} and returns a finite

complete set of rigid E-unifiers of s and t where E = {(sl = t l) , . . . , (s, t,)}, in the form

of a set of triangular forms, where each triangular form T represents a substitution aT. For

presenting the refutation procedure, we also assume that a mating M is represented by a

pair (MS, U), where MS is a collection of mated sets, and U is the triangular representation

of a substitution. Also, given a set of paths It and a substitution a , let

apply(a,II) = {n' 1 T = {PI , . . . , Pk} E IT and 7r' = PI), . . . ,a(Pk)}).

We assume that the application of a to II is done intelligently, i.e., since a is the identity

substitution on almost all literals in n, some table lookup mechanism is available to identify

the literals which have variables in the domain of a.

We collect the information discussed in this section into the following pseudo-code

version of a refutation procedure for formulae in nnf which uses the following variables and

procedures: A is a rectified universal sentence in nnf; i is a counter for vertical paths in

an amplification; j is a counter for negative literals in a vertical path; k is an amplification

counter; M is an equational mating; p-acceptable is a boolean value which is true iff M is

p-acceptable; found is a boolean value which is true if an unsatisfiable mated set is identified

in some path; select-path(i, vp(D)) returns the i th path associated with amplification D;

select-negative-literaI(j, T) returns the jth negative literal in n; choose-positive-subset(7r)

returns the set of positive literals for some path n. This procedure must be understood

as a nondeterministic procedure. A deterministic version can be writ ten by implementing

explicitly the backtracking needed to handle the choice of literal, path, etc. However, we

feel that it would not be as clear as the present version.

56 THEOREM PROVING USING EQUATIONAL MATINGS AND RIGID E - UNIFICATION

A Refutation Procedure

procedure equational-re f utation(A);

begin

k '-- 1;

ampli f y (k , A, D); (D is thus the quantifier-free form of A)

M '-- (070);
i-limit + #paths(vp(D)); i +- 1;

p-acceptable c I;
while i <_ i-limit A lp-acceptable d o

T t select-path(i, vp(D));

j-limit +- #negative-literals(7r); found +- I;

if j-limit # 0 then

13' +- 1;
while j < j-limit A 7 found d o

N +- select-negative-literal(j, T) ;

S +- choose-positive-subset(.rr) U {N);
if 3T E E - U N I F (S) then

[found +- T;
if i = i-limit t h e n p-acceptable +- T else i t i + 1;

let (MS, U) = M; M +- (M S u S, U u T);

~ P (D) +- ~ P P ~ Y (~ T vp(D))]
else j c j + 1

endwhile]
else re turn; {A is satisfiable)

if 1 found then

[k +- k + 1;

amplify(k, A, D);
i-limit +- #paths(vp(D)); i t 11

endwhile;

r e tu rn (M)

end;

14 Conclusion and Further Work

We have generalized Andrews and Bibel's method of matings to first-order languages with

equality. This new method is sound and complete, and uses a decidable form of 3-
unification, rigid 2-unification. We have shown that both rigid &unification and finding

-4

whether a pair (E, S) is an equational premating are NP-complete problems. We also have
-,

shown that finite complete sets of rigid E-unifiers always exist. Theorem 12.13 has impor-

tant implications regarding the computational complexity of theorem proving for first-order

languages with equality using the method of matings. It shows that there is an algorithm for

finding equational matings, but not only is the problem of deciding whether an equational

15 Appendix: Proof of the Skolem-Herbrand-Godel Theorem 57

mating is p-acceptable co-NP-complete, the problem of deciding that a family of mated sets

is an equational mating is NP-complete. For languages without equality, the first problem

is still co-NP-complete, but the second can be solved in polynomial time using standard

unification, and in fact in linear time.

It is essential to find ways of trimming the search space of order assignments if we

want the method to be practical. When a reduction ordering 4 is available and all subterms

in &I are ordered by 4, 0; is completely determined. It would be interesting to investigate

subcases where order assignments can be found quickly. An actual implementation of the

refutation procedure would also be interesting, as well as a comparison with other methods,

those based on Knuth-Bendix completions in particular. The above questions are left for

further research.

15 Appendix: Proof of the Skolem-Herbrand-Godel Theorem

In this section, we give a semantic proof of the Skolem-Herbrand-Godel theorem, in the line

of Andrews's proof [1,2]. The proof relies on two properties:

(1) If every c-instance of a universal sentence A in nnf is satisfiable, then the set of all c-

instances of A is satisfiable. This follows from an easy application of the compactness

theorem, as in Andrews [1,2].

(2) If a universal sentence in nnf (with equality) is valid in some model M, then it is valid

in some model 3-1 whose domain is the quotient of the Herbrand universe by some

congruence.

For languages without equality, property (2) is simpler. If a sentence is valid in

some model, then it is valid in some Herbrand model, and there is no need for a quotient

construction. We now proceed with the proofs.

Lemma 15.1 Let A be a universal sentence in nnf. If every c-instance of A is satisfiable,

then the set of all c-instances of A is satisfiable.

Proof: First, we use the fact proved in Andrews ([I], Lemma 1, or Gallier 1173, Lemma

7.6.1), that for any two c-instances K and L of A, there is some c-instance D of A such

that + D > (I< A L). Then, assume that every c-instance of A is satisfiable. For every

finite set {IT1, . . . , I<,) of c-instances of A, using the above property n - 1 times, we have

some c-instance I< of A, such that, Ir' > (I<, A . . . A I<,). Since every c-instance of A is

satisfiable, the set . . , I<,) is satisfiable. By the compactness theorem, the set of all

c-instances of A is satisfiable.

58 THEOREM PROVING USING EQUATIONAL MATINGS AND RIGID E- UNIFICATION

Lemma 15.2 Consider a first-order language with equality having at least one constant.

Given a sentence A in negation normal form and not containing existential quantifiers, if

A is satisfied in some structure, then A is satisfied in some structure whose domain is the

quotient of the Herbrand universe HT by some congruence 2.

Proof (ske tch) : Assume that M /= A, for some structure M . Let 'HT be the initial algebralg

generated by the constant and function symbols in the language (whose domain is the

Herbrand universe HT). Let h be the unique algebra homomorphism h : 'HI -+ M defined

such that:

For every constant c, h(c) = CM;

For every function symbol f of rank n > 0, for any n terms t l , . . . , t, E HT,

It is immediate by the definition of h that for every term t E HT, tM = h(t). Let E

be the kernel of the homomorphism h, that is, the relation on H T defined such that, for all

s , t E HT, s r t iff h(s) = h(t). It is well known that 2 is a congruence on ' F t l . Observe

that s Z t iff M (s t) , since SM = h(s) and tM = h(t). Let 'Ft be the quotient algebra

'HI/ 2. Since E = kerne l (h) , there is a unique homomorphism : 'H -t M, such that
-
h(1) = h(t), for every 7 E HT/ E.

We make Tl into a structure as follows: For each predicate symbol P of rank n, for
-

any n equivalence classes of terms G, . . . , t, E HT/ 2,

-
PX(G,. . - , t n) = true iff PM(h(tl), . . . , h(t,)) = true.

Note that for every t E HT, we have

since h(t) = h(t) and tM = h(t).

Given a formula A with set of free variables {xl , . . . , x,), and a structure M, for any

n-tuple (ml , . . . , m,) E M ,, M /= A[ml, . . . , m,] means that M + A[s] for any assignment

s such that s(xi) = m;, for 1 5 i < n. (It is well known (Gallier [17]) that AM[s] only

depends on the restriction of s to {xl , . . . , x,)). The following properties can be proved by

induction on terms and formulae:

For details on algebras and homomorphisms, see Gallier [17].

15 Appendix: Proof of the Skolem-Herbrand-Godel Theorem 59

- -
(1) For every term t with free variables {xl , . . . , x,), for every n-tuple, t l , . . . , t n E HT/ g,

(2) For every atomic formula B (including the case of an equation) with free variables
-

{x l , . . . , xn), for every n-tuple, K,. . . , tn E HT/ E

IFI + ~ [q , . . . ,t,] iff IFI + B [t l / x ~ , . . . , tn/xn].

Using induction on formulae, we shall establish the following claim.

Cla im: For every formula X in negation normal form and not containing any existen-

tial quantifiers, for every assignment a : V + HT/ Z, if M X[a o XI, t hen 'FI t= X [a].

The proof is similar to that in Gallier [17].

Proof of cla im: We proceed by induction on formulae.

(i) First, assume that X is an equation (s = t), with set of free variables {xl , . . . , x,),

and that for some n- tuple (tl , . . . , t,) E H Tn , we have

Since for every t E H T , tM = x('i), we have

-- --
Hence, the hypothesis M + (s A t)[h(tl), . . . , h(tn)] is equivalent to

By the definition of 2, this shows that

-
Since for every K, . . . , t, E HT/ Z, we have

A

s ~ (G , . . . , tn) = s[t l /xl , . . . , tn/xn] and
A

t3i(G,. . , in) = ~ [~ I / x I , . . . ,tn/xn],

60 THEOREM PROVING USING EQUATIONAL MATINGS AND RIGID E - UNIFICATION

by (*), we have shown that

- -
M + (s = t)p(G) , . . . , h(tn)] iff X + (s t) F , . . . ,a.

(ii) If X = Psl . . . s,, with set of free variables {xl , . . . , xn), we have

and

-
Since for any n terms c, . . . , rn E H T / 2,

-
PB(C, . . . , rn) = t r u e iff PM(h(rl), . . . , h(rn)) = t rue ,

then

'FI x . . . , iff M /= x [E(G), . . . , Z(K)].

(iii) If X = i B , where B is an atomic formula, the result holds because we have shown

equivalences in (i) and (ii).

(iv) If X is of the form (B A C), then M X[a 0x1 implies that

M + ~ [a o h] and M + ~ [a o ? E] .

By the induct ion hypothesis,

'FI+B[a] and 3-t+C[a],

that is, 'FI + X[a].

(v) If X is of the form (B V C), then the proof is similar to case (iv).

15 Appendix: Proof of the Skolem-Herbrand-Godel Theorem 61

(vi) X is of the form 3xB. This case is not possible since X does not contain existential

quantifiers.

(vii) X is of the form Vx B. If M X [a o h], then for every rn E M,

M /= B[(a o'jl)[x := m]].

(Given an assignment a, the notation a[x := m] denotes the assignment a' such that at(x) =

rn, and at(y) = a(y) for all y # x). Now, since h : 3-1 + M , for every 'i E H, h(7) E M, and

so, for every 7 E H,

M + B[(a o h)[x := h(t)]], that is, M + B[(a[z := t]) oh]

-
By the induction hypothesis, 3-1 + B[a[x := t]] for all ? E H, that is, 3-1 + X[a]. This

concludes the proof of the claim.

From the claim, since M is a model of A, we have shown that 'H is a model of A. CJ

It is clear that lemma 15.2 also holds for sets of universal sentences in nnf. Finally,

we prove the Skolem-Herbrand-Godel theorem.

Theorem 5.2 Given a universal sentence A in nnf, A is unsatisfiable iff some c-instance C

of A is unsatisfiable.

Proof: First, assume that some compound instance C is unsatisfiable. It is straightforward

to show that + A > C (see Gallier [17], theorem 7.6.1). Hence, A is unsatisfiable.

To establish the converse, we prove its contrapositive: If every c-instance of A is

satisfiable, then A is satisfiable.

Since every c-instance of A is satisfiable, by lemma 15.1, the set of all c-instance of

A is satisfiable. By lemma 15.2 (extended to sets of sentences), the set of all c-instances is

valid in some structure 3-1 whose domain is the quotient of the Herbrand universe HT by

some congruence E. We prove by induction on the structure of A that A is valid in 'FI.

Case 1: A is a literal. Then, A is the only c-instance of A, and the result holds since

'H is a model of all c-instances of A.

Case 2: A = (B A C). Let K be a c-instance of B, and L be a c-instance of C.

Then, (I< A L) is a c-instance of A. Since 3-1 is a model of all c-instances of A, we have

'H i= (I< A L), that is, since Ii' and L are ground formulae, 'H K and 3-1 i== L. By the

induction hypothesis, 'H + B and 3-1 + C , which, since A is a sentence, implies that 3-1 /= A.

Case 3: A = (B V C). We claim that either 7-1 is a model of all c-instances of B,

or that 'H is a model of all c-instances of C. Indeed, if this was not the case, there would

62 THEOREM PROVING USING EQUATIONAL MA TINGS AND RIGID E- UNIFICA TION

be some c-instance Ii' of B and some c-instance L of C such that 3-1 B and 7-i &C. C.

However, since (I{ V L) is a c-instance of A, we would have 3-1 (K V L), contradicting the

fact that 'FI is a model of all c-instances of A. Thus, by the induction hypothesis, either

3-1 B or 7-i t= C, which, since A is a sentence, implies that 7-i A.

Case 4: A = VxB. Let t be any (ground) term in H T . Every c-instance of B[t/x]

is a c-instance of A, and since 3-1 is a model of every c-instance of A, by the induction

hypothesis, we have 3-1 /= B[t/x]. However, in the proof of lemma 15.2, we have shown:

Fact: For every atomic formula B (including the case of an equation) with free vari-

ables {xl , . . . , xn) , for every n-tuple, G, . . .
-

3-1 B K , . . . , t,] iff 3-1 /= B[t l /x l , . . . , t,/xn].

By a straightforward induction on formulae almost identical to the proof of the claim in

lemma 15.2, we can generalize the above fact to any universal formula B in nnf. But then,

3-1 + B[t/x] iff 3-1 BE], where @] denotes any assignment s[x := 71 such that s(x) = 7.
Hence, for every 7 E HT, we have 3-1 /= BP], and by the semantics of quantifiers, this means

that 3-1 + VxB. Therefore, 3-1 + A, as desired.

Acknowledgment: We wish to thank Peter Andrews, Leo Bachmair, Jin Choi, Jean

Yves Girard, Tomas Isakowitz, Dale Miller, Frank Pfenning, David Plaisted, and Richard

Statman, for some helpful suggestions and for their encouragements.

16 References

[I] Andrews, P. Theorem Proving via General Matings. J.ACM 28(2), 193-214, 1981.

[2] Andrews, P. An Introduction to Mathematical Logic and Type Theory: To Truth

Through Proof. Academic Press, New York, 1986.

[3] Andrews, P.B., D. Miller, E. Cohen, F. Pfenning, "Automating Higher-Order Logic,"

Contemporary Mathematics 29, 169-192, 1984.

[4] Bachmair, L., Canonical Equational Proofs, Research Notes in Theoretical Computer

Science, Wiley and Sons, 1989.

[5] Bachmair, L., Dershowitz, N., and Plaisted, D., "Completion without Failure," Res-

olution of Equations in Algebraic Structures, Vol. 2, Ait-Kaci and Nivat, editors,

Academic Press, 1-30, 1989.

[6] Bachmair, L., Dershowitz, N., and Hsiang, J., "Orderings for equational proofs,"

LICS786, Cambridge, Massachusetts, 346-357, June 16-18, 1986.

16 References 63

Bibel, W. Tautology Testing With a Generalized Matrix Reduction Method, TCS 8,

31-44, 1979.

Bibel, W. On Matrices With Connections, J.ACM 28, 633-645, 1981.

Bibel, W. Automated Theorem Proving. Friedr. Vieweg & Sohn, Braunschweig,

1982.

Bibel, W., and Schreiber, J. "Proof search in a Gentzen-like system of first-order

logic," in Proc. Int. Computing Symposium, North-Holland, Amsterdam, 205-212,

1975.

Dershowitz, N,. "Termination of Rewriting," Journal of Symbolic Computation 3,

69-1 16, 1987.

Dershowitz, N., Marcus, L., and Tarlecki, A., "Existence, Uniqueness, and Construc-

tion of Rewrite Systems," SIAM Journal of Computing 17, 629-639, 1988.

Downey, Peter J., Sethi, Ravi, and Tarjan, Endre R. "Variations on the Common

Subexpressions Problem." J.ACM 27(4), 758-771, 1980.

Eder, Elmar. A comparison of the resolution and the connection method. In E.

Borger, H. Kleine Biining, and M.M. Richter, editors, CSL '88, 2nd Workshop on

Computer Science Logic, Springer Verlag, 80-98, 1989.

Eder, Elmar. Relative Complexities of First Order Calculi, Habilitationsschrift, Uni-

versitat Dortmund, Germany, 1990. To appear as a book in Vieweg Verlag Braun-

schweig .

Fitting, M. A Tableaux Based Automated Theorem Prover for Classical Logic. Tech-

nical Report, CUNY, June 1986.

Gallier, J . H. Logic for Computer Science: Foundations of Automatic Theorem Prov-

ing. New York: Harper and Row, 1986.

Gallier, J.H., Raatz, S., and Snyder, W., "Theorem Proving using Rigid E-Unification:

Equational Matings," LICS'87, Ithaca, New York, 338-346, 1987.

Gallier, J.H., Narendran, P., Plaisted, D., Raatz, S., and Snyder, W., "Finding canon-

ical rewriting systems equivalent to a finite set of ground equations in polynomial

time," submitted to J.ACM, 1987.

Gallier, J.H., Narendran, P., Plaisted, D., and Snyder, W., "Rigid E-unification is

NP-complete," LICS788, Edinburgh, Scotland, 218-227, July 5-8, 1988.

Gallier, J.H., and Snyder, W. Complete Sets of Transformations For General E-

Unification. Theoretical Computer Science 67(2-3), 203-260, 1989.

64 THEOREM PROVING USING EQUATIONAL MATINGS AND RIGID E - UNIFICATION

Gallier, J.H., Narendran, P., Plaisted D., and Snyder, W., "Rigid E-Unification: NP-

completeness and Applications to Theorem Proving," Information and Computation

87(1/2), 129-195, 1990.

Girard, J.Y., "Linear Logic," Theoretical Computer Science 50(1), 1-102, 1987.

Herbrand, J . Logical Writings. Hingharn, MA: Reidel Publishing Company, 1971.

Huet, G., "A Unification Algorithm for Typed A-Calculus," Theor. Comp. Sci. 1,

27-57, 1975.

Huet, G., Risolution d'Equations dans les Langages d'Ordre 1,2, . . . , w , Thkse d'Etat,

Universiti! de Paris VII, 1976.

Huet, G., "Confluent Reductions: Abstract Properties and Applications to Term

Rewriting Systems," JACM 27(4), 797-821, 1983.

Huet, G. and Oppen, D. C., "Equations and Rewrite Rules: A Survey," in Formal

Languages: Perspectives and Open Problems, R.V.Book, ed., Academic Press, New

York (1982).

Knuth, D.E. and Bendix, P.B., "Simple Word Problems in Univeral Algebras," in

Computational Problems in Abstract Algebra, Leech, J., ed., Pergamon Press (1970).

Kozen, D., "Complexity of Finitely Presented Algebras," Technical Report TR 76-294,

Department of Computer Science, Cornell University, Ithaca, New York (1976).

Kozen, D., "Positive First-Order Logic is NP-complete," IBM Journal of Research

and Development, 25:4 (1981) 327-332.

Levy, A., Basic Set Theory, Springer-Verlag, New York (1979).

Martelli, A., Montanari, U., "An Efficient Unification Algorithm," ACM Transactions

on Programming Languages and Systems, 4:2 (1982) 258-282.

Metivier, Y., "About the rewriting systems produced by the Knuth-Bendix completion

algorithm," Information Proc. Letters 16 (1983) 31-34.

Miller, D. A. Expansion Trees and Their Conversion to Natural Deduction Proofs.

In 7th International Conference on Automated Deduction, Napa, CA, edited by R.E.

Shostak, L.N.C.S, No. 170, New York: Springer Verlag, 375-393, 1984.

Nelson G. and Oppen, D. C. Fast Decision Procedures Based on Congruence Closure.

J. ACM 27(2), 356-364, 1980.

Paterson, M.S., Wegman, M.N., "Linear Unification," Journal of Computer and Sys-

tem Sciences 16, 158-167, 1978.

16 Rejerences 65

1381 Pfenning, F. Proof Transformations in Higher-Order Logic. Ph.D. thesis, Department

of Mathematics, Carnegie Mellon University, Pittsburgh, PA, January 1987.

[39] Plotkin, G., Building in Equational Theories, in: Machine Intelligence 7, 73-90, 1972.

[40] Smullyan, R. M. First-order Logic. Berlin, Heidelberg, New York: Springer-Verlag,

1968.

[41] Szabo, M. E. The Collected Papers o f Gerhard Gentzen. Studies in Logic. New York:

Elsevier North-Holland, 1970.

	Theorem Proving Using Equational Matings and Rigid E-Unifications
	Recommended Citation

	Theorem Proving Using Equational Matings and Rigid E-Unifications
	Abstract
	Comments

	tmp.1190729589.pdf.aMx6x

